Высказывание или нет?
Логика и компьютер
Обозначение высказываний
Операция НЕ (инверсия)
Операция И
Операция И (логическое умножение, конъюнкция)
Операция ИЛИ (логическое сложение, дизъюнкция)
Операция ИЛИ (логическое сложение, дизъюнкция)
0.96M
Категория: ИнформатикаИнформатика

Элементы алгебры логики

1.

ЭЛЕМЕНТЫ
АЛГЕБРЫ ЛОГИКИ
МАТЕМАТИЧЕСКИЕ ОСНОВЫ
ИНФОРМАТИКИ

2.

Ключевые слова
• алгебра логики
• высказывание
• логическая операция
• конъюнкция
• дизъюнкция
• отрицание
• логическое выражение
• таблица истинности
• законы логики

3.

Логика
Аристотель (384-322 до н.э.).
Основоположник формальной логики (понятие,
суждение, умозаключение).
Джордж Буль (1815-1864). Создал новую
область науки - Математическую логику
(Булеву алгебру или Алгебру высказываний).
Клод Шеннон (1916-2001). Его
исследования позволили применить алгебру
логики в вычислительной технике

4.

Алгебра
Алгебра - наука об общих операциях, аналогичных
сложению и умножению, которые могут выполняться
над разнообразными математическими объектами –
числами, многочленами, векторами и др.

5.

Высказывание
Высказывание - это предложение на любом языке,
содержание которого можно однозначно определить как
истинное или ложное.
В
русском
языке
высказывания
выражаются
повествовательными предложениями:
Земля вращается вокруг Солнца.
Москва - столица.
Но не всякое повествовательное предложение является
высказыванием:
Это высказывание ложное.
Побудительные
и
вопросительные
предложения
высказываниями не являются.
Без стука не входить!
Откройте учебники.
Ты выучил стихотворение?

6.

Высказывание или нет?
Зимой идет дождь.
Снегири живут в Крыму.
Кто к нам пришел?
У треугольника 5 сторон.
Как пройти в библиотеку?
Переведите число в десятичную систему.
Запишите домашнее задание

7.

Алгебра логики
Алгебра
логики
вычисления значений,
высказываний.
определяет
упрощения
правила
записи,
и преобразования
В алгебре логики высказывания обозначают буквами и
называют логическими переменными.
Если
высказывание
истинно,
то
значение
соответствующей ему логической переменной обозначают
единицей (А = 1), а если ложно - нулём (В = 0).
0 и 1 называются логическими значениями.

8.

Простые и сложные
высказывания
Высказывания бывают простые и сложные.
Высказывание называется простым, если никакая его
часть сама не является высказыванием.
Сложные (составные) высказывания строятся из простых с
помощью логических операций.
Название логической операции
Логическая связка
Конъюнкция
«и»; «а»; «но»; «хотя»
Дизъюнкция
«или»
Инверсия
«не»; «неверно, что»

9. Высказывание или нет?

Логические основы компьютеров
9
Высказывание или нет?
Сейчас идет дождь.
Жирафы летят на север.
История – интересный предмет.
У квадрата – 10 сторон и все разные.
Красиво!
В городе N живут 2 миллиона человек.
Который час?
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

10. Логика и компьютер

Логические основы компьютеров
10
Логика и компьютер
Двоичное кодирование – все виды информации
кодируются с помощью 0 и 1.
Задача – разработать оптимальные правила
обработки таких данных.
Почему «логика»?
Результат выполнения операции можно
представить как истинность (1) или ложность (0)
некоторого высказывания.
Джордж Буль разработал основы алгебры,
в которой используются только 0 и 1
(алгебра логики, булева алгебра).
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

11. Обозначение высказываний

Логические основы компьютеров
11
Обозначение высказываний
A – Сейчас идет дождь.
B – Форточка открыта.
}
простые высказывания
(элементарные)
! Любое высказывание может быть ложно (0)
или истинно (1).
Составные высказывания строятся из простых с
помощью логических связок (операций) «и», «или»,
«не», «если … то», «тогда и только тогда» и др.
AиB
Сейчас идет дождь и открыта форточка.
A или не B
Сейчас идет дождь или форточка закрыта.
если A, то B
Если сейчас идет дождь, то форточка открыта.
A тогда и только
тогда, когда B
Дождь идет тогда и только тогда, когда открыта
форточка.
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

12. Операция НЕ (инверсия)

Логические основы компьютеров
12
Операция НЕ (инверсия)
Если высказывание A истинно, то «не А» ложно, и
наоборот.
также A , A ,
А
не А
0
1
1
0
not A (Паскаль),
! A (Си)
таблица
истинности
операции НЕ
Таблица истинности логического выражения Х – это
таблица, где в левой части записываются все
возможные комбинации значений исходных данных,
а в правой – значение выражения Х для каждой
комбинации.
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

13. Операция И

Логические основы компьютеров
13
Операция И
Высказывание «A и B» истинно тогда и только тогда,
когда А и B истинны одновременно.
AиB
A
B
220 В
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

14. Операция И (логическое умножение, конъюнкция)

Логические основы компьютеров
14
Операция И (логическое умножение, конъюнкция)
0
1
2
3
A
B
АиB
0
0
1
1
0
1
0
1
0
0
0
1
также: A·B, A B,
A and B (ПИТОН),
A&B
A B
конъюнкция – от лат. conjunctio — соединение
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

15. Операция ИЛИ (логическое сложение, дизъюнкция)

Логические основы компьютеров
15
Операция ИЛИ (логическое сложение, дизъюнкция)
Высказывание «A или B» истинно тогда, когда
истинно А или B, или оба вместе.
A или B
A
B
220 В
К. Поляков, 2007-2010
http://kpolyakov.narod.ru

16. Операция ИЛИ (логическое сложение, дизъюнкция)

Логические основы компьютеров
16
Операция ИЛИ (логическое сложение, дизъюнкция)
A
B
А или B
0
0
1
1
0
1
0
1
0
1
1
1
также: A+B, A B,
A or B (Паскаль),
A || B (Си)
дизъюнкция – от лат. disjunctio — разъединение
К. Поляков, 2007-2010
http://kpolyakov.narod.ru
English     Русский Правила