21.24M
Категория: СтроительствоСтроительство
Похожие презентации:

Опора скользящая для системы противопожарной защиты

1.

21СТ39. Н00564
2172564
С-РТЭ.002
ТУ.00564
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005,
СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от 27.05.2014,
190031, СПб, Московский пр.9 ИЦ «ПКТИ - Строй-ТЕСТ», ОО «Сейсмофонд» ОГРН:
1022000000824 [email protected] т/ф: (812) 694-78-10, (911) 175-84-65, (996) 798-26-54
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, серийный выпуск , (предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов), (для районов с сейсмичностью
8 бал лов и более соединение трубопроводов друг должно быть выполнено с помощью протяжных фланцевых фрикционно-подвижных соединений
(ФПС) (косой стык, изобретения №№ 2413820Е04В1/58, 887748 Е04В1/38) в виде болтовых соединений, расположенных в длинных овальных
отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU, 2010136746 RU, участки соединения трубопровода с системой
противопожарной защиты , выполненые в виде «змейки» или «зиг-зага» и уложенные на сейсмоизолирующих опорах, согласно изобретения
№ 165076 RU
"Опора сейсмостойкая", опубликовано в Бюл. № 28 от 10.10.2016).
Общество с ограниченной ответственностью "ПОЖТЕХПРОМ" 111123, город Москва, проезд
Электродный, дом 6, строение 1, подъезд 4, эт. 1, оф. 31, ком 1, т. 8 800 600 54 94 , ИНН: 7734610370
Общество с ограниченной ответственностью "ПОЖТЕХПРОМ" 111123, город Москва, проезд
Электродный, дом 6, строение 1, подъезд 4, эт. 1, оф. 31, ком 1, т. 8 800 600 54 94 , ИНН: 7734610370
СП 14.13330.2014 «Строительство в сейсмических районах, п.4.7, п. 9.2, ГОСТ 16962.2-90.
ГОСТ 17516.1-90, ГОСТ 30546.1-98, ГОСТ 30546.2-98 (в части сейсмостойкости до 9 баллов по
шкале MSK-64), I категории по НП-031-01
Протокола № 564 от 09.11.2021 (ИЛ ФГБОУ СПб ГАСУ,
№ RA.RU. 21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01. 406.045 от 27.05.2014, действ.
27.05.2019, ОО «Сейсмофонд») ИНН: 2014000780 и протокола № 1516-2/3 от 20.02.2017 ИЦ "ПКТИСтройТЕСТ", адрес:197341, СПб, Афонская ул., д. 2. [email protected] (999) 535-47-29
https://pub.fsa.gov.ru/ral/view/26088/applicant [email protected]
Схема сертификации 3. Знак соответствия по ГОСТ Р 51000.4-2008 наносится на корпус
изделия и (или) в эксплуатационную документацию. Схема сертификации 3
11.11.2021
11.11.2024
Х.Н.Мажиев
.Ю.М.Тихонов
Подлинность сертификата можно проверить в реестре НО Ассоциация "Ростехэкспертиза" http://www.rostehexpertiza.ru/activities/certification/reestr
ЗАО «ОПЦИОН». Москва 2017, "B" лицензия № 05-05-09/003 ФНС РФ, тел. (495) 726- 47-42.www.opcion.ru

2.

21СТ39. Н00564
2172564
Р-РТЭ.002
ТУ.00564
Юридический адрес: ООО "ПОЖТЕХПРОМ" 111123, город Москва, проезд Электродный, дом 6, строение 1
Фактический адрес: ООО "ПОЖТЕХПРОМ" 111123, город Москва, проезд Электродный, дом 6, строение 1
Х.Н.Мажиев
Ю.М.Тихонов
Подлинность сертификата можно проверить в реестре НО Ассоциация "Ростехэкспертиза" http://www.rostehexpertiza.ru/activities/certification/reestr
ЗАО «ОПЦИОН». Москва 2019, "B" лицензия № 05-05-09/003 ФНС РФ, тел. (495) 726- 47-42.www.opcion.ru

3.

21СТ39. Н00580
02172602
С-РТЭ.002
ТУ.00600
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская
ул. д 4, ИЦ «ПКТИ - Строй-ТЕСТ», ОО «Сейсмофонд» ИНН: 2014000780 [email protected]
т/ф: (812) 694-78-10 , (911) 175-84-65, (996) 798-26-54, (921) 962-67-78, (999) 753 - 47-29
ООО "ПОЖТЕХПРОМ" 111123, город Москва, проезд Электродный, дом 6, строение 1, подъезд 4, эт. 1, оф. 31, ком 1
Сертификат соответствия № С-РТЭ.002
ТУ.00564 от 08.11.2021 г.
Протокола № 564 от 09.11.2021, ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ №
RA.RU.21СТ39 от 27.05.2015 об обеспечении высокой надежности критически важных систем автоматического пожаротушения,
за счет увеличения демпфирующей способности трубопровода с косым демпфирующим компенсатором автор проф дтн ПГУПС
А.М.Уздин https://ppt-online.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q т/ф (812) 694-78-10 [email protected]
Знак соответствия наносится на продукцию, тару (упаковку), сопроводительную
техническую документацию в соответствии с ГОСТ 31816-2012
09.11.2021 до 09.11.2024
Аккредитация ИЦ "СПб ГАСУ" ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015
Ссылка аккредитации : https://pub.fsa.gov.ru/ral/view/26088/applicant
С протоколом лабораторных испытаний в ПК SCAD критически важных систем автоматического пожаротушения, за счет увеличения демпфирующей способности трубопровода с косым демпфирующим компенсатором
автор проф дтн ПГУПС А.М.Уздин https://ppt-online.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q https://ppt-online.org/860603 https://testprom.ru/img_user/PDF/seismostoikost-protokol-ispitaniy.pdf https://vk.com/wall553203161_1760
https://yadi.sk/i/8jZeKHCJTsGvxg https://yadi.sk/i/8jZeKHCJTsGvxg
https://yadi.sk/i/DrTK71PO-o-m9Q https://yadi.sk/i/ZLSfhrh8ra22_g https://yaСdi.sk/i/lRzA_SOpdEa37w https://yadi.sk/i/g7Lyr5YoGYJasg https://yadi.sk/i/C0BFkQoNEse9ZA
https://yadi.sk/i/y93RsSoAq8k3-g https://yadi.sk/i/gSart1hjsQrklg https://ok.ru/video/editor/2716630584027 образец https://ppt-online.org/996257 https://disk.yandex.ru/i/0uYtBPuNzDeY7A испытание фрагментов узлов в ПКТИ https://
ppt-online.org/996258
https://disk.yandex.ru/i/SfUQlP2aVVu3-w http://zengarden.in/earthquake/ http://scaleofintensityofearthquakes.narod.ru/ http://scaleofintensityofearthquakes2.narod.ru/ http://scaleofintensityofearthquakes3.narod.ru/
https://drive.google.com/drive/u/0/my-drive?ths=true ; yadi.sk/i/8jZeKHCJTsGvxg yadi.sk/i/DrTK71PO-o-m9Q ; yadi.sk/i/ZLSfhrh8ra22_g ; yadi.sk/i/lRzA_SOpdEa37w
yadi.sk/i/g7Lyr5YoGYJasg ;
yadi.sk/i/C0BFkQoNEse9ZA ; yadi.sk/i/y93RsSoAq8k3-g ; yadi.sk/i/gSart1hjsQrklg https://www.youtube.com/watch?v=846q_badQzk
Х.Н.Мажиев
Подлинность сертификата можно проверить в реестре НО Ассоциация "Ростехэкспертиза" http://www.rostehexpertiza.ru/activities/certification/reestr
ЗАО «ОПЦИОН». Москва 2019, "B" лицензия № 05-05-09/003 ФНС РФ, тел. (495) 726- 47-42.www.opcion.ru

4.

Приложение к сертификату типовые чертежи Серия 3.906.2 типовые узлы
крепления трубопроводов для установок автоматического пожаротушения
системы противопожарной защиты на скользящих демпфирующих опорах

5.

6.

7.

8.

Приложение к сертификатуаналогичный опыт лабораторныых испытаний
демпфирующих компенсаторов для трубопроводов для ситемы противопожарноц
й защиты в зарубежных стран США, Китае, Канаде, Японии и др с тран :
Сейсмостойкая ПРОДУКЦИЯ Опора скользящая для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, изготавливаемые в соответствии
с техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ
34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ
14911-82 "Опоры подвижные" изготовленные согласно изобретений № 165076
"Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в районах с
сейсмичностью 8 баллов и более необходимо использование демпфирующих опор на
фрикционно-подвижных соединениях для противопожарных трубопроводов, с целью
обеспечения многокаскадного демпфирования при динамических нагрузках, согласно
изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755,
2010136746 , 2550777. Испытание проводились на соответствие групп механической
прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по результатам
испытаний методом численного моделирования в ПК SCAD на взаимодействие
трубопровода с геологической средой
https://ppt-online.org/1011935 https://disk.yandex.ru/i/bK5p2mKJTbiECA
Зарубежный опыт использования фрикционно- демпфирующих компенсаторов
для трубопроводов в сейсмоопасных районах США, Канады, Японии , Италии
см. научную публикация на английском языке : Piping Support Types, Purpose,
Design, Codes, Optimization Rules (PDF) https://whatispiping.com/supporting-of-pipingsystems/
СПб ГАСУ и организацией "Сейсмофонд" разработаны специальные
технические условия разработанные на основании использования опыта
инженеров американских организация, расположенных в г. Анкоридж (
Аляска, США ) с использованием демпфирующих опор, для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
серийный выпуск, предназначены для работы в сейсмоопасных районах,
сейсмичность 9 баллов, для районов с сейсмичностью 8 бал лов и более
соединение трубопроводов? должно быть выполнено с помощью
протяжных демпфирующих фланцевых фрикционно-подвижных соединений
(ФПС), косой стык, по изобретению №№ 2413820 Е04В1/58, 887748
Е04В1/38, в виде болтовых соединений, расположенных в длинных

9.

овальных отверстиях, согласно изобретениям: №№ 1143895,1174616,
1168755 SU, 2010136746 RU, участки соединения трубопровода с
емкостями, должны быть выполнены в виде «змейки» или «зиг-зага» и
уложенные на сейсмоизолирующих опорах, согласно изобретения №
165076 RU "Опора сейсмостойкая", опубликованного в Бюл. № 28 от
10.10.2016 ФИПС , с трубопроводами ( ГОСТ Р 55989-2014), и
предназначенное для сейсмоопасных районов с сейсмичностью до 9 баллов,
серийный выпуск (в районах с сейсмичностью 8 баллов и выше для
установки оборудования и трубопроводов необходимо использование
сейсмостойких демпфирующих опорах , а соединение трубопроводов
необходимо на фланцевых фрикционно- подвижных соединений,
работающих на сдвиг, с использованием фрикци -болта, состоящего из
латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки
медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ
37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandantiseismic-friction-damping-device и согласно изобретения «Опора
сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от
10.10.2016, а в местах подключения трубопроводов к системе
противопожарной защиты ООО "ПОЖТЕХПРОМА" должны быть
уложены в виде "змейки" или "зиг-зага "), предназначены для работы в
сейсмоопасных районах, сейсмичность 9 баллов и для
взрывопожароопасных производств категории А, Б и Е), закрепленных на
основании фундамента с помощью фрикционно-подвижных соединений
(ФПС), выполненных согласно изобретениям №№ 1143895,1174616,
1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746, 2413098,
2148805, 2472981, 2413820, 2249557, 2407893, 2467170, 4094111 US,
TW201400676 (участки соединения промышленного трубопровода,
выполнены в виде «змейки» или «зиг-зага»), для повышения надежности,
виброустойчивости и термоустойчивости промышленных трубопроводов,
которые соответствует группе механического исполнения М13 (в районах
с сейсмичностью 8 баллов и более комплектные распределительные
устройства должны быть закреплены на основания с помощью
демпфирующих , сейсмостойких опор на фрикционно-подвижных
соединениях с контролируемым натяжением (ФПС), выполненных в виде
болтовых косых или демпфирующих соединениях с использованием
латунной шпильки -болта, с пропиленным в ней пазом и забитым в паз
шпильки упруго-пластичным медным обожженным клином, с
использованием тросовой гильзы (обмотки) вокруг шпильки, согласно

10.

изобретениям: патенты №№1143895, 1168755, 1174616, «Опора
сейсмостойкая», патент № 165076 Е04Н 9/02). https://pptonline.org/1014521 https://disk.yandex.ru/d/it910e0K9eXdrA
ПРОТОКОЛ № 564 от 09.11.2021оценка сейсмостойкости в ПК SCAD
опоры скользящей с трубопроводом для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, изготавливаемой в
соответствии с ТУ 3680-001-04698606-04 "Опоры трубопроводов", ОСТ
34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные",
ГОСТ 14911-82 "Опоры подвижные", изготовленные согласно
изобретениям, патенты №№ 165076 ("Опора сейсмостойкая"),
2010136746, 1143895, 1168755, 1174616, 2550777, предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов (в районах с
сейсмичностью более 8 баллов необходимо использование демпфирующих
опор на фрикционно-подвижных соединениях и для соединения
трубопроводов косых компенсаторов с болтовыми соединениями,
расположенными в длинных овальных отверстиях с целью обеспечения
многокаскадного демпфи-рования при динамических нагрузках). Испытания
проводились на соответствие группам механической прочности на
вибрационные ударные воздействия: М5-М7, М38-М39 методом численного
моделирования на взаимодействие опор скользящих и трубопровода с
геологической средой в ПК SСАD. Фрикционно-подвижные соединения
выполнены в виде болтовых соединений с контролируемым натяжением,
расположенных в длинных овальных отверстиях согласно СП 14.13330.2014
«Строительство в сейсмических районах» п. 9.2).
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100
Испытательного центра СПбГАСУ, аккредитован Федеральной службой
по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015),
организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул.,д. 4, ИЦ
«ПКТИ - Строй-ТЕСТ», «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected]
(996)798-2654
Общество с ограниченной ответственностью "ПОЖТЕХПРОМ" 111123, город Москва, проезд Электродный, дом 6, строение 1, подъезд 4, эт. 1, оф. 31, ком 1, т. 8 800 600 54
94 , ИНН: 7734610370 Всего : 66 стр

11.

Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ»
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 09.011.2021
ПРОТОКОЛ № 564 от 09.11.2021оценка сейсмостойкости в ПК SCAD опоры скользящей с трубопроводом для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, изготавливаемой в соответствии с ТУ 3680-001-04698606-04 "Опоры
трубопроводов", ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные",
изготовленные согласно изобретениям, патенты №№ 165076 ("Опора сейсмостойкая"), 2010136746, 1143895, 1168755, 1174616,
2550777, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов (в районах с сейсмичностью более 8 баллов
необходимо использование демпфирующих опор на фрикционно-подвижных соединениях и для соединения трубопроводов косых
компенсаторов с болтовыми соединениями, расположенными в длинных овальных отверстиях с целью обеспечения многокаскадного
демпфи-рования при динамических нагрузках). Испытания проводились на соответствие группам механической прочности на
вибрационные ударные воздействия: М5-М7, М38-М39 методом численного моделирования на взаимодействие опор скользящих и
трубопровода с геологической средой в ПК SСАD. Фрикционно-подвижные соединения выполнены в виде болтовых соединений с
контролируемым натяжением, расположенных в длинных овальных отверстиях согласно СП 14.13330.2014 «Строительство в
сейсмических районах» п. 9.2).
1. Введение
1
2. Место проведения испытаний СПб ГАСУ 190005, СПб, 2-я Красноармейская ул, д. 4 [email protected]
3.Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления опоры
скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и трубопровода на скольжение и
податливость
4. Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей опоры скользящей с трубопроводом для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и фрагментов косого антисейсмического фрикционно- демпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск.
3
4
5.Применение численного метода моделирования при испытании в ПК SCAD опоры скользящей с трубопроводом для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, с креплением трубопроводов к опоре скользя-щей
с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных
районов с сейсмичностью до 9 баллов. Испытание фрагментов ФДПК.
5
6. Изобретения, используемые при испытаниях опоры скользящей для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с
креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК).
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и узлов крепления опоры скользящей к трубопроводу с помощью косых
антисейсмических компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с
трубопроводами.
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 при испытаниях в ПК SCAD и при испытаниях узлов
крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью до 9
баллов.
22
5
59
60
1.Введение
При испытаниях в ПК SCAD математических моделей опоры скользящей с трубопроводом и фрикционно-демпфирующих компенсаторов для
трубопровода системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью
до 9 баллов, с креплением трубопровода с помощью фрикционных протяжных демпфи-рующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях было использо-вано численное моделирование в ПК SCAD Office (метод аналитического

12.

решения задач строительной механики с помощью физи-ческого, математического и компьютерного моделирования взаимодействия оборудования и
трубопроводов с геологической средой, метод оптимизации и идентификации динамических и статических задач теории устойчивости, в том числе
нелинейным методом расчета с целью определения возможности их использования в районах с сейсмичностью до 9 баллов (в районах с
сейсмичностью более 8 баллов необходимо использование для соединения трубопровода косых компенсаторов с применением фрикционно-подвижных болтовых соединений с длинными овальными отверстиями согласно изобретениям №№ 1143895, 1174616,1168755, с использованием
сейсмостойких маятниковых опор на фрикционно- демпфирующих соединениях (для трубопроводов) согласно изобретения, патент № 165076 ( «Опора
сейсмостойкая»), согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9. Фрикционно- подвижные соединения, работающие на сдвиг
выполнены с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным
обожженным клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -05073,альбома 1-487-1997.00.00 и изобрет. №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02, в местах
подключения трубопроводов к сооружениям, изготавливаемых в соответствии с техническими условиями и ГОСТ, трубопроводы должны быть уложены
в виде "змейки" или "зиг-зага "согласно ГОСТ 15150, ГОСТ 5264-80-У1- 8 , ГОСТ Р 55989-2014, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)).
[email protected] (921) 962-67-78, (996) 798-26-54.
Узлы и фрагменты антисейсмического косого компенсатора для трубопровода (дугообразный зажим с анкерной шпилькой) прошли испытания на
осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ" (протокол №1516-2 от 25.11.2019). Настоящий протокол не может быть полностью или
частично воспроизведен без письменного согласия «Сейсмофонд», [email protected] т/ф. (812) 694-78-10 (996) 798-26-54
Испытания на сейсмостойкость математических моделей опоры скользящей с трубопроводом для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100, с креплением трубопроводов с помощью фрикционных протяжных демпфирую-щих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СниП
II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546. 3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н.
Уздин А.М. и др.) проводились в соответствии с ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 531.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизо-лированные», Правила проектирования.2013,
Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных соединений на высо-копрочных болтах», НПЦ мостов СПб, согласно мониторингу
землетрясений и согласно шкалы землетрясений, с учетом требований НП-31-01, в части категории сейсмостойкости II «Нормы проектирования
сейсмостойких атомных станций» и с учетом требований предъявляемых к оборудованию (группа механического исполнения М39; I и II категории по
НП 031-01; сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с учетом спектров
отклика здания АЭС, согласно научного отчета: Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики.
Обеспечение высокой надежности опор скользящих для системы противопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80, ОС-100
организации ООО "ПОЖТЕХПРОМ осуществляется за счет увеличения демпфирующей способности опоры при импульсных
растягивающих нагрузках путем использования фрикционно-подвижных соединений для скользящих опор( изобретение, патент №
165076 "Опора сейсмостойкая") и согласно изобретениям патенты №№ 1143895, 1168755, 1174616, автор проф.д.т.н. ПГУПС А.М.Уздин,
и использования для трубопровода скользящей опоры системы противопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80, ОС-100
демпфирующих компенсаторов (заявка № а 20210217 от 15.07.21 "Фланцевое соединение растянутых элементов трубопровода со
скошенными тор-цами" Минск ).
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 09.011.2021
ПРОТОКОЛ № 564 от 09.11.2021оценка сейсмостойкости в ПК SCAD опоры скользящей с трубопроводом для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, изготавливаемой в соответствии с ТУ 3680-001-04698606-04 "Опоры
трубопроводов", ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов непод-вижные", ГОСТ 14911-82 "Опоры подвижные",
изготовленные согласно изобретениям, патенты №№ 165076 ("Опора сейсмостойкая"), 2010136746, 1143895, 1168755, 1174616, 2550777
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов (в районах с сейсмичностью более 8 баллов необходимо
использование демпфирующих опор на фрикционно-подвижных соединениях и для соединения трубопроводов косых компенсаторов с
болтовыми соединениями, расположенными в длинных овальных отверстиях с целью обеспечения многокаскадного демпфи-рования пр
динамических нагрузках). Испытания проводились на соответствие группам механической прочности на вибрационные ударные
воздействия: М5-М7, М38-М39 методом численного моделирования на взаимодействие опор скользящих и трубопровода с
геологической средой в ПК SСАD. Фрикционно-подвижные соединения выполнены в виде болтовых соединений с контролируемым
натяжением, расположенных в длинных овальных отверстиях согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9.2)
1. Введение
1

13.

2. Место проведения испытаний СПб ГАСУ 190005, СПб, 2-я Красноармейская ул, д. 4 [email protected]
3.Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления опоры
скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и трубопровода на скольжение и
податливость
4. Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей опоры скользящей с трубопроводом для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и фрагментов косого антисейсмического фрикционно- демпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск.
3
4
5.Применение численного метода моделирования при испытании в ПК SCAD опоры скользящей с трубопроводом для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, с креплением трубопроводов к опоре скользя-щей
с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных
районов с сейсмичностью до 9 баллов. Испытание фрагментов ФДПК.
5
6. Изобретения, используемые при испытаниях опоры скользящей для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с
креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК).
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и узлов крепления опоры скользящей к трубопроводу с помощью косых
антисейсмических компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с
трубопроводами.
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 при испытаниях в ПК SCAD и при испытаниях узлов
крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью до 9
баллов.
22
5
59
60
1.Введение
При испытаниях в ПК SCAD математических моделей опоры скользящей с трубопроводом и фрикционно-демпфирующих компенсаторов для
трубопровода системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью д
9 баллов, с креплением трубопровода с помощью фрикционных протяжных демпфи-рующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях было использо-вано численное моделирование в ПК SCAD Office (метод аналитического решения зада
строительной механики с помощью физи-ческого, математического и компьютерного моделирования взаимодействия оборудования и трубопроводов с
геологической средой, метод оптимизации и идентификации динамических и статических задач теории устойчивости, в том числе нелинейным методом
расчета с целью определения возможности их использования в районах с сейсмичностью до 9 баллов (в районах с сейсмичностью более 8 баллов
необходимо использование для соединения трубопровода косых компенсаторов с применением фрикционно-под-вижных болтовых соединений с
длинными овальными отверстиями согласно изобретениям №№ 1143895, 1174616,1168755, с использованием сейсмостойких маятниковых опор на
фрикционно- демпфирующих соединениях (для трубопроводов) согласно изобретения, патент № 165076 ( «Опора сейсмостойкая»), согласно СП
14.13330.2014 «Строительство в сейсмических районах» п. 9. Фрикционно- подвижные соединения, работающие на сдвиг выполнены с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно
рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73,альбома 1-487-1997.00.00 и изобрет.
№№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02, в местах подключения трубопроводов к
сооружениям, изготавливаемых в соответствии с техническими условиями и ГОСТ, трубопроводы должны быть уложены в виде "змейки" или "зиг-зага
"согласно ГОСТ 15150, ГОСТ 5264-80-У1- 8 , ГОСТ Р 55989-2014, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)). [email protected]
(921) 962-67-78, (996) 798-26-54.
Узлы и фрагменты антисейсмического косого компенсатора для трубопровода (дугообразный зажим с анкерной шпилькой) прошли испытания на
осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ" (протокол №1516-2 от 25.11.2019). Настоящий протокол не может быть полностью или частичн
воспроизведен без письменного согласия «Сейсмофонд», [email protected] т/ф. (812) 694-78-10 (996) 798-26-54
Испытания на сейсмостойкость математических моделей опоры скользящей с трубопроводом для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100, с креплением трубопроводов с помощью фрикционных протяжных демпфирую-щих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СниП
II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546. 3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Узди
А.М. и др.) проводились в соответствии с ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001
ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизо-лированные», Правила проектирования.2013, Москва
Д.т.н. Кабанов Е.Б. «Направления развития фрикционных соединений на высо-копрочных болтах», НПЦ мостов СПб, согласно мониторингу землетрясени
и согласно шкалы землетрясений, с учетом требований НП-31-01, в части категории сейсмостойкости II «Нормы проектирования сейсмостойких
атомных станций» и с учетом требований предъявляемых к оборудованию (группа механического исполнения М39; I и II категории по НП 031-01;
сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика
здания АЭС, согласно научного отчета: Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики.
Обеспечение высокой надежности опор скользящих для системы противопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80, ОС-100
организации ООО "ПОЖТЕХПРОМ осуществляется за счет увеличения демпфирующей способности опоры при импульсных растягивающи
нагрузках путем использования фрикционно-подвижных соединений для скользящих опор( изобретение, патент № 165076 "Опора
сейсмостойкая") и согласно изобретениям патенты №№ 1143895, 1168755, 1174616, автор проф.д.т.н. ПГУПС А.М.Уздин, и
использования для трубопровода скользящей опоры системы противопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80, ОС-100
демпфирующих компенсаторов (заявка № а 20210217 от 15.07.21 "Фланцевое соединение растянутых элементов трубопровода со
скошенными тор-цами" Минск ).

14.

Рис.К протоколу лабораторных испытаний прилагаются чертежи, фигуры, описание изобретения, формула изобре-тения, реферат к направленной
заявке на полезную модель от 19 ноября 2021–«Фрикционно – демпфирующий ком-пенсатор для трубопроводов», (МПК F0416L)для крепления
трубопровода на опорах скользящих для системы проти-вопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80, ОС-100 организации ООО "ПОЖТЕХПРОМ", тел.
800 60054 94 [email protected]. Адрес отправления заявки на изобретение: Федеральная служба по интеллектуальной собственности,
Бережковская наб., 30, корп.1, Москва, Г-59, ГСП-3, 125993 Российская Федерация
2. Место проведения испытаний.
Испытания на сейсмостойкость математических моделей опоры скользящей с трубопроводом для системы противопожарной защиты ОС-25, ОС-3
ОС-50, ОС-80, ОС-100, с креплением трубопроводов с помощью фрикционных протяжных демпфирую-щих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях производились нелинейным методом расчета в ПК SCAD в соответствии с ГОСТ 30546.1-98
ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97,
СП «Здания сейсмо-стойкие и сейсмоизолированные», Правила проектирования.2013, Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных
соединений на высокопрочных болтах», НПЦ мостов СПб, согласно мониторингу землетрясений и согласно шкалы землетрясений, с учетом требований
НП-31-01, в части категории сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и с учетом требований предъявляемых к
оборудованию (группа механического исполнения М39; I и II категории по НП 031-01; сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при
уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика здания АЭС.
Испытания фрагментов косого антисейсмического фрикционно- демпфирующего соединения трубопроводов, выполненного в виде болтового
соединения (латунная шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопогло-щающим клином, свинцовые шайбы
расположенного в длинных овальных отверстиях, с контролируемым натяжением для обес-печения многокаскадного демпфирования при динамически
нагрузках, преимущественно при импульсных растягивающих нагруз-ках, предназначенного для трубопроводов опоры скользящей для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов
производились в ИЦ «ПКТИ-СтройТЕСТ».
В качестве объекта исследования были выбраны фрагменты косого антисейсмического фрикционно- демпфирующего компен-сатора трубопроводов,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов .
Испытания производились на вибростойкость (на осевое статическое усилие сдвига по линии нагрузки соединений) фрикционно-подвижного
соединения для трубопроводов с косым антисейсмическим компенсатором, предназначенных для сейсмоопасных районов с сейсмичностью до 9
баллов). Дата проведения испытаний: 10 ноября 2021 г.
Основание для проведения испытаний договор № 564 от 09.11.2021 : Оценка сейсмостойкости в ПК SCAD опоры скользящей с трубопроводом дл
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и испытание на сейсмо-стойкость фрагментов косого антисейсмического
фрикционно- демпфирующего компенсатора для соединения трубопроводов, предназначенных для сейсмоопасных районов с сейсмичностью до 9
баллов по шкале MSK-64.
Испытание фрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и скольжение проходил
в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 26.01.2021, № 1506-1 от 23.12.20). Аттестат аккредитации федерального
агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ»

15.

Промышленная безопасность», 25.03.2018 г.и в СПбГАСУ, аттестат аккредитации №RA.RU.21 CT39 от 27.05.2015.
Наименование продукции: Фрагменты косого антисейсмического фрикционно- демпфирующиего компенсатора
3. Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления опоры скользящей для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и трубопровода на скольжение и податливость
Перечень (приведен в таблице 1) испытательного оборудования и измерительных приборов для проведения испытаний фрагментов фрикционноподвижных соединений для крепления опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
Таблица 1

Испытания на перемещение демпфирующих
Тип прибора,
Диапазон
Примечание
п/п
узлов с амортизирующими элементами
оснастки,
измерения
оборудование
1
Определение статических усилий для сдвига податливого анкера, установленного в изолирующей
трубе с амортизирующими податливыми элементами в виде тросового «или» дугообразного
зажима с анкерной шпилькой производилось в ИЦ
«ПКТИ- Строй-ТЕСТ» («Протокол испытания на
осевое статическое усилие сдвигу дугообразного
зажима с анкерной шпилькой»)
Рулетка,
штангенциркуль
+- (2- 5) см
Протокол испытания на осевое статическое
усилие сдвига дугообразного зажима с
анкерной шпилькой соглас-но патента на
полезную мо-дель № 102228 «Анкерная крепь
для горных выработок» и № 44350 «Анкерная
крепь».
2
Индикатор с манометром до 10 тонн, для
измерения перемещения податливого анкера по
дугообразному зажиму с анкерной шпилькой
(тросовому зажиму).
Индикатор
измерений
перемещений с
ценой деления в
динах 2 мм
1%
См. Протокол испытания на осевое статическое
усилие сдвига дугообразного зажима с
анкерной шпилькой
3
Домкрат до 10 тонн для отрыва демпфирующего
крепления
Рулетка,
штангенциркуль
+- (2- 5) см
См. Протокол испытания на осевое статическое
усилие сдвигу дугообразного зажима с
анкерной шпилькой со-гласно патента на
полезную модель № 102228 «Анкерная крепь
для горных выработок» и № 44350 «Анкерная
крепь»
4
Лебедка рычажная (усилие 5 тонн) для определения смятия при выдергивании анкера со
свинцовым «тормозным» клином, забитым в
прорезанный паз в резьбовой части анкера М16
Теодолит
1%
См. Протокол испытания на осевое статическое
усилие сдвигу дугообразного зажима с
анкерной шпилькой
5
Кувалда, вес 4 кг. (для определения перемещения
демпфирующего анкера с тормозным клином во
время испытания на монтажной строительной
площадке)
Нивелир
6
Лабораторный механический манометр для
измерения перемещения анкера М16 ГОСТ 24376.1
на податливость
Штатив с
манометром
0,01 мм – 1000
мм
Свид. №1 до 12.2023 г.
7
Аналогично вибростенду ES -180-590
использовалась испытательная машина ZD-10/90 на
сдвиг, скольжение и податливость согласно ГОСТ
53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
Заводской №
66/79
(сертификат о
калибровке №
143-1371 от
28.08.2013г.)
Годен до 12.2022 г.
8
Ключ динамометрический
Нивелир
+/- 0,0 T/c2
Годен до 12.2022 г.
9
Нивелир
Штатив с
манометром
0,01 мм. – 1000
мм.
Свид. № 1 до 12.2023 г.
10
Домкрат 5 т
Усилия
выдергивания
шкала 5 тонн
Заводской № 1
(сертификат №
14 от
18.09.2013г.)
Годен до 12.2022 г.
11
Лебедка 5 тонная
Для определения
сдвига или
скольжение анкера
в изолированной
трубе
5%
Годен до 12.2023 г.
12
Болгарка для простукивания пазов в анкерных
Болгарка дисковая
Паз пропила 2
+/- 0,0 T/c2
Годен до 12.2025 г.
Свидетельство № 3 до 01.12.2023 г.

16.

13
болтах для забивки стопорного свинцового клина
пила
Гайковерт ИП-3128 исползовался при испыта-ниях
на фрагментах, деталях сдвигоустойчи-вых
скользящих сейсмостойких и взрывостой-ких узлах
крепления.
При испытаниях на
демпфирован-ность
и сдвигоустойчивость, допускает настройку
величины крутя-щих
моментов от 80до
150 кгс
мм
Заводской № 1
№ 19 от 18.09.
2013г.)
Годен до 12.2023
Условия проведения испытания узлов крепления опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и
трубопровода на скольжение и податливость -согласно нормативным документам, действующим на 09.11 2021 г., действующим ГОСТ Р и специальным
техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей опоры скользящей с трубопроводом для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 и фрагментов косого антисейсмического фрикционно- демпфирующего соединения с контролируемым
натяжением трубопровода, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск.
Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей опоры скользящей с трубопроводом для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск и
возможность эксплуатации опоры скользящей с трубопроводом в районах с сейсмичностью до 9 баллов.
Цель лабораторных испытаний фрагментов косого антисейсмического фрикционно- демпфирующего соединения с контроли-руемым натяжением
трубопроводов для опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасны
районов с сейсмичностью до 9 баллов - определение возможности их использова-ния в районах с сейсмичностью до 9 баллов по шкале MSK-64.
5.Применение численного метода моделирования при испытании в ПК SCAD опоры скользящей с трубопроводом для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, с креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов. Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-2742012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7, согласно инструкции «Элементы теории
трения, расчет и технология применения фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
РАСЧЕТНАЯ СХЕМА испытания СКАД опоры скользящей с трубопроводом для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, с
креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов.
Геометрические характеристики схемы испытания математических моделей опоры скользящей с трубопроводом для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, с креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов в ПК SCAD.
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий

17.

Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы (Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-100)
ОС-80,

18.

Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
«N»
«Му»
«Qz»
«Qy»
Деформации
Коэффициент использования профилейОпорыскользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100

19.

Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и контрольная сборка
производилась в организации «Сейсмофонд». Инструкция по креплению фланцев к трубам предусматривала такую последовательность производства
работ:
1.
2.
3.
4.
5.
6.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами с пропиленным пазо
куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости ,в плане и по высоте-.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по ГОСТ 15150, ГОСТ 5264-80
У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы предназначенных для сейсмоопасных районов с сейсмичностью до
9 баллов соединены с помощью фрикци-анкерных, протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде
болтовых соединений (латунная шпилька с пропи-ленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим
клином, свинцовые шайбы), расположенных в длинных овальных отверстиях.
7.
Для испытания на сейсмостойкость опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 использовались
узлы крепления опоры к трубопроводу в виде фланцевых фрикционно –демпфирующих соединений (ФПС) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов.

п/п
1
Наименование проверок и испытаний
2
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
3
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
4
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
5
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
6
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
7
8
9
Испытательное
оборудование
Создание осевого
усилия испытательной
машиной ZD -10/90 зав
№ 66/79 (сертификат о
калибровке № 13-1371
от 28.08.2018
При испытаниях
податливых
сдвигоустойчивых и
скользящих узлов
крепления
Величина контролируемого
параметра
Величина усилия 580 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилия 1420 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилий кгс 2420
Срыв резьбы на стальном листе
Величина усилий кгс 4000
Регистрация усилий
производилось по
шкале до 1000 кгс
сдвигоустойчивого
податливого
крепления
подогревателя
топливного газа
Срыв резьбы на стальном листе
Величина усилий кгс 730
Срыв резьбы на стальном листе
Величина усилий 30 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 40 кгс
Смятие граней полимодальной гайки
М12на резьбе гайки М22
Величина усилий 50 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 150 кгс
Смятие граней полимидальной гайки
М12 на резьбе гайки М22
Результаты
испытаний
800 кгс
340 кгс
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Срыв гайки М10
на резьбе гайки
Срыв гайки М12,
М22
Срыв гайки М14,
М22
Срыв гайки М16,
М22
Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное повышенной надежности),
работающего на растяжение согласно СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8 Стальные конструкции, Технически
кодекс, СП 16.13330.2011 (СниП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3, 14.4, 15, 15.2, в соответствии с изобретением № TW201400676
Restraint anti-wind and anti-seismic friction damping device (МПК) E04B1/98; F16F15/10 (демпфирующая опора с фланцевыми, фрикционно–подвижными
соединениями), Тайвань, согласно изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United States Patent
4,094,111 [45] June 13, 1978, согласно изобретения «Опора сейсмостойкая, патент № 165076 (авторы: Андреев Б.А, Коваленко А.И) (проходили испытания
Поз.
1
2
3
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Кол
4
4
4

20.

4
5
6
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в пропиленный паз
латунной или обожженной стальной шпильки (болта)
4
4
4
Наименование изделия
Шпилька
Нормативная документация
ГОСТ 9066-75
Применение
Фрикционно-подвижное соединение по ГОСТ 12815-80
Шпилька полнорезьбовая
Гайка
Шайба
Шайба
Болт
Заклёпка вытяжная
Шпилька
DIN 976-1
ГОСТ 9064-75
ГОСТ 9065-75
ГОСТ 6402-70
ГОСТ 7798-70
Хомут
БОЛТЫ
АТК-25.000.000
Для крепления транспортировочных брусков
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и дополнительного
оборудования
Фиксация кабельтрасс

1
Испытание в ПК SCAD спектральным
методом на основе синтезированных
акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ -34-10-75797, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83
Наименование и тип
Диап
лабораторного
азон
измерительного
изме
оборудования
рени
й
контр
олир
уемы
х
велич
ин
Испытание в ПК SCAD
узлов крепления спектральным методом на основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5
(к сейсмическим
воздействиям 9 баллов по
шкале MSK-64) на основе
рекомендаций: ОСТ -34-10757-97, ОСТ 36-72-82, СТО
0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры
трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83.
Наименование и тип лаборатор-ного
измерительного оборудования
1
Испытание в ПК SCAD спект-ральным
методом на основе син-тезированных
Испытание фрагментов демпфирующих узлов крепления
согласно «Руководства по креплению технологического
обору-дования фунд. Болтами», ЦНИИПРОМЗДАНИЙ, М.,
Стройиздат, 1979 г. И альбома «Анкерные болты», сер.
4.402-9, в.5.
Класс
точности
или предел
допускаемо
й
погрешност
и
Диап
азон
изме
рени
й
контр
олир
уемы
х
вели
чин
Заводско
й№
Примечание
Согласно программному комплексу «Интегрированная система
анализа конструкции SCADOffice» № 0896002 от 28.12.2013.
http://www.youtube.com/watch?v=pHelYxRUhttp://www.youtube.com/watch?v=siCT9DhdhjAhttp://smotri.c
om/video/view/?id=v22755810d79
Испытание в ПК SKAD на основе синте-зированных акселерограмм
фрагментов демпфирующего узла крепления выпол-ненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами, расположенными с двух
сторон болтового крепления, изготовленного согласно «Руководства по креплению технологического оборудования
фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979, предназначенного
для работы в сейсмоопасных районах с сейс-мичностью 8 баллов по
шкале MSK-64.
Класс
точности
или предел
допускаем
ой
погрешност
и
Завод
ской

Примечание
В программе SCAD и программ-мах SCADOffice реализованы и
сертифицированы положения следующих нормативных документов:

21.

акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим
воздействиям 9 баллов по шкале
MSK-64) на основе рекомендаций:
ОСТ -34-10-757-97, ОСТ 36-72-82, СТО
0041-2004, МДС 53-1.2001, РТМ 24.
038.12-72, альбома серии 4.903, вып.
5 «Опоры трубопроводов
подвижные» (сколь-зящие, катковые,
шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83.

Наименование и тип
лабораторного
измерительного
оборудования
1
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейсмическим воздействиям
9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
1) СниП 2.01.07-85* – Нагрузки и воздействия;
2) СниП II-23-81* – Стальные конструкции;
3) СниП 2.03.01-84* – Бетонные и железобетонные конструкции;
4) СниП II-22-81 – Каменные и армокаменные конструкции;
5) СниП II-7-81* Строительство в сейсмических районах;
6) СниП 2.02.01-83* – Основания зданий и сооружений;
7) СниП 2.02.03-85 – Свайные фундаменты;
8) СниП II-25-80 – Деревянные конструкции;
9) СниП 52-01-2003 – Бетонные и железобетонные конструкции.
Основные положения.
9) СП 52-101-2003 – Бетонные и железобетонные конструкции без
предварительного напряжения арматуры;
10) СП 53-101-96 – Общие правила проектирования элементов
стальных конструкций и соединений;
11) СП 50-101-2004 – Проектирование и устройство оснований и
фундаментов зданий и сооружений;
12) СП 50-102-2003 – Проектирование и устройство свайных
фундаментов
Диапазон
измерений
контролируемы
х величин
Класс
точнос
ти или
преде
л
допуск
аемой
погре
шност
и
Заводск
ой №
Примечание
1)
ДБН В.1.2-2:2006 – Нагрузки и воздействия
(Украина);
2) СП 31-114-2004 – Строительство в
сейсмических районах (Россия);
3) СниП В1.2-1-98 – Строительство в
сейсмических районах (Казахстан);
4) СниП РК 2.03-30-2006 – Строительство в
сейсмических районах. Нормы
проектирования (Казахстан);
5) СНРА ІІ-2.02-94 – Сейсмостойкое
строительство. Нормы проектирования
(Армения);
6) МГСН 4-19-2005 – Временные нормы и
правила проектирования многофункциональных высотных зданий и зданийкомплексов в городе Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ СЕЙСМОСТОЙКИХ
АТОМНЫХ СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие с 1 января 2002
г. Утверждены постановлением Госатомнадзора
России от 19 октября 2001 г. № 9
Результаты испытаний фрагментов демпфирующих узлов крепления (работают на растяжение) и фрикционно-подвижных соединений (ФПС),
расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением согласно изобретениям № 1143895,
1174616, 1168755 для крепления опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (Ф ПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латун-ная шпилька с
подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного клина)

п/
п
1
2
3
4
5
Наименование проверок и
испытаний
№ пункта
по ПМ
Величина контролируемого
параметра
Результаты испытаний
Проверка скольжения ,
податливости
Проверка скольжения гайки
в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341, СПб,
Афонская ул.2 .
п.6
Величина усилий в кгс согласно
протокола ПКТИ –Строй-ТЕСТ
При величине усилий 800 кгс
происходит перемещение скобы
зажима по шпильке при испытании
Уточняется опытным путем
Проверка смятия свинцовой шайбы.
Проверка свинцовой
прокладки
Проверка фланцевого
Смотри протокол ПКТИ –Строй-ТЕСТ
от 18.11.2020 [email protected]
Соответствуют требованиям
Соответствует при монтаже
зданий для сейсмоопасных
районов 8 баллов (по шкале
MSK-64), необходимо
испытание на перемещение
узла крепления
Определяется при установке
зданий
соответствует
Функционирует при податливых
соответствует

22.

соединения
6
Проверка фрагментов
фрикционно-подвижных
соединений
7
Проверка срыва резьбы на
шпильке согласно протокола № 1506-1 от 18.11.
2020
Проверка соединения латунной гайки и полиамидальной гайки
8
9
характеристиках и перемещениях
до 2-4 см
Фрикционно-подвижное
соединение (происходит
многокаскадное демп-фирование
при импульсных растя-гивающих
нагрузках)
Осевое статическое усилие отрыва в
кгс(Ст3) 1500-600 кгс ПКТИ –СтройТЕСТ
Маркировка, таблички, надписи
соответствуют требованиям КД
Величина усилия кгс (при котором
происходит перемещение гайки в
узле крепления)
После испытаний фрагменты демпфирующих узлов крепления и
фрикционно-подвижных
соединений для объектов проходят
проверку на соответствие
Инструкции "Элемен-ты теории
трения, расчет и техно-логия
применения фрикционноподвижных соединений".
Проверка гайки М12 с
пазом
Проверяются перемещения
домкратом или лебедкой
Регистрационные усилия
выдергивания производились по шкале до 4000 кгс
Происходит пере-мещение
гайки при 30-150 кгс,
уточняется при монтаже
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и фрикционноподвижных сое-динений
для объ-ектов для сейсмоопасных районов 8 баллов
по шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с
подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина) для опоры скользящей с трубопроводами для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях. При осмотре не обнаружено механических
повреждений и ослаб-ления демпфирующего фрикци-анкерного крепления.
1
Проверка податливости
п.6
Необходимо обернуть свинцовым или
соответствует
латунной шпильки .
медным листом шпильку
2
Проверка подпиленной
Наблюдается перемещение шпильки
соответствует
латунной гайки
3
Проверка латунной шпильки с
Энергию поглощает стопорный (торсоответствует
пропиленным пазом для
мозной) клин на шпильке
стопорного клина
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных соединений
работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе,
амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина) для крепления опоры скользящей для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100.
При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения трубопроводов для опоры скользящей для систем
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов для опоры
скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100
1
Проверка смятия свинцовой
п.6
Происходит смятие свинцовой шайбы
соответствует
Проверка смятия забитого в
Клин забивается в паз шпильки с
соответствует
паз латунной шпильки
помощью кувалды (4 кг)
шайбы
2
обожженного медного
стопорного клина
3
Проверка изолирующей
Латунная шпилька (расположена в
трубки в виде обертки
изолирующей трубе или обернута тонким
шпильки медным листом
слоем медного листа)переме-щается на 1
соответствует
градус при ударе кувалдой
4
Проверка гайки со спилен-
Гайка с подпиленным пазом сдвигается
соответствует
Проверка свинцовой рубашки
Свинцовая рубашка, нанесенная на
соответствует
при обвертывании шпильки
шпилька демпфирует
Проверка свинцовой
Многослойная медно-свинцовая
прокладки
прокладка при ударе сминается
ным пазом
5
6
соответствует

23.

7
Проверка шпильки, у кото-рой
Согласно протокола ПКТИ от 18.11.2013
две противоположные
№ 1506 -1 при нагрузке 1500- 610 кгс (
стороны сточены 4.0, 3,5 и 3.0
Ст3) отрыв шпильки происходит со
мм
срывом резьбы.
Проверка фланцевого
Происходит срыв резьбы и сдвиг на 0,5-
соединения со стальной
0,9см
соответствует
соответствует
шпилькой со сточенными
зубьями
8
9
Проверка компенсаторов Z –
Крепление комплектующих элементов не
образных для трубопровода
ослаблено. Крепеж не ослаблен.
Проверка компенсаторов
Необходимо дополнительные
«змейка» для трубопровода
испытания при укладке кабельтрасс (до
соответствует
соответствует
контролируемых неразрушающих
перемещений 2-6 см) .
Результаты испытания болтового соединения на сдвиг для опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС100, серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами и с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных
отверстиях.
№ п.п.
Наименование узла крепления Опора
скользящая для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100
Величина усилия, кгс, при
Характеристики
котором происходит
скольжения,
скольжение или
податливости.
перемещение стального
зажима для троса по
стальному анкеру
1
1.
2
3
Фрикционно-подвижное соединение (ФПС) с
болтовыми
зажимами
с
четырьмя
шестигранными гайками Ml0, затянутыми с
помощью гаечного
усилия или
усилием
ключа
на половина
динамометрического ключа с
40
Н*м.
с
контактирующими
(
между
поверхностями
проложен стальной трос в пластмассой
оплетке диаметром 4 мм)
Было ранее
(50)
Стало
4
Перемещение шайбы с гайкой 2,5 см по овальному отверстию
постоянной нагрузке

24.

2.
Фрикционно –подвижное соединение
с
Было 90-150
Перемещение шайбы с гайком 3,5-4.0 см по условному овально
отверстию при постоянной нагрузке
четырьмя гайками с двух сторон затянуты
гаечным ключом на максимальную нагрузку
двумя
шестигранными
гайками
М10,
Стало
_______
затянутыми с помощью гаечного ключа или
динамометрического ключа с усилием 20
Н*м.
( между контактирующими поверхностями
проложен
стальной
трос
впластмассой
оплетке диаметром 4 мм)
Рис. Общий вид образцов и узлов при лабораторных испытаниях опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80
ОС-100 согласно изобретения № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения № 2010136746 от 20.01.201 «Способ защиты зданий и
сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционност
и сейсмоизоляцию для поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 , испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в оплетке и без оплетки со
стальным тросом М 2 мм. Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Рис. Варианты конструктивного решения сейсмозащиты элементов скользящих опор для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС80, ОС-100.

25.

Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и скольжение
проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 22.12.2020). Аттестат аккредитации федерального агентства
по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная
безопасность»
Типовые альбомы, используемые при испытаниях фрагментов антисейсмического косого компенсатора для опор скользящих для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100.
При испытаниях математических моделей опор скользящих для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск с трубопроводами с использованием для соединения
трубопровода косых компенсаторов, работающих на сдвиг расчетным способом определялась расчетная несущая способность узлов податливых
креплений, стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7 (см. 1.2.7), или в
таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым натяжением, в соответствии
со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица — Значения ks

26.

Описание испытание косого антисейсмического компенсатора работающего на сдвиг 1-2 смс использованием овальных
отверстий
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия
перпендикулярно продольной оси отверстия
0,8
5
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,7
6
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,6
3
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при любом другом способе обработки должна быть основана
на результатах испытаний образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Моделирование систем сейсмоизоляции для трубопроводов для о поры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции при сейсмических
воздействиях, представлены в таблице Б.1.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляци
для трубопроводов
Типы сейсмоизолирующих
элементов
Схемы сейсмоизолирующих элементов
Идеализированная зависимость «нагрузка-перемещение»
F
(F-D)
F
F
Струнные и маятниковые опоры
с низкой способностью к
диссипации энергии
D
D
D
FF
F
F
с высокой способностью
к диссипации энергии
DDD
D
F
F
FF
DD
С демпфирующими
способностями
DD
Фрикционноподвижные опоры
FF
FF
с плоскими
горизонтальными
поверхностями скольжения
FF
DD
DD
DD

27.

FF
F
Маятниковые с
демпфирующими
способностями за счет
сухого трения скользящих
поверхностей
D
D
DD
F
Струнная опора с ограничителями перемещений за
счет демпфирующих упругих стальных пластин со
скольжением верха опоры
за счет фрикционно-подвижного соединения поверхностями скольжения
при R1=R2 и μ1≈μ2
F
FF
F
D
D
DD
D
F
FF
Струнная опора с
трущимися поверхностями
согласно изобретения по
Уздина А.М № 2550777
«Сейсмостойкий мост»
F
D
D
D
D
F
F
F
Тарельчатая сейсмоизолирующая опора по изобретению. № 2285835
«Тарель-чатый
виброизолятор
кочетовых», Бюл № 29
20.10.2006 с демпфирующим сердечником по
изобретению № 165076
«Опора сейсмостойкая»
F
D
D
D
D
F
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения взрывной энергии, дл
обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульс-ных растягивающих нагрузках для опор
скользящих сейсмоизолирующих для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100. Дата проведения испытаний:09
ноября
D
2021 г.
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
Идеализированная зависимость фрикционно-демпфирующей
«нагрузки для перемещения» (F-D)
F
F
F
D
D
F
D
D
с высокой способностью
к поглощению пиковых
ускорений
F
F
Упругопластическая
опора на фрикционо –
подвижных
соединениях ФПС
F
F
D
D
F
Крестовидная опора
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии
D
D
F
D
F
F
D
F
F
D
D
D
F
Энергопоглощаю
щие
демпфирующие
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
трубопроводов)
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей в
D
F
D
F
F
F
D
F
F
D
D
D
F
F
D
D
F
F
D
D

28.

F
Демпфирующая –
маятниковая опора
раскачивается при
смятии медного обожженного клина, забитого
в пропиленный паз
шпильки
Квадратный пластический шарнир – ограничитель перемещений по
линии нагрузки (ограничитель перемещений
одноразовый)
Трубчатый упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (одноразовый)
DD
F
F
F
D
D
D
F
F
F
D D
D
F
F F
D
D D
F
Квадратная опора (гармошка) пласти-ческий
шарнир – огра-ничитель
перемещений по линии
нагрузки (одноразовый)
Односторонний по линии нагрузки
F
F
D
D
D
F
D

29.

30.

Моменты затяжки для крепления трубопровода Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 с
фланцевыми фрикционно-подвижными соединениями.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью фрикционных протяжных
демпфирующих компенсаторов с контролируемым натяжением, для применения в районах с сейсмичностью 9 балловпо шкале MSK-64,обеспечивающи
многокаскадное демпфирование при импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, *H∙м+ для резьбового или болтового соединения
с шлицевой головкой (винты)
с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для М6 – (8,0±1,0) H∙м, для М8 – (20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить согласно технической документаци
завода-изготовителя комплектующих изделий.

31.

Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
15
0.3
9
2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
154
75
8
Значения параметров
Параметры
соединения
математическое
ожидание
среднеквадратичное
отклонение
k1 106, КН-1
9.25
2.76
6
21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
q,мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
k2 10 , кН-
1
-1
Результаты определения параметров ФПС
параметры N
подвижки
f ск
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0, мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
8
0.35
154
75
15
0.3
9
2.5
0.00028
Таблица коэффициентов трения скольжения и качения.
к (мм)

32.

Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс.
6. Изобретения, используемые при испытаниях опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80
ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с креплением трубопроводо
к опоре скользящей с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК).
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи используемые при испытаниях на
сейсмостойкость в ПК SCAD опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях (используются в США, Канаде, Японии, Китае
(фирма STARSEIMIC).,,.
1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н. ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(11)
165 076
(13)
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.09.2019)
(21)(22) Заявка: 2016102130/03, 22.01.2016
(24) Дата начала отсчета срока действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
КоваленкоАлександр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования фрикцион но податливы
соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие охватывающее цилиндрическую поверхность щтока.
корпусе, перпендикулярно вертикальной оси, выполнены отверстия в которых установлен запирающий калиброванный болт. Вдоль ос
корпуса выполнены два паза шириной <Z> и длиной <I> которая превышает длину <Н> от торца корпуса до нижней точки паза, выполненного
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при это
паз штока совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до заданного усили
Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличени
усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических воздействий за
счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты объектов от динами ческих
воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены овальные отверс тия через
которые пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения меж ду
листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прок ладок
относительно накладок контакта листов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края ов альных
отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края овальных о тверстий,
соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия листов и среза болтов. Недостатк ами

33.

известного являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отве рстий; а также
неопределенности при расчетах из-за разброса по трению. Известно также Устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98,
F16F 15/10.Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько
внешних пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластин ами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементы - болты,
которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через бло к поддержки, две
пластины, через паз сегмента и фиксируют конструкцию в заданном положении. Таким образом получаем конструкцию опоры, которая
выдерживает ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в соп ряжениях,
смещается от своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия большого количества
сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного
сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней - корпуса, закрепленног
на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси и с возможностью ограничения
перемещения за счет деформации корпуса под действием запорного элемента. В корпусе выполнено центральное отверстие, сопрягаемое с
цилиндрической поверхностью штока, и поперечные отверстия (перпендикулярные к центральной оси) в которые устанавливают запира ющий
элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу
возможность деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует заданному перемещению штока. Запирающий элемент создает
нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают возможность деформации корпуса и «переход» сопряжения
из состояния возможного перемещения в состояние «запира ния» с возможностью перемещения только под сейсмической нагрузкой. Длина
пазов корпуса превышает расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняетс я
чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В
(фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметр ом «D», которое охватывает
цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его оси, выполнено два
отверстия в которых установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два паза
шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный глухой паз длиной « h» (допустмый ход штока) соответствующий по
ширине диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов « I» всегда больше расстояния от торца корпуса д
нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2
выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D»
корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шай бами
4, с предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и ко рпус в положении при котором нижняя поверхность паза
штока контактирует с поверхностью болта (высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до зад анного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации к орпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр штока. Величина
усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для каждой конкретной конструкции
(компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.) определяется экспериментально. Пр и
воздействии сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток, происходит сдвиг штока, в пределах длины паза
выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом, отлича ющаяся тем
что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью штока, при этом шток
зафиксирован запорным элементом, выполненным в виде калиброванного болта, проходящего через поперечные отверстия корпуса и через
вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным усилием, кроме того вкорпусе, параллельно централ ьной
оси, выполнено два открытых паза, длина которых, от торца корпуса, больше расстояния до нижней точки паза штока.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2010136746
(11)

34.

201
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12)
A
(51) МПК
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:
Экспертиза завершена (последнее изменение статуса:
02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Адрес для переписки:
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площад
для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренни
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких полосте
ограниченных эластичным огнестойким материалом и установлен ных на легкосбрасываемых фрикционных соединениях при избыточно
давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент в зрыва
землетрясения под действием взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проем
и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степень
подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек диа фраг
жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности, поз воляющие перемещать
перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 6
мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильны
землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной ил
зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре -восемь гаек и способствует одновременному поглощени
сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуд
колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах
гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определи
величину горизонтального и вертикального перемещения «сэндвич» -панели и определить ее несущую способность при землетрясении ил
взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой
испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяютс я, проверяются и затем испытываются н
программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationP
3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке испытываютс
фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновы
«сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) н а возможные при аварийном взрыве и пр
землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопаснос
городов».

35.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2367917
(13)
C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭс" (RU)
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул. Чапаева,
43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ
ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретение относится к измерительной технике и может быть использовано для контроля крутящего момента затяжки резьбовых
соединений. Способ заключается в приложении к затянутому резьбовому соединению крутящего момента, перевода резьбового соединения
из состояния покоя в состояние движения, повороте на заданный угол, не превышающий 2-4°, и измерении крутящего момента при
достижении углом поворота заданного значения. При этом производится дополнительный поворот на такой же угол с измерением крутящего
момента при достижении углом поворота заданного значения, а крутящий момент затяжки определяют как разность удвоенного значения
крутящего момента при первоначальном повороте на заданный угол и значения крутящего момента при дополнительном повороте на
заданный угол. Устройство содержит датчик момента, подключенный ко входу усилителя, выходом соединенного со входом аналогоцифрового преобразователя, первый и второй регистр памяти, счетчик импульсов, дешифратор, блок вычислений, цифровой индикатор и
элемент ИЛИ. Технический результат заключается в повышении точности контроля крутящего момента затяжки. 2 н.п. ф-лы, 3 ил
.
Изобретение относится к измерительной технике и может быть использовано для контроля крутящего момента затяжки резьбовых
соединений.
Известен способ измерения крутящего момента затяжки резьбовых соединений заключающийся в приложении к затянутому резьбовому
соединению крутящего момента, перевод резьбового соединения из состояния покоя в состояние движения, поворот на заданный угол, не
превышающий 2+4°, и измерение крутящего момента при достижении углом поворота заданного значения (см. а.с
15.08.89 г.).
1500881, опубл.
Однако использование этого способа не позволяет точно определять крутящий момент затяжки, так как измеряется крутящий момент,
соответствующий повороту резьбового соединения на дополнительный угол, поэтому возникает погрешность в измерении крутящего
момента затяжки.
Технический результат изобретения повышение точности контроля крутящего момента затяжки.

36.

Поставленный технический результат достигается тем, что согласно способу измерения крутящего момента затяжки, заключающемуся в
приложении к затянутому резьбовому соединению крутящего момента, переводе резьбового соединения из состояния покоя в состояние
движения, повороте на заданный угол, не превышающий 2÷4°, и измерении крутящего момента при достижении углом поворота заданного
значения, производится дополнительный поворот на такой же угол с измерением крутящего момента придостижении углом поворота
заданного значения, а крутящий момент затяжки определяют как разность удвоенного значения крутящего момента при первоначальном
повороте на заданный угол и значения крутящего момента при дополнительном повороте на заданный угол.
Известен динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом соединенного со входом
аналого-цифрового преобразователя, и первый регистр памяти (см. патент RU
2296964 от 10.04.2007 г.).
Недостатком указанного ключа является недостаточно высокая точность измерения крутящего момента затяжки резьбовых соединений.
Технический результат изобретения - повышение точности измерения крутящего момента затяжки резьбовых соединений.
Поставленный технический результат достигается тем, что динамометрический ключ, содержащий датчик момента, подключенный ко входу
усилителя, выходом соединенного со входом аналого-цифрового преобразователя, и первый регистр памяти снабжен датчиком угла
поворота, вторым регистром памяти, счетчиком импульсов, дешифратором, блоком вычислений, цифровым индикатором и элементом ИЛИ,
выходом подключенным ко входу первого индикатора, выход датчика угла подключен к счетному входу счетчика импульсов, выходами
соединенного со входами дешифратора, информационные выходы аналого-цифрового преобразователя соединены с соответствующими
информационными входами первого и второго регистров памяти, информационными выходами подключенных к соответствующим
информационным входам блока вычислений, информационными выходами подключенного ко входам цифрового индикатора, первый выход
дешифратора подключен ко входу «Запись» первого регистра памяти, второй выход дешифратора подключен ко входу «Запись» второго
регистра памяти, нулевой и первый выходы дешифратора подключены ко входам элемента ИЛИ, второй выход дешифратора подключен ко
входу «Вычисление» блока вычислений и входу второго элемента индикации, а установочные входы регистров памяти и счетчика импульсов
через кнопку управления подключены к шине «Напряжение логической единицы».
На фиг.1 приведен график зависимости крутящего момента от угла поворота гайки при затяжке резьбового соединения.
На фиг.3 приведена блок схема динамометрического ключа.
На фиг.2 - общий вид динамометрического ключа.
Динамометрический ключ содержит датчик 1 момента, датчик 2 угла поворота, датчик 1 момента через усилитель 3 подключен ко входу
аналого-цифрового преобразователя 4, первый и второй регистры 5 и 6 памяти, счетчик 7 импульсов, дешифратор 8, блок 9 вычислений,
цифровой индикатор 10 и элемент 11 ИЛИ, выходом подключенный ко входу первого индикатора 12, выход датчика 2 угла поворота
подключен к счетному входу счетчика 7 импульсов, выходами соединенного со входами дешифратора 8, информационные выходы аналогоцифрового преобразователя 4 соединены с соответствующими информационными входами первого и второго регистров 5 и 6 памяти,
информационными выходами подключенных к соответствующим информационным входам блока 9 вычислений, информационными
выходами подключенного ко входам цифрового индикатора 10, первый выход дешифратора 8 подключен ко входу «Запись» первого регистра
5 памяти, второй выход дешифратора 8 подключен ко входу «Запись» второго регистра 6 памяти, нулевой и первый выходы дешифратора 8
подключены ко входам элемента 11 ИЛИ, второй выход дешифратора 8 подключен ко входу «Вычисление» блока 9 вычислений и входу
второго элемента 13 индикации, а установочные входы регистров 5 и 6 памяти и счетчика 7 импульсов через кнопку управления 14
подключены к шине 15 «Напряжение логической единицы».
Способ измерения крутящего момента затяжки осуществляется следующим образом. На резьбовое соединение надевают ключевую головку
динамометрического ключа (не указана) и производят поворот резьбового соединения. При достижении углом поворота установленного
значения 2÷4° производится измерение крутящего момента. Затем производят дополнительный поворот на тот же угол, при достижении
углом установленного значения производят повторное измерение крутящего момента.
Так как затяжка резьбовых соединений осуществляется в пределах упругих деформаций, то зависимость момента на ключе от угла поворота
имеет линейную зависимость, поэтому зная значения момента в двух точках, можно рассчитать значение крутящего момента затяжки как
разность удвоенного значения крутящего момента при первоначальном повороте на заданный угол и значения крутящего момента при
дополнительном повороте на заданный угол.
Динамометрический ключ работает следующим образом.
Ключевой головкой (не указана) ключ устанавливают на резьбовое соединение (не указано) и нажимают кнопку 14 управления. При этом
осуществляется сброс содержимого регистров 5 и 6 памяти и установка счетчика 7 в нулевое состояние.
Это приводит к появлению напряжения логической единицы на нулевом выходе дешифратора 8, на выходе элемента 11 ИЛИ также
появляется напряжение логической единицы, которое поступает на вход первого элемента 12 индикации.
Элемент 12 индикации загорается, чем осуществляется индикация о начале измерения.
Затем к резьбовому соединению прикладывают крутящий момент и переводят резьбовое соединение из состояния покоя в состояние
движения и осуществляют его поворот.
При этом на выходе датчика 1 момента появляется напряжение, величина которого пропорциональна величине приложенного крутящего
момента. Это напряжение через усилитель 3 поступает на вход аналого-цифрового преобразователя 4, который осуществляет преобразование

37.

напряжения, пропорционального моменту, в цифровой код. Цифровой код с выходов аналого-цифрового преобразователя 4 поступает на
входы регистров 5 и 6 памяти.
Когда при повороте резьбового соединения угол поворота достигнет установленного значения в пределах 2÷4°, на выходе датчика 2 угла
появится импульс, который поступает на счетный вход счетчика 7 импульсов.
При этом на нулевом выходе дешифратора 8 напряжение логической единицы пропадает и оно появляется на первом выходе дешифратора 8.
Передним фронтом этого импульса осуществляется запись в память кода на его входах, соответствующего величине крутящего момента при
первоначальном угле поворота.
При дальнейшем повороте резьбового соединения на выходе датчика 2 угла вновь появится импульс, когда резьбовое соединение
повернется на такой же угол, что при первоначальном повороте. При этом счетчик 7 импульсов установится в следующее состояние, на
втором выходе дешифратора появится напряжение логической единицы, которым осуществляется запись в память второго регистра 6 памяти
кода, соответствующего крутящему моменту при повороте резьбового соединения на дополнительный угол.
Цифровой код с выходов регистров 5 и 6 памяти поступает на входы блока 9 вычислений.
При появлении на втором выходе дешифратора 8 напряжения логической единицы блок 9 осуществляет вычисление, при котором на его
выходе появляется код, соответствующий значению разности удвоенного значения крутящего момента при первоначальном повороте на
заданный угол и значения крутящего момента при дополнительном повороте на заданный угол. Код с выходов блока 9 вычислений поступает
на входы цифрового индикатора, которым осуществляется индикация вычисленной величины крутящего момента.
Так как напряжение логической единицы отсутствует на первом выходе дешифратора 8, то индикатор 12 гаснет, чем осуществляется
индикация о том, что измерение крутящего момента закончено.
При появлении напряжения на втором выходе дешифратора 8 загорается индикатор 13, который сигнализирует о том, что можно считывать
результат измерения.
Измерение крутящего момента затяжки закончено и ключ снимают с проверенного резьбового соединения.
Введение в динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом соединенного со входом
аналого-цифрового преобразователя, и первый регистр памяти, датчика угла поворота, второго регистра памяти, счетчика импульсов,
дешифратора, блока вычислений, цифрового индикатора и элемента ИЛИ, выходом подключенного ко входу первого индикатора, при этом
выход датчика угла поворота подключен к счетному входу счетчика импульсов, выходами соединенного со входами дешифратора,
информационные выходы аналого-цифрового преобразователя соединены с соответствующими информационными входами первого и
второго регистров памяти, информационными выходами подключенных к соответствующим информационным входам блока вычислений,
информационными выходами подключенного ко входам цифрового индикатора, первый выход дешифратора подключен ко входу «Запись»
первого регистра памяти, второй выход дешифратора подключен ко входу «Запись» второго регистра памяти, нулевой и первый выходы
дешифратора подключены ко входам элемента ИЛИ, второй выход дешифратора подключен ко входу «Вычисление» блока вычислений и
входу второго элемента индикации, а установочные входы регистров памяти и счетчика импульсов через кнопку управления подключены к
шине «Напряжение логической единицы», позволило повысить точность измерения крутящего момента затяжки резьбовых соединений, так
как величину момента затяжки вычисляют по результатам измерения крутящего момента в двух точках, отстоящих друг от друга на один и тот
же угол поворота, составляющий величину 2÷4°.
Формула изобретения
1. Способ измерения крутящего момента затяжки резьбовых соединений, заключающийся в приложении к затянутому резьбовому
соединению крутящего момента, переводе резьбового соединения из состояния покоя в состояние движения, повороте на заданный
угол, не превышающий 2÷4°, и измерении крутящего момента при достижении углом поворота заданного значения, отличающийся
тем, что производят дополнительный поворот на такой же угол с измерением крутящего момента при достижении углом поворота
заданного значения, а крутящий момент затяжки определяют как разность удвоенного значения крутящего момента при
первоначальном повороте на заданный угол и значения крутящего момента при дополнительном повороте на заданный угол.
2. Динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом соединенного со входом
аналого-цифрового преобразователя, и первый регистр памяти, отличающийся тем, что динамометрический ключ снабжен датчиком
угла поворота, вторым регистром памяти, счетчиком импульсов, дешифратором, блоком вычислений, цифровым индикатором и
элементом «ИЛИ», выходом подключенным ко входу первого индикатора, выход датчика угла подключен к счетному входу счетчика
импульсов, выходами соединенного со входами дешифратора, информационные выходы аналого-цифрового преобразователя
соединены с соответствующими информационными входами первого и второго регистров памяти, информационными выходами
подключенных к соответствующим информационным входам блока вычислений, информационными выходами подключенного ко
входам цифрового индикатора, первый выход дешифратора подключен ко входу «Запись» первого регистра памяти, второй выход
дешифратора подключен ко входу «Запись» второго регистра памяти, нулевой и первый выходы дешифратора подключены ко входам
элемента «ИЛИ», второй выход дишифратора подключен ко входу «Вычисление» блока вычислений и входу второго элемента
индикации, а установочные входы регистров памяти и счетчика импульсов через кнопку управления подключены к шине
«Напряжение логической единицы».

38.

РИСУНКИ

39.

2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
не действует (последнее изменение статуса:
Статус:
19.09.2011)
Пошлина:
учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
(24) Дата начала отсчета срока действия патента:
26.11.1997
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С.,
Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах.
- М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A,
30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ

40.

(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания
резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на
его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышени
точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может
быть использовано в мостостроении и других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и
в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М.,
Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов.М.,Транспорт, 1971, с. 6064):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие
натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты
закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ,
поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в
результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах".М., Стройиздат, 1974, табл
17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные усилия в
болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результат
измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов
В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае
сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание
предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой
пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьб
превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие
таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента
закручивания для подтяжки болтов. Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с
учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же источник
с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания
нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненно
резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с гайкой в
пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее
поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее
поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивани
При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α

41.

i
o
/60 (170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения величин
коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в
отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется следующим
образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное
положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки;
o
как правило, этот угол составляет 60 .
o
- поворачивают гайку на заданный угол α и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
o
- определяют соответствующее повороту гайки на угол α приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины
пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия
o
натяжения болтов при повороте гайки на угол 60 от исходного положения.
o
Поворот гайки на 60 соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М.,
Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения
болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой
предложенного способа определения коэффициента закручивания.
o
Угол поворота гайки 60 технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения
коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в
конкретных условиях эксплуатации соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий натяжени
болтов в период обследования конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым
вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угл
ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания гайк
в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по
формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α

42.

i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращени
усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете
о поиске: SU 1753341 A1, 07.08.1992. SU 1735631
A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2,
кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ
БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта.
Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного

43.

материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использован
для определения фактического напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности стальных
мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в
которых передача усилия обжатия соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостя
усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усили
отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые
отражаются в проектной документации, являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного
соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное
нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы
оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае
сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использовани
высокопрочных болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно
большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при
коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует
исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным
методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного
пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена
применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ
его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных
поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на
строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью
захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На
строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной
эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает
трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных центров
требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно
снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения
климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время
обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об условия
обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки
фактической надежности работы фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин

44.

Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и
инструментальной базы, способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при
восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов,
необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям
соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами
отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск:Системные технологии, 2008 г
с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.),
заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента затяжки. Приращение усили
натяжения болта определяют по формуле (4):
где
2
2
А, А22 - площади поперечного сечения, мм ; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм ; αi - угол поворота гайки от исходного
положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхносте
и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после
предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора болто
и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614
2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы динамометрического
ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже
металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3,
скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяю
величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия
нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент №1753341,
опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению действия
продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в
менее напряженных. В итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения
высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск:Системные технологии, 2008 г., с.35-36). Сущность способ
заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из
основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной
машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости
от величины отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к
тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического, та
и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому
фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего
устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может
не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочным
болтами, включающий приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку, контактирующие
поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при проектном значении
усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее
сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины отклонения

45.

осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении
величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную
модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечени
надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят дополнительную
обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным
отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие
позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54.
Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки
контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент
трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом
преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух
стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом
рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве
силоизмерительного устройства используется динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое
соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической
накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое
соединение 13, предназначенноедлякрепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной
металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11
осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной
величине. Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения
усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой
10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6
надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который
воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную
величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по
обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительн
обработать контактирующие поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно
использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.

46.

В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в
отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработан
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвигаи затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детал
узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный
из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60
корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного фланца и своим торцом упирается в кромку
отверстия во фланце так, что смежные упоры друг с другом не взаимодействуют, а только со смежными фланцами, при этом, на упор приходится только
половина усилия, действующего на стык в плоскости фланцев, а другая половина усилия передается непосредственно на фланец упором смежного
фланца.
На фиг.1 приведен общий вид стыка сверху ,применительно к стропильной ферме-, на фиг.2 показано горизонтальное сечение стыка по оси соединяемы
элементов, на фиг.3 показаны разомкнутый стык и расчетная схема стыка, на фиг.4 приведен вид фланца в разрезе 1-1 на фиг.3.
Стык состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси, фланцев 2, приваренных к скошенным концам соединяемы
элементов 1, упоров 3, приваренных к фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с другом. Оси стыка 5 и 6 расположены в плоскости
фланцев и нормально фланцам соответственно.

47.

Стык растянутых элементовдляна косых фланцах ФПС устраивается следующим образом.
Отправочные марки конструкции ,стропильной фермы- изготавливаются известными приемами, характерными для решетчатых конструкций. Фланец 2 в
сборе с упором 3 изготавливается отдельно из стального листа на сварке. Из центральной части фланца вырезается участок для образования отверстия, в
котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный материал. Благодаря этому экономится до 25
стали на стык. Контактные поверхности упора и кромки отверстия во фланце выравниваются стружкой, фрезерованием или другими способами. Фланец
изготавливается с использованием шаблонов и кондукторов. Возможно изготовление фланца способом стального литья, что более предпочтительно.
Фланцы крепятся к скошенным концам соединяемых элементов с помощью кондукторов.
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это позволяет принять для них более
тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно влияю
возможные уменьшения диаметров стяжных болтов 4, снижение их количества или комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории упругости весьма затрудни-тельно. Это вызвано
разнообразием конструкций узлов, особенностями внешнего нагружения, а также крайне сложным взаимо-действием элементов узла. В связи с этим,
расчет напряженно-деформированного состояния модели узла стыка растянутых поясов ферм на косых фланцах выполняется МКЭ.
Для исследования напряженно деформированного состояния в образце был проведен расчет в программном комплексе SCAD Комета 2, и построена
математическая модель. Расчет в Комете 2 основан на СНиП II-23-81, результат расчета представлен на рисунке 2. Как видно из результатов при
расчетной нагрузке стенка колонны испытывает напряжения в 2,4 раза выше нормативного, также как и прочность сварки и фланца нарушена. Как можн
заметить, в СНиПе заложены слишком высокие коэффициенты запаса прочности. Если же верить SCAD Комета 2, максимальная нагрузка на узел
составляет 15 т/м, что меньше в два раза рассчитанного по британским нормам
Как можно заметить, результаты, полученные из разных источников, отличаются. Однако решение, полученное в программном комплексе SCAD
наиболее точно описывает напряженное состояние в узле, ввиду того, что имеется возможность детально описать контактное взаимодействие и
построить более структурированную сетку. Необходимо провести серию испытаний фланцев различной толщины, проанализировав тенденцию
разрушения. Также следует доработать математическую модель на основе натурных испытаний. После чего можно создать пособие по проектированию
фланцевых соединений.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания проектного усилия натяжения высокопрочно
болта Р, кН, необходимо приложить крутящий момент, величина которого в Нм пропорциональна диаметру болта d, мм, и определяется согласно СТ
006-97 *4+ по эмпирической формуле М = kPd.
Коэффициент k, называемый коэффициентом закручивания, отражает влияние многочисленных технологических факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Во-первых, шероховатость резьбовы
поверхностей гайки и болта, определяющая величину сил трения в резьбе при закручивании. Во-вторых, геометрические параметры резьбы, её шаг
угол профиля. В-третьих, чистота соприкасающихся поверхностей шайбы и головки болта или гайки в зависимости от того, какой элемент вращается пр
натяжении соединения.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены болты, гайки и шайбы, наличи
антикоррозионного покрытия, а также на коэффициент закручивания влияет и то, вращением какого элемента натягивается болтоконтакт. СТП 006-9
установлено, что при закручивании соединения вращением болта значение крутящего момента должно приниматься на 5 % больше, чем при натяжени
вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной характеристикой их влияния являет
устанавливаемый экспериментально коэффициент закручивания.
Для высокопрочных болтов, выпускаемыхВоронежским, Улан-Удэнским и Курганским мостовыми заводами по ГОСТ Р 52643... 52646-2006 значения Р и
для болтов различного диаметра приведены в табл. 2 СТП 006-97. При этом коэффициент закручивания k принят равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на разных заводах, по разным технологиям и
стандартам. Допущены к использованию высокопрочные метизы с антикоррозионным покрытием: кадмиро-ванием, цинкованием, омеднением и
другим. В этих условиях фактическое значение коэффициента закручивания может существенно отличаться от нормативных значений, и его необходимо
контролировать для каждой партии комплектуемых высокопрочных метизов при входном контроле на строительной площадке по методике,
приведённой в приложении Е ГОСТ Р 52643 и в приложении А СТП 006-97. Допустимые значения коэффициента закручивания в соответствии с
требованиями п. 3.11 ГОСТ Р 52643 должны быть в пределах 0,14-0,2 для метизов без защитного покрытия и 0,11-0,2 - для метизов с покрытием.
Погрешность оценки коэффициента закручивания не должна превышать 0,01.Для определения коэффициента закручивания используют испытательное
оборудование, позволяющее одновременно измерять приложенный к гайке крутящий момент и возникающее в теле болта усилие натяжения с
погрешностью, не превышающей 1 %. При этом применяются измерительные приборы, основанные на различных принципах регистрации
контролируемых характеристик. В качестве такого оборудования в настоящее время используют динамометрические установки типа ДКП-1, УТБ-40, GVK
14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические динамометрические ключи типа КЛЦ, автоматичес
обеспечивающие требуемый крутящий момент с погрешностью, не превышающей 4 %, посредством цепной передачи, приводимой в движени
гидроцилиндром.

48.

Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения высокопрочных болтов, как правило, применяю
ручные динамометрические ключи рычажного типа КТР Курганского завода ММК с индикатором часового типа ИЧ 10.Их использование приводит
значительным трудозатратам и физическим перегрузкам рабочих в связи с необходимостью приложения силы от 500 до 800 Н к рукоятке ключа пр
создании проектной величины крутящего момента в процессе сборки фрикционных соединений на болтах диаметром 16-27 мм.
Кроме того, процесс установки высокопрочных болтов ключами КТР значительно удлиняется из-за необходимости постоянно каждые 4 ч беспрерывно
работы и не менее двух раз за смену контролировать исправность ключей их тарировкой способом подвески контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения 1000 и 2000 болтов и затем каждый р
после натяжения 5000 болтов либо в случае замены таких составных элементов ключа, как гидроцилиндр или цепной барабан.
При использовании гидравлических ключей упрощается контроль величины крутящего момента, который осуществляется по манометрам, а специальны
механизм в конструкции ключа предотвращает чрезмерное натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно обеспечить, используя ручны
динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов при сборке металлоконструкций в стеснённых условиях. Гидравлически
ключи типа КЛЦ обеспечивают плавную затяжку высокопрочных болтов в ограниченном пространстве благодаря меньшим размерам
противомоментным упорам.
В настоящее время организация в мире разработаны различные модификации гидравлических динамометрических ключей: серии SDW (2 SDW), SD
(05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и других SDW.
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах с ограниченным доступом и обеспечиваю
снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования.
Тарировку силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют на разрывной испытательной машине
построением тарировочного графика в координатах: усилие натяжения болта в кН (тс) - показание динамометра.
Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР-150 производят с помощью грузов, подвешиваемых на свободном конце
рукоятки горизонтально закреплённого ключа. По результатам тарировки строится тарировочный график в коорди-натах: крутящий момент в Нм показания регистрирующего измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с использованием тарировочного устройства типа УТконструкция и принцип работы которого описаны в СТП 006-97, приложение К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек, особенно обостряющаяся при применени
высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании их динамометричес-кими ключами до
расчётного усилия прокручиваются в 50 % случаев. Причина прокручивания заключается в недостаточной шерохо-ватости контактных поверхностей
головки болта и шайбы, подкладываемой под неё.
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия натяжения болтоконтакта является нов
конструкция высокопрочного болта с торцевым срезаемым элементом. Геометрическая форма таких болтов отличается наличием полукруглой головки
торцевогоэлемента с зубчатой поверхностью, сопряжённого со стержнем болта кольцевой выточкой, глубина которой калибрует площадь среза. Диаме
дна выточки составляет 70 % номинального диаметра резьбы.
Высокопрочные болты с контролируемым напряжением Tension Control Bolts (TCB) широко применяются в мире. Их производят в соответствии
техническими требованиями EN 14399-1, с полем допуска резьбы для болтов 6g и для гаек 6 Н по стандартам ISO 261, ISO 965-2, с классом прочности 10
и механическими свойствами по стандарту EN ISO 898-1и с предельными отклонениями размеров по стандарту EN 14399-10.
В ЦНИИПСК им. Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не производятся и не применяются.
Конструкция болта с гарантированным моментом затяжки резьбовых соединений основана на связи механических свойств стали при растяжении и срез
Расчётное сопротивление стали при срезе составляет 58 % от расчётного сопротивления при растяжении, определённого по пределу текучести.
При вращении болта за торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки, удерживаемой муфтой наружного захва
ключа. В момент достижения необходимого усилия натяжения болта торцевой элемент срезается по сечению, имеющему строго определённый расчёто
диаметр.
Для сборки фрикционных соединений на высокопрочных метизах с контролем натяжения по срезу торцевого элемента применяют ключи специально
конструкции.
Применение болтов с контролируемым натяжением срезом торцевого элемента увеличит производительность работ по сборке фрикционных
соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого способа натяжени
высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки динамометрических ключе
необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего момента в процес
натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента, соответствующего достижени
проектного усилия натяжения болта. При этом сборку фрикционных соединений можно производить с одной стороны конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе изготовления болтов и устран
различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных соединений, сделает её технологичной
высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются вследствие сопротивления си

49.

трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть
максимально большим, что достигается упрочнением стали, из которой они изготовляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных соедине-ний. Замена сварны
монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает надежность
конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими типами болтовых соединений,
также сами высокопрочные болты имеют значительно более высокую стоимость, чем обычные болты. Эти два фактора накладывают ограничения на
область применения фрикционных соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых наиболее полно реализуются их
положительные свойства — высокая надежность при восприятии различного рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в
настоящее время, проблема повышения эффективности использования несущей способности высокопрочных болтов, поиска новых конструктивных и
технологических решений выполнения фрикционных соединений является очень актуальной в сейсмоопасных районах.
С техническими решениями фрикционно-подвижных соединений (ФПС) обеспечивающих многокаскадное демпфирование (латунная шпилька, с
пропиленным пазом, в который забит медный обожженный клин, свинцовые шайбы, проходили лабораторные испытания) можно ознакомиться:
см.изобретения №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU
«Опора сейсмостойкая» Мкл E04H 9/02, Бюл.28, от 10.10. 2016 , СП 16.13330.2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2
-10.10.3 ,СН 471-75, ОСТ 36-72-82, Руководство по проектированию, изготовлению и сборке монтажа фланцевых соединений стропильных ферм с
поясом из широкополочных дву-тавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструк-ций, ЦНИПИ Проектстальконструкция, ОСТ 37. 001.050-73 «Затяжка резьбовых соединений», Руководство по креплению
технологического оборудования фундаментными болтами, ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты», вып.5,
ЛЕНГИПРОНЕФТЕХИМ, Инструкция по применению высокопрочных болтов в эксплуатируемых мостах, ОСТ108. 275.80, ОСТ37.001. 050-73, ВСН 144-76,
СТП 006-97, Инструкция по проектированию соединений на высокопрочных болтах в стальных конст-рукциях мостов», Рабер Л.М. (к.т.н.), Червинский
А.Е. «Пути совершенствования технологии выполнения и диагностики фрикци-онных соединений на высокопрочных болтах» НМетАУ (Национальная
металлургическая академия Украины, Днепропетровск), ШИФР 2.130-6с.95 , вып. 0-1, 0-2, 0-3. (Строительный Каталог ), «Направление развития
фрикционных соединений. на высокопроч-ных болтах» (НПЦ мостов г . СПб), д.т.н. Кабанов Е.Б, к.т.н. Агеев В.С, инж. Дернов А.Н., Паушева Л.Ю,
Шурыгин М.Н.
При испытаниях фрагментов косого антисейсмического фрикционно- демпфирующего компенсатора для соединения трубопроводов и уложенной на
опоры скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами из полиэтилена использовалась заявка на изобретение
«Антисейсмические виброизоляторы» (выполнены в виде латунного фрикци -болта с пропиленным пазом , куда забивается стопорный обожженный
медный клин). Медный обожженный клин может быть также установлен с двух сторон опоры сейсмостойкой.
Болты снабжены амортизирующими шайбами из свинца, расположенными в отверстиях фланцев.
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется за счет сминания медного
обожженного клина, забитого в пропиленный паз шпильки.
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами, расположенными между цилиндрическими выступами. При этом
промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной
виброизоляции и сейсмозащиты трубопроводов в поперечном направлении, можно установить медные втулки или гильзы ( на чертеже не показаны)
которые служат амортизирующими дополнительными упругими элементами.
Упругие элементы одновременно повышают герметичность соединения (может служить стальной трос ( на чертеже не показан)). .
Устройство работает следующим образом.
В пропиленный паз латунной шпильки плотно забивается с одинаковым усилием медный обожженный клин, который является амортизирующим
элементом при многокаскадном демпфировании,после чего производится стягивание соединения гайками с контролируемым натяжением
Латунная шпилька с пропиленным пазом, располагается во фланцевом соединении. Одновременно с уплотнением соединения онавыполняет роль
упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие
свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и
давления рабочей среды.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются
сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.

62.

Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е болта
осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание
несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести
риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прик ладывается
диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть
воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт оконт акт ом), оценивается
соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследоват е льской
организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной шпильки с
забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении,
вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной шпильки , с
забитым в пропиленный паз медного клина, которая жестко крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между
энергопоглощаюим клином вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным
кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за счет использования
фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно, например,
болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных растягивающих нагрузках при
многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных
отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для фрикционного демпфирования и
антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы.
Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях,
смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного или
нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью перемещения вдоль оси и с ограничением
перемещения за счет деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в
стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб) поглотителями
сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей фрикционных соединений на расчетную
величину при превышении горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные
сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты
в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за
счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п.
10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов

63.

Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься стопорный обожженный
медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с энергопоглощением
забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими выступами . При этом
промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной
виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание соединения гайками с
контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину, обеспечивающую рабочее
состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность его работы в тяжелых
условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных колебаний
вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и энергопоглощающие со
стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и забитым медным обожженным клином с
медной обожженной втулкой или гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент,
фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены с помощью энергопоглощающего
фрикци -болта , с забитимы с одинаковм усилеи м медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении
(ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а
крепежные элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие свинцовые или
обожженные медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4

64.

Фиг.5
Фиг 6
Фиг 7
Фиг 8
Фиг 9

65.

Характеристики тросовой сейсмостойкой опоры (один из вариантов).
Жёсткость удобнее брать как среднециклическую. Жёсткость математически точно описывает поведение системы в динамике. В ADAMS мы применяем
зависимость среднециклической жёсткости от амплитуды деформации, взятой из эксперимента.
При амплитуде колебаний 0,4 мм:
Жёсткость: 139/0,4=348 Н/мм
Коэф. рассеяния энергии: 2,06
Коэф. демпфирования: 0,328
При амплитуде колебаний 1 мм:
Жёсткость: 246/1=246 Н/мм
Коэф. рассеяния энергии: 2,79
Коэф. демпфирования: 0,444
При амплитуде колебаний 2 мм:
Жёсткость: 332/2=166 Н/мм
Коэф. рассеяния энергии: 2,44
Коэф. демпфирования: 0,39
Основные размеры
Основные характеристики
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100 и узлов крепления опоры скользящей к трубопроводу с помощью демпфирующих и косых антисейсмических компенсаторов,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами
ВЫВОДЫ по испытанию математических моделей опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами , которые крепились с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная
реализация в SCAD Office.
Испытания математических моделей опор скользящих для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 , серийный
выпуск, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами, с креплением трубопроводов с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно программной реализации в SCAD Office проводились по прогрессивному
методу испытания зданий и сооружений как более новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения
количественной характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в
программе SCAD. Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм,
обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности земле-трясений по
значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для оценки и уменьшения
возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, которые
предназначены для сейсмоопасных районов с сейсмичностью до 9 баллов с трубопроводами с антисейсмическими косых компенсаторов (
изобретение № 887748 « Стыковое соединение растянутых элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, оценено влияние продолжительности колебаний на
сейсмическую интенсивность. За полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность
испытания математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция
инструментальных данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих опор с использованием ФПС должно
уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления трубопровода , предназначенных для сейсмоопасных
районов с сейсмичностью до 9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого использования
сейсмоизоляции для трубопроводов и использования ФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов косого антисейсмического фрикционно- демпфирующего соединения трубопро-вода, соединенного с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных
отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью до 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить переме-щение зажима по
условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла крепления опор скользящих для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов с

66.

трубопроводами с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине испытательной
машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного фрикционно-подвижного соединения
на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр 34 мм), установленных в длинных овальных отверстиях в
соответствии с требованиям : СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ
30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия
4.402-9 «Анкерные болты», вып. 5 «Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330. 2011 (СНиПII-2381*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях
мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676
Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий
согласно ГОСТ 6249-52 «Шкала для определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2,
[email protected] (ранее составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных соединений
работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе,
амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина), при осмотре не обнаружено механических
повреждений и ослабления демпфирующего соединения для опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80,
ОС-100 с трубопроводами, предназначенными для сейсмоопасных районов с сейсмичностью до 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС80, ОС-100, предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и
лабораторных испытаний фрагментов узлов крепления опоры скользящей и трубопровода делается вывод
Опоры скользящие для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенные для сейсмоопас-ных районов с
сейсмичностью до 9 баллов, серийный выпуск, с трубопроводами, соединенными между собой с помощью демпфиру-ющих компенсаторов на
фланцевых фрикционно–подвижных соединениях (ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных отверстиях для
обеспечения многокаскадного демпфирования при динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах
соединения), выполненных согласно изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно
рекомендациям ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676 Restraintanti-windandantiseismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 5137199, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05
(раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для систе-мы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100 при испытаниях в ПК SCAD и при испытаниях узлов крепления опоры скользящей к трубопроводу,
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И. Гладштейн, В. М. Бабушкин,
Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. - № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных конструкций / ЦНИИПСК
им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc. of the Melnikov Construction
Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.: Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных болтах // Бущвництво
Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл. 04.01.1990; опубл. 23.01.1992,
Бюл. № 3.
4. Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувос- тшкого з 'езнання з
одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588; заявл. 02.10.2000; опубл. 16.07.2001, Бюл.
№ 6.
5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов
Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл. 26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5. - С. 96-98
Библиографический список
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов всех форм обучения
специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного профессионального образования, УрГУПС,
2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский государственный
технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры

67.

.
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L
23/02 .
13. Заявка на изобретение № 2016119967/20
( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и идентификации в механике
деформируемых сред и конструкций физическим и математическим моделирование в ПК SCAD,предназначенных для сейсмоопасных районов с
сейсмичностью до 9 баллов с трубопроводами из полиэтилена .djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
Одельский_ Гидравлический расчёт трубопроводов_1967.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-184.03 в.0 Трубы
водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр
= Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.903-10_л1_Тепловые сети. Детали трубопроводов.djvu
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые сети. Опоры
трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu 4.900-9 в.1 Трубопр-ды
из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 4.900-9 в.1 Трубопр-ды
из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия 3.501.1-144 Трубы
водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр =
Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1
Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13 Изделия и детали
трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчёт трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu

68.

.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые
альбомы котрые использовались в лаборатории СПб ГАСУ для магистральных
трубопроводов которые использовались при лабораторных испытаниях в ПК SCADОпора скользящая для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск
1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu

69.

Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23)
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения предназ-начена для сейсмозащиты
, виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических, взрывных, вибрационных, неравномерных
воздействий за счет использования спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры,
многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых
соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры
выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней
части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью фрикционно-подвижных
соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных
в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой перекрестной гофры
(демпфирующих ножках) и крепятся фрикци-болтами с многослойным из склеенных пружинистых медных пластин клином, расположенной в
коротком овальном отверстии верха и низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг2 Фрикционно демпфирующий компенсатор для трубопроводов

70.

Фиг3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг7Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг11 Фрикционно демпфирующий компенсатор для трубопроводов

71.

Фиг12Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг14 Фрикционно демпфирующий компенсатор для трубопроводов
Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов и фрагментов
сейсмоизоляции для опоры скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, предназначенные для
сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –
демпфирющая опора» https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для трубопроводов»
https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog «Опора сейсмоизолирующая
«маятниковая» https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ
https://www.youtube.com/watch?v=trhtS2tWUZo https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s

72.

73.

ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824,
т/ф: (812) 694-78-10 , (996) 798-26-54, (911) 175-84-65 , [email protected]
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г. [email protected]
эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО «НИПИ[email protected]тел (921) 962-67-78 ктн Аубакирова И У, проф дтн
Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 0602010-2014000780-И-12, выдано 28.04.2010 г. http://nasgage.ru/[email protected] проф. д.т.н. СПб ГАСУ(996) 798-26-54,
(999) 535-47-29 Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824,
т/ф: (812) 694-78-10 , (921) 962-67-78 [email protected] Копия аттестата испытательной лаборатории ПГУПС №
SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к протоколу испытаний организацией СПб ГАСУ и организацией
"Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС [email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС[email protected] (996) 798-26-54, (921) 962-677-78 Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра организации «СейсмоФОНД» при СПб ГАСУ ОГРН
1022000000824 Хасан Нажоевич Мажиев [email protected]
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я Красноармейская
ул. д 4 krestianinformburo8.narod.ru [email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры подтверждения
компетентности8590-гу (А-5824) т/ф (812) 694-78-10 (999) 535-47-29
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected] [email protected]
[email protected]тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65,
Заявка на изобретение "Фрикционно - демпфирующий
компенсатор для трубопроводов"
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов

74.

Фиг 2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов

75.

Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 12 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов

76.

Фиг 14 Фрикционно демпфирующий компенсатор для трубопроводов
Описание изобретение Фрикционно - демпфирующий
компенсатор для трубопроводов F0416L для
крепления на опорах скользящих для системы
противопожарной защиты ОС-25,ОС-32, ОС -50, ОС-80,
ОС-100 организации ООО "ПОЖТЕХПРОМ" тел 8 800
60054 94
Предлагаемое техническое решение предназначено для защиты
магистральных трубопроводов, агрегатов, оборудования, зданий, мостов,
сооружений, линий электропередач, рекламных щитов от сейсмических
воздействий за счет использования фланцевого соединение растянутых
элементов трубопровода, с упругими демпферами сухого трения
установленных на пружинистую гофру с ломающимися демпфирующими
ножками при при многокаскадном демпфировании и динамических
нагрузках на протяжных фрикционное- податливых соединений проф.
ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 ,
1174616 "Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение
плоских деталей встык, патент Фланцевое соединение растянутых
элементов замкнутого профиля № 2413820, «Стыковое соединение
растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от
11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения
трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24
"Способ определения коэффициента закручивания резьбового соединения
"

77.

Изобретение относится к области строительства и может быть
использовано для фланцевых соединение растянутых элементов
трубопровода для технологических , магистральных трубопроводов.
Система содержит фланцевое соединение растянутых элементов
трубопровода с разной жесткостью, демпфирующий элемент
стального листа свитого по спирали. Использование изобретения
позволяет повысить эффективность сейсмозащиты и виброизоляции в
резонансном режиме фланцевые соединения в растянутых элементов
трубопровода
Изобретение относится к строительству и машиностроению и
может быть использовано для виброизоляции магистральных
трубопроводов, технологического оборудования, агрегатов
трубопроводов и со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту
является фланцевое соединение растянутых элементов замкнутого
профиля № 2413820 , Стыковое соединение растянутых элементов №
887748 система по патенту РФ (прототип), содержащая и описание
работы фланцевого соединение растянутых элементов трубопровода
Недостатком известного устройства является недостаточная
эффективность на резонансе из-за отсутствия демпфирования
колебаний. Технический результат - повышение эффективности
демпфирующей сейсмоизоляции в резонансном режиме и упрощение
конструкции и монтажа сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующем фланцевом соединение
растянутых элементов трубопровода , содержащей по крайней мер, за
счет демпфирующего фланцевого соединение растянутых элементов
трубопровода трубопровод и сухого трения установлена с
использованием фрикци-болта с забитым обожженным медным
упругопластичным клином, конце демпфирующий элемент, а
демпфирующий элемент выполнен в виде медного клина забитым в паз
латунной шпильки с медной втулкой, при этом нижняя часть штока
соединена с основанием спиральной опоры , жестко соединенным с
демпирующей спиральной стальной лентой на фрикционно –подвижных
болтовых соединениях для обеспечения демпфирования фланцевого
соединение растянутых элементов трубопровода

78.

На фиг. 1 представленk фланцевого соединение растянутых элементов
трубопровода Фрикционно демпфирующий компенсатор для
трубопроводов с упругими демпферами сухого трения с пружинистыми
демпферами сухого трения в овальных отверстиях
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения, виброизолирующая система для зданий и
сооружений, содержит основание 3 и 2 –овальные отверстия , для
болтов по спирали и имеющих одинаковую жесткость и связанных с
опорными элементами верхней части пояса зданий или сооружения я.
Система дополнительно содержит фланцевого соединение растянутых
элементов трубопровода , к которая крепится фрикци-болтом с
пропиленным пазов в латунной шпильки для забитого медного
обожженного стопорного клина ( не показан на фигуре 2 ) и которая
опирается на нижний пояс основания и демпфирующий элемент 1 в
виде спиральновидной сейсмоизолирующей опоры с упругими
демпферами сухого трения за счет применения фрикционно –подвижных
болтовых соединениях, выполненных по изобретению проф дтн ПУГУПС
№1143895, 1168755, 1174616, 2010136746 «Способ защиты зданий»,
165076 «Опора сейсмостойкая» В спиралевидную трубчатую опору ,
после сжатия расчетной нагрузкой , внутрь заливается тощий по
расчету фибробетон по нагрузкой , сжатой спиральной
сейсмоизолирующей опоры
Демпфирующий элемент фланцевого соединение растянутых элементов
трубопровода , с упругими демпферами сухого трения за счет
фрикционно-подвижных соединениях (ФПС)
При колебаниях грунта сейсмоизолирующая и виброизолирующее
фланцевое соединение растянутых элементов трубопровода , для
демпфирующей сейсмоизоляции трубопровода (на чертеже не показан)
с упругими демпферами сухого трения , для спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения ,
элементы 1 и 4 воспринимают как вертикальные, так и горизонтальные
нагрузки, ослабляя тем самым динамическое воздействие на
демпфирующею сейсмоизоляцию объект, т.е. обеспечивается
пространственную сейсмозащиту, виброзащиту и защита от ударной
нагрузки воздушной волны

79.

Фрикционно демпфирующий компенсатор для трубопроводов с упругими
демпферами сухого трения, как виброизолирующая система работает
следующим образом.
При колебаниях виброизолируемого объекта , фланцеве соединение
растянутых элементов трубопровода на основе фрикционо-подвижных
болтовых соединениях , расположенные в длинных овальных отверстиях
воспринимают вертикальные нагрузки, ослабляя тем самым
динамическое воздействие на здание, сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными
сейсмоизоляторами 1, и разрушение тощего фибробетона 4
расположенного внутри спиральной демпфирующей опоры .
Предложенная виброизолирующая система является эффективной, а
также отличается простотой при монтаже и эксплуатации.
Упругодемпфирующая фланцевого соединение растянутых элементов
трубопровода со с упругими демпферами сухого трения работает
следующим образом.
При колебаниях объекта фланцевое соединение растянутых элементов
трубопровода со с упругими демпферами сухого трения , которые
воспринимает вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание , сооружение . Горизонтальные колебания гасятся
за счет фрикци-болта расположенного в при креплении опоры к
основанию фрикци-болтом , что дает ему определенную степень свободы
колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых
элементов трубопровода и силы трения между листами пакета и
болтами не преодолеваются. С увеличением нагрузки происходит взаимное
проскальзывание листов фланцевого соединение растянутых элементов
трубопровода или прокладок относительно накладок контакта листов с
меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных
овальных отверстий для скольжения при многокаскадном демпфировании
и после разрушения при импульсных растягивающих нагрузках или при
многокаскадном демпфировании , уже не работают упруго. После того

80.

как все болты соединения дойдут до упора края, в длинных овальных
отверстий, соединение начинает работать упруго за счет трения, а затем
происходит разрушение соединения за счет смятия листов и среза болтов,
что нельзя допускать . Сдвиг по вертикали допускается 1 - 2 см или более
Недостатками известного решения аналога являются: не возможность
использовать фланцевого соединение растянутых элементов
трубопровода, ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно
также устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий, патент TW201400676(A)-2014-01-01.
Restraint anti-wind and anti-seismic friction damping device, E04B1/98,
F16F15/10, патент США Structural stel bulding frame having resilient
connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" , RU №
2413820 "Фланцевое соединение растянутых элементов замкнутого
профиля", Украина № 40190 А "Устройство для измерения сил трения по
поверхностям болтового соединения" , Украина патент № 2148805 РФ
"Способ определения коэффициента закручивания резьбового соединения"
Таким образом получаем фланцевого соединение растянутых элементов
трубопровода с упругими демпферами сухого трения и
виброизолирующею конструкцию кинематической или маятниковой опоры,
которая выдерживает вибрационные и сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения
недостатками указанной конструкции являются: сложность конструкции
и сложность расчетов из-за наличия большого количества сопрягаемых
трущихся поверхностей и надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
или нескольких сопряжений отверстий фланцевого соединение растянутых
элементов трубопровода , а также повышение точности расчета при
использования тросовой втулки (гильзы) на фрикци- болтовых
демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса (
диаметр 2 мм ) в пластмассовой оплетке или без оплетки, скрученного в
два или три слоя пружинистого троса.

81.

Сущность предлагаемого решения заключается в том, что фланцевого
соединение растянутых элементов трубопровода с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с
бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток
сборный в виде, фланцевого соединение растянутых элементов
трубопровода с упругими демпферами сухого трения, установленный с
возможностью перемещения вдоль оси и с ограничением перемещения за
счет деформации и виброизолирующего фланцевого соединение
растянутых элементов трубопровода , под действием запорного
элемента в виде стопорного фрикци-болта с тросовой виброизолирующей
втулкой (гильзой) с пропиленным пазом в стальной шпильке и забитым в
паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов
трубопровода выполнены овальные длинные отверстия, и поперечные
отверстия (перпендикулярные к центральной оси), в которые скрепляются
фланцевыми соединениями в растянутых элементов трубопровода с
установлением запирающий элемент- стопорный фрикци-болт с
контролируемым натяжением, с медным клином, забитым в пропиленный
паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов
трубопровода, параллельно центральной оси, выполнены восемь открытых
длинных пазов, которые обеспечивают корпусу возможность
деформироваться за счет протяжных соединений с фрикци- болтовыми
демпфирующими, виброизолирующими креплениями в радиальном
направлении.
В теле фланцевого соединение растянутых элементов трубопровода с
упругими демпферами сухого трения
Фланцевое соединение растянутых элементов трубопровода , вдоль
центральной оси, выполнен длинный паз ширина которого соответствует
диаметру запирающего элемента (фрикци- болта), а длина соответствует
заданному перемещению трубчатой, квадратной или крестообразной
опоры. Запирающий элемент создает нагрузку в сопряжении опоры -

82.

корпуса, с продольными протяжными пазами с контролируемым
натяжением фрикци-болта с медным клином обмотанным тросовой
виброизолирующей втулкой (пружинистой гильзой) , забитым в
пропиленный паз стальной шпильки и обеспечивает возможность
деформации корпуса и «переход» сопряжения из состояния возможного
перемещения в состояние «запирания» с возможностью перемещения
только под вибрационные, сейсмической нагрузкой, взрывные от
воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображено Фрикционно демпфирующий компенсатор для
трубопроводов с упругими демпферами сухого трения на фрикционных
соединениях с контрольным натяжением ;
на фиг.2 изображен вид с боку Фрикционно демпфирующий компенсатор
для трубопроводов с упругими демпферами сухого трения со стопорным
(тормозным) фрикци –болт с забитым в пропиленный паз стальной
шпильки обожженным медным стопорным клином;
фиг 3 изображен вид с боку , Фрикционно демпфирующий компенсатор
для трубопроводов
фиг. 4 изображено крепление тросовое Фрикционно демпфирующий
компенсатор для трубопроводов с упругими демпферами сухого трения
виброизолирующею, сейсмоизлирующею опору;
фиг. 5 изображена крепление сдвиговыми болтами Фрикционно
демпфирующий компенсатор для трубопроводов вид с боку фланцевого
соединение растянутых элементов трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой
(пружинистой втулкой)
фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов с
затяжкой медным клином обожженным
фиг. 8 изображена вид с верху Фрикционно демпфирующий компенсатор
для трубопроводов , а именно фланцевого соединение с овальными
отверстиями растянутых элементов трубопровода
фиг. 9 изображены Фрикционно демпфирующий компенсатор для
трубопроводов
фиг. 10 изображено фланцевого соединение растянутых элементов
трубопровода для Фрикционно демпфирующий компенсатор для
трубопроводов

83.

фиг. 12 изображен способ определения коэффициента закручивания
резьбового соединения" по изобретении. № 2148805 МПК G 01 L 5/25 "
Способ определения коэффициента закручивания резьбового соединения"
и № 2413098 "Способ для обеспечения несущей способности
металлических конструкций с высокопрочными болтами"
фиг. 13 изображено Украинское устройство для определения силы трения
по подготовленным поверхностям для болтового соединения по
Украинскому изобретению № 40190 А, заявление на выдачу патента №
2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье
Рабера Л.М. Червинский А.Е "Пути соевршенствоания технологии
выполнения фрикционных соединений на высокопрочных болтах"
Национальная металлургический Академия Украины , журнал
Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 14 изображен образец для испытания и Определение коэффициента
трения в ПК SCAD между контактными поверхностями соединяемых
элементов СТП 006-97 Устройство соединений на высокопрочных болтах в
стальных конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ
УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В
СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998, РАЗРАБОТАНого Научно-исследовательским центром
«Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук
И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков,
инж. М.М. Мещеряков) для испытаний на вибростойкость,
сейсмостойкость образца, фрагмента, узлов крепления протяжных
фрикционно подвижных соединений (ФПС) по изобретениям проф ПГУПС
А .М Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора
сейсмостойкая»
Фрикционно демпфирующий компенсатор для трубопроводов с упругими
демпферами сухого трения, состоит из двух фланцев (нижний целевой),
(верхний составной), в которых выполнены вертикальные длинные
овальные отверстия диаметром «D», шириной «Z» и длиной . Нижний
фланец охватывает верхний корпус трубы (трубопровода) . При
монтаже демпфирующего компенсатора, поднимается до верхнего
предела, фиксируется фрикци-болтами с контрольным натяжением, со
стальной шпилькой болта, с пропиленным в ней пазом и предварительно
забитым в шпильке обожженным медным клином. и тросовой
пружинистой втулкой (гильзой) В стенке корпусов виброизолирующей,

84.

сейсмоизолирующей кинематической опоры перпендикулярно оси корпусов
опоры выполнено восемь или более длинных овальных отверстий, в
которых установлен запирающий элемент-калиброванный фрикци –болт с
тросовой демпирующей втулкой, пружинистой гильзой, с забитым в паз
стальной шпильки болта стопорным ( пружинистым ) обожженным
медным многослойным упругопластичнм клином, с демпфирующей
свинцовой шайбой и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов трубопровода , с
упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h»
(допустимый ход болта –шпильки ) соответствующий по ширине
диаметру калиброванного фрикци - болта, проходящего через этот паз. В
нижней части демпфирующего компенсатора, выполнен фланец для
фланцевого подвижного соединения с длинными овальными отверстиями
для крепления на фундаменте, а в верхней части корпуса выполнен фланец
для сопряжения с защищаемым объектом, сооружением, мостом
Сборка фланцевого соединение растянутых элементов трубопровода ,
заключается в том, что составной ( сборный) фланцевое соединение
растянутых элементов трубопровода , в виде основного компенсатора
по подвижной посадке с фланцевыми фрикционно- подвижными
соединениям (ФФПС). Паз фланцевого соединение растянутых элементов
трубопровода ,, совмещают с поперечными отверстиями трубчатой
спиралевидной опоры в трущихся спиралевидных стенок опоры ,
скрепленных фрикци-болтом (высота опоры максимальна). После этого
гайку затягивают тарировочным ключом с контрольным натяжением до
заданного усилия в зависимости от массы трубопровода,агрегата.
Увеличение усилия затяжки гайки на фрикци-болтах приводит к
деформации корпуса и уменьшению зазоров от «Z» до «Z1» в
демпфирующем компенсаторе , что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении
отверстие в крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов
для фланцевого соединение растянутых элементов трубопровода ,
зависит от величины усилия затяжки гайки (болта) с контролируемым
натяжением и для каждой конкретной конструкции и фланцевого
соединение растянутых элементов трубопровода (компоновки,
габаритов, материалов, шероховатости и пружинистости стального

85.

тонкого троса уложенного между контактирующими поверхностями
деталей поверхностей, направления нагрузок и др.) определяется
экспериментально или расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых
элементов трубопровода демпфирующего компенсатора , сверху и снизу
закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во
время вибрационных нагрузок или взрыве за счет трения между верхним и
нижним фланцевым соединением растянутых элементов трубопровода ,
происходит поглощение вибрационной, взрывной и сейсмической энергии.
Фрикционно- подвижные соединения состоят из скрученных
пружинистых тросов- демпферов сухого трения и свинцовыми (возможен
вариант использования латунной втулки или свинцовых шайб)
поглотителями вибрационной , сейсмической и взрывной энергии за счет
демпфирующих фланцевых соединений в растянутых элементов
трубопровода с тросовой втулки из скрученного тонкого стального
троса, пружинистых многослойных медных клиньев и сухого трения,
которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных
вибрационных, взрывных, сейсмических нагрузок от вибрационных
воздействий или величин, определяемых расчетом на основные сочетания
расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки при
креплении опоры к нижнему и верхнему виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов
трубопровода , представляют собой двойную фрикционную пару, имеющую
стабильный коэффициент трения по упругой многослойной .
Сжимающее усилие создается высокопрочными шпильками,
натягиваемыми динамометрическими ключами или гайковертами на
расчетное усилие. Количество болтов определяется с учетом воздействия
собственного веса трубопровода
Сама составное фланцевое соединение растянутых элементов
трубопровода с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см
Сжимающее усилие создается высокопрочными шпильками с
обожженными медными клиньями забитыми в пропиленный паз стальной

86.

шпильки, натягиваемыми динамометрическими ключами или гайковертами
на расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного
веса (массы) оборудования, сооружения, здания, моста, Расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250),
«Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для стыкового демпфирующего фланцевого соединение
растянутых элементов трубопровода, является энергопоглотителем
пиковых ускорений (ЭПУ), с помощью которого, поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия.
Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –
болт повышает надежность работы трубопровода, за счет уменьшения
пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012
(02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п.
14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка
(гильза) фрикци-болта при виброизоляции нагревается за счет трения
между верхней составной и нижней целевой пластинами (фрагменты
опоры) до температуры плавления и плавится, при этом поглощаются
пиковые ускорения взрывной, сейсмической энергии и исключается
разрушение оборудования, ЛЭП, опор электропередач, мостов, также
исключается разрушение теплотрасс горячего водоснабжения от
тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фланцевого соединение
растянутых элементов трубопровода , с упругими демпферами сухого
трения на фрикционных соединениях, на фрикци-болтах с тросовой
втулкой, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии.
Фрикционно демпфирующий компенсатор для трубопроводов
рассчитана на одну сейсмическую нагрузку (9 баллов), либо на одну

87.

взрывную нагрузку. После взрывной или сейсмической нагрузки необходимо
заменить смятые или сломанные гофрированное виброиозирующее
основание, в паз шпильки фрикци-болта, демпфирующего узла забить
новые демпфирующий и пружинистый медные клинья, с помощью
домкрата поднять, выровнять опору и затянуть болты на проектное
контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок
превышающих силы трения в сопряжении в фланцевом соединение
растянутых элементов трубопровода, с упругими демпферами сухого
трения, трубчатого вида , происходит сдвиг трущихся элементов типа
шток, корпуса опоры, в пределах длины спиралевидных паза выполненного
в составных частях нижней и верхней трубчатой опоры, без разрушения
оборудования, здания, сооружения, моста.
О характеристиках виброизолирующего демпфирующего компенсатора фланцевого соединение растянутых элементов трубопровода, сообщалось
на научной XXVI Международной конференции «Математическое и
компьютерное моделирование в механике деформируемых сред и
конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических
моделей установленных на сейсмоизолирующих фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office»
(руководитель испытательной лабораторией ОО "Сейсмофонд" можно
ознакомиться на сайте: https://www.youtube.com/watch?v=B-YaYywB6s&t=779s
С решениями Фрикционно демпфирующий компенсатор для
трубопроводов на фланцевых фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК) (без раскрывания новизны
технического решения) можно ознакомиться: см. изобретения №№
1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building
frame having resilient connectors, TW201400676 Restraint anti-wind and antiseismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorri
chtungen/Broschueren_TechnischeInfo/MSO_SeismicBrochure_A4_2017_Online.pdf
Сопоставление с аналогами демпфирующего Фрикционно
демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения, показаны следующие существенные отличия:

88.

1. Фрикционно демпфирующий компенсатор для трубопроводов с
упругими демпферами сухого трения выдерживает термические нагрузки
от перепада температуры при транспортировке по трубопроводу газа,
кислорода в больницах
2. Упругая податливость демпфирующего фланцевого соединение
растянутых элементов трубопровода регулируется прочностью втулки
тросовой
4. В отличие от резиновых неметаллических прокладок, свойства
которой ухудшаются со временем, из-за старения резины, свойства
фланцевое демпфирующее соединение растянутых элементов
трубопровода, остаются неизменными во времени, а долговечность их
такая же, как у магистрального трубопровода.
Экономический эффект достигнут из-за повышения долговечности
демпфирующей упругого фланцевого соединение растянутых элементов
трубопровода , так как прокладки на фланцах быстро изнашивающаяся и
стареющая резина , пружинные сложны при расчет и монтаже.
Экономический эффект достигнут также из-за удобства обслуживания
узла при эксплуатации фланцевого компенсатора соединение растянутых
элементов трубопровода
Литература которая использовалась для составления заявки на
изобретение: Фрикционно демпфирующий компенсатор для
трубопроводов с упругими демпферами сухого трения
1. Сабуров В.Ф. Закономерности усталостных повреждений и
разработка методов расчетной оценки долговечности подкрановых путей
производственных зданий. Автореферат диссертации докт. техн. наук. ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00,
18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент
России. RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая
транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ
И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ"

2010136746 E 04 C 2/09 Дата опубликования 20.01.2013

89.

2. Патент на полезную модель № 165 076 " Опора сейсмостойкая"
10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная"
27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных
изделий на пористых заполнителях" 15.05.1988 8. Изобретение № 998300
"Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016
«Опора сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести
опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция
малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» №
4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на
завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через
четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные
технологии возведения фундаментов без заглубления – дом на грунте.
Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых
общественной организации инженеров «Сейсмофонд» –
Фонда

90.

«Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение
по графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» №
11/95 стр. 25 «Датчик регистрации электромагнитных
волн,
предупреждающий о землетрясении - гарантия сохранения вашей жизни!»
и другие зарубежные научные издания и
журналах за 1994- 2004 гг.
изданиях С брошюрой «Как построить сейсмостойкий дом с учетом
народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г.
Москва и РНБ СПб пл. Островского, д.3 .
Специальные технические условия подтверждающие пригодность
демпфирующих скользящих опор ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
для системы противопожарной защиты для работы в сейсмоопасных
районах с сейсмичностью более 9 баллов: Опоры скользящие для
системы противопожарной защиты ООО "ПОЖТЕХПРОМ" СПб
ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, 2-я Красноармейская ул.
дом 4 СПб ГАСУ [email protected] pptonline.org/998146 ; disk.yandex.ru/d/Cc3DQn68RLZJjw
Таможенный сертификат Опора скользящая для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100,
серийный выпуск , (предназначены для работы в сейсмоопасных районах,
сейсмичность 9 баллов), (для районов с сейсмичностью 8 бал лов и более
соединение трубопроводов должно быть выполнено с помощью
протяжных демпфирующих фланцевых фрикционно-подвижных
соединений (ФПС), косой стык, по изобретению №№ 2413820 Е04В1/58,
887748 Е04В1/38, в виде болтовых соединений, расположенных в длинных
овальных отверстиях, согласно изобретениям: №№ 1143895,1174616,
1168755 SU, 2010136746 RU, участки соединения трубопровода с
емкостями, должны быть выполнены в виде «змейки» или «зиг-зага» и
уложенные на сейсмоизолирующих опорах, согласно изобретения №
165076 RU "Опора сейсмостойкая", опубликованного в Бюл. № 28 от
10.10.2016 ФИПС. disk.yandex.ru/i/MV15xDDoWdc5NA ; pptonline.org/996502
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32,
ОС-50, ОС-80, ОС-100, изготавливаемые в соответствии с

91.

техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов"
, ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов
неподвижные", ГОСТ 14911-82 "Опоры подвижные"
изготовленные
согласно изобретений № 165076 "Опора
сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в
районах с сейсмичностью 8 баллов и более необходимо использование
демпфирующих опор на фрикционно-подвижных соединениях для
противопожарных трубопроводов, с целью обеспечения многокаскадного
демпфирования при динамических нагрузках, согласно изобретениям №№
165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755, 2010136746 ,
2550777. Испытание проводились на соответствие групп механической
прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по
результатам испытаний методом численного моделирования в ПК SCAD
на взаимодействие трубопровода c демпфирующими спиралевидными
компенсаторами с геологической средой ). disk.yandex.ru/i/C-sHN_8GGTTXQ ; ppt-online.org/999138
Смотри ссылки лабортаорных исптаний СПб
ГАСУ www.youtube.com/watch?v=846q_badQzk www.youtube.com/watch?v=
6OkUs_IOT0I www.youtube.com/watch?v=XCQl5k_637E www.youtube.com/wa
tch?v=B-YaYywB6s www.youtube.com/watch?v=YR1q5Atg784 www.youtube.com/watch?v=dR
uDDMSHTwM www.youtube.com/watch?v=p_EWnIC8e9E www.youtube.com/
watch?v=UajKvKd8F88 www.youtube.com/watch?v=19QKnIA0EnM
Требование к промышленной безопасности для опор скользящих для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС100, серийный выпуск , (предназначены для работы в сейсмоопасных
районах, сейсмичность 9 баллов), (для районов с сейсмичностью
8 бал
лов и более соединение трубопроводов друг должно быть выполнено с
помощью протяжных фланцевых фрикционно-подвижных соединений
(ФПС) (косой стык, изобретения №№ 2413820Е04В1/58, 887748 Е04В1/38)
в виде
болтовых соединений, расположенных в длинных овальных
отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU,
2010136746 RU, участки соединения трубопровода с камерами
и
емкостями выполнены в виде «змейки» или «зиг-зага» и уложенные на
сейсмоизолирующих опорах, согласно изобретения № 165076 RU "Опора
сейсмостойкая",
опубликовано
в
Бюл.

28
от
10.10.2016). disk.yandex.ru/d/5K1JHuz_m67SSw ppt-online.org/996263

92.

Протокола № 564 от 09.11.2021, ОО «Сейсмофонд», ИНН 2014000780
СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015 об обеспечении высокой
надежности критически важных систем автоматического
пожаротушения, за счет увеличения демпфирующей способности
трубопровода с косым демпфирующим компенсатором автор проф дтн
ПГУПС А.М.Уздин https://pptonline.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q
ЗАКЛЮЧЕНИЕ экспертиза О пригодности демпфирующих скользящих опор ,
повышенной надежности
ЗАКЛЮЧЕНИЕ экспертиза О пригодности демпфирующих скользящих опор ,
повышенной надежности при динамических нагрузках и при многокаскадном
демпфировании для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС80, ОС-100 для сейсмоопасных районов ООО "Пожтехпром", изготовленных на
основе изобретений проф дтн ПГУПС Уздина А. М. № 165076 "Опора
сейсмостойкая"
№№
1143895,
1168755,
1174626
,
2010136746 pptonline.org/995496 disk.yandex.ru/i/i0FtJESBujeY-A
Сертификат на изготовление опор скользящих для системы противопожарной
защиты ОС-25, ОС-32, ОС-50,
ОС-80,
ОС-100,
изготавливаемые в
соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры
трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов
неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно
изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755,
1174616 предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в
районах с сейсмичностью 8 баллов и более необходимо использование демпфирующих
опор на фрикционно-подвижных соединениях для противопожарных трубопроводов,
с целью обеспечения многокаскадного демпфирования при динамических нагрузках,
согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616,
1168755, 2010136746 , 2550777. (заявка на изобретение № а20210217 от 15.07.21
"Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами", Минск )Испытание проводились на соответствие групп механической
прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по результатам
испытаний методом численного моделирования в ПК SCAD на взаимодействие
трубопровода с геологической средой ).
disk.yandex.ru/d/LCZjwWvKqznWxw ; ppt-online.org/995177 Ссылка аккредитации
: pub.fsa.gov.ru/ral/view/26088/applicant
ЛИСИ Обеспечение высокой надежности критически важных систем
автоматического пожаротушения, за счет увеличения демпфирующей

93.

способности трубопровода с косым демпфирующим компенсатором (заявка №
а20210217 от 15.07.21 "Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами", Минск ) и сейсмостойких опор (
изобретение № 165076 «Опора сейсмостойкая» № 2010136746 ), для обеспечения
многокаскадного демпфирования, при импульсных растягивающих нагрузках (
патенты №№ 1143895, 1168755, 1174616), автор проф дтн ПГУПС
А.М.Уздин https://ppt-online.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 Опоры трубопроводов , ОСТ 34-10-616-93 , серия 4.903-10, вып.
4, Опоры трубопроводов неподвижные, ГОСТ 14911-82 "Опоры подвижные"
изготовленные согласно изобретений № 165076 "Опора сейсмостойкая", №
2010136746, 1143895, 1168755, 1174616 предназначенные для сейсмоопасных
районов с сейсмичностью более 9 баллов. Серийный
выпуск disk.yandex.ru/i/hWgBjaSQzU00yA ; ppt-online.org/993335
СПб ГАСУ Обеспечение высокой надежности критически важных систем
автоматического пожаротушения, за счет увеличения демпфирующей
способности трубопровода с косым демпфирующим компенсатором (заявка №
а20210217 от 15.07.21 "Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами" Минск ) и сейсмостойких опор (
изобретение № 165076), для обеспечения многокаскадного демпфирования, при
импульсных растягивающих нагрузках ( патенты №№ 1143895, 1168755,
1174616), автор проф дтн ПГУПС А.М.Уздин pptonline.org/994767 ; disk.yandex.ru/d/TAr9533qD8d27Q ;
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10,
вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные
согласно изобретений № 165076 "Опора
сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные для
сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8
баллов и более необходимо использование демпфирующих опор на фрикционноподвижных соединениях для противопожарных трубопроводов с целью
обеспечения многокаскадного демпфирования при динамических нагрузках, согласно
изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755,
2010136746 , 2550777. Испытание проводились на соответствие групп
механической прочности на вибрационные, ударные воздействия: М5-М7, М38-М39
по результатам испытаний методом численного моделирования в ПК SCAD на
взаимодействие трубопровода с геологической
средой. disk.yandex.ru/i/m4qDUNChAm-o4A ; ppt-online.org/993756

94.

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2014
«Строительство в
сейсмических районах, п.4.7, п. 9.2, ГОСТ 16962.2-90. ГОСТ 17516.1-90,
ГОСТ 30546.1-98, ГОСТ 30546.2-98 (в части сейсмостойкости до 9 баллов по шкале
MSK-64), I категории по НП-031-01, СТО Нострой 2.10.76-2012, МР 502.1-05, МДС
53-1.2001(к СНиП 3.03.01-87), ГОСТ Р 57574-2017 «Землетрясения»,ТКП 45-5.04-413006 (02250), ГОСТ Р 54257-2010, ОСТ 37.001.050-73, СН-471-75, ОСТ 108.275.80,
СП 14.13330.2014, ОСТ 37.001.050-73, СП 16.13330.2011 (СНиП II -23-81*), СТО 031-2004, РД 26.07.23-99, СТП 006-97, ВСН 144-76, ТКТ 45-5.04-274-2012, серия
4.402-9,
ТП
ШИФР
1010-2с.94,
вып
0-2
«Фундаменты
сейсмост.» disk.yandex.ru/i/Vg4Sp8-q5NDzYg ; ppt-online.org/993337
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 Опоры трубопроводов , ОСТ 34-10-616-93 , серия 4.903-10, вып.
4, Опоры трубопроводов неподвижные, ГОСТ 14911-82 "Опоры подвижные"
изготовленные
согласно изобретений №
165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов.
Серийный выпуск disk.yandex.ru/i/hWgBjaSQzU00yA ; ppt-online.org/993335
Демпфирующие косые термостойкие вибростойкие компенсаторы на
фрикционно- подвижных болтовых соединениях, со скошенными торцами,
согласно изобретения №№ 2423820, 887743, для восприятия термических
усилий, за счет трения, при растягивающих нагрузках в крепежных элементах с
овальными отверстиями, по линии нагрузки ( изобретения №№ 1143895,
1168755, 1174616 ,165076, 2010136746, выполненных по изобретению проф дтн
ПГУПС А.М.Уздина № 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ
ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ",
№№ 1143895, 1168755,1174616, заявка на изобртение № а20210217 от 15 июля
2021 "фланцевое соединение растянутых элементов трубопровода со
скошенными торцами",
Минск [email protected] disk.yandex.ru/d/UbjzM3qGyO_Ang ; ppt-online.org/992340
Тезисы доклада на НТС Минэнерго России - научное сообщение редактора газеты
"Земля РОССИИ" Данилика Павел Викторовича и Быченка Владимир Сергеевича
от организации "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН
2014000780 [email protected] на заседании НТС Министерства энергетики РФ
в присутствии Министра энергетики Шульгина Николай Григорьевича и
Минстроя ЖКХ РФ в присутствии Министра Файзуллина Ирек Энваровича , и в
Жилищном комитета СПб и Ленинградской области по адресу; пл. Островского

95.

, д 11 ( для Петухова А.И. 576-04-13, Ивановой С.М. 576-04-25 [email protected] и по
адресe Админитсрации Ленингрдской области, 191311, СПб ул.Смольного д.3,
тел 539-41-08 В.Хабаровой [email protected] disk.yandex.ru/d/MTNAChOxLSrkNw
ppt-online.org/992260 ;
Формула изобретения Фрикционно демпфирующий компенсатор для трубопроводов
F0416L
1. Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения, демпфирующего компенсатора для магиастрального
трубопровода , содержащая: фланцевое соединение растянутых элементов
трубопровода с упругими демпферами сухого трения на фрикционно-подвижных
болтовых соединениях, с одинаковой жесткостью с демпфирующий элементов
при многокаскадном демпфировании, для сейсмоизоляции трубопровода и
поглощение сейсмической энергии, в горизонтальной и вертикальной плоскости по
лини нагрузки, при этом упругие демпфирующие компенсаторы , выполнено в виде
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
2. Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения , повышенной надежности с улучшенными демпфирующими
свойствами, содержащая , сопряженный с ним подвижный узел с фланцевыми
фрикционно-подвижными соединениями и упругой втулкой (гильзой), закрепленные
запорными элементами в виде протяжного соединения контактирующих
поверхности детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что с
целью повышения надежности демпфирующее сейсмоизоляции, с демпфирующим
эффектом с сухим трением, соединенные между собой с помощью фрикционноподвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзы) , расположенных в длинных овальных отверстиях , с
помощью фрикци-болтами с медным упругоплатичном, пружинистым
многослойным, склеенным клином или тросовым пружинистым зажимом ,
расположенной в коротком овальном отверстии верха и низа компенсатора для
трубопроводов
3. Способ Фрикционно демпфирующий компенсатор для трубопроводов с упругими
демпферами сухого трения, для обеспечения несущей способности трубопровода
на фрикционно -подвижного соединения с высокопрочными фрикци-болтами с
тросовой втулкой (гильзой), включающий, контактирующие поверхности которых
предварительно обработанные, соединенные на высокопрочным фрикци- болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на
элемент сейсмоизолирующей опоры ( демпфирующей), для определения усилия
сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,

96.

фиксируют усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа сейсмоизолирующей опоры,
отличающийся тем, что в качестве показателя сравнения используют проектное
значение усилия натяжения высокопрочного фрикци- болта с медным обожженным
клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы из
стального тонкого троса , а определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и имеющего
отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой
помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующег антисейсмического и
антивибрационного демпфирующего компенсатора , не производят, при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а
при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно
проводят обработку контактирующих поверхностей фланцевого соединение
растянутых элементов трубопровода с использованием цинконаполненной
грунтовокой ЦВЭС , которая используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Р Е Ф Е Р А Т изобретения на полезную модель Фрикционно демпфирующий
компенсатор для трубопроводов МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения предназначена для сейсмозащиты , виброзащиты
трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования
спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого
трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения
сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры
выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего
«стакан» и состоит из нижней целевой части и сборной верхней части
подвижной в вертикальном направлении с демпфирующим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикци-

97.

болтов с упругой тросовой втулкой (гильзой) , расположенных в длинных
овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса
расположены на упругой перекрестной гофры (демпфирующих ножках) и
крепятся фрикци-болтами с многослойным из склеенных пружинистых медных
пластин клином, расположенной в коротком овальном отверстии верха и низа
корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения , содержащая трубообразный спиралевидный
корпус-опору в виде перевернутого «стакан» заполненного тощим фиробетоно
и сопряженный с ним подвижный узел из контактирующих поверхностях между
которыми проложен демпфирующий трос в пластмассой оплетке с
фланцевыми фрикционно-подвижными соединениями с закрепленными
запорными элементами в виде протяжного соединения.
Кроме того в трубопроводе , параллельно центральной оси, выполнено восемь
симметричных или более открытых пазов с длинными овальными
отверстиями, расстояние от узла крепления трубопровода , больше расстояния
до нижней точки паза фланцевого крепления.
Увеличение усилия затяжки фланцевое соединение растянутых элементов
трубопровода, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной
опоры и к увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов
трубопровода с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по
свинцовому листу в нижней и верхней части виброизолирующих,
сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой
для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной
фланцевом соединение растянутых элементов трубопровода Фрикционно
демпфирующий компенсатор для трубопроводов, с упругими демпферами
сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие. Количество болтов определяется с учетом воздействия собственного
веса ( массы) оборудования, сооружения, здания, моста и расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых
элементов трубопровода с упругими демпферами , выполнено в виде ,

98.

трубной петли по винту их шести трубчатых уголков на фланцевых,
фрикционно – подвижных соединениях с фрикци-болтами .
Фрикционно демпфирующий компенсатор для трубопроводов фланцевого
соединения растянутых элементов трубопровода а изготовлено из фрикциболтах, с тросовой втулкой (гильзой) - это вибропоглотитель пиковых
ускорений (ВПУ) с помощью которого поглощается вибрационная, взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3
балла импульсные растягивающие нагрузки при землетрясениях и взрывной
нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность
работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП,
магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет
протяжных фрикционных соединений, работающих на растяжение. ( ТКП 455.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81*
п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода , закрепленного фрикци -болтом
обмотанного стальным тросом в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает
при этом вибрационные, взрывной, сейсмической нагрузки , что исключает
разрушения сейсмоизолирующего основания , опор под агрегатов, мостов ,
разрушении теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д .
Надежность friction-bolt на виброизолирующих опорах достигается путем
обеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование,труопровоы, которое устанавливается на
спиральных сейсмоизолирующих опорах, с упругими демпферами сухого
трения, на фланцевых фрикционно- подвижных соединениях (ФФПС) по
изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 , опубликовано:
10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко
А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности
металлоконструкций с высокопрочными болтами"
В основе Фрикционно демпфирующий компенсатор для трубопроводов, с
упругими демпферами сухого трения, на фрикционных фланцевых соединениях,
на фрикци-болтах (поглотители энергии) лежит принцип который называется
"рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования Фрикционно демпфирующий компенсатор для трубопроводов на
фланцевых фрикционно - подвижных соединений (ФФПС) для Фланцевое

99.

соединение растянутых элементов трубопровода с упругими демпферами
сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом
), имеет пару структурных элементов, соединяющих эти структурные
элементы со скольжением, разной шероховатостью поверхностей в виде
демпфирующих тросов или упругой гофры ( обладающие значительными
фрикционными характеристиками, с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии. Совместное скольжение
включает зажимные средства на основе friktion-bolt ( аналог американского
Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы !!!.
В результате взрыва, вибрации при землетрясении, происходит перемещение
(скольжение) фрагментов фланцевых фрикционно-подвижных соединений (
ФФПС) фланцевого соединение растянутых элементов трубопровода на
Фрикционно демпфирующий компенсаторах для трубопроводов с упругими
демпферами сухого трения, скользящих и демпфирующих закрепленных на
спиральной тоже демпфирующей опоры , по продольным длинным овальным
отверстиям .
Происходит поглощение энергии, за счет трения частей корпуса опоры при
сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и
раскачиваться спирально-демпфирующей и пружинистого фланцевого
соединение растянутых элементов трубопровода на расчетное допустимое
перемещение, до 1-2 см или более согласно овального отверстия во фланце !!! (
по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых
элементов трубопровода , рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на
фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения, необходимо заменить, смятые троса ,вынуть из
контактирующих поверхностей, вставить опять в новые втулки (гильзы) ,
забить в паз латунной шпильки демпфирующего узла крепления, новые
упругопластичный стопорные обожженные медный многослойный клин
(клинья), с помощью домкрата поднять и выровнять фланцевое соединение
растянутых элементов трубопровода трубопровод и затянуть новые
фланцевые фрикци- болтовые соединения, с контрольным натяжением, на
начальное положение конструкции с фрикционными соединениями,
восстановить протяжного соединения на фланцевое соединение растянутых
элементов трубопровода , для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для надежной сейсмозащиты, виброизоляции от
многокаскадного демпфирования фланцевого соединение растянутых

100.

элементов трубопровода с упругими демпферами сухого трения и усилить
основания под трубопровод, теплотрассу, агрегаты, оборудования, задний и
сооружений
Заявление в Государственный комитет по науке и технологиям Республики
Беларусь Национальный центр интеллектуальной собственности 220034 г
Минск ул Козлова 20 (017) 285-26-05 [email protected]
Для ведущего специалиста центра экспертизы промышленной собственности Н.М.Бортнику от 18 ноября 2021
Фланцевого соединение растянутых элементов трубопровода
со скошенными торцами Мажиев Хасан Нажоеевич , Уздин Александр Михайлович и др
Авторы изобретения
Чертежи , фигуры на изобртение : Фрикционно
демпфирующий компенсатор для трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 3 Фрикционно демпфирующий компенсатор для трубопроводов

101.

Фиг 4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 9 Фрикционно демпфирующий компенсатор для трубопроводов

102.

Фиг 10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 12 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 14 Фрикционно демпфирующий компенсатор для трубопроводов

103.

Р Е Ф Е Р А Т изобретения на полезную модель Спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения предназначена для сейсмозащиты
оборудования, сооружений, объектов, зданий от сейсмических, взрывных, вибрационных, неравномерных воздействий за
счет использования спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой
гофры, многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных
фланцевых фрикционно- податливых соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств
спиральной демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части подвижной в вертикальном
направлении с демпфирующим эффектом, соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой (гильзой) ,
расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на
упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с многослойным из склеенных
пружинистых медных пластин клином, расположенной в коротком овальном отверстии верха и низа корпуса опоры.
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения , содержащая трубообразный
спиралевидный корпус-опору в виде перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с ним
подвижный узел из контактирующих поверхностях между которыми проложен демпфирующий трос в пластмассой
оплетке с фланцевыми фрикционно-подвижными соединениями с закрепленными запорными элементами в виде
протяжного соединения.
Кроме того в корпусе, параллельно центральной оси, выполнено восемь симметричных или более открытых пазов с
длинными овальными отверстиями, расстояние от торца корпуса, больше расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил трения в
сопряжении составных частей корпуса спиралевидной опоры и к увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы спиральной сейсмоизолирующей опора с упругими демпферами сухого трения, представляют
собой двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому листу в нижней и верхней
части виброизолирующих, сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой для создания
протяжного соединяя.

104.

Сжимающее усилие создается высокопрочными шпильками в спиральной сейсмоизолирующей опоре с упругими
демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса ( массы) оборудования, сооружения, здания, моста и расчетные усилия рассчитываются по
СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные
конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составная спиралевидная сейсмоизолирующая опора с упругими демпферами сухого трения, выполнена
спиралевидной в виде перевернутого «стакана» с заполненная тощим фибробетоном, трубчатая либо стаканчатотрубного вида на фланцевых, фрикционно – подвижных соединениях с фрикци-болтами установленная на перекрестную
виброизолирующею упругою гофру ( демпфирующие ножки) на свинцовых листах .
Фрикци-болт с тросовой втулкой (гильзой) - это вибропоглотитель пиковых ускорений (ВПУ) с помощью которого
поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясениях и взрывной нагрузки от ударной воздушной волны. Фрикци–болт
повышает надежность работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные
трубопроводы за счет уменьшения пиковых ускорений, за счет протяжных фрикционных соединений, работающих на
растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта состоящая из стального троса в пластмассовой оплетке или без пластмассовой
оплетки, пружинит за счет трения между тросами, поглощает при этом вибрационные, взрывной, сейсмической нагрузки
, что исключает разрушения сейсмоизолирующего основания , опор под агрегатов, мостов , разрушении теплотрасс
горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д . Надежность friction-bolt на
виброизолирующих опорах достигается путем обеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание, сооружение, оборудование,труопровоы, которое
устанавливается на спиральных сейсмоизолирующих опорах, с упругими демпферами сухого трения, на фланцевых
фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 , опубликовано:
10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для
обеспечения несущей способности металлоконструкций с высокопрочными болтами"
В основе спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения, на фрикционных фланцевых
соединениях, на фрикци-болтах (поглотители энергии) лежит принцип который называется "рассеивание",
"поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для спиральной сейсмоизолирующей опоры, с
упругими демпферами сухого трения, на фрикционно –болтовых и протяжных соединениях с демпфирующими узлами
крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет пару структурных элементов, соединяющих эти
структурные элементы со скольжением, разной шероховатостью поверхностей в виде демпфирующих тросов или
упругой гофры ( обладающие значительными фрикционными характеристиками, с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии. Совместное скольжение включает зажимные средства на основе friktionbolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов фланцевых
фрикционно-подвижных соединений ( ФФПС), спиральной сейсмоизолирующей опоры с упругими демпферами сухого
трения, скользящих и демпфирующих фрагментами спиральной , винтовой опоры , по продольным длинным овальным
отверстиям виброиолирующей и сейсмоизолирующей опоры. Происходит поглощение энергии, за счет трения частей
корпуса опоры при сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и раскачиваться спиральнодемпфирующей и пружинистой опоры с оборудованием на расчетное допустимое перемещение, до 3-5 см ( по расчету на
сдвиг в SCAD Office , и спиралевидная сейсмоизолирующая опора, рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на спиралевидную сейсмоизолирующею опору с
упругими демпферами сухого трения, необходимо заменить сломанные упругие гофрированные ножки, смятые троса
или гофру вынуть из контактирующих поверхностей, обмотать скользящий двигающий шток –спиралевидный
перевернутый «стакан» вставить опять в новый трубчатый стакан , забить в паз латунной шпильки демпфирующего
узла крепления, новые упругопластичный стопорные обожженные медный многослойный клин (клинья), с помощью
домкрата поднять и выровнять виброизолирующею опору под вентиляционным агрегатом, оборудования, сооружения,
здание, теплотрассу, трубопровод и затянуть новые фланцевые фрикци- болтовые соедиения, с контрольным
натяжением, на начальное положение конструкции с фрикционными соединениями, восстановить протяжного
соединения на сейсмоизолирующей демпфирующей опоре, для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для дальнейшей эксплуатации для надежной сейсмозащиты, виброизоляции от многокаскадного
демпфирования агрегатов , сооружения, трубопровода новой восстановленной спиральной сейсмоизолирующей опоры с
упругими демпферами сухого трения и усилить основания под трубопровод, теплотрассу, агрегаты, оборудования, задний
и сооружений
Описание заявки на изобретение на полезную модель Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения
Е04Н 9/02

105.

Предлагаемое техническое решение предназначено для защиты агрегатов, оборудования,
зданий, мостов, сооружений, магистральных трубопроводов, линий электропередач, рекламных
щитов от сейсмических воздействий за счет использования спиральной сейсмоизолирующей,
виброизолирующей опоры с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при при многокаскадном
демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например, болтовое соединение плоских деталей встык, патент RU №1174616,
F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения трехглавного
рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24 "Способ определения
коэффициента закручивания резьбового соединения "
Изобретение относится к области строительства и может быть использовано для
виброизоляции зданий, сооружений, технологического оборудования и трубопроводов.
Система содержит спиралевидную сейсмоизолирующею опору с упругими демпферами
сухого трения в виде спиральной сейсмоизолирующей опоры с разной жесткостью,
демпфирующий элемент стального листа свитого по спирали. Использование изобретения
позволяет повысить эффективность сейсмозащиты и виброизоляции в резонансном
режиме.
Изобретение относится к строительству и машиностроению и может быть
использовано для виброизоляции технологического оборудования, агрегатов трубопроводов и
со смещенным центром масс, например станки токарной группы, ткацкие станки,
платформы вентиляционных агрегатов и др.
Наиболее близким техническим решением к заявляемому объекту является
виброизолирующая система по патенту РФ №2649484, F16F 7/00 (прототип), содержащая,
четыре виброизолятора с маятниковым подвесом, имеющих разную жесткость и связанных с
опорными элементами оборудования.
Недостатком известного устройства является недостаточная эффективность на
резонансе из-за отсутствия демпфирования колебаний. Технический результат - повышение
эффективности демпфирующей сейсмоизоляции в резонансном режиме и упрощение
конструкции и монтажа сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующая сейсмозащита для зданий и сооружений ,
содержащей по крайней мер, за счет демпфирующей спиральной опоры , имеющих разную
жесткость и связанных с опорными элементами оборудования, дополнительно содержится
платформа, на которой крепится виброизолируемое зданий, сооружение, трубопровод и
которая опирается на спиральную сейсмоизолирующую опору с упругими демпферами
сухого трения и демпфирующий элемент в виде на фрикционно –подвижных болтовых
соединений для обеспечения сейсмостойкости , расположенные по спирали стальных листов в
вертикальной и горизонтальной плоскости, при этом спиралевидная сейсмоизолирующая
опора с упругими демпферами сухого трения установлена с использованием фрикци -болта с
забитым обожженным медным упругопластичным клином, конце демпфирующий элемент, а
демпфирующий элемент выполнен в виде медного клина забитым в паз латунной шпильки с
медной втулкой, при этом нижняя часть штока соединена с основанием спиральной опоры ,
жестко соединенным с демпирующей спиральной стальной лентой на фрикционно –
подвижных болтовых соединениях для обеспечения демпфирования спиралевидной опоры
На фиг. 1 представлена общая компоновочная схема вид с верху спиральной
сейсмоизолирующей опорй с упругими демпферами сухого трения по спирали состоящих из

106.

трех колец листов в виде спиралевидного вытянутого стаканчика с пружинистыми
демпферами сухого трения и пружинистыми характеристиками
Предлагаемой спиральной сейсмоизолирующей опора с упругими демпферами сухого трения
На фиг. 1 - вид сверху - схема демпфирующего элемента спиралей, выполненных в три
витка , вытянутых спиралей на фрикционно- подвижных болтовых соединениях, с длинными
овальными отверстиями в виде упругих колец в виде упругодемпфирующей , демпферов с
сухим трением
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения,
виброизолирующая система для зданий и сооружений, содержит основание 3 и 2 –овальные
отверстия , для болтов по спирали и имеющих одинаковую жесткость и связанных с
опорными элементами верхней части пояса зданий или сооружения я.
Система дополнительно содержит опорную пластину 3, которая крепится фрикци -болтом
с пропиленным пазов в латунной шпильки для забитого медного обожженного стопорного
клина ( не показан на фигуре 2 ) и которая опирается на нижний пояс основания и
демпфирующий элемент 1 в виде спиральновидной сейсмоизолирующей опоры с упругими
демпферами сухого трения за счет применения фрикционно –подвижных болтовых
соединениях, выполненных по изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616,
2010136746 «Способ защиты зданий», 165076 «Опора сейсмостойкая» В спиралевидную
трубчатую опору , после сжатия расчетной нагрузкой , внутрь заливается тощий по
расчету фибробетон по нагрузкой , сжатой спиральной сейсмоизолирующей опоры
Демпфирующий элемент спиралевидной опоры , выполнен в виде спиральной
сейсмоизолирующей опоры с упругими демпферами сухого трения за счет фрикционно подвижных соединениях (ФПС)
Сталь для демпфирующей спирально опоры , марки ЭИ-708, а диаметр опоры е
находится в оптимальном интервале величин 20 см- 40 смм.
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, работает
следующим образом.
При колебаниях грунта сейсмоизолирующая и виброизолирующая опора для демпфирующей
сейсмоизоляции объекта, здания, сооружения, трубопровода (на чертеже не показан) с
упругими демпферами сухого трения , для спиралевидной сейсмоизолирующей опоры с
упругими демпферами сухого трения , элементы 1 и 4 воспринимают как вертикальные, так и
горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на демпфирующею
сейсмоизоляцию объект, т.е. обеспечивается пространственную сейсмозащиту,
виброзащиту и защита от ударной нагрузки воздушной волны
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, как
виброизолирующая система работает следующим образом.
При колебаниях виброизолируемого объекта , спиральная сейсмоизоляция на основе
фрикционо-подвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание, сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами 1, и
разрушение тощего фибробетона 4 расположенного внутри спиральной демпфирующей
опоры .

107.

Предложенная виброизолирующая система является эффективной, а также отличается
простотой при монтаже и эксплуатации.
Упругодемпфирующая спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения работает следующим образом.
При колебаниях объекта защиты спиральной сейсмоизолирующей опоры с упругими
демпферами сухого трения , которые воспринимает вертикальные нагрузки, ослабляя тем
самым динамическое воздействие на здание , сооружение . Горизонтальные колебания
гасятся за счет фрикци-болта расположенного в при креплении опоры к основанию фрикциболтом , что дает ему определенную степень свободы колебаний в горизонтальной
плоскости.
Соединение содержит металлические листы свитые в три слоя петлей снятые фрикционо –
подвижными болтовыми соединениями для обеспечения сейсмостойкости. В стальных листах , в
виде вытянутого по спирали и спиралевидной формы в три витка , в которых выполнены
длинные овальные отверстия, через которые пропущены болты . При малых горизонтальных
нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением
нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок
контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий для
скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании , уже не работают упруго.
После того как все болты соединения дойдут до упора края, в длинных овальных отверстий,
соединение начинает работать упруго за счет разрушения фибробетона, а затем происходит
разрушение соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг по
вертикали допускается 2 - 4 см или более
Недостатками известного решения аналога являются: не возможность использовать опоры
как сейсмоизолирующие демпфирующее основание, ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности
при расчетах из-за разброса по трению. Известно также устройство для фрикционного
демпфирования антиветровых и антисейсмических воздействий, патент TW201400676(A)-201401-01. Restraint anti-wind and anti-seismic friction damping device, E04B1/98, F16F15/10, патент
США Structural stel bulding frame having resilient connectors № 4094111 E 04 B 1/98, RU №
2148805 G 01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения"
, RU № 2413820 "Фланцевое соединение растянутых элементов замкнутого профиля", Украина
№ 40190 А "Устройство для измерения сил трения по поверхностям болтового соединения" ,
Украина патент № 2148805 РФ "Способ определения коэффициента закручивания резьбового
соединения"
Таким образом получаем спиралевидная сейсмоизолирующая опора с упругими демпферами
сухого трения и виброизолирующею конструкцию кинематической или маятниковой опоры,
которая выдерживает вибрационные и сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения
Недостатками указанной конструкции являются: сложность конструкции и сложность
расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей и
надежность болтовых креплений

108.

Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий корпусакрестообразной, трубной, квадратной опоры, типа спиралевидного штока – многоразового
сейсмостойкого трубчатого вытянутого стакана , а также повышение точности расчета при
использования демпфирующей гофры, тросовой втулки (гильзы) на фрикци- болтовых
демпфирующих податливых креплений и прокладки между контактирующими поверхностями
упругую обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой оплетке или без оплетки,
скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что спиралевидная сейсмоизолирующая
опора с упругими демпферами сухого трения, выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в
который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой
и верхней - шток сборный в виде Спиральной сейсмоизолирующей опоры с упругими
демпферами сухого трения, установленный с возможностью перемещения вдоль оси и с
ограничением перемещения за счет деформации и виброизолирующего спиралевидного
вытянутого «стакана» по спирали «корпуса под действием запорного элемента в виде
стопорного фрикци-болта с тросовой виброизолирующей втулкой (гильзой) с пропиленным
пазом в стальной шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях опоры корпуса выполнены овальные длинные отверстия,
(сопрягаемые с цилиндрической поверхностью спиралевидной опоры) и поперечные отверстия
(перпендикулярные к центральной оси), в которые устанавливают запирающий элементстопорный фрикци-болт с контролируемым натяжением, с медным клином, забитым в
пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с тонкой
свинцовой шайбой. Кроме того в квадратных трубчатых или крестовидных корпусах,
параллельно центральной оси, выполнены восемь открытых длинных пазов, которые
обеспечивают корпусу возможность деформироваться за счет протяжных соединений с
фрикци- болтовыми демпфирующими, виброизолирующими креплениями в радиальном
направлении.
В теле спиральной сейсмоизолирующая опора с упругими демпферами сухого трения
Спиралевидной опоры, вдоль центральной оси, выполнен длинный паз ширина которого
соответствует диаметру запирающего элемента (фрикци- болта), а длина соответствует
заданному перемещению трубчатой, квадратной или крестообразной опоры. Запирающий
элемент создает нагрузку в сопряжении опоры - корпуса, с продольными протяжными пазами с
контролируемым натяжением фрикци-болта с медным клином обмотанным тросовой
виброизолирующей втулкой (пружинистой гильзой) , забитым в пропиленный паз стальной
шпильки и обеспечивает возможность деформации корпуса и «переход» сопряжения из
состояния возможного перемещения в состояние «запирания» с возможностью перемещения
только под вибрационные, сейсмической нагрузкой, взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображена спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения на фрикционных соединениях с контрольным натяжением ;
на фиг.2 изображен вид с боку спиралевидной сейсмоизолирующая опора с упругими
демпферами сухого трения со стопорным (тормозным) фрикци –болт с забитым в
пропиленный паз стальной шпильки обожженным медным стопорным клином;
фиг. 4 изображен разрез укладки пружинистого гофрированного основания под Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения виброизолирующею,
сейсмоизлирующею опору;
фиг. 5 изображена пружинистая гофра с демпфирующими ножками

109.

фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
фиг. 7 изображена виброизолирующий латунный фрикци –болта с забитыми обожженными
медными стопорными клиньями, забитыми в пропиленные пазы стальных шпилек для
виброизолирующей, сейсммоизолирующей кинематической опоры ;
фиг. 8 изображен пружинистый стальной трос в пластмассовой оплетке
фиг. 9 изображен упругоплатичный многослойный склеенный медный забивной клин в фрикциболт
фиг. 10 изображен демпфирующих фрикци –болт,
обожженным клином
с запитым в пропиленный паз медным
фиг. 11 изображен латунный фрикци -болт с пропиленным болгаркой пазом
фиг. 12 изображено протяжное фрикци -болт с забитым медным клином
фиг. 13 изображен способ определения коэффициента закручивания резьбового соединения" по
изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания
резьбового соединения" и № 2413098 "Способ для обеспечения несущей способности
металлических конструкций с высокопрочными болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по подготовленным
поверхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление на
выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера
Л.М. Червинский А.Е "Пути соевршенствоания технологии выполнения фрикционных
соединений на высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 15 изображен образец для испытания и Определение коэффициента трения между
контактными поверхностями соединяемых элементов СТП 006-97 Устройство соединений на
высокопрочных болтах в стальных конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ
УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ
КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998,
РАЗРАБОТАНого Научно-исследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн.
наук А.С. Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л.
Лобков, инж. М.М. Мещеряков) для испытаний на вибростойкость, сейсмостойкость
образца, фрагмента, узлов крепления протяжных фрикционно подвижных соединений (ФПС) по
изобретениям проф ПГУПС А .М Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора
сейсмостойкая»
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения установленная
на пружинистой гофре с демпфирующими ножками, состоит из двух корпусов (нижний
целевой), (верхний составной), в которых выполнены вертикальные длинные овальные
отверстия диаметром «D», шириной «Z» и длиной . Нижний корпус опоры охватывает верхний
корпус опоры (трубная, квадратная, крестовидная). При монтаже опоры верхняя часть корпуса
опоры поднимается до верхнего предела, фиксируется фрикци-болтами с контрольным
натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и предварительно
забитым в шпильке обожженным медным клином. и тросовой пружинистой втулкой (гильзой)
В стенке корпусов виброизолирующей, сейсмоизолирующей кинематической опоры

110.

перпендикулярно оси корпусов опоры выполнено восемь или более длинных овальных отверстий, в
которых установлен запирающий элемент-калиброванный фрикци –болт с тросовой
демпирующей втулкой, пружинистой гильзой, с забитым в паз стальной шпильки болта
стопорным ( пружинистым ) обожженным медным многослойным упругопластичнм клином, с
демпфирующей свинцовой шайбой и латунной втулкой (гильзой).
В теле спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого трения,
трубчатого –стаканного вида в виде штоков , вдоль оси выполнен продольный глухой паз длиной
«h» (допустимый ход штока) соответствующий по ширине диаметру калиброванного фрикци болта, проходящего через этот паз. В нижней части опоры, корпуса, выполнен фланец для
фланцевого подвижного соединения с длинными овальными отверстиями для крепления на
фундаменте, а в верхней части корпуса выполнен фланец для сопряжения с защищаемым
объектом, сооружением, мостом
Сборка спиралевидной опоры заключается в том, что составной ( сборный) трубчатой в виде
стакана, основного корпуса по подвижной посадке с фланцевыми фрикционно- подвижными
соединениям (ФФПС). Паз спиралевидной опоры, совмещают с поперечными отверстиями
трубчатой спиралевидной опоры в трущихся спиралевидных стенок опоры , скрепленных
фрикци-болтом (высота опоры максимальна). После этого гайку затягивают тарировочным
ключом с контрольным натяжением до заданного усилия в зависимости от массы здания,
сооружения, оборудования, агрегатов, моста, здания. Увеличение усилия затяжки гайки на
фрикци-болтах приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в
корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения)
в сопряжении отверстие в крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для спиралевидной
трубчатой опоры зависит от величины усилия затяжки гайки (болта) с контролируемым
натяжением и для каждой конкретной конструкции виброизолирующего, сейсмоизолирующей
кинематической опоры (компоновки, габаритов, материалов, шероховатости и
пружинистости стального тонкого троса уложенного между контактирующими
поверхностями деталей поверхностей, направления нагрузок и др.) определяется
экспериментально или расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая спиралевидной опора установленная на гофрированной
пружинистое основание , сверху и снизу закреплена на фланцевых фрикционо-подвижных
соединениях (ФФПС). Во время вибрационных нагрузок или взрыве за счет трения между
верхним и нижним корпусом опоры происходит поглощение вибрационной, взрывной и
сейсмической энергии. Фрикционно- подвижные соединения состоят из скрученных
пружинистых тросов- демпферов сухого трения с энергопоглощающей гофрой и свинцовыми
(возможен вариант использования латунной втулки или свинцовых шайб) поглотителями
вибрационной , сейсмической и взрывной энергии за счет демпфирующих гофрированных ножек,
тросовой втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно забиты
в пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный
коэффициент трения по упругой многослойной, перекрестной гофре .

111.

Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов
определяется с учетом воздействия собственного веса вентиляционного оборудования, здания,
сооружения, моста.
Сама составная опора выполнена спиралевидного вида , либо стаканчато-трубного вида с
фланцевыми фрикционно - подвижными болтовыми соединениями.
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями
забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого,
поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия.
Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и
при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет вентиляционные агрегаты для для Белорусской АЭС, каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта
при виброизоляции нагревается за счет трения между верхней составной и нижней целевой
пластинами (фрагменты опоры) до температуры плавления и плавится, при этом поглощаются
пиковые ускорения взрывной, сейсмической энергии и исключается разрушение оборудования,
ЛЭП, опор электропередач, мостов, также исключается разрушение теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием спиралевидной сейсмоизолирующей опоры с
упругими демпферами сухого трения на фрикционных соединениях, на фрикци-болтах с
тросовой втулкой, лежит принцип который, на научном языке называется "рассеивание",
"поглощение" сейсмической, взрывной, вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на одну
сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной или
сейсмической нагрузки необходимо заменить смятые или сломанные гофрированное
виброиозирующее основание, в паз шпильки фрикци-болта, демпфирующего узла забить новые
демпфирующий и пружинистый медные клинья, с помощью домкрата поднять, выровнять
опору и затянуть болты на проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок превышающих силы
трения в сопряжении в Спиральной сейсмоизолирующей опоры с упругими демпферами
сухого трения, трубчатого вида , происходит сдвиг трущихся элементов типа шток, корпуса
опоры, в пределах длины спиралевидных паза выполненного в составных частях нижней и
верхней трубчатой опоры, без разрушения оборудования, здания, сооружения, моста.

112.

О характеристиках виброизолирующей, сейсмоизлирующей кинематической опоры (без
раскрывания новизны технического решения) сообщалось на научной XXVI Международной
конференции «Математическое и компьютерное моделирование в механике деформируемых
сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических моделей
установленных на сейсмоизолирующих фланцевых фрикционно-подвижных соединениях
(ФФПС) и их реализация в ПК SCAD Office» (руководитель испытательной лабораторией ОО
"Сейсмофонд" можно ознакомиться на сайте: https://www.youtube.com/watch?v=B-YaYywB6s&t=779s
С решениями фланцевых фрикционно-подвижных соединений (ФПС) и демпфирующих узлов
крепления (ДУК) (без раскрывания новизны технического решения) можно ознакомиться: dwg.ru,
rutracker.org. www1.fips.ru. dissercat.comhttp://doc2all.ru, см. изобретения №№ 1143895,
1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_Te
chnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями фланцевых фрикционно –подвижных соединений для
виброизоирующей кинематической опоры в испытательном центре СПб ГАСУ и ОО
«Сейсмофонд» при СПб ГАСУ , адрес: 1900005, СПб, 2-я Красноармейская ул.д 4 (без
раскрывания новизны технического решения) можно ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами спиралевидной я сейсмоизолирующей опоры с упругими
демпферами сухого трения, показаны следующие существенные отличия:
1. Между подошвой спиральной сейсмоизолирующей опоры с упругими демпферами сухого
трения, нижним и верхним сейсмоизолирующим поясом по всему периметру
виброизолирующего основания под агрегатами и периметру размещения демпфирующих
прокладок с продольными гофрами (5...10 штук) одинаковой высоты.
2. Упругая податливость демпфирующей гофрированной прокладки регулируется
прочностью пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под фрикци- болтами, соединяющими окружности спиральной сейсмоизолирующей
опоры с упругими демпферами сухого трения , применены упругие тарельчатые шайбы,
выполненные пружинными стальными.
4. В отличие от резиновых неметаллических прокладок, свойства которой ухудшаются со
временем, из-за старения резины, свойства демпфирующей прокладки остаются неизменными
во времени, а долговечность их такая же, как у агрегатов , оборудования.
Экономический эффект достигнут из-за повышения долговечности демпфирующей упругой
гофрированной прокладки с виброизолирующей кинематической опоры , так как в ней
отсутствует быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет
и монтаже. Экономический эффект достигнут также из-за удобства обслуживания узла при
эксплуатации.
Литература которая использовалась для составления заявки на изобртение: Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов
расчетной оценки долговечности подкрановых путей производственных зданий. Автореферат
диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.

113.

2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27,
1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383
С1 (Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн"
23.02.1983
9. Захватное устройство
сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления – дом на грунте. Строительство на пучинистых и
просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации
инженеров «Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы
ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли
через четыре года планету
«Земля глобальные и разрушительные потрясения
«звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных
волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 19942004 гг. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта

114.

сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г.
Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Фигуры к заявке на изобретение полезная модель Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения
Фиг 1 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 2 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 3 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения

115.

Фиг 4 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 5 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 6 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 7 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 8 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 9 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения

116.

Фиг 10 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 11 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 12 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 13 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 14 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения

117.

Фиг 15
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Формула изобретения спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения
1. Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, демпфирующая сейсмоизоляц ия для зданий
, сооружений, трубопроводов , содержащая спиралевидную сейсмоизолирующую опору – перевернутый раздвинутый
«стакан» с упругими демпферами сухого трения на фрикционно-подвижных болтовых соединениях, с одинаковой
жесткостью с демпфирующий элементов при многокаскадном демпфировании, для сейсмоизоляции и поглощение сейсмической
энергии, в горизонтальнойи вертикальной плоскости по лини нагрузки, при этом основание спиральной трубчатой опоры и
упругих элементов, выполнено в виде упругодемпфирующих спиралей с сухим тернием между стальными листами
2. Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения , сейсмоизолирующая демпфирующая опора ,
повышенной надежности с улучшенными демпфирующими свойствами, содержащая трубообразный «стакан», корпуса -опоры и
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными соединениями и упругой втулкой (гильзой), закрепленные
запорными элементами в виде протяжного соединения контактирующих поверхности детали и накладок выполнены из пружинистого
троса между контактирующими поверхностями, с разных сторон, отличающийся тем, что с целью повышения надежности
демпфирующее сейсмоизоляции, корпус спиралевидной опоры, выполнен трубчатого сечения и состоит из нижней целевой части
установленной на гофрированном демпфирующем основании, и сборной верхней части подвижной в вертикальном направлении с
демпфирующим эффектом с сухим трением, соединенные между собой с помощью фрикционно-подвижных соединений с контрольным
натяжением фрикци-болтов с тросовой пружинистой втулкой (гильзы) , расположенных в длинных овальных отверстиях , при этом
пластины-лапы верхнего или нижнего корпуса расположены на гофрированном демпфирующем основании , виброизолирующая
кинематическая опора , которые крепятся к нижнему и верхнему сейсмоизолирующему поясу с помощью фрикци-болтами с медным
упругоплатичном, пружинистым многослойным, склеенным клином или тросовым пружинистым зажимом , расположенной в
коротком овальном отверстии верха и низа корпуса спиралевидной трубчатой опоры.
3. Узел упругого соединения для спиральной сейсмоизолирующей опорой с упругими демпферами сухого трения ,
отличающийся тем, что узел снабжен размещенной под опорой и опирающейся на верхний п ояс демпфирующей прокладкой,
выполненной из пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине периметра
сейсмоизолирующего основания , причем ширина упомянутой демпфирующей гофры (прокладки) на 5 -10% меньше ширины верхнего
пояса , при этом сквозь подошву снаружи верхнего пояса и сквозь поддерживающие верхний пояс упомянутой опоры пропущены
болты, снабженные тарельчатыми пружинными шайбами или с забитым медным обожженным клином в пропиленный паз
латунной шпильки.
4. Способ спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения, для обеспечения несущей
способности сейсмоизолирующей трубчатой опоры, с креплением трущихся поверхностей по спирали симметрично на
фрикционно -подвижного соединения с высокопрочными фрикци-болтами с тросовой втулкой (гильзой), включающий приготовление
образца-свидетеля, содержащего элемент виброизолирующей опоры и тестовую накладку, контактирующие поверхности которых
предварительно обработаны по проектной технологии организации "Сейсмофонд" при СПб ГАСУ ИНН 2014000780, ОГРН
1022000000824, соединяют высокопрочным фрикци- болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент сейсмоизолирующей опоры ( демпфирующей), для определения усилия сдвига и постепенно увеличивают
нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя
сравнения, далее, в зависимости от величины отклонения, осуществляют коррекцию технологи и монтажа сейсмоизолирующей
опоры, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного фрикци- болта с медным обожженным клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы
из стального тонкого троса , а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью
соединения его с неподвижной частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
5. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного
фрикци-болта с втулкой и тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку технологии монтажа
сейсмоизолирующей и скрученной в спираль опоры, не производят, при отношении в диап азоне 0,50-0,53 при монтаже
увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят

118.

обработку контактирующих поверхностей спиральной сейсмоизолирующей опоры цинконаполненной грунтовокой ЦВЭС ,
которая используется при строительстве мостов https://vmp-anticor.ru/publishing/265/2394/
http://docs.cntd.ru/document/1200093425.
Патент изобретение ФИПС РОСПАТЕНТ Коваленко Александра Ивановича и другие название изобретения
СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2010136746
(13)
A
(51) МПК
E04C2/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
По данным на 26.03.2013 состояние делопроизводства: Экспертиза по существу
(21), (22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ
ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в
виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении
воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем
объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и
соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
1
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с

119.

сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм
жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и
повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в
горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и
обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению
сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям
здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального
перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или
взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное
перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem
10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным
путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при
аварийном взрыве и при землетрясении более 9 баллов перемещение по методике
разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов»

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824, т/ф:
(812) 694-78-10 , (996) 798-26-54, (911) 175-84-65 ,
[email protected]
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12, выдано 28.04.2010 г. [email protected] эксперт,
к.т.н. СПб ГАСУ аттестат аккредитации СРО
«НИПИ[email protected]тел (921) 962-67-78 ктн Аубакирова И У, проф
дтн Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12, выдано 28.04.2010 г.
http://nasgage.ru/[email protected] проф. д.т.н. СПб
ГАСУ(996) 798-26-54, Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я
Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824, т/ф:
(812) 694-78-10 , (921) 962-67-78 [email protected] Копия
аттестата испытательной лаборатории ПГУПС № SP01.01.406.045 от
27.05.2014, действ 27.05.2019
прилагается к протоколу испытаний
организацией СПб ГАСУ и организацией "Сейсмофонд" при СПб ГАСУ
ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС
[email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС[email protected] (996) 79826-54, (921) 962-677-78 Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра
организации «СейсмоФОНД» при СПб ГАСУ ОГРН 1022000000824 Хасан
Нажоевич Мажиев [email protected]

360.

Почтовый адрес испытательной лаборатории организации «Сейсмофнд»
при СПб ГАСУ: 190005, СПб, 2-я Красноармейская ул. д 4
krestianinformburo8.narod.ru [email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о
прохождении процедуры подтверждения компетентности8590-гу (А5824) т/ф (812) 694-78-10 (999) 535-47-29
Подтверждение компетентности организации
https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected]
[email protected] [email protected]
тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65
English     Русский Правила