Понятие множества
Способы задания множества
Способы задания множества
Способы задания множества
Стандартные обозначения
Стандартные обозначения
Круги Эйлера
Подмножество
Пересечение множеств
Объединение множеств
Примеры пересечения и объединения множеств
Дополнение множества
Мощность множества
1.58M
Категория: МатематикаМатематика

Элементы теории множеств. Математические основы информатики

1.

ЭЛЕМЕНТЫ
ТЕОРИИ МНОЖЕСТВ
МАТЕМАТИЧЕСКИЕ ОСНОВЫ
ИНФОРМАТИКИ

2. Понятие множества

!
Множество — совокупность объектов произвольной
природы, которая рассматривается как единое целое.

3. Способы задания множества

1. Перечисление всех
элементов множества
M = {1, 3, 5, 7, 9}
B = {0, 1}
C = {А, Е, Ё, И, О, У, Ы, Э, Ю, Я}
?
Попробуйте описать эти множества словесно,
указав
характеристическое
свойство
их
элементов.

4. Способы задания множества

1.Перечисление всех
элементов множества
2. Словесное описание
множества
M = {1, 3, 5, 7, 9}
множество натуральных
однозначных нечетных
чисел
B = {0, 1}
цифры двоичного
алфавита
C = {А, Е, Ё, И, О, У, Ы, Э, Ю, Я}
гласные буквы русского
алфавита
?
Любое
ли
множество
можно
перечислением всех элементов?
задать

5. Способы задания множества

2. Словесное описание множества
Множество всех натуральных чисел
Множество всех деревьев на планете
Множество всех чисел, больших 1000
!
1 способ – для задания конечных множеств
2 способ – для задания любых множеств

6. Стандартные обозначения

Множества принято обозначать прописными буквами
латинского алфавита (A, B, C, …).
Объекты, входящие в состав множества, называются его
элементами и обозначаются строчными латинскими
буквами.

7. Стандартные обозначения

Описание
Обозначение
x - элемент множества M
(x принадлежит множеству M)
x∈M
x не является элементом
множества М (x не принадлежит M)
x∉M
мощность (количество элементов)
множества М
|M|
пустое множество – множество, в
котором нет ни одного элемента

8. Круги Эйлера

Для наглядного изображения множеств используются круги
Эйлера.
Точки внутри круга считаются элементами множества.
М
М
х
x∈M
х
x∉M

9. Подмножество

Если каждый элемент множества P принадлежит множеству М, то говорят, что P есть подмножество М, и записывают:
P⊂М
Само множество М является
своим подмножеством:
М⊂М
М
Р
P⊂М
Пустое множество является
подмножеством М:
∅⊂М
Универсальное множество
содержит все возможные
подмножества одной природы. Обозначается буквой U.

10. Пересечение множеств

!
Пересечением двух множеств X и Y называется
множество их общих элементов. Обозначается X ∩ Y.
X
Y
X∩Y
Множества M и X не имеют
общих элементов:
M∩X=∅
P подмножество множества М:
М ∩P=P
X∩Y
Пересечение множеств М и М:
М ∩М=М

11. Объединение множеств

!
Объединением двух множеств X и Y называется множество, состоящее из всех элементов этих множеств и
не содержащее никаких других элементов (X ∪ Y).
X
Y
M∪∅=М
X∪Y
P подмножество множества М:
М∪P=М
X∪Y
Объединение множеств М и М:
М∪М=М

12. Примеры пересечения и объединения множеств

X
?
Y
X
Y

13. Дополнение множества

!
Пусть множество P является подмножеством
множества М. Дополнением P до М называется
множество, состоящее из тех элементов М, которые
не вошли в P. Обозначается P или P ’.
М
Р
P∪
=M

14. Мощность множества

!
Мощностью конечного множества называется число
его элементов.
Мощность множества X обозначается |X|.
Множество
Мощность
пустое множество
|∅|=0
A - множество букв русского алфавита
| А | = 33
В = {зима, весна, лето, осень}
|В|=4
Мощность любого конечного множества равно количеству
элементов данного множества.

15.

Самое главное
• Множество — это совокупность объектов произвольной
природы, которая рассматривается как единое целое.
• Пересечением двух множеств X и Y называется множество
их общих элементов.
• Объединением двух множеств X и Y называется
множество, состоящее из всех элементов этих множеств и не
содержащее никаких других элементов.
• Пусть множество P является подмножеством множества М. Дополнением P до М называется множество,
состоящее из тех элементов М, которые не вошли в P.
• Мощностью конечного множества называется число его
элементов.
English     Русский Правила