Векторы в пространстве. Сложение векторов.
Понятие вектора в пространстве
Коллинеарные векторы
Сонаправленные векторы
Равные векторы
Противоположно направленные векторы
Противоположные векторы
Сложение векторов
Правило треугольника
Правило треугольника
Правило параллелограмма
Свойства сложения
Правило многоугольника
Пример
Правило параллелепипеда
Свойства
642.50K
Категория: МатематикаМатематика

Векторы в пространстве. Сложение векторов

1. Векторы в пространстве. Сложение векторов.

2. Понятие вектора в пространстве

Вектор(направленный отрезок) –
отрезок, для которого указано какой из его
концов считается началом, а какой – концом.
В
А
AB
a
M
MM 0
Длина вектора AB – длина отрезка AB.
AB AB
0 0

3. Коллинеарные векторы

Два ненулевых вектора называются
коллинеарными, если они лежат на одной
прямой или параллельных прямых.
Среди коллинеарных различают:
• Сонаправленные векторы
• Противоположно направленные векторы

4. Сонаправленные векторы

Сонаправленные векторы - векторы, лежащие
по одну сторону от прямой, проходящей через их
начала.
a
a b
b
Нулевой вектор считается сонаправленным с
любым вектором.
• Равные векторы

5. Равные векторы

Равные векторы - сонаправленные векторы,
длины которых равны.
a
a b a b, a b
b
От любой точки можно отложить вектор,
равный данному, и притом только один.

6. Противоположно направленные векторы

Противоположно направленные векторы –
векторы, лежащие по разные стороны от прямой,
проходящей через их начала.
a
a b
b
Противоположные векторы

7. Противоположные векторы

Противоположные векторы – противоположно
направленные векторы, длины которых равны.
a
a b a b, a b
b
Вектором, противоположным нулевому,
считается нулевой вектор.

8. Сложение векторов


Правило треугольника
Правило параллелограмма
Правило многоугольника
Правило параллелепипеда
Свойства сложения

9. Правило треугольника

Для сложения двух векторов необходимо :
1. отложить от какой нибудь точки А вектор
AB, равный а
2. от точки В отложить вектор BC , равный b
3. вектор AC называется суммой векторов a и b
B
a
a
А
b
a b
b
C

10. Правило треугольника

B
a
А
a b
b
C
Для любых трех точек А, В и С справедливо равенство:
AB BC AC

11. Правило параллелограмма

Для сложения двух векторов необходимо :
1. отложить от какой нибудь точки А
вектор AB, равный а
2. от точки А отложить вектор AC, равный b
3. достроить фигуру до параллелограмма , проведя
дополнительные линии параллельно данным
векторам
4. диагональ параллелограмма сумма векторов
B
a
a
b
А
с
b
с a b
C

12. Свойства сложения

Для любых векторов a , b и c справедливы
равенства :
a b b a
a b с а b с
переместительный закон
сочетательный закон

13. Правило многоугольника

Сумма векторов равна вектору, проведенному
из начала первого в конец последнего(при
последовательном откладывании).
a
B
b
C
A
a b c d e
e
c
E
d
Пример
D
AB BC CD DE AE

14. Пример

B1
A1
C1
D1
B
A
C
D
AA1 D1C1 A1 D BA CB 0

15. Правило параллелепипеда

Вектор, лежащий на диагонали параллелепипеда,
равен сумме векторов, проведенных из той же
точки и лежащих на трех измерениях
параллелепипеда.
B
A1
C1
1
d
AB b
D1
с bB
C
А
a
AD a
D
AC1 AD AB AA1
AA1 c
AC1 d

16. Свойства

B1
A1
C1
d
D1
с aB
А
C
b
D
d a b c для любого параллелепипеда
d 2 a 2 b 2 c 2 для прямоуголь ного
параллелепипеда
English     Русский Правила