Логика и компьютер. Логические операции. Диаграммы Эйлера-Венна
Круги Эйлера Леона́рд Э́йлер — швейцарский, немецкий и российский математик и механик
Подмножество
Пересечение множеств
Объединение множеств
Примеры пересечения и объединения множеств
Дополнение множества
Приоритет логических операций
РЕШЕНИЕ
Анализ электронной схемы
1.52M
Категория: ИнформатикаИнформатика

Логика и компьютер. Логические операции. Диаграммы Эйлера-Венна

1. Логика и компьютер. Логические операции. Диаграммы Эйлера-Венна

2. Круги Эйлера Леона́рд Э́йлер — швейцарский, немецкий и российский математик и механик

Для наглядного изображения множеств используются круги
Эйлера.
Точки внутри круга считаются элементами множества.
М
М
х
x∈M
х
x∉M

3. Подмножество

Если каждый элемент множества P принадлежит множеству М, то говорят, что P есть подмножество М, и записывают:
P⊂М
Само множество М является
своим подмножеством:
М⊂М
М
Р
P⊂М
Пустое множество является
подмножеством М:
∅⊂М
Универсальное множество
содержит все возможные
подмножества одной природы. Обозначается буквой U.

4. Пересечение множеств

!
Пересечением двух множеств X и Y называется
множество их общих элементов. Обозначается X ∩ Y.
X
Y
X∩Y
Множества M и X не имеют
общих элементов:
M∩X=∅
P подмножество множества М:
М ∩P=P
X∩Y
Пересечение множеств М и М:
М ∩М=М

5. Объединение множеств

!
Объединением двух множеств X и Y называется множество, состоящее из всех элементов этих множеств и
не содержащее никаких других элементов (X ∪ Y).
X
Y
M∪∅=М
X∪Y
P подмножество множества М:
М∪P=М
X∪Y
Объединение множеств М и М:
М∪М=М

6. Примеры пересечения и объединения множеств

X
?
Y
X
Y

7. Дополнение множества

!
Пусть множество P является подмножеством
множества М. Дополнением P до М называется
множество, состоящее из тех элементов М, которые
не вошли в P. Обозначается P или P ’.
М
Р
P∪
=M

8.

Алгебра логики
Алгебра
логики
вычисления значений,
высказываний.
определяет
упрощения
правила
записи,
и преобразования
В алгебре логики высказывания обозначают буквами и
называют логическими переменными.
Если
высказывание
истинно,
то
значение
соответствующей ему логической переменной обозначают
единицей (А = 1), а если ложно - нулём (В = 0).
0 и 1 называются логическими значениями.

9.

Логические операции
Конъюнкция - логическая операция, ставящая в
соответствие
каждым
двум
высказываниям
новое
высказывание, являющееся истинным тогда и только тогда,
когда оба исходных высказывания истинны.
Другое название: логическое умножение.
Обозначения:
, , &, И.
Таблица истинности:
А
В
А&В
0
0
0
0
1
0
1
0
0
1
1
1
Графическое представление
A
А&В
B

10.

Логические операции
Дизъюнкция - логическая операция, которая каждым двум
высказываниям ставит в соответствие новое высказывание,
являющееся ложным тогда и только тогда, когда оба исходных
высказывания ложны.
Другое название: логическое сложение.
Обозначения:
V, |, ИЛИ, +.
Таблица истинности:
А
В
АVВ
0
0
0
0
1
1
1
0
1
1
1
1
Графическое представление
A
B
АVВ

11.

Логические операции
Инверсия - логическая операция, которая каждому
высказыванию ставит в соответствие новое высказывание,
значение которого противоположно исходному.
Другое название: логическое отрицание.
Обозначения: НЕ,
¬,¯
Таблица истинности:
А
Ā
0
1
1
0
.
Графическое представление
Ā
A
Логические операции имеют следующий приоритет:
инверсия, конъюнкция, дизъюнкция.

12.

13.

ТОЖДЕСТВО-другое название

14. Приоритет логических операций

15.

16. РЕШЕНИЕ

Ф
Х
80
230
260
В
(Хоккей | Футбол) & Воллейбол=230+260-80=
=490-80=410

17.

Построение таблиц истинности для
логических выражений
подсчитать n - число переменных в выражении
подсчитать общее число логических операций в выражении
установить последовательность выполнения логических операций
определить число столбцов в таблице
заполнить шапку таблицы, включив в неё переменные и операции
определить число строк в таблице без шапки: m =2n
выписать наборы входных переменных
провести заполнение таблицы по столбцам, выполняя логические
операции в соответствии с установленной последовательностью

18.

Пример построения таблицы истинности
АVA&B
n = 2, m = 22 = 4.
Приоритет операций: &, V
A
B
A&B
AVA&B
0
0
0
0
0
1
0
0
1
0
0
1
1
1
1
1

19.

Логические элементы
Логический элемент – устройство, которое после
обработки двоичных сигналов выдаёт значение одной из
логических операций.
А
&
В
А
1
В
И
(конъюнктор)
ИЛИ
(дизъюнктор)
А
НЕ (инвертор)

20. Анализ электронной схемы

Решение. Все возможные комбинации сигналов на входах А
и
В сигнал
внесём
в быть
таблицу
истинности.
Проследим
Какой
должен
на выходе
при каждом возможном
преобразование
пары сигналов при прохождении их
наборе сигналов каждой
на входах?
через логические элементы и запишем полученный результат
в таблицу. Заполненная таблица истинности полностью
описывает рассматриваемую электронную схему.
А
В
&
F
A
B
F
0
0
0
0
1
0
1
0
1
1
1
0
В инвертор поступает сигнал от входа В.
В конъюнктор поступают сигналы от входа А и от
инвертора. Таким образом, F = A & B.
English     Русский Правила