32.59M
Категория: СтроительствоСтроительство
Похожие презентации:

Испытание термического конденсатора, гасителя температурных пожарных напряжений

1.

Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул.
Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я
Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru
[email protected] [email protected] [email protected] (994) 434-44-70,
(996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Общество с ограниченной ответственностью "ТехноНИКОЛЬСтроительные системы", ОГРН: 1047796256694, адрес: 129110, Россия, г.
Москва, ул. Гиляровского, д. 47, стр. 5., помещение 1, комната 13, тел:+7
(495)660-07-65, адрес электронной почты : [email protected] Всего : 96 стр
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (сейсмостойкость - 9 баллов) (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ»
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 07.09.2022
ПРОТОКОЛ СПб ГАСУ № 574 от 07.09.2022
Испытания термического компенсатора СПб ГАСУ, гасителя температурных пожарных
напряжений и колебаний при черезывычайных ситуациях для огнезащитного состава TAIKOR FP ,
выпускаемые по СТО 72746455-3.6.17-2022 «Огнезащитные составы TAIKOR FP» (с изм. №1, ГОСТ Р
53292-2009, ГОСТ 59637-2021 ) (ООО "ТехноНИКОЛЬ-Строительные Системы" ОГРН: 1047796256694,
ООО «Антикоррозийные защитные покрытия», ОГРН: 1067746276333 ) [email protected] , серийный выпуск
предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов. В районах с сейсмичностью
более 9 баллов, необходимо использование в строительных конструкциях демпфирующих
компенсаторов с упругопластическими шарнирами на фрикционно-подвижных соединениях,
расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного
демпфирования при термических колебаний, для гашения температруных пожарных напряжений и
температруных колебаний при термических раздвигающися дддддддддддддддддд нагрузок, согласно
изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) ,
2010136746 ,165076 , 2550777, с использованием сдвигового демпфирующего гасителя сдвиговых
напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор -гаситель
температурных напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий
компенсатор для трубопроводов", заявки № 2021134630 от 29.12.2021 "Термический компенсаторгаситель температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсаторгаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых
элементов трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки
"Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 22.02. 2022, для обеспечения
сейсмостойкости огнезащитного состава TAIKOR FR и сдвиговой прочности для строительных
систем TAIKOR.

2.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 2

3.

1. Объект испытаний: Огнезащитные составы TAIKOR FP , выпускаемые по СТО 72746455-3.6.17-2022
«Огнезащитные составы TAIKOR FP» (с изм. №1, ГОСТ Р 53292-2009, ГОСТ 59637-2021 ) (ООО
"ТехноНИКОЛЬ-Строительные Системы" ОГРН: 1047796256694, ООО «Антикоррозийные защитные
покрытия», ОГРН: 1067746276333 ) [email protected] , серийный выпуск предназначен для сейсмоопасных
районов с сейсмичностью до 9 баллов. В районах с сейсмичностью более 9 баллов, необходимо
использование в строительных конструкциях демпфирующих компенсаторов с упругопластическими
шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных
отверстиях, с целью обеспечения многокаскадного демпфирования при импульсных растягивающих и
динамических нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор:
проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022
"Огнестойкий компенсатор -гаситель температурных напряжений", заявки № 2022104632 от
21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки № 2021134630 от
29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от
07.02.2022 "Термический компенсатор- гаситель температурных колебаний СПб ГАСУ,"заявки
"Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а
20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами
сухого трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02.
2022, для обеспечения сейсмостойкости огнезащитного состава TAIKOR FR и сдвиговой
прочности для строительных систем TAIKOR.
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2014 «Строительство в сейсмических районах,
п.4.7, п. 9.2, ГОСТ 16962.2-90. ГОСТ 17516.1-90, ГОСТ 30546.1-98, ГОСТ 30546.2-98 (в части сейсмостойкости до 9 баллов по шкале MSK-64), I категории по НП-031-01, СТО Нострой 2.10.76-2012, МР 502.105, МДС 53-1.2001(к СНиП 3.03.01-87), ГОСТ Р 57574-2017 «Землетрясения»,ТКП 45-5.04-41-3006 (02250),
ГОСТ Р 54257-2010, ОСТ 37.001.050-73, СН-471-75, ОСТ 108.275.80, СП 14.13330.2014, ОСТ 37.001.05073, СП 16.13330.2011 (СНиП II -23-81*), СТО -031-2004, РД 26.07.23-99, СТП 006-97, ВСН 144-76, ТКТ 455.04-274-2012, серия 4.402-9, ТП ШИФР 1010-2с.94, вып 0-2 «Фундаменты сейсмостойкие»
ИЗГОТОВИТЕЛЬ: Общество с ограниченной ответственностью «Антикоррозийные защитные покрытия», ООО
"ТехноНИКОЛЬ-Строительные Системы" 129110, Россия, г.Москва, ул. Гиляровского, д. 47, стр. 5, этаж 5, помещение I, комната
13, ОГРН: 1067746276333, 142113, РОССИЯ, Московская область, Подольский район, деревня Большое Толбино, улица
Промышленная, дом 6, [email protected] .т (495) 660-05-65
СЕРТИФИКАТ ВЫДАН: Общество с ограниченной ответственностью, ООО "ТехноНИКОЛЬ-
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 3

4.

Строительные Системы" 129110, Россия, г.Москва, ул. Гиляровского, д. 47, стр. 5, этаж 5, помещение I,
комната 13, ОГРН: 1047796256694 , ИНН: 7702521529 [email protected] т (495) 660-05-65,
Ссылки испытаний фрагментов узлов и узлов покрытых огнезащитным составом TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные –Системы»,ООО «Антикоррозийные защитные покрытия» с демпфирующими упругоплатическими шарнирными c
использованием болтовых, демпфирующих соединений расположенными в длинных овальных отверстиях, расположенных вдоль
оси соединения, по линии нагрузки, с использованием фрикционных компенсаторов (соединений ) преимущественно при
импульсных растягивающих нагрузках, в виде сдвиговых демпфирующих компенсаторов для строительных систем и для сиcтемы
противопожарной защиты металлических конструкций, согласно изобретения «Опора сейсмостойкая», патент № 165076, 154505,
изобретениям №№1143895, 1168755, 1174616, 2010136746 https://disk.yandex.ru/d/pW2tC6Ro5MVQUQ
https://disk.yandex.ru/i/6Wgf6jAvZSC4gg https://disk.yandex.ru/d/A4_DAFVepIkWqw
Огнезащитный состав марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы )
выполнен из водно-дисперсионных материалов согласно СТО 72746455-3.6.17-2022, ГОСТ Р 53292-2009,
ГОСТ Р 59637-2021, ГОСТ Р 53295-2009, серийный выпуск предназначен для сейсмоопасных районов с
сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо
использование в строительных конструкциях демпфирующих компенсаторов с упругопластическими
шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных
отверстиях, с целью обеспечения многокаскадного демпфирования при импульс-ных растягивающих
и динамических нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор:
проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022
"Огнестойкий компенсатор -гаситель температурных напряжений", заявки № 2022104632 от
21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки № 2021134630 от
29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от
07.02.2022 "Термический компенсатор- гаситель температурных колебаний СПб ГАСУ,"заявки
"Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а
20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами
сухого трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02.
2022, Минск, "Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста"
для обеспечения сейсмостойкости огнезащитного состава TAIKOR FR и сдвиговой прочности для
строительных систем предназначенная для районов с сейсмичностью 9 баллов (шкала MSK-64).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 4

5.

4. Место проведения испытаний и ОРГАН ПО СЕРТИФИКАЦИИ: ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от
27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» при СПб ГАСУ ОГРН:
1022000000824, https://www.spbgasu.ru т/ф ( 812) 694-78-10, [email protected] (аттестат №
RA.RU.21СТ39, выдан 27.05.2015)
5. Условия проведения испытания на скольжение и податливость.
Испытания проводились в нормальных климатических условиях по ГОСТ 15150-69: - температуре воздуха +25°С; относительной влажности воздуха - 80%; - атмосферное давление - 84 кПа (730 мм ртутного столба).
6. Цель испытаний.
Испытания проводились с целью проверки возможности сдвигоустойчивого податливого крепления с
нанесенным огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов согласно СТО 72746455-3.6.17-2022, ГОСТ Р 53292-2009, ГОСТ Р 59637-2021, ГОСТ Р 53295-2009, серийный выпуск
предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов,
необходимо использование в строительных конструкциях демпфирующих компенсаторов с упругопластическими шарнирами на
фрикционно-подвижных соединениях, расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного
демпфирования при импульс-ных растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616,
1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового демпфирующего гасителя
сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор -гаситель температурных
напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки № 2021134630
от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический
компенсатор- гаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со
скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения"
№ а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск для обеспечения сейсмостойкости
огнезащитного состава TAIKOR FR и сдвиговой прочности для строительных систем и противостоять разрушающему действию
сейсмических нагрузок и сохранить параметры во время и после воздействия землетрясений интенсивностью 9
баллов по шкале MKS-64 на отметках установки до 25 м и интенсивностью 8 баллов по шкале MKS-64 на отметках
задний и сооружений до 70 м, что соответствует I-й и II-й категориям сейсмостойкости по НП-031-01 в указанных
режимах сейсмических воздействий (9 баллов - 25 м, 8 баллов - 70 м).
7. Методика испытаний.
Испытания проводились в программе ПК SCAD с учетом экономической прогрессивной теории активной
сейсмозащиты зданий (АССЗ) вместо устаревшей консольной расчётно –динамической модели (РДМ).
Испытания Огнезащитный состав марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов согласно СТО 72746455-3.6.17-2022, ГОСТ Р 53292-2009, ГОСТ Р 59637-2021, ГОСТ Р 53295-2009, предназначенных для
районов с сейсмичностью 8-9 баллов (шкала MSK-64) осуществлялись в программе SCAD согласно ГОСТ Р 50785-95
п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.00383 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000 с
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 5

6.

использованием изобретений №№ 2327878, 2228488, 2256272, 2440638, 2035835, 2252473.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 6

7.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 7

8.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 8

9.

Испытания фрагментов узлов проходили в СПб ГАСУ, ПГУПС на
сейсмостойкость испытывались фрагменты, в том числе и косых компенсаторов
для арматуры промышленной трубопроводной и крепления фрикционно-
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 9

10.

подвижных соединениях , по изобретениям №№ 1143895, 1168755, 1174616
трубопроводов для здания магистральной насосной уложенного на
сейсмоизолирующих опорах, согласно изобретения № 165076 RU E 04H 9/02
«Опора сейсмостойкая», изобретения "Способ защиты зданий и сооружений при
взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений ,
использующие систему демпфирования фрикционности и сейсмоизоляцию для
поглощения взрывной и сейсмической энергии" № 2010136746 , от 20.01.2013,
заявки на изобретение № 20181229421/20(47400) от 10.08.2018 "Опора
сейсмоизолирующая "гармошка", заявки на изобретение № 2018105803/20 (008844)
от 11.05.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение
для трубопроводов" F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416)
от 23.05.2016 "Опора сейсмоизолирующая маятниковая" E04 H 9/02
Испытания узлов крепления на сейсмостойкость фрагментов крепления
фрикционно-подвижных соединениях , по изобретениям №№ 1143895, 1168755,
1174616 : и передача интеллект собст патентное согл. об использовани
изобретения СПб ГСУ и организации "Сейсмофонд" ИНН 2014000780
изготавливаемые в соответствии с техническими условиями и предназначенные
для сейсмоопасных районов с сейсмичностью до 9 баллов, отвечающие треб ГОСТ
17516.1, ГОСТ 30546.1-98 уложенного на сейсмоизолирующих опорах, согласно
изобретения № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения
"Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений , использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и
сейсмической энергии" № 2010136746 , от 20.01.2013, заявки на изобретение №
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 10

11.

20181229421/20(47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка",
заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 "Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов" F 16L 23/02 ,
заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора
сейсмоизолирующая маятниковая" E04 H 9/02 производились в ИЦ "ПКТИСтройТЕСТ" (197341, СПб, ул. Афонская, д.2, протокол испытаний на сдвиг
дугообразного зажима по шпильки в ПКТИ № 1506-1 от 18.11.202019 г.) и протокола
№ 1516-2/3 от 20.02.2020 (ИЦ "ПКТИ-СтройТЕСТ", адрес:197341, СПб, Афонская
ул., д. 2, свид. об аккред № ИЛ/ЛРИ-00804 от 25.03.2020 ОАО «НТЦ
«Промышленная безопасность», Лицензия ФГБОУ ВО ПГУПС № 2280 от
21.07.2020 [email protected] [email protected] (999)
535-47-29, (996) 798-26-54
Ссылки испытаний фрагментов узлов фрикционно –подвижных компенсаторов с
косыми стыками для соединения трубопроводов из полиэтилена с резервуарами из
полиэтилена, согласно изобретения «Опора сейсмостойкая», патент № 165076 и
согласно изобретениям №№1143895, 1168755, 1174616, 2010136746
https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Y
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 11

12.

https://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
, испытания математических моделей косого компенсатора для арматуры
промышленной трубопроводной , которые осуществлялись нелинейным методом
расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.198, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7, согласно инструкции «Элементы
теории трения, расчет и технология применения фрикционно-подвижных
соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.), согласно изобретениям
№№ 4094111US, TW201400676 (договор № 560 от 23.10 2020 г.). организацией
Сейсмофонд" проведено дополнительные испытания типовых косых компенсаторов
на фланцевых фрикционно-подвижных соединениях с использованием
математического и компьютерного моделирования в механике деформируемых сред
и конструкций с использованием сейсмоизоляции каркаса здания (сооружения)
(сейсмоизолирующие маятниковые телескопические опоры по изобретению №
165076 МПК Е04H 9/02 , Бюл. № 28 10.10.2016 (для использования в районах с
сейсмичностью более 8 баллов), с узлами крепления на ФПС трубопроводов из
полиэтилена , выполненными согласно требованиям ГОСТ 17516.1-90, ГОСТ
30546.2-98, ОСТ 36-146-88, ОСТ 108 275.63-80, типовому альбому серии 4.903-10,
вып 5 предназначены для работы в районах с сейсмичностью до 9 баллов по шкале
MSK-64. Использованию изобретений ослабления болтов, шпилек, винтов, гайк ,
кр. такел. см приложение № 1 Серийный выпуск согласно протокола соответствуют
требованиям нормативных документов ГОСТ 1759 0-87 п п.2.1, 2,2, ГОСТ 17516.190, ГОСТ 30546.2-98 в части сейсмического воздействия 9 баллов по шкале MSK -64
и применения во взрывоопасных и взрывопо- жароопасных производствах категории
А, Б и Е, согласно требованиям п.6 2.6 СП 13130. 2009 МЧС и испытание ФПС для
КНС протокола испытаний КНС , емкости, колодцы , трубопровод на
сейсмостойких опорах расчетным методом с использованием компьютерного
моделирования в механике деформируемых сред и конструкций методом
оптимизации и идентификации динамических и статических задач устойчивости
комплекта стоек , заключение, технического свидетельство с фрикционноподвижными соединениями ( ФПС) и демпфирующими креплениями
металлоконструкций (МК) с учетом требований предъявляемых к
металлоконструкциям МК (группа механического исполнения М39; I и II категория
по НП 031-01; сейсмостойкость при воздействии МРЗ 7 баллов ПЗ 6 баллов при
уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика
) и выдачу сертификата, протокола испытаний, заключение, технического
свидетельство с фрикционно-подвижными соединениями ( ФПС) и демпфирующими
креплениями на месте установки с учетом требований предъявляемых к
оборудованию (группа механического исполнения М39; I и II категория по НП 03101; сейсмостойкость при воздействии МРЗ 7 баллов ПЗ 6 баллов при уровне
установки на отметке до 10 (25) м включительно, с учетом спектров отклика ), во
взрывопожароопасных помещений в соотв. треб. п 6.2.6 СП 4.13130.2009 МЧС,
СНиП 2.10.05-85, СН 463-71 технические условия, заключения для
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 12

13.

легкосбрасываемых конструкций для помещений категории А, Б и Е соотв. треб.
СП 14.13330.2014, п.9.2, НП-031-01, ГОСТ 30546.1-98 на сотв. НП-031-01(1 кат) и
выдачу сертификата , протокола испытаний. на соответствие требованиям:
СП14.13330.2014, п.9.2, ГОСТ 16962.2-90, ГОСТ 17516.1-90, ГОСТ 30546.1-98,
ГОСТ 30546.2-98, I категории. по НП-031-01. для взрывоопасных помещений и
сейсмоопасных районов и выдачу сертификата, протокола испытаний согласно,
ГОСТ 16019-2001, в сейсмоопасных районах и взрывопожароопасных помещений
в соотв. треб. п 6.2.6 СП 4.13130.2009 МЧС, СНиП 2.10.05-85, СН 463-71 и выдачу
сертификата и протокола испытания на сейсмостойкость со сдвигоустойчивыми
фрикционно - подвижными соединениями (ФПС) для сейсмоопасных районов и
взрывопожароопасных помещений в соотв. треб. п 6.2.6 СП 4.13130.2009 МЧС,
СНиП 2.10.05-85, СН 463-71 для сейсмоопасных районов более 9 баллов и
взрывоопасных и взывопожароопасных помещениях с производствами категории
А, Б и Е по треб. 6.2.6 СП 4.13130-2009 на фрикционно –подвижными
соединениями ( ФПС ), позволяющие обеспечить фрикционно –подвижность
соединений (ФПС) во время аварийного взрыва или пожара , сдвиге при 0.7
кПа и более и выдачу сертификата, протокола испытаний на сейсмостойкость и на
соответствие требованиям: СП14.13330.2014, п.9.2, ГОСТ 16962.2-90, ГОСТ 17516.190, ГОСТ 30546.1-98, ГОСТ 30546.2-98, I категории . по НП-031-01. на соответствие
требованиям: СП14.13330.2014, п.9.2, ГОСТ 16962.2-90, ГОСТ 17516.1-90, ГОСТ
30546.1-98, ГОСТ 30546.2-98, I категории. по НП-031-01. для сейсмоопасных
районов и выдачу сертификата, протокола испытаний для сейсмоопасных районов ,
согласно протокола испытаний ГОСТ 16019-2001, в сейсмоопасных районах и
взрывопожароопасных помещений в соотв. треб. п 6.2.6 СП 4.13130.2009 МЧС,
СНиП 2.10.05-85, СН 463-71
При испытаниях фрагментов на соответствие ГОСТ 16962.2-90, ГОСТ 17516.1-90,
ГОСТ 30546.1-2-98, (в части сейсмостойкости), СП 14.13330-2014, п.4.7,НП-03101(1 кат.), изобретениям №№ 2371627, 2247278, 2357146, 2403488, 2076985,
1143895,1174616, 1168755 SU «Structural steel building frame having resilient
connectors US 4094111 A», 4094111US, TW201400676 «Restraint anti-wind and antiseismic friction damping device» испытания для работы в сейсмоопасных районах и
во взрывооопасных помещениях прошли успешно с использованием компенстора
дтн проф ПГУПС Уздина А М
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 13

14.

Испытание сдвигоустойчивого крепления податливого крепления демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых огнезащитным составом марки
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 14

15.

TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы для повышение сейсмостойкости
и взрывостойкости
достигается за счет перемещения, сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую нагрузку, на осевое статическое усилие
сдвига –скольжения дугообразного зажима с анкерной шпилькой с учетом экономической
прогрессивной теории активной сейсмозащиты промышленного оборудования (АССО) вместо
консольной
расчетно-динамической
модели
(РДМ).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 15

16.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 16

17.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 17

18.

Модельные испытания сдвигоустойчивого податливого крепления демпфирующих сдвиговых компенсаторов
для строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы для повышение сейсмостойкости и взрывостойкости достигается за счет
перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из
красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина,
поглощая при этом сейсмическую нагрузку.
Испытания проводились в соответствии с новыми РСУ для пространственных моделей с учетом графика
динамичности норм Азербайджана AzDTN 2.3-1, ГОСТ Р 54257-2010, ГОСТ Р 54157-2010, Eurocade-3, А500СП, СП 53102-2004 согласно синтезированных акселерограмм с учетом НП-31-01, ГОСТ 6249-52 «Шкала для определения
силы землетрясения в пределах от 6 до 9 баллов».
Испытания динамических моделей сдвигоустойчивого податливого крепления испытания демпфирующих
сдвиговых компенсаторов для строительных конструкций, покрытых огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы для повышение сейсмостойкости и взрывостойкости
достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде
болтовых соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из
красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина,
поглощая при этом сейсмическую энергию.
Испытание на сейсмостойкость производились спектральным методом на основе синтезированных акселерограмм
c загружением новых РСУ (расчетные сочетания усилий) AzDTN 2.3-1 в соответствии с НП-031-01, ГОСТ 17516.1-90,
ГОСТ 30546.1, 2, 3-98, ГОСТ 16962.2-90, ГОСТ 30631-99 на основе рекомендаций: ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, ВСН 382-87, ОСТ 108.275.51-80, для взрывоопасных и пожароопасных объектов
категории А и Б.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 18

19.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 19

20.

Jose Luis Gonzalez Pentair Electrical & Fastening Solutions
Regional Sales Manager, CADDY Seismic Protection
November 10, 2018
Seismic horizontal force (Fwp) must be determined as follows:
Fwp = G x Wp • G : seismic coefficient (based on FM Global
maps)
50 YEAR ZONE G=0.75
100 YEAR ZONE G=0.50
250 YEAR ZONE G=0.40
500 YEAR ZONE G=0.40
>500 YEAR ZONE G=0
• Wp: weight of piping system being braced
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 20

21.

Рис. 4 Скользящее (сдвиговое) крепление демпфирующих сдвиговых компенсаторов для строительных
конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным
зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного
энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При
землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме (
медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную
энергию
Скользящее (сдвиговое) крепление выполнено в виде болтового соединения с изолирующей трубой или свинцовой
обоймой, с амортизирующим элементом в виде свинцового или из красной меди клина, забитого в паз,
пропиленный в нижней части анкера. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру до стопорного (тормозного) клина, поглощая при этом сейсмическую или взрывную энергию.
Крутящий момент определяется по изобретению № 2367917 "Способ измерения крутящего момента затяжки
резьбовых соединений и динамометрический ключ для его осуществления"
Испытания сдвигоустойчивого податливого крепления, демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы для повышение сейсмостойкости и взрывостойкости достигается за счет
перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из
красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина,
поглощая при этом сейсмическую и взрывную энергию , предназначенной для районов с сейсмичностью 8-9 баллов
(шкала MSK-64) проводились на воздействие электромагнитных помех согласно ГОСТ Р 51317.6.4-2009
«Электромагнитные помехи от технических средств, применяемых в промышленных зонах». В соответствии с
нормами демпфирующих сдвиговых компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы для повышение
сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в
изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и
амортизирующими элементами в виде свинцового или из красной меди стопорного энергопоглощающего клина,
забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой
гильзы вокруг шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию
обеспечена заземлением и защитой от молний (имеется громоотвод) с электромагнитной защитой от СВЧ–
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 21

22.

генераторов Active Denial Sytem («микроволновая пушка») и других искусственных молний, которые вызывают
пожар.
Испытанные податливые (скользящие) узлы крепления демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы для повышение сейсмостойкости и взрывостойкости достигается за счет
перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из
красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина,
поглощая при этом сейсмическую и взрывную энергию , предназначенные для работы в сейсмоопасных районах с
сейсмичностью 8-9 баллов по шкале MSK-64 соответствуют ГОСТ Р 54257-2010 «Надежность строительных
конструкций и оснований», ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9
баллов», испытания производились в ПК SCAD. Испытания проходили элементы демпфирующих узлов креплений
(свинцовые шайбы, демпфирующие болты в свинцовой обмотке, тросовые зажимы или дугообразные зажимы,
анкерные шпильки со свинцовыми сминаемыми клиньями) согласно ОСТ 37.001.050-73 «Затяжка резьбовых
соединений», «Руководство по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, альбома серии 4.402-9 «Анкерные болты», вып.5, ЛЕНГИПРОНЕФТЕХИМ, «Инструкция по
выбору рамных податливых крепей», «Инструкции по применению высокопрочных болтов в эксплуатируемых
мостах», ОСТ 108.275.80, ОСТ 37.001.050-73.
Испытания фрагментов сдвигоустойчивых узлов крепления демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы для повышение сейсмостойкости и взрывостойкости достигается за счет
перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из
красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина,
поглощая при этом сейсмическую и взрывную энергию , для сейсмоопасных районов 8-9 баллов по шкале MSK-64
проводились на основе синтезированных акселерограмм c загружением РСУ (расчет сочетаний усилий) AzDTN 2.3-1
в соответствии c НП-031-01 в части категории сейсмостойкости II, ГОСТ 17516.1-90, ГОСТ 30546.1,2,3-98 в ПК SCAD.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 22

23.

9. Испытательное оборудование и измерительные приборы.
Перечень испытательного оборудования и измерительных приборов для проведения испытаний
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 23

24.

сдвигоустойчивого податливого крепления демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы для повышение сейсмостойкости и взрывостойкости
достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем ,
выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей
трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и
амортизирующими элементами в виде свинцового или из красной меди стопорного
энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую и взрывную энергию приведен в таблице 1.
Таблица 1

Испытания на перемещение
Тип прибора,
Диапазон
Примечание
п/п
демпфирующих узлов с
оснастки,
измерения
амортизирующими элементами
оборудование
1
Определение статических усилий для
сдвига податливого анкера,
установленного в изолирующей трубе
с амортизирующими податливыми
элементами в виде тросового
дугообразного зажима с анкерной
шпилькой производилось в ИЦ
«ПКТИ- Стройтест» («Протокол
испытания на осевое статическое
усилие сдвигу дугообразного зажима с
анкерной шпилькой» № 1516-2 от
25.11.2013)
Рулетка,
штангенциркул
ь
+- (2- 5) см
2
Индикатор с манометром до 10 тонн,
для измерения перемещения
податливого анкера по дугообразному
зажиму с анкерной шпилькой
(тросовому зажиму) инж Андреева
Борис Александровича тел (812) 66365-27, моб 8 (911) 706-23-64 ,
1 - шт.
Домкрат до 10 тонн для отрыва
демпфирующего крепления
Индикатор
измерений
перемещений
с ценой
деления в
динах 2 мм
1%
Рулетка,
штангенциркул
ь
+- (2- 5) см
3
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Протокол испытания
на осевое
статическое усилие
сдвига
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013
согласно патента на
полезную модель №
102228 «Анкерная
крепь для горных
выработок» и №
44350 «Анкерная
крепь».
См. Протокол
испытания на осевое
статическое усилие
сдвига
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013 г.
См. Протокол
испытания на осевое
статическое усилие
сдвигу
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013
согласно патента на
полезную модель №
102228 «Анкерная
крепь для горных
Всего листов 96
Лист 24

25.

выработок» и №
44350 «Анкерная
крепь»
4
Лебедка рычажная (усилие 5 тонн) для Теодолит
определения смятия при выдергивании
анкера со свинцовым «тормозным»
клином, забитым в прорезанный паз в
резьбовой части анкера М16
1%
5
Кувалда, вес 4 кг. (для определения
перемещения демпфирующего анкера
с тормозным клином во время
испытания на монтажной
строительной площадке)
лабораторный механический манометр
мерить для измерения перемещения
анкера М16 ГОСТ 24376.1 на
податливость
Аналогично вибростенду ES -180590 использовалась испытательная
машина ZD-10/90 на сдвиг,
скольжение и податливость согласно
ГОСТ 53166-2008 «Землетрясения»
Нивелир
+/- 0,0
T/c2
Штатив с
манометром
0,01 мм 1000 мм
Усилия
выдергивания
шкала 100 кгс.
8
Ключ динамометрический
Нивелир
9
Нивелир
10
Домкрат 5 т
Штатив с
манометром
Усилия
выдергивания
шкала 5 тонн
11
Лебедка 5 тонная
Зав № 66/79 Годен до 12.2017 г.
(сертификат
о
калибровке
№ 143-1371
от
28.08.2013г.
)
+/- 0,0
Годен до 12.2017 г.
T/c2
0,01 мм. Свидетельство № 1
1000 мм.
до 01.2017 г.
Зав № 1
Годен до 01.2017 г.
(сертификат
№ 14 от
18.09.2013г.
)
Годен до 12.2017 г.
12
Болгарка для простукивания пазов в
анкерных болтах для забивки
6
7
Для
определения
сдвига или
скольжение
анкера в
изолированной
трубе
Болгарка
дисковая пила
Паз
пропила 2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
См. Протокол
испытания на осевое
статическое усилие
сдвигу
дугообразного
зажима с анкерной
шпилькой №1516-2
от 25.11.2013
Годен до 12.2017 г.
Свидетельство № 1
до 01.2017 г.
Свидетельство № 3
до 01.2017 г.
Всего листов 96
Лист 25

26.

13
стопорного свинцового клина
Гайковерт ИП-3128 исползовался при
испытаниях на фрагментах, деталях
сдвигоустойчивых скользящих
сейсмостойких и взрывостойких
узлах крепления.
мм
Зав № 1 № Годен до 01.2017
при
19 от
испытаниях
18.09.2013г.
на
демпфированн )
ость и
сдвигоустойчи
вость,
допускает
настройку
величины
крутящих
моментов от
80 до 150 кгс
10. Характеристики механических ВВФ (внешние воздействующие факторы) при
испытаниях на сейсмостойкость фрагментов демпфирующих податливых узлов крепления.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 26

27.

Сейсмическое воздействие
Испыт. на сейсмичные
воздействие
9 балов 25 м.
8 балов 70 м.
Ускорение (g) для
диапазона частот
(Гц)
3,5 Гц-9 Гц
Ускорение (g) для
диапазона частот
(Гц)
9Гц- 3,0 Гц
Время
воздействия,
мин
0,56 g
0,31 g
0,56 g-0,23 g
0,31 g-0,13 g
1
1
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 27

28.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 28

29.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 29

30.

Рис На рисунке показан узел гасителе динамических колебаний для применения испытания
демпфирующих сдвиговых компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы для
повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую, предназначенные для сейсмоопасных
районов с сейсмичностью до 9 баллов, В районах с сейсмичностью более 9 баллов при динамических, импульсных
растягивающих нагрузках для поглощения сейсмической энергии необходимо использование фрикционно-демпфирующих
компенсаторов, соединенных с кабеленесущими системами с помощью фланцевых фрикционно-подвижных демпфирующих
компенсаторов (с учетом сдвиговой прочности), согласно заявки на изобретение: " Фрикционно -демпфирующий
компенсатор для трубопроводов" F 16L 23/00 , регистрационный № 2021134630 (ФИПС), от 25.11.2021, входящий № 073171,
"Фланцевое соединение растянутых элементов трубопровода со скошенными торцами", Минск № а 20210217 от 28 декабря
2021 , "Компенсатор для трубопроводов " Минск , регистрационный № а 20210354 от 27 декабря 2021. , при
импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных
соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном
сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного
болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
При сбрасывании, сдвиге строительных конструкций , с применением фрикционноподвижных болтовых соединений для обеспечения сейсмостойкости конструкций здания:
масса строительной системы уменьшается, частота собственных колебаний
увеличивается, а сейсмическая нагрузка падает
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 30

31.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 31

32.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 32

33.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 33

34.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 34

35.

Рис.5 Графики задающих режимов расчетных схем перемещений узла крепления
сдвигоустойчивого податливого коменсатора (крепления) для огнезащитного состава марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных материалов
согласно ( СТО 72746455-3.6.17-2022) , по чертежам ПС-3514.00.00.000-А, ПС-3391.00.00.00-Е СБ,
серийный выпуск в ПК SCAD для 8-9 баллов (высота от 0м до 25м). Суммарные внешние нагрузки
на основную схему демпфирующего податливого узла крепления X, Y, Z, UX, UY, UZ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 35

36.

использовались в программном комплексе SCAD с применением блочного метода Ланцоша со
сдвигами применительно к сейсмическому анализу сооружений (разработан Сергем Фиалко д.т.н., с.н.с. (проф. Киевского национального университета строительства и архитектуры) и
Перельмутером Анатолием Викторовичем - д.т.н, проф.
1,0
1,0
1,0
1,0
1,0
Рис.6. Графиков испытания элементов демпфирующих узлов крепления податливого крепления
для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы )
выполнен из водно-дисперсионных материалов согласно ( СТО 72746455-3.6.17-2022) по чертежам ПС3514.00.00.000-А, ПС-3391.00.00.00-Е СБ, серийный выпуск в ПК SCAD для районов с
сейсмичностью 8-9 баллов. Суммарные внешние нагрузки на основную схему демпфирующего
податливого узла крепления X, Y, Z, UX, UY, UZ использовались в программном комплексе SCAD
с применением блочного метода Ланцоша со сдвигами применительно к сейсмическому анализу
сооружений (разработан Сергем Фиалко - д.т.н.с.н.с. (проф. Киевского национального
университета строительства и архитектуры) и Перельмутером Анатолием Викторовичем - д.т.н,
проф. При испытаниях элементов сдвигоустойчивого податливого коменсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022) , серийный выпуск на сейсмическую
нагрузку периодически встречаются задачи, в которых в нижней части спектра лежит большое
количество локальных форм колебаний, причем спектр собственных частот является очень густым.
Такие задачи создают серьезные проблемы, поскольку вычислительные алгоритмы, реализованные
в современных компьютерных системах МКЭ-анализа, как правило, в таких случаях оказываются
малоэффективными. Разработанный в программном комплексе SCAD алгоритм блочного метода
Ланцоша со сдвигами, реализующий сейсмический режим, позволяет значительно продвинуться в
решении этой проблемы. Согласно письма Минстроя РФ от 04.07.2014 № 01-01/206 на 6307-01/04
от 19.5.2014 Кальгин А А «Ордена Трудового Красного Знамени Академия коммунального
хозяйства им. К.Д. Памфилова» по поручению Минтстроя РФ признала две теории испытания на
сейсмику с использованием в практике испытаний экономичной прогрессивной теории активной
сейсмозащиты зданий (АССЗ), имеет место применение и консервативной старой консольной
расчѐтно-динамической модели (РДМ), согласно ГОСТ Р 53166-2008 «Землетрясение» стр. 9., при
испытаниях может потребоваться уточнение для некоторых спектров ответа между амплитудой
перемещений для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 36

37.

и демпфирования узлов крепления. Для испытательных целей:
1. Два образца жестко крепились на виброплатформе поочередно в трех взаимноперпендикулярных направлениях.
2. Предварительно, до испытаний на сейсмостойкость, был проведен лабораторный анализ
податливости демпфирующего крепления для подогревателя топливного газа. Образцы
испытывались поочередно в трех взаимно-перпендикулярных направлениях с ускорением l,0g, в
диапазоне 5-100 Гц путем плавного изменения частоты 1окт./мин и от 100 до 5 Гц с той же
скоростью изменения частоты.
3.После проведения комплекса вибрационных испытаний, вторично был проведен анализ
сдвигоустойчивости демпфирующего крепления для подогревателя топливного газа.
11. Результат испытаний сдвигоустойчивых, податливых узлов крепления для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022)
Испытания проходили в испытательном Центре «ПКТИ –Строй- ТЕСТ» (протокол испытаний №
1516-2 от 25.11.2021, № 1506-1 от 18.11.2021, результаты статических испытаний крепежных
изделий на испытательную нагрузку. Аттестат аккредитации федерального агентства по
техническому регулированию и метрологии РОСС RU 0001.22.CЛ 33 от 24.12.2023. Срок действия
аттестата аккредитации до 24 декабря 2023).
Таблица 2
№ Наименование
проверок и
п испытаний
/
п
1 Проверка крепления
скольжения и
податливости
сдвигоустойчивого
анкера
2 Проверка крепления
скольжения и
податливости
сдвигоустойчивого
анкера
3 Величина усилия, кгс
при котором
происходит вырыв
Испытательное
оборудование
Создание
осевого усилия
испытательной
машиной ZD 10/90 зав №
66/79
(сертификат о
калибровке №
13-1371 от
Величина контролируемого
параметра
Результаты
испытаний
Величина усилия 580 кгс при
котором происходит
скольжение или перемещение
стального тросового зажима
по стальному анкеру
Величина усилия 1420 кгс при
котором происходит
скольжение или перемещение
стального тросового зажима
по стальному анкеру
Величина усилий кгс 2420
800 кгс
Срыв резьбы на стальном
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
340 кгс
Характер
разрушения
срыв резьбы на
Всего листов 96
Лист 37

38.

4
5
6
7
8
9
болтового крепления из
28.08.2013
стального листа (Ст3)
При испытаниях
Величина усилия, кгс
податливых
при котором
сдвигоустойчив
происходит вырыв
болтового крепления из ых и скользящих
узлов крепления
стального листа (Ст3)
Величина усилия, кгс
при котором
Регистрация
происходит вырыв
усилий
болтового крепления из
производилось
стального листа (Ст3)
по шкале до
Результаты
1000 кгс
статических испытаний
сдвигоустойчив
крепежных изделий на
ого
податливого
испытательную
крепления
нагрузку
подогревателя
Результаты
статических испытаний топливного газа
крепежных изделий на
испытательную
нагрузку
Результаты
статических испытаний
крепежных изделий на
испытательную
нагрузку
Результаты
статических испытаний
крепежных изделий на
испытательную
нагрузку
листе
стальном листе
Величина усилий кгс 4000
Характер
разрушения
срыв резьбы на
стальном листе
Срыв резьбы на стальном
листе
Величина усилий кгс 730
Срыв резьбы на стальном
листе
Характер
разрушения
срыв резьбы на
стальном листе
Величина усилий 30 кгс
Срыв гайки М10
Смятие граней полимидальной на резьбе гайки
гайки М12на резьбе гайки
М22
Величина усилий 40 кгс
Срыв гайки М12,
Смятие граней полимодальной М22
гайки М12на резьбе гайки
М22
Величина усилий 50 кгс
Срыв гайки М14,
М22
Смятие граней полимидальной
гайки М12на резьбе гайки
М22
Величина усилий 150 кгс
Срыв гайки М16,
М22
Смятие граней полимидальной
гайки М12на резьбе гайки
М22
12. Заключение по испытанию на сейсмостойкость коменстаора для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022)
В соответствии с испытаниями сдвигоустойчивого податливого комнесатора для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022) делается вывод, что компенсатор для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022) соответствует требованиям, которые
предъявляются к оборудованию I и II группы сейсмостойкости, так как сдвигоустойчивые
податливые крепления податливого крепления компенсатора для огнезащитного состава марки
TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022) по чертежам компенсатора для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022) , серийный выпуск выполнены согласно требованиям НП -
031-01 «Нормы проектирования сейсмостойких атомных станций», согласно «Руководство по
креплению технологического оборудования фундаментными болтами», РЧ серия 4.402-9, вып.5
«Анкерные болты» и «Инструкция по выбору рамных податливых крепей горных выработок».
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 38

39.

Скользящие (сдвиговые) крепления выполнены в виде болтовых соединений с изолирующей
трубой или свинцовой обоймой, с податливыми элементами в виде свинцового или из красной
меди стопорного клина, забитого в пропиленный в нижней части анкера паз.
К протоколу прилагаются:
Приложение 1. Фотографии фрагментов демпфирующих узлов крепления податливого крепления
компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022) , серийный
выпуск
Приложение 2. Перечень научных работ, используемых при испытаниях податливого крепления
компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022) , серийный
выпуск
Рис.7.Узлы крепления фрагментов сдвигоустойчивого податливого крепления компенсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Приложение 1.
Фотографии фрагментов демпфирующих узлов крепления податливого компенсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022),серийный выпуск.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 39

40.

Рис.8. Фотографии фрагментов демпфирующих узлов крепления податливого крепления
компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
серийный выпуск выполненных в виде болтовых соединений с изолирующими трубами и
амортизирующими элементами согласно СН 471-75, «Руководства по креплению технологического
оборудования фундаментными болтами», ЦНИИПромзданий, М.,Стройиздат, 1979 г. и альбома
«Анкерные болты», серии 4.402-9, вып. 5 (проходили испытания в ИЦ «ПКТИ-СтройТЕСТ»,
протокол испытаний на осевое статистическое усилие сдвига дугообразного зажима с анкерной
шпилькой № 1516-2 от 25.11.2013г.).
Приложение 2.
Перечень научных работ, используемых при испытаниях сдвигоустойчивого податливого
крепления компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
серийный выпуск
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 40

41.

1. Разработка методов создания цельнометаллических многокомпонентных виброизоляторов с
конструкционным демпфированием
2. http://doc2all.ru/article/11012012_lazutkingv
3. Динамика стержневой системы пространственной виброизоляции приборов
http://doc2all.ru/article/06092012_90375_shohin
4. Создание и развитие средств снижения виброактивности судовых дизель-генераторных
агрегатов.
http://doc2all.ru/article/14062013_124285_minasjan
5. Разработка методов расчета статических, динамических и ресурсных характеристик
виброизоляторов из материала МР
http://doc2all.ru/article/27102009_ulanovam
6. Метод повышения помехоустойчивости в сети ZigBee в условиях преднамеренных
электромагнитных воздействий
http://doc2all.ru/article/01112013_140878_danilin
7. Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики
http://doc2all.ru/article/26092013_133017_durnovceva/2
8. Разработка систем защиты от шумов и вибраций кузнечнопрессовых машин и агрегатов
http://doc2all.ru/article/16042012_ivanovuv/2
9. Разработка методов создания цельнометаллических многокомпонентных виброизоляторов с
конструкционным демпфированием
10. http://doc2all.ru/article/11012012_lazutkingv
11. Динамика стержневой системы пространственной виброизоляции приборов
http://doc2all.ru/article/06092012_90375_shohin
12. Особенности строительства трубопроводов в районах с высокой сейсмичностью
http://doc2all.ru/article/28012013_107038_avarrete
13. Разработка систем защиты от шумов и вибраций кузнечнопрессовых машин и агрегатов
http://doc2all.ru/article/16042012_ivanovuv/3
Приложение 3.
Чертежи, схемы вариантов демпфирующих узлов крепления в виде болтовых соединений с
изолирующими трубами и энергопоглощающими элементами для податливого крепления
компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 41

42.

Рис.9. Варианты демпфирующих узлов крепления податливого крепления компенсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
изготовленные компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
серийный выпуск в виде болтовых соединений с изолирующей трубой или свинцовой обоймой с
амортизирующими элементами в виде свинцового или из красной меди клина, забитого в паз,
пропиленный в нижней части анкера.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 42

43.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 43

44.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 44

45.



б


б
2.440-2. 1-09КМ
2.440-2.1 01КМ
Из м.
Кол.уч. Лис т . №
Из м.
к.од
Под п и с ь . Дат а .
Ста д и я
Ш
арнирные узлы.
Рекомендации по применению
ш
арнирных узлов
Исп .
Ли с т
Кол.уч. Лис т . №
2.440-2. 1-17КМ
Из м. Кол.уч.
к.П
одод п и с ь . Дат а .
Ли с т о в
Ш
арнирные узлы.
О
пирание балок на оголовок стойки,
центральное опирание.
Узлы 10, 11.
Исп .
Р
Лис т . №
2.440-2. 1-26КМ
Из м.
к.оП
дод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к балкам на 2- х болтах.
Узел 20.
Исп .
Кол.уч. Лис т . №
2.440-2. 1-36КМ
Из м.
к.П
одод п и с ь . Дат а .
Рамные уз лы.
Узлы33. . . 35( г руппа А- 1) и
45. . . 47(группа А- 2) .
Исп .
Кол.уч. Лис т . №
2.440-2. 1-46КМ
Из м.
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы54. . . 61( г руппа В- 1) .
Раз резы.
Исп .
Кол.уч. Лис т . №
2.440-2. 1-54КМ
Из м.
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики соединений поясов с
колоннами для групп узлов С- 1, С- 2.
Исп .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики несущ
ей способности
колонн.
Исп .


2.440-2. 1-09КМ
№ 6/ 6-1120,
введеныв действие с 30,06,89,
приказом ЦИИИ проектстальконструкция
им. М ельникова от 17, 01,89, № 28
2.440-2. 1-27КМ
Из м.
Кол.уч. Лис т . №
2.440-2. 1-54КМ
2.440-2. 1-37КМ
2.440-2. 1-02КМ
Из м.
Кол.уч. Лис т . №
2.440-2. 1-18КМ
к.П
одод п и с ь . Дат а .
Ш
арнирные узлы.
О
пирание балок на оголовок стойки,
центральное опирание.
Узлы 10, 11.
Исп .
к.од
Под п и с ь . Дат а .
Ста д и я
Ш
арнирные узлы.
Этажное опирание балок.
Узлы 1 и 2.
Исп .
Ли с т
Ли с т о в
Р
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Лис т . №
Из м.
Из м.
Рамные уз лы.
Узлы36. . . 38( г руппа А- 1) и
48. . . 50(группа А- 2) .
Исп .
Из м. Кол.уч.
к.оП
дод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к балкам на 3- х болтах.
Узел 21.
Исп .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики несущ
ей способности
колонн.
Исп .
Рамные уз лы.
Узлы62. . . 69( г руппа В- 1) .
Раз резы.
Исп .
2.440-2. 1-47КМ
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Характеристики опорных ригелей
для групп узлов С- 1, С- 2.
Исп .


б
б
б
2.440-2. 1-54КМ
Из м.
2.440-2. 1-10КМ
2.440-2. 1-03КМ
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
2.440-2. 1-19КМ
Рамные уз лы.
Х
арактеристики несущ
ей способности
колонн.
Исп .
2.440-2. 1-28КМ
Из м.
Кол.уч. Лис т . №
к.од
Под п и с ь . Дат а .
Из м.
Ш
арнирные узлы.
Крепление балок на опорных уголках.
Узел 3.
Исп .
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Из м. Кол.уч.
Ш
арнирные узлы.
Крепление балок на 2- х болтах ( горизонтальное) .
Узлы 12, 13.
Исп .
Лис т . №
к.оП
дод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к балкам на 4- х болтах.
Узел 22.
Исп .
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
2.440-2. 1-38КМ
Рамные уз лы.
Узлы39. . . 41( г руппа А- 1) и
51. . . 53(группа А- 2) .
Исп .
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Исп .
Ф
Рамные уз лы.
ланцыдля группы
узлов В- 1, В- 2.
2.440-2. 1-47КМ
Из м.
2006- 02-АС
Из м.
Кол.уч. Лис т . №
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Характеристики опорных ригелей
для групп узлов С- 1, С- 2.
Исп .
к.оП
дод п и с ь . Дат а .
Ста д и я
Исп .
Ли с т
Ли с т о в
Р



³
³

б
б

²
б
б
б
2.440-2. 1-55КМ
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Основные расчетные формул ы
и примеры подбора узлов.
Исп .
б
б>
2S
б
б
2.440-2. 1-29КМ
2.440-2. 1-20КМ
Из м.
Из м. Кол.уч.
Лис т . №
к.оП
дод п и с ь . Дат а .
Кол.уч. Лис т . №

2.440-2. 1-39КМ
к.П
одод п и с ь . Дат а .
Рамные уз лы.
Узлы30. . . 41( г руппа А- 1) .
Раз резы.
Исп .
Ш
арнирные узлы.
Крепление балок к балкам на 5- ти болтах.
Узел 23.
Исп .
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
2.440-2. 1-48КМ
Рамные уз лы.
Характеристики фланцев
для групп узлов В- 1, В- 2.
Исп .
Из м.
2.440-2. 1-11КМ
2.440-2. 1-04КМ
Кол.уч. Лис т . №
Кол.уч. Лис т . №
Из м.
к.од
Под п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок на опорных уголках.
Узел 4.
Кол.уч. Лис т . №

к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристика вутов для групп узлов
А
, В, С.
Исп .
Из м.
Исп .
к.П
одод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к колоннам на 2- х болтах.
Узел 14.
Исп .
²
2006- 02-АС
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Ста д и я
Исп .
Ли с т
Ли с т о в
Р

2.440-2. 1-56КМ
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
О
сновные требования и указания по
изготовлению
элементов и монтажу
фланцевых узлов.
Исп .
2.440-2. 1-40КМ
2.440-2. 1-30КМ
2. 440- 2. 1- 2М

Из м.
Из м. Кол.уч.
Лис т . №
Из м.
к.оП
дод п и с ь . Дат а .
Кол.уч. Лис т . №
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы70. . . 72( г руппа С- 1) и
76. . . 78(группа С- 2) .
Исп .
Рамные уз лы.
Узлы42. . . 53( г руппа А- 1) .
Раз резы.
Исп .
Ш
арнирные узлы.
Крепление балок к балкам на6-ти болтах.
Узел 24.
Исп .
2.440-2. 1-11КМ
Из м.
2.440-2. 1-49КМ
к.П
одод п и с ь . Дат а .
Из м.
Ш
арнирные узлы.
Крепление балок к колоннам на 2- х болтах.
Узел 14.
Исп .
Кол.уч. Лис т . №

к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Характеристика опорных столико в
для групп узлов А, В, С.
Исп .

2006- 02-АС
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .

Ста д и я
Ли с т

Ли с т о в
Р


Из м.
Исп .



2.440-2. 1-04КМ


2.440-2. 1-56КМ




Из м.

Исп .
2.440-2. 1-31КМ
Из м.
2. 440- 2. 1- 2М

Из м. Кол.уч.
Лис т . №
к.оП
дод п и с ь . Дат а .
Лис т . №
к.оП
дод п и с ь . Дат а .
2.440-2. 1-41КМ
Из м.
Рамные уз лы.
Ф
ланцыдля группы
узлов А- 1.
Исп .

Ш
арнирные узлы.
Крепление балок к балкам на7-ми болтах.
Узел 25.
Исп .
2.440-2. 1-12КМ
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
О
сновные требования и указания по
изготовлению
элементов и монтажу
фланцевых узлов.
2.440-2. 1-50КМ
Из м.
Из м.
Кол.уч. Лис т . №

Рамные уз лы.
Узлы73. . . 75( г руппа С- 1) и
79. . . 81(группа С- 2) .
Исп .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
к.П
одод п и с ь . Дат а .
Рамные уз лы.
Обратные фланцы и ребра жесткости
в колоннах для групп узлов А, В, С.
Исп .
Ш
арнирные узлы.
Крепление балок к колоннам на 3- х болтах.
Узел 15.
Исп .


2006- 02-АС

Из м.
Кол.уч. Лис т . №

к.оП
дод п и с ь . Дат а .
Ста д и я
Исп .
Ли с т
Ли с т о в
Р
2.440-2. 1-04КМ



²
²
²
²


²
2.440-2. 1-32КМ
Из м.
Кол.уч. Лис т . №
2.440-2. 1-42КМ
к.П
одод п и с ь . Дат а .
Исп .
Ф
Рамные уз лы.
ланцыдля группы
узлов А- 2.
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы70. . . 75( г руппа С- 1) .
Раз резы
Исп .
2.440-2. 1-23КМ
3
Из м. Кол.уч.
2.440-2. 1-13КМ
Исп .
Из м.

Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Опирание балок на ткирпичные стены
Узлы 26, 27, 28, 29.
2.440-2. 1-51КМ
Ш
арнирные узлы.
Крепление балок к колоннам на 4- х болтах.
Узел 16.
Исп .
Из м.

Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Характеристики обратных фланцев и
ребер жесткости в колоннах для групп узлов
А
, В, С
Исп .
2.440-2. 1-05КМ
Из м.
Кол.уч. Лис т . №
к.од
Под п и с ь . Дат а .
Кол.уч. Лис т . №
к.од
Под п и с ь . Дат а .
2006- 02-АС
Ш
арнирные узлы.
О
пирание балок на ребра ш
веллеров.
Узел 5.
Исп .
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Ста д и я
Исп .
Ли с т
Ли с т о в
Р
2.440-2. 1-33КМ
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Рамные уз лы.
Харктеристики фланцев
для групп узлов А- 1, А- 2.
Исп .
2.440-2. 1-43КМ
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы76. . . 81( г руппа С- 2) .
Раз резы.
Исп .
2.440-2. 1-14КМ
Из м.
2.440-2. 1-52КМ
Ш
арнирные узлы.
Крепление балок к колоннам на 5- ти болтах.
Узел 17.
Исп .
2.440-2. 1-23КМ
Из м.
Рамные уз лы.
Усиление стенок колонн в узлах
групп А, В, С.
Исп .
2.440-2. 1-06КМ
Из м.
Ш
арнирные узлы.
О
пирание балок на ребра из тавров.
Узел 6.
Исп .

2.440-2. 1-34КМ
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
2.440-2. 1-44КМ
Рамные уз лы.
Узлы54. . . 57( г руппа В- 1)
и 62. . . 65 (группа В- 2) .
Исп .
Из м.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы70. . . 81( г руппа С- 1, С- 2) .
Раз резы.
Исп .








2.440-2. 1-53КМ
2.440-2. 1-15КМ




2.440-2. 1-24КМ
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Кол.уч. Лис т . №
Из м.
Из м. Кол.уч.
Ш
арнирные узлы.
Крепление балок к колоннам на 6- ти болтах.
Узел 18.
Исп .
2.440-2. 1-07КМ
Из м.
Лис т . №
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики несущ
ей способности
риг елей.
Исп .
к.оП
дод п и с ь . Дат а .
Исп .
Рамные уз лы.
Область применения.
к.од
Под п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок на опорных планках.
Узлы7, 7а, 8, 8а.
Исп .

2.440-2. 1-34КМ
Из м.
Кол.уч. Лис т . №
2.440-2. 1-45КМ
Из м.
к.П
одод п и с ь . Дат а .
Рамные уз лы.
Узлы54. . . 57( г руппа В- 1)
и 62. . . 65 (группа В- 2) .
Исп .

Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Соединение поясов с колоннами
для групп узлов С- 1, С- 2.
Исп .




2.440-2. 1-16КМ
2.440-2. 1-53КМ


Из м.

Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики несущ
ей способности
риг елей.
Исп .
Из м.
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к колоннам на 7- ти болтах.
Узел 19.
Исп .
2.440-2. 1-07КМ
Из м.
Кол.уч. Лис т . №




2.440-2. 1-24КМ
Из м. Кол.уч.
Лис т . №
к.оП
дод п и с ь . Дат а .
Исп .
к.од
Под п и с ь . Дат а .
Рамные уз лы.
Область применения.
Ш
арнирные узлы.
Крепление балок на опорных планках.
Узлы7, 7а, 8, 8а.
Исп .


б
б
б

б

б
б
2.440-2. 1-54КМ
2.440-2. 1-35КМ
2.440-2. 1-46КМ
Из м.
Из м.
Исп .
2.440-2. 1-25КМ
Из м. Кол.уч.
2.440-2. 1-08КМ
Из м.
Исп .
Кол.уч. Лис т . №
к.од
Под п и с ь . Дат а .
Исп .
2.440-2. 1-17КМ
Из м.
Ш
арнирные узлы.
Крепление балок на опорных планках из уголков
Узел 9.
Исп .
Кол.уч. Лис т . №
Лис т . №
Кол.уч. Лис т . №
к.П
одод п и с ь . Дат а .
Из м.
Рамные уз лы.
Узлы58. . . 61( г руппа В- 1)
и 66. . . 69 (группа В- 2) .
Исп .
Кол.уч. Лис т . №
Исп .
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики соединений поясов с
колоннами для групп узлов С- 1, С- 2.
Кол.уч. Лис т . №
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Х
арактеристики несущ
ей способности
колонн.
к.оП
дод п и с ь . Дат а .
Рамные уз лы.
Узлы30. . . 32( г руппа А- 1) и
42. . . 44(группа А- 2) .
к.П
одод п и с ь . Дат а .
Ш
арнирные узлы.
Крепление балок к балкам на 2- х болтах.
Узел 20.
Прогрессивное крепление оборудования из латунной сдвигоустойчивой заклепка шпилька с
резьбой с забитым из обожженной меди с энергопоглощающим забитым стопорным или
"тормозным" клином для сейсмоопасных районов
Резьбовая податливая заклепка-гайка цилиндр фланец с рифлением и забитым медным
стопорным клином
Изобретение Петрика Устройство для крепления деталей при помощи гибкого сердечника
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)SU
(11)1296753
(51) МПК 4
F16B2/06
(13)A2
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
к авторскому свидетельству
(12)
Статус: по данным на 17.11.2014 - нет данных
Пошлина:
(21), (22) Заявка: 3920543,
01.07.1985
(71) Заявитель(и):
КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ
ИМ.50-ЛЕТИЯ ВЕЛИКОЙ ОКТЯБРЬСКОЙ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 45

46.

(45) Опубликовано: 15.03.1987 СОЦИАЛИСТИЧЕСКОЙ РЕВОЛЮЦИИ
(56) Список документов,
цитированных в отчете о
поиске: Авторское
свидетельство СССР №
597867, кл. F 16 В 2/06, 1973.
(72) Автор(ы):
ВЕЛИКОИВАН ВАЛЕНТИН СЕМЕНОВИЧ,
ЛУЦЕКО ЮРИЙ СТЕПАНОВИЧ,
МИКУЛЕНОК ИГОРЬ ОЛЕГОВИЧ
(61) Номер основного
авторского свидетельства:
597867
(54) Устройство для крепления деталей при помощи гибкого сердечника
(57) Реферат:
Изобретение относится к области ма- 1уиностроения и может быть использовано для соединения
различных деталей машин. Целью изобретения является увеличение срока службы и повышение
прочности соединения . Устройство содержит детали 5 и 6, соединенные посредством гибкого
сердечника 1, выполненного в виде пучка проволок , расположенных концентричными слоями . Каждый
слой содержит проволоки одинакового диа.метра, а диаметры смежных слоев выполнены различными и
уменьи аются от центра к периферии. Указанная цель достигается за счет увеличения несущей
способности периферийных участков гибкого .сердечика вследствие увеличения площади их
поперечного сечения. 1 з.п. ф-лы, 2 ил. IND О С5 СП СО Го
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 46

47.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 47

48.

Альбом технических решений по применению демпфиру ющих
ус тройств с огласно п.4.6 СП 14.13330.2011, СНиП 11-7-81*
"Строительс тво в с ейс моопасных районах " проиложение к
каталогу с ерии 3.001-1 "Виброизолиру ющие у с тройс тва фу ндаментов
и оснований под машины с динамичес кими нагру зками"
http://t3487810.front.ru http://fax 6947810.front.ru http://t89650861560.front.ru
http://t89052867237.front.ru
ООИ"Сейсмофонд"
ЗА О"СОКЗ"
ОАО"СПб ЗНИиПИ"
Общие у казания
СОДЕРЖАНИЕ
ГИП ООИ «Сейс моФОНД» А.И.Коваленко
ас пирант ОАО "СПб ЗНИиПИ" А.И.Коваленко
22.06.2011
Конструктивные решения
демпфирующих устройств
[email protected]
[email protected]
см.Ladexl.ru
с м.www.prim dv or.ru
см.Ladexl.ru
с м.www.prim dv or.ru
см.Ladexl.ru
с м.www.prim dv or.ru
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
см.Ladexl.ru
с м.www.prim dv or.ru
Всего листов 96
Лист 48

49.

см.Ladexl.ru
с м.www.prim dv or.ru
см.Ladexl.ru
с м.www.prim dv or.ru
см.Ladexl.ru
с м.www.prim dv or.ru
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
см.Ladexl.ru
с м.www.prim dv or.ru
Всего листов 96
Лист 49

50.

Рекомендуемые моменты затяжки болтов и винтов остаются прежними для сдвигоустойчивого
податливого крепления податливого крепления компенсатора для огнезащитного состава марки
TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022)
Момент затяжки – необработанные винты (отделка чернением). Коэффициент трения 0,14
Класс
Момент
Номинальный размер – Резьба крупная
M6
M8
M10
M12
M16
M20
M24
M27
M30
M33
M36
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
M39
Всего листов 96
Лист 50

51.

5.6
8.8
Nm
Ft. lb
4.6
3.3
Nm
10.5
Ft. lb
7.7
10.9
Nm
15
Ft. lb
11
12.9
Nm
18
Ft. lb
13
Nm = Нм, Ft. lb = фунто-футы
11
8.1
22
16
39
28
95
70
184
135
315
232
470
346
636
468
865
637
1111
819
1440
1062
26
19
36
26
43
31
51
37
72
53
87
64
89
65
125
92
150
110
215
158
305
224
365
269
420
309
590
435
710
523
725
534
1020
752
1220
899
1070
789
1510
1113
1810
1334
1450
1069
2050
1511
2450
1805
1970
1452
2770
2042
3330
2455
2530
1865
3680
2625
4260
3156
3290
2426
4520
3407
5550
4093
Момент затяжки – гальваническая оцинковка. Коэффициент трения 0,125
Класс
Момент
Номинальный размер – Резьба крупная
M6
M8
M10
M12
M16
M20
M24
M27
M30
5.6
Nm
4.3
10.5
Ft. lb
3.1
7.7
8.8
Nm
9.9
24
Ft. lb
7.3
17.7
10.9
Nm
14
34
Ft. lb
10.3 25
12.9
Nm
16.5 40
Ft. lb
12.1 29
Nm = Нм, Ft. lb = фунто-футы
21
15
48
35
67
49
81
59
36
25
83
61
117
86.2
140
103
88
64
200
147
285
210
340
260
171
126
390
297
550
405
650
485
295
217
675
497
960
708
1140
84o
435
320
995
733
1400
1032
1660
1239
560
435
1350
995
1900
1401
2280
1681
M33
M36
M39
800
590
1830
1349
2580
1902
3090
2276
1030
768
2360
1740
3310
2441
3880
2535
1340
988
3050
2249
4290
3163
5150
3798
Рис 18. Гайковерт ИП-3128 (допускает настройку величины крутящих моментов от 80 до 150
кгсхм) сдвигоустойчивого податливого крепления податливого крепления компенсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 51

52.

Рис.19. Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-64:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для податливого крепления компенсатора для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022) для сейсмоопасных районов с
сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск). Испытания проводились спектральным
методом на основе синтезированных акселерограмм в лаборатории «ПКТИ» ( СПб, ул. Афонская, д.2) на
соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9 баллов по шкале MSK-64 на основе
рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН
382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с испытаниями на сейсмостойкость демпфирующего
анкера с сейсмоизолирующим зажимом в ПКТИ можно ознакомиться на сайте:
https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 52

53.

https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Рис. 20. . Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-64:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для компенсатора для огнезащитного состава марки TAIKOR FP (
OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО
72746455-3.6.17-2022), испытанный
для сейсмоопасных районов с сейсмичностью 8-9 баллов
по шкале MSK-64 (серийный выпуск). Испытания проводились спектральным методом на основе
синтезированных акселерограмм в лаборатории «ПКТИ» ( СПб, ул. Афонская, д.2) на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 8-9 баллов по шкале MSK-64 на основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72, альбома серии 4.903,
вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83, подробно с испытаниями на сейсмостойкость демпфирующего анкера с
сейсмоизолирующим зажимом в ПКТИ можно ознакомиться на сайте: https://vimeo.com/76231859
https://vimeo.com/76231805 https://vimeo.com/76231827 https://vimeo.com/76231640
https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202
https://vimeo.com/76222129 https://vimeo.com/76222067 https://vimeo.com/76222000
https://vimeo.com/76222042 https://vimeo.com/76221962 https://vimeo.com/76222173
https://vimeo.com/76194054 https://vimeo.com/76193714 https://vimeo.com/76194198
https://vimeo.com/76194157 https://vimeo.com/76194145 https://vimeo.com/76194133
https://vimeo.com/76194118 https://vimeo.com/7619380
Рис.21. . Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 53

54.

зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-64:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для податливого крепления компенсатора для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022), серийный выпуск разработанной
для
сейсмоопасных районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск).
Испытания проводились спектральным методом на основе синтезированных акселерограмм в лаборатории
«ПКТИ» ( СПб, ул. Афонская, д.2) на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9
баллов по шкале MSK-64 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные»
(скользящие, катковые, шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с
испытаниями на сейсмостойкость демпфирующего анкера с сейсмоизолирующим зажимом в ПКТИ можно
ознакомиться на сайте: https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Рис. 22. . Испытание демпфирующего фланцевого узла крепления выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми
шайбами, расположенными с двух сторон болтового крепления изготовленными согласно
«Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании
спектров ответов для зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1.
10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9;
раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009
(МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488,
2256272, 2440638, 2035835, 2252473 для , податливого крепления компенсатора для
огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из
водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022), разработанной
для
сейсмоопасных районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск).
Испытания проводились спектральным методом на основе синтезированных акселерограмм в лаборатории
«ПКТИ» ( СПб, ул. Афонская, д.2) на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9
баллов по шкале MSK-64 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные»
(скользящие, катковые, шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с
испытаниями на сейсмостойкость демпфирующего анкера с сейсмоизолирующим зажимом в ПКТИ можно
ознакомиться на сайте: https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 54

55.

А
Рис.23. Компенсатор (для трубопровода) выполненный в виде «змейки» или зигзага» согласно
«Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для податливого
крепления компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 55

56.

на основании спектров ответов для зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95
п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1;
7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р
51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, для сейсмоопасных
районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск), передан заказчиком.
Рис. 24.Компенсатор – гибкие связи (для трубопровода)выполненный в виде «змейки» или
зигзага» согласно «Руководства по креплению технологического оборудования фундаментными
болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для
податливого крепления компенсатора для огнезащитного состава марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО
72746455-3.6.17-2022) ,на основании спектров ответов для зданий UBS и UBN по НП-031-01
согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п.
6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88
П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, для
сейсмоопасных районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск), передан
заказчиком.
Рис. 25.Компенсатор-гибкие связи (для трубопровода),выполненный в виде «змейки» или зигзага»
согласно «Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для податливого
крепления компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
на основании спектров ответов для зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95
п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1;
7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р
51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, для сейсмоопасных
районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск), передан заказчиком.
Рис.26. Компенсатор –гибкие связи (для трубопровода),выполненный в виде «змейки» или зигзага»
согласно «Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для податливого
крепления компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р
53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 56

57.

ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.22000, для сейсмоопасных районов с сейсмичностью 8- 9 баллов по шкале MSK-64 (серийный
выпуск), передан заказчиком.
Рис.27. Демпфирующий узел крепления в виде болтового соединения с изолирующей трубой и
амортизирующими элементами податливого крепления компенсатора для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022), на основании спектров ответов в программе
SCAD согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п.
6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4;
ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, один из вариантов.
Рис.28. Демпфирующий узел крепления в виде болтового соединения с изолирующей трубой и
амортизирующими элементами податливого крепления компенсатора для огнезащитного
состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из воднодисперсионных материалов ( СТО 72746455-3.6.17-2022) , на основании спектров ответов в программе
SCAD согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п.
6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4;
ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, один из вариантов.
Рис.29. Демпфирующий узел крепления в виде болтового соединения с изолирующей трубой и
амортизирующими элементами податливого крепления компенсатора для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022) на основании спектров ответов в программе SCAD согласно
ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2;
6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П.
2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р один из вариантов.
Рис.30.Cообщение на конференции в СПб ГАСУ (180 лет ЛИСИ) Мажиева Х Н о повышении
сейсмостойкости объектов за счет использования демпфирующих узлов крепления, энергопоглотителей ».
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 57

58.

Рис. Испытание демпфирующих узлов крепления для сдвигоустойчивого податливого крепления
компенсатора для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные Системы ) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022) на основании
спектров ответов для зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1.
10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9;
раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009
(МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, для сейсмоопасных районов с
сейсмичностью от 7 до 9 баллов по шкале MSK-64 (серийный выпуск),(передан заказчиком), с
испытаниями на сейсмостойкость демпфирующего анкера с сейсмоизолирующим зажимом в ПКТИ можно
ознакомиться на сайте https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/76193807
Демпфирующее фланцевое соединение для сдвигоустойчивого податливого крепления
податливого крепления подогревателя топливного газа при наличии фланцевого соединения
работающего на сдвиг и выполнен в виде болт. соединения. из латунной шпильки, с подпилен. пазом, с
изолир трубой и элементами в виде свинцовой шайбы и медным стопорным «тормозным» клином , выполн
согл: ГОСТ Р 53166-2008, РБ 006-99, СП 14.13330.2011 п.4.6, МДС 2-1.2004 , ОСТ 37.001.050-73,сборника 1487-1997.00.000, сер. № 4.402-9, в 5, СН 471-75 выполнены согласно ГОСТ 17516.1-90 п.5 к сейсмическим.
возд 9 баллов по шкале MSK-64, при наличии фланцевого соединения работающего на сдвиг( латунная
шпилька с медным клином и амортизирующими элементами в виде свинцовых шайб, согласно
рекомендаций ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72,ОСТ
37.001.050-73,альбома 1-487-1997.00.00 на основании спектров ответов для зданий UBS и UBN
по НП-031-01, установленного на мелкозаглубленном фундаменте с демпфирующей
песчаной «подушкой» и амортизирующей прослойкой из гравия или других материалов
(щебенка, пеностекло, пеноплекс, пенотерм), согласно ТСН МФ -97, МО ВСН 29-85, СТО
36554501-012-2008, СН 536-81, с пластовым дренажом согласно альбома «Конструкции
пластовых дренажей», серия 8-005-1, вып. 0 и вып.1, с устройством автоматического
отключения при землетрясении, пожаре или воздействии электромагнитных помех,
согласно изобретениям №№ 2327878, 2228488, 2256272, 2440638, 2035835, 2252473,
Податливое болтовое крепление выполнено с использованием тросового зажима с
графитом (порошком ) и стопором для троса. Между зажимом и стопором, расстояние 10
мм -30 мм. ( в зависимости от бальности, где проходит трубопровод ) Осевое усилие на
тросовом зажиме, должно составлять не выше 3 тс, согласно СНиП III -18-75 , а на
стопоре ( тросовом), натяжение высокопрочного болта, должно составлять 27.1 тс (М24), (
М27-35,3 тс ), что дает возможность работать тросовому зажиму расположенному на
высокопрочном болте работать на сдвиг, что позволит демпфирующему фланцевому
соединению во время землетрясения перемещаться до 20 мм- 30 мм, что исключает
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 58

59.

разрыв трубопровода и обеспечивает сейсмостойкость и фланцевому соединению и
агрегату, закрепленному на фундаментном болте с изолирующей трубой и
амортизирующими или демпфирующими элементами (допускается крепление клеммами
согласно ГОСТ 24741-81 «Крепление крановых рельсов к стальным подкрановым бакам» с
расчетной сейсмостойкостью до 9 баллов).
Внимание !! При испытаниях в испытательной лаборатории
организации "Сейсмофонд"при СПб ГАСУ , резьба на шпильке с двух
сторон стачивалась в испытательной лаборатории до 4.0 мм, 3.5 мм,
3.0 мм ( протокол 1506-1 от 18.11.2013 и болгаркой пропиливался паз на
шпильке для свинцового или медного стопорного ( тормозного ) клина (
смотри протокол ПКТИ № 1506-1 от 18.11.2013 ) для соскальзывания во
время землетрясения или аварийного взрыва латунного гайки со
шпильки, на фланцевом креплении или крепления топливного газа со
стопорным свинцовым или из красной обожженной меди, забитый в паз
шпильки стопорный свинцовый клин, не даст слететь латунной гаки и
будете поглощать сейсмическую или взрывную энергию
Примечание для обязательного исполнения : И это надо делать при
креплении оборудования для сейсмоопасных районов работающего на сдвиг и выполнен в
виде болт. соединения. из латунной шпильки, с подпилен. пазом, с изолир трубой и элементами в виде
свинцовой шайбы и медным стопорным «тормозным» клином , выполн согл: ГОСТ Р 53166-2008, РБ 00699, СП 14.13330.2011 п.4.6, МДС 2-1.2004 , ОСТ 37.001.050-73,сборника 1-487-1997.00.000, сер. № 4.402-9, в
5, СН 471-75 выполнены согласно ГОСТ 17516.1-90 п.5 к сейсмическим. возд 9 баллов по шкале MSK-64,
при наличии фланцевого соединения работающего на сдвиг( латунная шпилька с медным клином и
амортизирующими элементами в виде свинцовых шайб, согласно рекомендаций ЦНИИП им Мельникова,
ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72,ОСТ 37.001.050-73,альбома 1-487-1997.00.00
в сейсмоопасных в зонах более 8 баллов. А так же крепить соединения
фланцевые для подогревателя топливного газа и трубопроводов с
демпфирующей сдвиговой сточенной резьбой с двух сторон на латунной
гайке со топорным энергопоглощяющим свинцовым при 7-8 баллов и из
красной меди при сейсмичности более 8 баллов клином Вторичные
испытания проводить на строительной или монтажной площадке для
определения затяжки латунной гайки со свинцовой шайбой !!
Выбор элементов, их геометрических параметров проведен на основании изучения
представленной Заказчиком технической документации. сдвигоустойчивого податливого крепления
податливого крепления Таблица 1. Параметры колебаний грунта при силе землетрясения,
выраженной в долях целого балла (7,0≤I≤7,9).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 59

60.

7,0
7,1
7,2
7,3
7,4
7,5
7,6
7,7
7,8
7,9
4,0
4,3
4,6
4,9
5,3
5,7
6,1
6,5
7,0
7,5
8,0
8,6
9,2
9,8
10,6
11,3
12,1
13,0
13,9
14,9
100
107
115
123
132
141
152
162
174
187
Таблица 2. Параметры колебаний грунта при силе землетрясения, выраженной в долях
целого балла (8,0≤I≤8,9).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
8,0
8,0
16,0
200
8,1
8,6
17,1
214
8,2
9,2
18,4
230
8,3
9,8
19,7
246
8,4
10,6
21,1
264
8,5
11,3
22,6
283
8,6
12,1
24,3
303
8,7
13,0
26,0
325
8,8
13,9
27,9
348
8,9
14,9
29,2
373
Таблица 3. Параметры колебаний грунта при силе землетрясения, выраженной в долях
целого балла (9,0≤I≤10,0).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
9,0
16,0
32,0
400
9,1
17,1
34,3
429
9,2
18,4
36,8
460
9,3
19,7
39,4
492
9,4
21,1
42,2
528
9,5
22,6
45,3
566
9,6
24,3
48,5
606
9,7
26,0
51,9
650
9,8
27,9
55,7
696
9,9
29,9
59,7
746
10,0
32,0
64,0
800
Испытания проводились в два этапа:
- Первый этап. Испытания проводились на податливость фрагмента демпфирующего узла
крепления податливого крепления
- Второй этап. Испытания проводились на демпфирующих монтажных соединениях.
Вариант «Скольжение», см. сайт организации «Сейсмофонд» при СПб ГАСУ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 60

61.

https://www.spbgasu.ru/
3.2 На сайте можно посмотреть двигающегося, скользящего податливо-демпферного
соединения.
С фотографиями демпфирующих двигающихся фрикционно-податливых узлов
соединения податливого крепления можно ознакомиться на сайте, см. ссылка
http://video.yandex.ru/users/tvkrestiyanskoe/view/1/.
С конструктивными решениями фрикционно-податливых узлов крепления демпфирующих
соединений с креплением трубопроводов (способ скольжения) можно ознакомиться на сайте,
см.ссылка :
Более подробно новыми, оригинальными, прогрессивными, современными, безрезьбовыми
креплениями с подпиленной сточенной резьбой с двух противоположенных сторон латунной
шпильки : 4.0 мм, 3,5 мм, 3.0 мм демпфирующие, сейсмостойкие взрывостойкие, податливые
крепления по изобретению талантливого, великого изобретателя Петрика В. А. из Киевского
политехнического института из Киевской Руси, при помощи гибкого сердечника, в виде
"танцующей" латунной шпильки в свинцовой или медной "рубашке" с прорезанным пазом и
забивным стопорным тормозным клином и свинцовыми шайбами , которое является надежным
скреплением подогревателей топливного газа ( оборудования в сейсмоопасных зонах ) из города
Тула, трубопроводов, фланцевых соединений вытяжной трубы со стальными оттяжками с
многослойными медно -латунными шайбами в жестком кольце, которые при сейсмических,
ударных, вибрационных, внешних техногенных и геофизических нагрузок изгибаются.
Более подробно смотри изобретение номер 1296753 международный класс F 16B2/06 или
ссылки: http://rutube.ru/video/e9c2b309d2a83b73ced491e3ecddb853/
https://cloud.mail.ru/home/tula_seismostoykie_podogrevateli_toplivnogo_gaza_304_16%20_oktyabrya_2
014_seismofond.ru.doc http://dfiles.ru/files/2rhqe843l https://docs.google.com/file/d/0B22-AI_3XYBd05FeWtsQklNWjA/edit http://turbobit.net/r2e7td7fmcxh.html
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 61

62.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 62

63.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 63

64.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 64

65.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 65

66.

Список научной и технической литературы используемая
при лабораторных испытаниях организации"Сейсмофонд"
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 66

67.

при СПбГАСУ :
1. .Алпатов В.Ю., Соловьев А.В., Холопов И.С. К вопросу расчета фланцевых
соединений на прочность при знакопеременной эпюре напряжений //
Промышленное и гражданское строительство. — № 2. — 2009, с. 26-30.
2. 2.
Бирюлев В.В., Катюшин В.В. Проектирование фланцевых соединений с
учетом развития пластических деформаций // Труды международного
коллоквиума "Болтовые и специальные монтажные соединения в стальных
строительных конструкциях". — Том 2. - М.: ВНИПИ Промсталь- конструкция.
— 1989, с. 32-36.
3. 3.
Каленов В.В., Глауберман В.Б. Исследования Т-образных фланцевых
соединений на моделях из оптически активного материала // Известия вузов.
Строительство и архитектура. — 1985,-№9, с. 14-17.
4. 4.
Катюшин В.В. Здания с каркасами из стальных рам переменного
сечения. — М.: Стройиздат, 2005. — 450 с.
5. 5.
Карпиловский B.C., Криксунов Э.З., Маляренко А.А., Перельмутер А.В.,
Перельмутер М.А SCAD Office. Вычислительный комплекс SCAD. — М.:
Издательство АСВ, 2008. - 592 с.
6. 6.
Рекомендации по расчету, проектированию, изготовлению и монтажу
фланцевых соединений стальных строительных конструкций // СО
Стальмонтаж, ВНИПИ Промсталь- конструкция, ЦНИИПСК им. Мельникова. М., 1988. - 83 с.
7. 7.
Руководство по проектированию, изготовлению и сборке монтажных
фланцевых соединений стропильных ферм с поясами из широкополочных
двутавров. - М.: ЦНИИПСК им. Мельникова, 1981.
8. 8.
СНиП П-23-81*. Стальные конструкции. Нормы проектирования //
Госстрой СССР. - М.: ЦИТП Госстроя СССР, 1990, 96 с.
9. 9.
СП 53-102-2004. Общие правила проектирования стальных
конструкций // ЦНИИСК им. Кучеренко, ЗАО ЦНИИПСК им. Мельникова, ОАО
Ин-т "Энергосеть".
10. 10.
Cerfontaine Е, Jaspart J. P. Analytical study of the interaction between
bending and axial force in bolted joints // Eurosteel Coimbra, 2002. - pp. 997- 1006.
11. 11.
EN 1993-1-8. Eurocode 3. Design of Steel Structures. Part 1.8: Design of
joints. CEN, 2005.
12. 12.
Jaspart J. P. General report: session on connections // Journal of
Constructional Steel Research, 2000. — \fol. 55. - pp. 69-89.
13. 13.
PisarekZ., KozlowskiA. End-plate steel joint with four bolts in the row //
Proceeding of the International
14. Conference "Progress in Steel, Composite and Aluminium Struc-tures"// Gizejowski,
Kozlowski, Sleczka & Ziolko (eds.) / Taylor & Francis Group, London, 2006. - pp.
257-826.
15. 14.
Sokol Z., Wald F., Delabre V., Muzeau J. P., Svarc M. Design of end plate
joints subject to moment and normal force // Eurosteel Coimbra, 2002. - pp. 12191228.
16. 15.
Sumner E. A., Murray Т. M. Behaviour and design of multi-row extended
end- plate moment connections // Proceedings of International Conference
Advances in Structures (ASCCA'03). - Sydney, 2003.
17. 16.
Undermann D., Schmidt B. Moment Resistance of Bolted Beam to Column
Connections with Four Bolts in each Row // Proceedings of IV European
Conference on Steel and Composite Structures "Eurosteel 2005". — Maastricht,
2005.
18. 17.
Urbonas K, Daniunas A. Behaviour of steel beam-to-beam connections
under bending and axial force // Proceedings of 8th International Conference
"Modern Building Materials, Structures and Techniques" (Lithuania, Vilnius, May 1921, 2004) - pp. 650-653.
19. Анатолий Перельмутер, д.т.н., главный научный сотрудник ООО НПФ
"СКАДСОФТ" Эдуард Криксунов, к.т.н., директор ООО НПФ "СКАДСОФТ"
Виталина Юрченко, к.т.н., ведущий научный сотрудник ООО НПФ "СКАДСОФТ"
Тел.: (499) 267-4076 E-mail: [email protected] scad @scadsoft.com
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 67

68.

Список использованной литературы по лабораторному испытанию на техногенное и геофизическое
воздействие в сейсмоопасной зоне
1. Байда С.Е. Мега-катастрофы, как стратегическое и тактическое оружие войн нового поколения, возможность их
прогнозирования и предупреждения. Технологии гражданской безопасности, Том 7,2010, № 1—2, с. 191—198.
2. Байда С.Е. Исследования авиационных происшествий и катастроф, как следствие совместного влияния ге- лиогеофизических
факторов. Сборник трудов по материалам научных исследований адъюнктов, аспирантов и соискателей Академии. Выпуск
8. Закрытого пользования. Новогорск: АГЗ МЧС России, 2004, с. 181—190.
3. Байда С.Е., Мищенко В.Ф. Взаимосвязь изменения солнечной активности и социальной нестабильности в мире. Безопасность
жизнедеятельности. № 12. 2004, с. 46 — 50.
4. Байда С.Е. Исследование частотно-временных и пространственно-волновых закономерностей возникновения землетрясений,
аварий электроснабжения и авиакатастроф. 53-я НПК МФТИ секция «Высокие технологии в обеспечении безопасности
жизнедеятельности» в трудах 53-й научной конференции МФТИ «Современные проблемы фундаментальных и прикладных
наук». Часть III. Аэрофизика и космические исследования. Том 2. М.: МФТИ, 2010, с. 28 — 30.
5. Землетрясения и микросейсмичность в задачах современной геодинамики восточно-европейской платформы. Книга 2.
Микросейсмичность. Российская академия наук, Геофизическая служба, Карельский научный центр, институт геологии.
Под редакцией Н.В. Шаврова, А.А. Маловичко, Ю.К.Щукина. Петрозаводск, 2007.
6. Байда С.Е. Математический подход анализу рисков возникновения фатальных случаев у переживших природные бедствия и
техногенные катастрофы людей. Проблемы анализа риска. Том 6, 2009, № 2, с. 14 — 24.
7. Bayda S. Interrelations of Changes of Space and He- lio-Geophysical Factors and the Number of Victims after Catastrophic
Earthquakes. Proceedings of the International Disaster and Risk Conference (IDRC Davos 2008), August 25-29 2008. Extended
Abstracts / Edited by Walter J. Ammann Myriam Poll Emily Hдkkinen Graaldine Hoffer, Global Risk Forum GRF Davos,
Switzerland, 2008, P. 92 — 94.
8. Арнольд В.И. Теория катастроф. 3-е изд., доп. М.: «Наука», Главная редакция физико-математической литературы, 1990.128 с.
9. С.Е. Байда. Задача прогнозирования катастрофы сложной системы, как проявления совокупности эффектов и
закономерностей изменения внешних и внутренних условий и процессов. Безопасность критичных инфраструктур и
территорий: Сборник трудов I — II-й Всероссийской конференции и XI — XII Школ молодых ученых 2007 — 2008.
Екатеринбург: УрО РАН, 2009, с. 14 — 29.
10.
Кузнецов В.В. Физика земли. Учебник-монография. Глава 20. Атмосферное электричество.
http://www.vvkuz.ru/books/ch_20.pdf
11.
Попов И.М. «Сетецентрическая война»: Готова ли к ней Россия? http://www.milresource.ru/index.html
12. Байда С.Е. Прогностические задачи обеспечения гуманитарных операций. Современные аспекты гуманитарных операций
при чрезвычайных ситуациях и в вооруженных конфликтах. Материалы XIV-й Международной научно-практической
конференции по проблемам защиты населения и территорий от чрезвычайных ситуаций. 20 мая 2009 г., г. Москва, Россия,
МЧС России. М: ФГУ ВНИИ ГОЧС (ФЦ), 2009, с. 97—102.
13. Байда С.Е. «Проблема 2012»: оценка реальных угроз. Проблемы анализа риска, Том 8, 2011, № 1, с. 74 — 91.
14. Никола Тесла и его работы с переменными токами и их приложение в радиотелеграфию. Телефонная связь и передача
мощности: растянутое интервью. Перевод выполнен Рауфом Курбановым. ISBN: 1-893817-01-6, Патент 1,119,732 США, 1
декабря 1914 года, с. 55.
http://www.tfcbooks.com:80/mall/more/321tps.htm
15. Прищепенко А.Б. Огонь. Об оружии и боеприпасах. М.: «МОРККНИГА», 2009,195 с.
16.
По материалам: http://ru.wikipedia.org/wiki/
17.
По материалам: http://lenta.ru/news/2011/11/16/mop
18. Сергей Плужников. Сергей Соколов. Украли бомбу. Расследование. Совершенно секретно № 8/113 от 08/1998.
19.
По материалам: http://www.epochtimes.ru/content/view/9912/5/
20.
По материалам: http://yh.by.ru/index.html#pzn/tek- ton/tekt-weapon.htm
21.
По материалам: http://wikimapia.org
22. Jerry E. Smith. The ultimate weapon of the conspiracy / Jerry E. Smith. Published by Adventures Unlimited Press One Adventure
Place, - Kempton, Illinois, USA, 2002. P. 24 — 27.
23.
По материалам: http://neutrino.mk.ua/roboti/proekt-chaarp-2
24.
По материалам: Grazyna Fosar, Franz Bludorf http://www.fosar-bludorf.com/archiv/ schum_eng.htm Transition to the age of
frequencies
25.
По материалам: http://gifakt.ru/archives/nauka/haarp— oruzhie-sudnogo-dnya/
26.
По материалам: http://niqnaq.wordpress.com /2010/09/23/haa.. .ica-tajikistan/
27.
По материалам: http://www.ifz.ru/
28.
По материалам: http://www.abovetopsecret.com/forum/ thread206138/pg1
29.
По материалам: http://rp.iszf.irk.ru/prengl/Radarwenglish.htm
30. Bayda S. New principles of the short-term forecast of time and place of occurrence of mega-catastrophes. Edited by Walter J.
Amman, Jordahna Haig, Christine Huovien, Martina Stocker Proceedings of the International Disaster Reduction Conference,
Davos, Switzerland august 27 September 1. Extended abstracts: - Swiss Federal Research Institute WSL, Birmensdorf and Davos,
Switzerland, 2006. P. 62 — 65.
31. Байда С.Е. О некоторых подходах в прогнозировании времени и места катастроф. V-я Научно-практическая конференция
«Проблемы прогнозирования чрезвычайных ситуаций». 15 — 16 ноября 2005 г. Доклады и выступления. М.: ООО
«Рекламно-издательская фирма «МТП-инвест», 2006, с. 295 — 305.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 68

69.

32. Байда С.Е. Предупреждение о времени и месте возникновения крупных землетрясений и мониторинг локальных
геофизических параметров. III научно-практическая конференция «Совершенствование гражданской обороны в Российской
Федерации», 10 октября 2006 г., Москва, 2006, с. 5.
32. Байда С.Е. Глобализация современных мега-катаст- роф, особенности и тенденции. Материалы II-го Международного
научного конгресса «Глобалисти- ка-2011: пути к стратегической стабильности и проблема глобального управления»,
Москва, 18 — 22 мая 2011 г. / Под общей ред. И.И. Абылгазиева, И.В. Ильина. В 2-х томах. Т. 2. М.: МАКС-Пресс, 2011, с. 139
— 140.
33. Байда С.Е. Научно-методическое обеспечение ситуационных центров, необходимое для решения аналитических задач,
связанных с предупреждением и прогнозированием возникновения кризисных процессов и ЧС. Тезисы докладов XVI-й
Международной научно-практической конференции по проблемам защиты населения и территорий от чрезвычайных
ситуаций на тему: «Технологии обеспечения комплексной безопасности, защиты населения и территорий от чрезвычайных
ситуаций — проблемы, перспективы, инновации», Москва, 17 — 19 мая 2011 г. М.: ФГУ ВНИИ ГОЧС (ФЦ) МЧС России, 2011,
с. 38 — 39.
34. Байда С.Е. Закономерности взаимодействия и влияния космических и гелиогеофизических факторов на возникновение мегакатастроф и их использование для прогнозирования угроз и предупреждения бедствий. Технология гражданской
безопасности. Материалы заседания научно-координационного совета ФЦ НВТ, Том 6, 2009, № 3—4, с. 107 — 123.
35. Рвачев В.Л. Теория R-функций и некоторые еж приложения. Киев, «Наукова Думка», 1982, с. 5 — 12.
36. Bayda S. Globalization of modern mega disasters, their prevention and loss reduction. Proceedings of the Second International
Conference on Integrated Disaster Risk Management. Reframing Disasters and Reflecting on Risk Governance Deficits. University of
Southern California Los Angeles, California, July 14 — 16, 2011, P. 55.
С научными разработками ученых организации «Сейсмофонд» при СПб ГАСУ по сейсмозащите подогревателей топливного газа
и трубопроводов, можно ознакомится в научных журналах и газетах РФ, :
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»,
А.И.Коваленко
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко
6. Российская газета от 03.06.95 «Аргументы против катастроф найдены», А.И.Коваленко
7. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
11. «Грозненский рабочий» № 2 июнь 1995 «Грозному предрекают разрушительное землетрясение», А.И.Коваленко
12. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на
грунте. Строительство на пучинистых и просадочных грунтах»
13. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» – Фонда
«Защита и безопасность городов» в области реформы ЖКХ.
14. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету «Земля
глобальные и разрушительные потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.
15. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных волн,
предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и журналах за
1994- 2004 гг. А.И.Коваленко и др. изданиях за рубежом
С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
тел.118-8691.
Литература по испытанию демпфирующего, скользящего
в программе SCAD 11.5
креплений
1. Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций. М. , ЦБНТИ Минмонтажспецстроя СССР, 1989, с. 53.
2. Грудев И. Д. Прочность фланцевых соединений элементов открытого профиля. Болтовые и специальные
монтажные соединения в стальных строительных конструкциях. Международный коллоквиум. – 1989. –
Труды. Т.2 – С. 7-13.
3. Фланцевые соединения. Расчет и проектирование. Бугов А. У. – Л. Машиностроение, 1975. – с. 191.
4. Соскин А. Г. Особенности поведения и расчет болтов фланцевых соединений. Болтовые и специальные
монтажные соединения в стальных строительных конструкциях. Международный коллоквиум. – 1989. –
Труды. Т.2 – С. 24-31.
5. Каленов В. В, Соскин А. Г., Евдокимов В. В. Исследования и расчет усталостной прочности фланцевых
соединений растянутых элементов конструкций. Болтовые и специальные монтажные соединения в
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 69

70.

стальных строительных конструкциях. Международный коллоквиум. – 1989. – Труды. Т.2 – С. 41-17.
6.
Проектирование металлических конструкций: Спец.курс. Учебное пособие для вузов/ В. В. Бирюлев, И. И.
Кошин, И. И. Крылов, А. В. Сильвестров. – Л.: Стройиздат, 1990 – 432 с.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 70

71.

Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное повышенной
надежности), работающего на растяжение согласно СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8
Стальные конструкции, Технический кодекс, СП 16.13330.2011 (СниП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3,
14.4, 15, 15.2, в соответствии с изобретением № TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК)
E04B1/98; F16F15/10 (демпфирующая опора с фланцевыми, фрикционно–подвижными соединениями), Тайвань, согласно
изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United States Patent 4,094,111 [45]
June 13, 1978, согласно изобретения «Опора сейсмостойкая, патент № 165076 (авторы: Андреев Б.А, Коваленко А.И) (проходили
испытания) для огнезащитного состава марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы
) выполнен из водно-дисперсионных материалов ( СТО 72746455-3.6.17-2022)
Поз.
1
2
3
4
5
6
Кол
4
4
4
4
4
4
Наименование изделия
Шпилька
Нормативная документация
ГОСТ 9066-75
Применение
Фрикционно-подвижное соединение по ГОСТ 12815-80
Шпилька полнорезьбовая
Гайка
Шайба
Шайба
Болт
Заклѐпка вытяжная
Шпилька
DIN 976-1
ГОСТ 9064-75
ГОСТ 9065-75
ГОСТ 6402-70
ГОСТ 7798-70
Хомут
БОЛТЫ
АТК-25.000.000
Для крепления транспортировочных брусков
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и дополнительного
оборудования
Фиксация кабельтрасс

1
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в пропиленный паз
латунной или обожженной стальной шпильки (болта)
Испытание в ПК SCAD спектральным
методом на основе синтезированных
акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ -34-10-75797, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83
Наименование и тип
Диап
Класс
лабораторного
азон
точности
измерительного
измер или предел
оборудования
ений
допускаемо
контр й
олир
погрешност
уемы и
х
велич
ин
Испытание в ПК SCAD
узлов крепления спектральным методом на основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90
п.5 (к сейсмическим
воздействиям 9 баллов по
шкале MSK-64) на основе
Испытание фрагментов демпфирующих
узлов крепления согласно «Руководства
по креплению технологического оборудования фунд. Болтами»,
ЦНИИПРОМЗДАНИЙ, М., Стройиздат,
1979 г. И альбома «Анкерные болты», сер.
4.402-9, в.5.
Заводско
й№
Примечание
Согласно программному комплексу
«Интегрированная система анализа
конструкции SCADOffice» № 0896002 от
28.12.2013.
http://www.youtube.com/watch?v=pHelYxRUhttp://www.youtube.com/watch?v=siCT9
DhdhjAhttp://smotri.com/video/view/?id=v2275
5810d79
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 71

72.

рекомендаций: ОСТ -34-10757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые)
ВСН 382-87, ОСТ
108.275.51-80, ГОСТ
25756-83.
Наименование и тип лабораторного
измерительного оборудования
1
Испытание в ПК SCAD спектральным методом на основе синтезированных акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по
шкале MSK-64) на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 3672-82, СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (сколь-зящие,
катковые, шариковые) ВСН 382-87,
ОСТ 108.275.51-80, ГОСТ 25756-83.

Наименование и тип
лабораторного
измерительного
оборудования
Испытание в ПК SKAD на основе синтезированных акселерограмм фрагментов
демпфирующего узла крепления выполненного в виде болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами, расположенными
с двух сторон болтового крепления, изготовленного согласно «Ру-ководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979, предназначенного для
работы в сейсмоопасных районах с сейсмичностью 8 баллов по шкале MSK-64.
Диап
азон
изме
рени
й
конт
роли
руем
ых
вели
чин
Класс
точности
или предел
допускаемо
й
погрешност
и
Завод
ской

Примечание
В программе SCAD и программмах SCADOffice реализованы и
сертифицированы положения следующих
нормативных документов:
1) СниП 2.01.07-85* – Нагрузки и
воздействия;
2) СниП II-23-81* – Стальные конструкции;
3) СниП 2.03.01-84* – Бетонные и
железобетонные конструкции;
4) СниП II-22-81 – Каменные и
армокаменные конструкции;
5) СниП II-7-81* Строительство в
сейсмических районах;
6) СниП 2.02.01-83* – Основания зданий и
сооружений;
7) СниП 2.02.03-85 – Свайные фундаменты;
8) СниП II-25-80 – Деревянные конструкции;
9) СниП 52-01-2003 – Бетонные и
железобетонные конструкции. Основные
положения.
9) СП 52-101-2003 – Бетонные и
железобетонные конструкции без
предварительного напряжения арматуры;
10) СП 53-101-96 – Общие правила
проектирования элементов стальных
конструкций и соединений;
11) СП 50-101-2004 – Проектирование и
устройство оснований и фундаментов зданий
и сооружений;
12) СП 50-102-2003 – Проектирование и
устройство свайных фундаментов
Диапазон
измерений
контролируемы
х величин
Класс
точнос
ти или
предел
допуск
аемой
погре
шност
и
Заводск
ой №
Примечание
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 72

73.

1
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейсмическим воздействиям 9
баллов по шкале MSK-64) на
основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
1)
ДБН В.1.2-2:2006 – Нагрузки и
воздействия (Украина);
2) СП 31-114-2004 –
Строительство в сейсмических
районах (Россия);
3) СниП В1.2-1-98 –
Строительство в сейсмических
районах (Казахстан);
4) СниП РК 2.03-30-2006 –
Строительство в сейсмических
районах. Нормы
проектирования (Казахстан);
5) СНРА ІІ-2.02-94 –
Сейсмостойкое строительство.
Нормы проектирования
(Армения);
6) МГСН 4-19-2005 –
Временные нормы и правила
проектирования многофункциональных высотных зданий и
зданий-комплексов в городе
Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ
СЕЙСМОСТОЙКИХ АТОМНЫХ
СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие с 1 января
2002 г. Утверждены постановлением
Госатомнадзора России от 19 октября
2001 г. № 9
Результаты испытаний фрагментов демпфирующих узлов крепления (работают на растяжение) и фрикционно-подвижных
соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением
согласно изобретениям № 1143895, 1174616, 1168755 для крепления опоры скользящей для демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов с тру-бопроводами, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (Ф ПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и
медного клина)
Наименование проверок и
испытаний
№ пункта
по ПМ
Величина контролируемого
параметра
Результаты испытаний
п.6
Величина усилий в кгс согласно
протокола ПКТИ –Строй-ТЕСТ
При величине усилий 800 кгс
происходит перемещение скобы
зажима по шпильке при испытании
Уточняется опытным путем
2
Проверка скольжения ,
податливости
Проверка скольжения гайки
в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341, СПб,
Афонская ул.2 .
3
Проверка смятия свинцовой шайбы.
4
Проверка свинцовой
прокладки
Проверка фланцевого
соединения

п/п
1
5
6
Проверка фрагментов
фрикционно-подвижных
соединений
Смотри протокол ПКТИ –СтройТЕСТ от 18.11.2020
[email protected]
Соответствуют требованиям
Функционирует при податливых
характеристиках и перемещениях
до 2-4 см
Фрикционно-подвижное соединение
(происходит многокаскадное демпфирование при импульсных растягивающих нагрузках)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Соответствует при монтаже
зданий для сейсмоопасных
районов 8 баллов (по шкале
MSK-64), необходимо
испытание на перемещение
узла крепления
Определяется при установке
зданий
соответствует
соответствует
Проверяются перемещения
домкратом или лебедкой
Всего листов 96
Лист 73

74.

7
8
9
Проверка срыва резьбы на
шпильке согласно протокола № 1506-1 от 18.11.
2020
Проверка соединения латунной гайки и полиамидальной гайки
Проверка гайки М12 с
пазом
Осевое статическое усилие отрыва в
кгс(Ст3) 1500-600 кгс ПКТИ –
Строй-ТЕСТ
Регистрационные усилия
выдергивания производились по шкале до 4000 кгс
Маркировка, таблички, надписи
соответствуют требованиям КД
Величина усилия кгс (при котором
происходит перемещение гайки в
узле крепления)
После испытаний фрагменты демпфирующих узлов крепления и
фрикционно-подвижных соединений
для объектов проходят проверку на
соответствие Инструкции "Элементы теории трения, расчет и технология применения фрикционноподвижных соединений".
Происходит пере-мещение
гайки при 30-150 кгс,
уточняется при монтаже
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и фрикционноподвижных сое-динений для
объ-ектов для сейсмоопасных районов 8 баллов
по шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений
(латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой
шайбы и медного стопорного «тормозного» клина) для опоры скользящей с трубопроводами для демпфирующих
сдвиговых компенсаторов для строительных конструкций, покрытых огнезащитным составом
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы демпфирующих сдвиговых
компенсаторов для строительных конструкций, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях. При осмотре не обнаружено механических
повреждений и ослабления демпфирующего фрикци-анкерного крепления.
1
2
3
Проверка податливости
латунной шпильки .
Проверка подпиленной
латунной гайки
Проверка латунной шпильки с
пропиленным пазом для
стопорного клина
п.6
Необходимо обернуть свинцовым или
медным листом шпильку
Наблюдается перемещение шпильки
соответствует
Энергию поглощает стопорный (тормозной) клин на шпильке
соответствует
соответствует
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционноподвижных соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным
пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного
«тормозного» клина) для крепления опоры скользящей для демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 74

75.

При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения трубопроводов для опоры
скользящей для демпфирующих сдвиговых компенсаторов для строительных конструкций,
покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
1
Проверка смятия свинцовой
п.6
Происходит смятие свинцовой шайбы
соответствует
Проверка смятия забитого в
Клин забивается в паз шпильки с
соответствует
паз латунной шпильки
помощью кувалды (4 кг)
шайбы
2
обожженного медного
стопорного клина
3
Проверка изолирующей
Латунная шпилька (расположена в
трубки в виде обертки
изолирующей трубе или обернута
шпильки медным листом
тонким слоем медного листа)переме-
соответствует
щается на 1 градус при ударе кувалдой
4
Проверка гайки со спилен-
Гайка с подпиленным пазом сдвигается
соответствует
Проверка свинцовой
Свинцовая рубашка, нанесенная на
соответствует
рубашки при обвертывании
шпилька демпфирует
ным пазом
5
шпильки
6
7
Проверка свинцовой
Многослойная медно-свинцовая
прокладки
прокладка при ударе сминается
Проверка шпильки, у кото-
Согласно протокола ПКТИ от
рой две противоположные
18.11.2013 № 1506 -1 при нагрузке
стороны сточены 4.0, 3,5 и
1500- 610 кгс ( Ст3) отрыв шпильки
3.0 мм
происходит со срывом резьбы.
Проверка фланцевого
Происходит срыв резьбы и сдвиг на
соединения со стальной
0,5-0,9см
соответствует
соответствует
соответствует
шпилькой со сточенными
зубьями
8
9
Проверка компенсаторов Z –
Крепление комплектующих элементов
образных для трубопровода
не ослаблено. Крепеж не ослаблен.
Проверка компенсаторов
Необходимо дополнительные
«змейка» для трубопровода
испытания при укладке кабельтрасс (до
соответствует
соответствует
контролируемых неразрушающих
перемещений 2-6 см) .
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 75

76.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 76

77.

Результаты испытания болтового соединения на сдвиг для опоры скользящей для демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы , предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов с трубопроводами и с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
№ п.п.
Наименование узла крепления Опора
скользящая для Кабеленесущие системы:
Величина усилия, кгс, при
Характеристики
KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM
котором происходит
скольжения,
скольжение или
податливости.
перемещение стального
зажима для троса по
стальному анкеру
1
1.
2
3
Фрикционно-подвижное соединение (ФПС) с
болтовыми
зажимами
с
четырьмя
Было ранее
(50)
Стало
4
Перемещение шайбы с гайкой 2,5 см
по овальному отверстию при
постоянной нагрузке
шестигранными гайками Ml0, затянутыми с
помощью гаечного
усилия или
усилием
ключа
на половина
динамометрического ключа с
40
Н*м.
с
контактирующими
(
между
поверхностями
проложен стальной трос в пластмассой
оплетке диаметром 4 мм)
2.
Фрикционно –подвижное соединение
с
Было 90-150
четырьмя гайками с двух сторон затянуты
гаечным ключом на максимальную нагрузку
двумя
шестигранными
гайками
М10,
Перемещение шайбы с гайком 3,54.0 см по условному овальному
отверстию при постоянной
Стало
нагрузке
_______
затянутыми с помощью гаечного ключа или
динамометрического ключа с усилием 20
Н*м.
( между контактирующими поверхностями
проложен
стальной
трос
впластмассой
оплетке диаметром 4 мм)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 77

78.

Рис. Общий вид образцов и узлов при лабораторных испытаниях опоры скользящей для демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ,согласно изобретения № 165076 RU E 04H 9/02 «Опора
сейсмостойкая», изобретения № 2010136746 от 20.01.201 «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию
для поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , испытываемых на сдвиг с болтами ( шпилькой) М 10 с
тросом в оплетке и без оплетки со стальным тросом М 2 мм. Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм
Сталь 10 ХСНД
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 78

79.

Рис. Варианты конструктивного решения сейсмозащиты элементов скользящих опор для для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022)
Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 22.12.2020). Аттестат
аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО»,
ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность»
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 79

80.

Типовые альбомы, используемые при испытаниях фрагментов антисейсмического компенсатора для опор скользящих для
демпфирующих сдвиговых компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы
При испытаниях математических моделей опор скользящих для для огнезащитного состава марки TAIKOR FP (
OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО
72746455-3.6.17-2022) предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск с
трубопровода-ми с использованием для соединения трубопровода косых компенсаторов, работающих на сдвиг расчетным
способом определялась расчетная несущая способность узлов податливых креплений, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7
(см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым
натяжением, в соответствии со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле
(3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Описание испытание антисейсмического компенсатора работающего на сдвиг 1-2 смс использованием овальных отверстий
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно
0,85
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 80

81.

B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при любом другом способе обработки должна быть основана
на результатах испытаний образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Моделирование систем сейсмоизоляции для демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции
при сейсмических воздействиях, представлены в таблице Б.1.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
сейсмоизоляции для трубопроводов
Типы сейсмоизолирующих
элементов
Схемы сейсмоизолирующих элементов
Идеализированная зависимость
«нагрузка-перемещение»
(F-D)
F
F
F
Струнные и маятниковые опоры
с низкой способностью
к диссипации энергии
D
D
D
FF
F
F
с высокой способностью
к диссипации энергии
DDD
D
F
F
FF
D
D
С демпфирующими
способностями
DD
FF
Фрикционно-подвижные опоры
F
FF
с плоскими
горизонтальными
поверхностями скольжения
FF
Маятниковые с
демпфирующими
способностями за счет
сухого трения скользящих
поверхностей
F
F
F
FF
DD
D
DD
DD
D
D
D
DD
F
F
F
FF
D
D
DDD
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
FF
Всего Fлистов
96
F
F
Лист 81
DD
D
D
D

82.

F
DD
D
Струнная опора с ограничителями перемещений за
счет демпфирующих упругих стальных пластин со
скольжением верха опоры
за счет фрикционно-подвижного соединения поверхностями скольжения
при R1=R2 и μ1≈μ2
FF
F
DD
D
FF
Струнная опора с
трущимися поверхностями
согласно изобретения по
Уздина А.М № 2550777
«Сейсмостойкий мост»
F
DD
D
Тарельчатая сейсмоизолирующая опора по изобретению. № 2285835 «Тарельчатый виброизолятор
кочетовых», Бюл № 29
20.10.2006 с демпфирующим сердечником по
изобретению № 165076
«Опора сейсмостойкая»
FFF
DD D
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения
F
взрывной энергии, для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках для опор скользящих сейсмоизолирующих для демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR
D
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы Дата проведения испытаний: 24 июня 2022 г.
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
кабеленесущей системы
) из шести уголков
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей
Идеализированная зависимость фрикционнодемпфирующей «нагрузки для перемещения»
(F-D)
F
F
D
D
F
D
с высокой способностью
к поглощению пиковых
ускорений
F
F
F
D
D
D
F
Винтообразный
,упругопластические
демпфирующий
компенсатор для
трубопроводов на
фланцевых, фрикционо
–подвижных
соединениях (ФФПС )
из шести уголков
F
D
F
D
F
D
D
F
F
D
FD
F
F
D
D
D
F
F
F
D
D
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений F
D
Всего листов 96
Лист 82
F
D
D
F

83.

D D
F
F
Зиг-заго образный
компенсатор для
трубопроводов
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии (
из 3-х уголков)
D
D
F
F
D
F
F
D
D
D
F
F
Демпфирующий
GTNKTJ,HFPYSQ
компенсатор ( из шести
уголков) на скользящих
опорах раскачивается
при смятии медного
обож-женного клина,
забитого в пропиленный
паз шпильки
F
F
D
D
D
F
FF
F
D
D
D
D D
F
Тросовая опора
демпфирующая
перемещающая по
линии нагрузки
(ограничитель
перемещений
одноразовый)
F
D
F F
D
D
D
F
Энергопоглощающие демпфирующие
F
Тросовая трубпровдная
опора с упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (многоразовая)
Демпфирующая опора
(с короткими овальными
отверстиями ) и
пластическим шарниром
– скольжения,
перемещения по
длинным овальным
отверстиям по линии
нагрузки
(многоразовый)
нагрузки
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
D
F
F
D
D
D
F
F
D
F
D
F
D
D
Всего листов 96
Лист 83

84.

Моменты затяжки для крепления трубопровода Опора скользящая для демпфирующих сдвиговых компенсаторов
для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы с фланцевыми фрикционно-подвижными соединениями.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью фрикционных
протяжных демпфирующих компенсаторов с контролируемым натяжением, для применения в районах с сейсмичностью 9 балловпо
шкале MSK-64,обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, [H∙м] для резьбового или болтового соединения
с шлицевой головкой (винты)
с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для М6 – (8,0±1,0) H∙м, для М8 –
(20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить согласно
технической документации завода-изготовителя комплектующих изделий.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 84

85.

Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
15
0.3
9
2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
154
75
8
Значения параметров
Параметры
соединения
математическое
ожидание
среднеквадратичное
отклонение
k1 106, КН-1
9.25
2.76
6
21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
q,мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
k2 10 , кН-
1
-1
Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0, мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 85

86.

3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
8
15
0.3
9
2.5
0.00028
Таблица коэффициентов трения скольжения и качения.
0.35
154
75
к (мм)
f ск
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс.
6. Изобретения, используемые при испытаниях опоры скользящей для демпфирующих сдвиговых
огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы предназначенных для сейсмоопасных районов с
сейсмичностью более 9 бал-лов с трубопроводами, с креплением трубопроводов к опоре скользящей с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК).
компенсаторов для строительных конструкций, покрытых
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи используемые при
испытаниях на сейсмостойкость в ПК SCAD опоры скользящей для демпфирующих сдвиговых компенсаторов
для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях (используются в США, Канаде, Японии, Китае
(фирма STARSEIMIC).,,.
1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н. ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU
(11)
165 076
(13)
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.09.2019)
(21)(22) Заявка: 2016102130/03, 22.01.2016
(24) Дата начала отсчета срока действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
КоваленкоАлександр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 86

87.

(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования
фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие
охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия
в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной
<I> которая превышает длину <Н> от торца корпуса до нижней точки паза, вып олненного в штоке. Ширина паза в штоке
соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз
штока совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягиваю т до
заданного усилия. Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в
сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты со оружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты
объектов от динамических воздействий. Известно, например Болтовое соединение плоских деталей вс тык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах,
накладках и прокладках выполнены овальные отверстия через которые пропущены болты, объединяющие листы,
прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительно
накладок контакта листов с меньшей шероховатостью. Взаимно е смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края
овальных отверстий, соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия
листов и среза болтов. Недостатками известного являются: ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из -за разброса по трению.
Известно также Устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту
TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10.Устройство
содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних
пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие
элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы
проходят через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего нач ального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполне на из двух частей: нижней корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси
и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий элемент -болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность
деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует заданному перемещен ию штока.
Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется чертежами,
где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен
разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое
охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса
перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3.
Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца корпуса
до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 87

88.

шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями
корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5,
скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с поверхностью болта
(высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение
усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр
штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок
и др.) определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении
корпус-шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде калиброванного болта,
проходящего через поперечные отверстия корпуса и через вертикальный паз, в ыполненный в теле штока и закрепленный
гайкой с заданным усилием, кроме того вкорпусе, параллельно центральной оси, выполнено два открытых паза, длина
которых, от торца корпуса, больше расстояния до нижней точки паза штока.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2010136746
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(13)
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теп
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 88

89.

(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Акифьев Александр Анатольевич (RU)
Тихонов Вячеслав Юрьевич (RU),
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов
рассчитанной площади для снижения до допустимой величины взрывно го давления, возникающего во взрывоопасных
помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении,
при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема
и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с
высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу
фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек
сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали
в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки
на уровне фундамента), не подвергая разрушению и обрушению конс трукции при аварийных взрывах и сильных
землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и
способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным
несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на
шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической
энергии может определить величину горизонтального и вертикального перемещения «сэндвич» -панели и определить ее
несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения о пределяются, проверяются и затем
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES
2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич» -панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при
землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» «Защита и безопасность городов».
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 89

90.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU(11)
2367917(13) C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭ
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул.
Чапаева, 43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И
ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 90

91.

ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A,
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
G01N 3/00 (2006.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 91

92.

19.11.2009
Приоритет(ы):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете
о поиске: SU 1753341 A1, 07.08.1992. SU
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 92

93.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 93

94.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 94

95.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 95

96.

Патент ОПОРА СЕЙСМОСТОЙКАЯ № 165 076 МПК E04H
9/02 (2006.01) Опубликовано: 10.10.2016 Бюл. № 28
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 96

97.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 97

98.

СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022)
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 98

99.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия
образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е
болта осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных
болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не
ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия
образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу
(прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое
может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт
оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научноисследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов для огнезащитного состава марки TAIKOR FP
( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных материалов ( СТО
72746455-3.6.17-2022)
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт
выполненный из латунной шпильки с забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение
сейсмической нагрузки при землетрясении, вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве
.Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс
свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на
чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за
счет использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 99

100.

Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены
продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикциболтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который
забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под действием запорного элемента в виде
стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических
воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет
раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и
при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также
установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими
выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента,
Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении,
можно установить медный втулки или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными
упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим
элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с
одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с
уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между
выступами устанавливаются также дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и
герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 100

101.

Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание
соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения
трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность
его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше
единицы.
Формула Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и
забитым медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области
использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м
медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными
элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг.5
Фиг 6
Фиг 7
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 101

102.

Фиг 8
Фиг 9
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 102

103.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 103

104.

Характеристики тросовой сейсмостойкой опоры (один из вариантов).
Жѐсткость удобнее брать как среднециклическую. Жѐсткость математически точно описывает поведение системы в динамике. В
ADAMS мы применяем зависимость среднециклической жѐсткости от амплитуды деформации, взятой из эксперимента.
При амплитуде колебаний 0,4 мм:
Жѐсткость: 139/0,4=348 Н/мм
Коэф. рассеяния энергии: 2,06
Коэф. демпфирования: 0,328
При амплитуде колебаний 1 мм:
Жѐсткость: 246/1=246 Н/мм
Коэф. рассеяния энергии: 2,79
Коэф. демпфирования: 0,444
При амплитуде колебаний 2 мм:
Жѐсткость: 332/2=166 Н/мм
Коэф. рассеяния энергии: 2,44
Коэф. демпфирования: 0,39
Основные размеры
Основные характеристики
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для для огнезащитного состава
марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ) выполнен из водно-дисперсионных
материалов ( СТО 72746455-3.6.17-2022) узлов крепления опоры скользящей к трубопроводу с помощью
демпфирующих и косых антисейсмических компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов с трубопроводами
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 104

105.

ВЫВОДЫ по испытанию математических моделей опоры скользящей для демпфирующих сдвиговых компенсаторов
для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
с трубопроводами , которые крепились с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 105

106.

Испытания математических моделей опор скользящих для демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы , серийный выпуск, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) согласно программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий
и сооружений как более новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения
количественной характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических
моделей в программе SCAD. Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет
собой стройный алгоритм, обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности землетрясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для
оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы
Демпфирующие сдвиговые компенсаторы проф Уздина А М для строительных конструкций,
покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ,
которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с антисейсмическими косых компенсаторов (
изобретение № 887748 « Стыковое соединение растянутых элементов») илии с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, оценено влияние
продолжительности колебаний на сейсмическую интенсивность. За полвека количество записей и перемещения грунта резко
увеличилось, что позволило существенно повысить точность испытания математических моделей в ПК SCAD согласно
инструментальной шкалы и оценить величину стандартных отклонений. Корреляция инструментальных данных о параметрах
сейсмического движения грунта с использованием сейсмоизолирующих опор с использованием ФПС должно уменьшить
повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления строительных конструкций , трубопровода ,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии,
Японии, Тайваня, США в части широкого использования сейсмоизоляции для трубопроводов и использования ФФПС и
демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения трубопро-вода,
соединенного с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить перемещение зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла
крепления опор скользящих для демпфирующих сдвиговых компенсаторов для строительных
конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ Строительные -Системы , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с
креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине
испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр
34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п
.4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5
«Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.
2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на
высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627,
2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для
определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее
составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных
соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом,
установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения для Кабеленесущие
системы: демпфирующих сдвиговых компенсаторов для строительных конструкций,
покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы , предназначенными
для сейсмоопасных районов с сейсмичностью более 9 баллов.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 106

107.

На основании проведенного испытания математических моделей опоры скользящей для демпфирующих сдвиговых
компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR
FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы», предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры
скользящей и трубопровода делается вывод
Опоры скользящие для демпфирующих сдвиговых компенсаторов для строительных конструкций,
покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы ,
предназначенные для сейсмоопас-ных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами, соединенными
между собой с помощью демпфиру-ющих компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с
контролируемым натяжением, расположенных в длинных овальных отверстиях для обеспечения многокаскадного демпфирования при
динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах соединения), выполненных согласно
изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им.
Мельникова, согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfriction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ
5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по шкале MSK-64
включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 2581887, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72,
ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для
демпфирующих сдвиговых компенсаторов для строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы, при испытаниях в
ПК SCAD и при испытаниях узлов крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И.
Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных
конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc.
of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions
of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.:
Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных
болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл.
04.01.1990; опубл. 23.01.1992, Бюл. № 3.
4. Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувостшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588;
заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В.,
Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл.
26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5.
- С. 96-98
Библиографический список
i.
ii.
iii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения,
1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов
всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного
профессионального образования, УрГУПС, 2010
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 107

108.

iv.
v.
vi.
vii.
viii.
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский
государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования
20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и
идентификации в механике деформируемых сред и конструкций физическим и математическим моделирование в ПК
SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
ix.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобетон
x.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобетон
xi.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций
xii.
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
xiii.
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
xiv.
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
xv.
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
xvi.
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
xvii.
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
xviii.
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
xix.
Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
xx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxiii.
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxiv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxv.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.90310_л1_Тепловые сети. Детали трубопроводов.djvu
xxvi.
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
xxvii.
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые
сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов
сальниковые.djvu
xxviii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxix.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxxii.
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxxiii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия
3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0
Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxxiv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01
в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxxv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13
Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ
конструкциям dnl14009.djvu
xxxvi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 108

109.

xxxvii.
xxxviii.
xxxix.
xl.
xli.
xlii.
xliii.
xliv.
xlv.
xlvi.
xlvii.
xlviii.
xlix.
l.
li.
lii.
liii.
liv.
lv.
lvi.
lvii.
lviii.
lix.
lx.
lxi.
lxii.
lxiii.
lxiv.
lxv.
lxvi.
lxvii.
lxviii.
lxix.
lxx.
lxxi.
lxxii.
lxxiii.
lxxiv.
lxxv.
lxxvi.
lxxvii.
lxxviii.
lxxix.
lxxx.
lxxxi.
lxxxii.
lxxxiii.
lxxxiv.
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для
проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчѐт
трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для
магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК
SCADОпора скользящая для демпфирующих сдвиговых компенсаторов для строительных конструкций,
покрытых огнезащитным составом марки TAIKOR FP ( OОО "ТехноНИКОЛЬ -Строительные -Системы
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 109

110.

3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск
1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие
чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu
Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23)
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения
предназ-начена для сейсмозащиты , виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий от
сейсмических, взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы)
из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых соединений
отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус
опоры выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней целевой
части и сборной верхней части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между
собой с помощью фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением
фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях, при этом пластинылапы верхнего и нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся
фрикци-болтами с многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком
овальном отверстии верха и низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 110

111.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 111

112.

Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующий
компенсатор для трубопроводов" F16 L 23/00 организации "Сейсмофонд" при СПб
ГАСУ ОГРН : 102000000824 ИНН : 2014000780 № 2021134630 от 2511.2021 ,
входящий № 073171 ФИПС, отдел № 17 направленная в Федеральный институт
промышленной собственности (ФИПС) , автор Президент организации "Сейсмофон"
Мажиев Х Н. ( В Минск, направлено изобретение с названием "Сталинский
компенсатор" См ссылки: https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://pptonline.org/1026337
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 112

113.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 113

114.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 114

115.

Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов
, а старое название Фрикционно- демпфирующий компенсатор для трубопроводов
аналог компенсатора Сальникова для системы противопожарной защиты или
техническое решение предназначено для защиты магистральных трубопроводов,
агрегатов, оборудования, зданий, мостов, сооружений, линий электропередач,
рекламных щитов от сейсмических воздействий за счет использования фланцевого
соединение растянутых элементов трубопровода, с упругими демпферами сухого
трения установленных на пружинистую гофру с ломающимися демпфирующими
ножками при многокаскадном демпфировании и динамических нагрузках на
протяжных фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М
"Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение
плоских деталей". Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение плоских
деталей встык, патент Фланцевое соединение растянутых элементов
замкнутого профиля № 2413820, «Стыковое соединение растянутых элементов» №
887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G
01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения
" направлено в г.Минск , Республика Беларусь" : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg
https://ppt-online.org/1026337
Огнестойкий компенсатор гаситель температурных напряжений на
фрикционно-подвижных болтовых соединениях
МЧС Информация принята к сведению МЧС России проводит постоянную
работу по анализу и внедрению современных методов и технологий, направленных
на обеспечение безопасности населения и территории.
В настоящее время в Российской Федерации содействие в реализации
инновационных проектов и технологий оказывают такие организации, как Фонд
«ВЭБ Инновации», ОАО «Банк поддержки малого и среднего
предпринимательства», ОАО «Российская Венчурная Компания», ОАО
«РОСНАНО», Фонд развития инновационного Центра «Сколково», ФГБУ «Фонд
содействия развитию малых форм предприятий в научно-технической сфере»,
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 115

116.

ФГАУ «Российский фонд технологического развития», которые на сегодняшний
день успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами
изделия «огнестойкий компенсатор гаситель температурных напряжений на
фрикционно-подвижных болтовых соединениях» обратиться в вышеуказанные
организации. Сайдулаеву К.М.
Также предлагаем принять участие в научных мероприятиях МЧС России, где
Вы сможете поделиться своими технологиями и услышать мнение экспертов.
Информацию о мероприятиях можно получить на официальном сайте МЧС
России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов
ведомственных периодических изданий МЧС России (газета «Спасатель МЧС
России», журналы «Пожарное дело», «Гражданская защита» и «Основы
безопасности жизнедеятельности»), в которых публикуется актуальная
информация о перспективных технологиях и основных тенденциях развития в
области гражданской обороны, защиты населения и территорий от
чрезвычайных ситуаций, обеспечения пожарной безопасности, а также
обеспечения безопасности людей на водных объектах
Директор Департамента образовательной и научно-технической деятельности
А.И. Бондар https://ppt-online.org/1133763
https://ppt-online.org/1104264 https://www.9111.ru/questions/7777777771785870/
https://t89006353172bkru.blogspot.com
https://studylib.ru/doc/6354447/9967982654%40mail.ru-kabelenesyshie-sistemi-mekaseismoopas... https://ppt-online.org/1097460 https://pdsnpsr.ru/articles/11731-kogda-savl-stanetpavlom_10032022
https://anticwar.ru/sistema_dobrovolnoiu_sertifikatsii_podjarnoiu_bezopasnosti_mchs_ko
ndensatootvodchiki_avtomaticheskie_do_pn_40_mpa_dn_10_50_vpuskaeme_ao_zavod_i
m__0242
Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов и
фрагментов сейсмоизоляции для опоры скользящей для демпфирующих сдвиговых компенсаторов для
строительных конструкций, покрытых
огнезащитным составом марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы, предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов,
серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –демпфирющая опора»
https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для трубопроводов»
https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog «Опора
сейсмоизолирующая «маятниковая» https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 116

117.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 117

118.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 118

119.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 119

120.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 120

121.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 121

122.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 122

123.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 123

124.

ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, [email protected] г т/ф: (812) 694-78-10 , (996) 798-26-54, (911) 175-84-65
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от
27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010
г. [email protected] эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО «НИПИтел (921) 962-67-78 ктн
Аубакирова И У, проф дтн Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г. http://nasgage.ru/[email protected]
проф. д.т.н. СПб ГАСУ(996) 798-26-54, (994) 434-44-70, (951) 644-16-48 Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (921) 962-67-78 [email protected] Копия аттестата
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 124

125.

испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к
протоколу испытаний организацией СПб ГАСУ и организацией "Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС
[email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС [email protected] (996) 798-26-54, (921) 962-677-78 Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра организации «СейсмоФОНД» при
СПб ГАСУ ОГРН 1022000000824 Хасан Нажоевич Мажиев [email protected] (951) 644-16-48
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я
Красноармейская ул. д 4 krestianinformburo8.narod.ru [email protected] (911) 175- 84-65
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры
подтверждения компетентности8590-гу (А-5824) т/ф (812) 694-78-10 (994) 434-70
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected] [email protected]
тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65 [email protected]
Антисейсмическое фланцевое фрикционно подвижное соединение трубопроводов F 16 L
23/02 F 16 L 51/00
Автор Андреев Борис Александрович
Реферат
Техническое решение относится к области строительства
магистральных трубопроводов и предназначено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических
и взрывных воздействий Конструкция фрикци -болт выполненный
из латунной шпильки с забитым медным обожженным клином
позволяет обеспечить надежный и быстрый погашение сейсмической
нагрузки при землетрясении, вибрационных воздействий от
железнодорожного и автомобильного транспорта и взрыве
.Конструкция фрикци -болт, состоит их латунной шпильки , с
забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС)
. Кроме того между энергопоглощающим клином вставляются
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 125

126.

свинцовые шайбы с двух сторон, а латунная шпилька вставляется
ФФПС с медным обожженным клином или втулкой ( на чертеже не
показана) 1-9 ил.
Описание изобретения Антисейсмическое фланцевое фрикционно подвижное соединение трубопроводов
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972,
Бергер И. А. и др. Расчет на прочность деталей машин. М.,
«Машиностроение», 1966, с. 491. (54) (57) 1.
Описание изобретения
Антисейсмическое фланцевое фрикционно -подвижное соединение
трубопроводов
Предлагаемое техническое решение предназначено для защиты
шаровых кранов и трубопроводов от сейсмических воздействий за
счет использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С
увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно
подвижного соединения (ФФПС), при импульсных растягивающих
нагрузках при многокаскадном демпфировании, которые работают
упруго.
Недостатками известного решения являются: ограничение
демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах
из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий,
патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов Устройство содержит базовое
основание, нескольких сегментов -пружин и несколько внешних
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 126

127.

пластин. В сегментах выполнены продольные пазы. Сжатие пружин
создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на
пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы
трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность
конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых
креплений с пружинами
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений в виде фрикци -болта , а также
повышение точности расчета при использования фрикци- болтовых
демпфирующих податливых креплений для шаровых кранов и
трубопровода.
Сущность предлагаемого решения заключается в том, что с
помощью подвижного фрикци –болта с пропиленным пазом, в
который забит медный обожженный клин, с бронзовой втулкой
(гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет
деформации трубопровода под действием запорного элемента в виде
стопорного фрикци-болта с пропиленным пазом в стальной шпильке и
забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого
трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого
трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий
или величин, определяемых расчетом на основные сочетания
расчетных нагрузок, сама опора при этом начет раскачиваться за
счет выхода обожженных медных клиньев, которые предварительно
забиты в пропиленный паз стальной шпильки.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 127

128.

Фрикци-болт, является энергопоглотителем пиковых ускорений
(ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3
балла импульсные растягивающие нагрузки при землетрясении и при
взрывной, ударной воздушной волне. Фрикци –болт повышает
надежность работы оборудования, сохраняет каркас здания, моста,
ЛЭП, магистрального трубопровода, за счет уменьшения пиковых
ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-2742012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП
II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям
трубчатых элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек ,
свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным
пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображен фрикционных соединениях с контрольным
натяжением стопорный (тормозной) фрикци –болт с забитым в
пропиленный паз стальной шпильки обожженным медным стопорным
клином;
на фиг.2 изображена латунная шпилька фрикци-болта с
пропиленным пазом
на фиг.3 изображен фрагмент о медного обожженного клина
забитого в латунную круглую или квадратную латунную шпильку
на фиг. 4 изображен фрагмент установки медного обожженного
клина в подвижный компенсатор ( на чертеже компенсатор на
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 128

129.

показан ) Цифрой 5 обозначен пропитанный антикоррозийными
составами трос в пять обмотанный витков вокруг трубы . что бы
исключить вытекание нефти или газа из магистрального
трубопровода при многокаскадном демпфировании)
фиг. 6 изображен сам узел фрикционно -подвижного соединения на
фрикци -болту на фрикционно-подвижных протяжных соединениях
фиг.7 изображен шаровой кран соединенный на фрикционно подвижных соединениях , фрикци-болту с магистральным
трубопроводом на фланцевых соединениях
фиг. 8 изображен Сальникова компенсатор на соединениях с
фрикци -болтом фрикционно-подвижных соединений
фиг 9 изображен компенсатор Сальникова на антисейсмических
фрикционо-подвижных соединениях с фрикци- болтом
Антисейсмический виброизоляторы выполнены в виде латунного
фрикци -болта с пропиленным пазом , куда забивается стопорный
обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух
сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца:
расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если
антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих
в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми
шайбами , расположенными между цилиндрическими выступами .
При этом промежуток между выступами, должен быть больше
амплитуды колебаний вибрирующего трубчатого элемента, Для
обеспечения более надежной виброизоляции и сейсмозащиты
шарового кран с трубопроводом в поперечном направлении, можно
установить медный втулки или гильзы ( на чертеже не показаны),
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 129

130.

которые служат амортизирующие дополнительными упругими
элементы
Упругими элементами , одновременно повышают герметичность
соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный
обожженный клин , который является амортизирующим элементом
при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во
фланцевом соединении , выполненные из латунной шпильки с забиты
с одинаковым усилием медный обожженный клин , например
латунная шпилька , по названием фрикци-болт . Одновременно с
уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между
выступами устанавливаются также дополнительные упругие
свинцовые шайбы , повышающие надежность виброизоляции и
герметичность соединения в условиях повышенных вибронагрузок и
сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с
одинаковым усилием , после чего производится стягивание соединения
гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный
обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина .
свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Материалы медного обожженного клина и медных обожженных
втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную
сейсмомозащиту и виброизоляцию и герметичность фланцевого
соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не
показаны) повышает герметичность соединения и надежность его
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 130

131.

работы в тяжелых условиях вибронагрузок при многокаскадном
демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного
фрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты
собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если
коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое фрикционно -подвижное соединение
трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное
СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные
элементы, подпружиненные и энергопоглощающие со стороны
одного из фланцев, амортизирующие в виде латунного фрикци -болта
с пропиленным пазом и забитым медным обожженным клином с
медной обожженной втулкой или гильзой , охватывающие
крепежные элементы и установленные в отверстиях фланцев, и
уплотнительный элемент, фрикци-болт , отличающееся тем, что, с
целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с
забитым с одинаковым усилием медным обожженным клином
расположенными во фланцевом фрикционно-подвижном соединении
(ФФПС) , уплотнительными элемент выполнен в виде свинцовых
тонких шайб , установленного между цилиндрическими выступами
фланцев, а крепежные элементы подпружинены также на участке
между фланцами, за счет протяжности соединения по линии
нагрузки, а между медным обожженным энергопоголощающим
клином, установлены тонкие свинцовые или обожженные медные
шайбы, а в латунную шпильку устанавливается тонкая медная
обожженная гильза или втулка .
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 131

132.

Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 132

133.

Фиг 7
Фиг 8
Фиг 9
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 133

134.

УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 134

135.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
и
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 135

136.

1. ВВЕДЕНИЕ
Современный подход к проектированию сооружений, подверженных экстремальным, в
частности, сейсмическим нагрузкам исходит из целенаправленного проектирования предельных
состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования
сооружений с заданными параметрами предельных состояний. Возможны различные технические
реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в которых от
экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих
смещений нормальная эксплуатация сооружения, как правило, нарушается, однако исключается его
обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были
предложены фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций высокопрочными болтами, отличающиеся тем, что отверстия под болты в
соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок.
При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на величину до 34 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый ряд
особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях
оказывается возможным снизить затраты на усиление сооружения, подверженного сейсмическим и
другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа
проектирования мостовых конструкций с заданными параметрами предельных состояний. В 1985-86
г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и
нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных соединений на
высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты пропущены
через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить
взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться пиковое значение
усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в
упомянутых работах овальные отверстия устраивались с целью упрощения монтажных работ. Для
реализации принципа проектирования конструкций с заданными параметрами предельных состояний
необходимо фиксировать предельную силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс
натяжения N=20-50 кН, что не позволяет прогнозировать несущую способность такого соединения
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 136

137.

по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400
Рис.1.1. Принципиальная схема фрикционно-подвижного
соединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
кН, что в принципе может позволить задание и регулирование несущей способности соединения.
Именно эту цель преследовали предложения [3,14-17].
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания
ФПС показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной
работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных
поверхностей соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта.
Отмеченные
исследования
позволили
выявить
способы
обработки
соединяемых
листов,
обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования
для ФПС пескоструйной обработки листов пакета, рекомендованы использование обжига листов,
нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали,
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 137

138.

что расчету и проектированию сооружений должны предшествовать детальные исследования самих
соединений. Однако, до настоящего времени в литературе нет еще систематического изложения
общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых
ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в
сейсмостойком строительстве, однако, для этого необходимо детально изложить, а в отдельных
случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и
сооружений с такими соединениями. Целью, предлагаемого пособия является систематическое
изложение теории работы ФПС и практических методов их расчета. В пособии приводится также и
технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что
надежные и долговечные машины, оборудование и приборы могут быть
созданы только при удачном решении теоретических и прикладных задач
сухого и вязкого трения, смазки и износа, т.е. задач трибологии и
триботехники.
Трибология – наука о трении и процессах, сопровождающих трение
(трибос – трение, логос – наука). Трибология охватывает экспериментальнотеоретические
результаты
исследований
физических
(механических,
электрических, магнитных, тепловых), химических, биологических и других
явлений, связанных с трением.
Триботехника
трибологии
при

это
система
знаний
проектировании,
о
практическом
изготовлении
и
применении
эксплуатации
трибологических систем.
С
трением
связан
износ
соприкасающихся
тел

разрушение
поверхностных слоев деталей подвижных соединений, в т.ч. при резьбовых
соединениях. Качество соединения определяется внешним трением в витках
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 138

139.

резьбы и в торце гайки и головки болта (винта) с соприкасающейся деталью
или шайбой. Основная характеристика крепежного резьбового соединения –
усилие затяжки болта (гайки), - зависит от значения и стабильности моментов
сил
трения
сцепления,
возникающих
при
завинчивании.
Момент
сил
сопротивления затяжке содержит две составляющих: одна обусловлена
молекулярным воздействием в зоне фактического касания тел, вторая –
деформированием
тончайших
поверхностей
слоев
контактирующими
микронеровностями взаимодействующих деталей.
Расчет этих составляющих осуществляется по формулам, содержащим ряд
коэффициентов,
установленных
в
результате
экспериментальных
исследований. Сведения об этих формулах содержатся в Справочниках
«Трение, изнашивание и смазка» [22](в двух томах) и «Полимеры в узлах
трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и
научной обоснованности и в настоящее время. Полезный для практического
использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее
трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении
соприкасающихся газообразных, жидких и твердых тел и вызывающее
сопротивление движению тел или переходу из состояния покоя в движение
относительно конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде,
а также при наличии смазки в области механического контакта твердых тел.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 139

140.

При учете трения (сухого или вязкого) различают внешнее трение и
внутренне трение.
Внешнее трение возникает при относительном перемещении двух тел,
находящихся в соприкосновении, при этом сила сопротивления движению
зависит от взаимодействия внешних поверхностей тел и не зависит от
состояния внутренних частей каждого тела. При внешнем трении переход
части механической энергии во внутреннюю энергию тел происходит только
вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц
одного и того же тела (твердого, жидкого или газообразного). Например,
внутреннее трение возникает при изгибе металлической пластины или
проволоки, при движении жидкости в трубе (слой жидкости, соприкасающийся
со стенкой трубы, неподвижен, другие слои движутся с разными скоростями и
между ними возникает трение). При внутреннем трении часть механической
энергии переходит во внутреннюю энергию тела.
Внешнее
трение
соприкосновения
в
твердых
чистом
тел
без
виде
возникает
смазочной
только
прослойки
в
случае
между
ними
(идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не
отличается от механизма внутреннего трения в жидкости. Если толщина
смазки менее 0,1 мм, то трение называют пограничным (или граничным). В
этом случае учет трения ведется либо с позиций сухого трения, либо с точки
зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено
представление о внешнем трении. Понятие о внутреннем трении введено в
науку в 1867 г. английским физиком, механиком и математиком Уильямом
Томсоном (лордом Кельвиным).1)
1)
[Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения
в котором перешел в Кембриджский университет и закончил его в 21 год; в 22 года он стал
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 140

141.

Законы сухого трения
Сухое трение впервые наиболее полно изучал Леонардо да Винчи (14521519). В 1519 г. он сформулировал закон трения: сила трения, возникающая
при контакте тела с поверхностью другого тела, пропорциональна нагрузке
(силе прижатия тел), при этом коэффициент пропорциональности – величина
постоянная и равна 0,25:
F 0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским
механиком и физиком Гийомом Амонтоном2), который ввел в науку понятие
коэффициента трения как французской константы и предложил формулу силы
трения скольжения:
F f N.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной
плоскости) впервые предложил формулу:
f tg ,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения
Леонарда да Винчи – Амонтона:
F f N,
впервые получил формулу для случая прямолинейного равноускоренного
движения тела по наклонной плоскости:
профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии
наук, а в 1851 г. (в 27 лет) он стал членом Лондонского королевского общества и 5 лет был его
президентом].
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 141

142.

f tg
2S
g t cos 2
2
,
где t – промежуток времени движения тела по плоскости на участке
длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль
Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами
работ ученых XIX и XX веков, которые более полно раскрыли понятия силы
трения покоя (силы сцепления) и силы трения скольжения, а также понятия о
трении качения и трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы
Кулона,
учитывая
все
новые
и
новые
результаты
физико-химических
исследований явления трения. Из этих исследований наиболее важными
являются исследования природы трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность
любого
твердого
тела
обладает
[шероховатость
поверхности
классов)
характеристикой

микронеровностями,
оценивается
«классом
качества
шероховатостью
шероховатости»
обработки
(14
поверхности:
среднеарифметическим отклонением профиля микронеровностей от средней
линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел –
источник трения. К этому добавляются силы молекулярного сцепления между
частицами,
принадлежащими
разным
телам,
вызывающим
прилипание
поверхностей (адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное сцепление и деформирующей микронеровности, определяет
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 142

143.

механическую энергию тела, которая затрачивается частично на деформацию
(или даже разрушение) микронеровностей, частично на нагревание трущихся
тел (превращается в тепловую энергию), частично на звуковые эффекты –
скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и
электромагнитное поля молекул и атомов соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо
учесть сухое трение, достаточно использовать те законы сухого трения,
которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона)
даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по
поверхности тела В всегда направлена в сторону, противоположную скорости
тела А относительно тела В, а сила сцепления (трения покоя) направлена в
сторону, противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения
скольжения не совпадает с линией действия вектора скорости. (Изотропным
называется сухое трение, характеризующееся одинаковым сопротивлением
движению тела по поверхности другого тела в любом направлении, в
противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную
поверхность
(или
нормальной
реакции
этой
поверхности),
при
этом
коэффициент трения скольжения принимается постоянным и определяется
опытным путем для каждой пары соприкасающихся тел. Коэффициент трения
скольжения зависит от рода материала и его физических свойств, а также от
степени обработки поверхностей соприкасающихся тел:
FСК fСК N
(рис. 2.1 в).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 143

144.

Y
Y
Fск
tg =fск
N
N
V
Fск
X
G
X
G
N
Fсц
а)
в)
б)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на
опорную поверхность (или нормальной реакции этой поверхности) и не может
быть
больше
максимального
значения,
определяемого
произведением
коэффициента сцепления на силу давления (или на нормальную реакцию
опорной поверхности):
FСЦ fСЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в
момент перехода тела из состояния покоя в движение, всегда больше
коэффициента трения скольжения для одной и той же пары соприкасающихся
тел:
f СЦ f СК .
Отсюда следует, что:
max
FСЦ
FСК ,
поэтому график изменения силы трения скольжения от времени движения
тела, к которому приложена эта сила, имеет вид (рис.2.2).
При переходе тела из состояния покоя в движение сила трения
max до
скольжения за очень короткий промежуток времени изменяется от FСЦ
FСК (рис.2.2). Этим промежутком времени часто пренебрегают.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 144

145.

В последние десятилетия экспериментально показано, что коэффициент
трения скольжения зависит от скорости (законы Кулона установлены при
равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
fсц
max
Fсц
Fск
fск
V
t
V0
Рис. 2.2
Vкр
Рис. 2. 3
Эту зависимость качественно можно проиллюстрировать графиком f СК ( v )
(рис.2.3).
v0
- значение скорости, соответствующее тому моменту времени, когда
сила FСК достигнет своего нормального значения FСК fСК N ,
v КР
- критическое значение скорости, после которого происходит
незначительный рост (на 5-7 %) коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот
эффект впоследствии был подтвержден исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в
основном, справедливы, на основе адгезионной теории трения предложил
новую формулу для определения силы трения скольжения (модернизировав
предложенную Кулоном формулу):
FСК fСК N S p0 .
[У Кулона: FСК fСК N А , где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел
(контактная площадь), р0 - удельная (на единицу площади) сила прилипания
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 145

146.

или сцепления, которое надо преодолеть для отрыва одной поверхности от
другой.
Дерягин также показал, что коэффициент трения скольжения зависит от
нагрузки N (при соизмеримости сил N и
S p0 )
- fСК ( N ) , причем при
увеличении N он уменьшается (бугорки микронеровностей деформируются и
сглаживаются, поверхности тел становятся менее шероховатыми). Однако, эта
зависимость учитывается только в очень тонких экспериментах при решении
задач особого рода.
Во многих случаях S p0 N , поэтому в задачах классической механики, в
которых следует учесть силу сухого трения, пользуются, в основном, законом
Кулона, а значения коэффициента трения скольжения и коэффициента
сцепления определяют по таблице из справочников физики (эта таблица
содержит значения коэффициентов, установленных еще в 1830-х годах
французским ученым А.Мореном (для наиболее распространенных материалов)
и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии
наук, автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения
скольжения
составляет
с
прямой,
по
которой
направлена
скорость
материальной точки угол:
arctg
Fn
,

где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и
касательную к траектории материальной точки, при этом модуль вектора FCK
определяется формулой: FCK Fn2 Fτ2 . (Значения Fn и Fτ определяются по
методике Минкина-Доронина).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 146

147.

Трение качения
При качении одного тела по другому участки поверхности одного тела
кратковременно соприкасаются с различными участками поверхности другого
тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были
проведены эксперименты по определению сопротивления качению колеса
вагона или локомотива по рельсу, а также сопротивления качению роликов
или шариков в подшипниках.
В результате экспериментального изучения этого явления установлено,
что сопротивление качению (на примере колеса и рельса) является следствием
трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя
соприкасающихся тел (деформация требует затрат энергии);
2)
зацепление
бугорков
неровностей
и
молекулярное
сцепление
(являющиеся в то же время причиной возникновения качения колеса по
рельсу);
3)
трение
скольжения
при
неравномерном
движении
колеса (при
ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное
влияние
всех
трех
факторов
учитывается
общим
коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу
абсолютно твердого тела надо отбросить и рассматривать деформацию
соприкасающихся тел в области контактной площадки.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 147

148.

Так как равнодействующая N реакций опорной поверхности в точках зоны
контакта смещена в сторону скорости центра колеса, непрерывно набегающего
на впереди лежащее микропрепятствие (распределение реакций в точках
контакта несимметричное – рис.2.4), то возникающая при этом пара сил N и G
( G - сила тяжести) оказывает сопротивление качению (возникновение качения
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
обязано силе сцепления FСЦ , которая образует вторую составляющую полной
реакции опорной поверхности).
Момент пары сил N , G называется моментом сопротивления качению.
Плечо
пары
сил
«к»
называется
коэффициентом трения качения. Он имеет
размерность длины.
Fсопр

C
Момент
сопротивления
качению
определяется формулой:
MC N k ,
Fсц
N
Рис. 2.5
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 148

149.

где N - реакция поверхности рельса, равная вертикальной нагрузке на
колесо с учетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению,
которое можно отразить силой сопротивления Fсопр , приложенной к центру
колеса (рис.2.5), при этом: Fсопр R N k , где R – радиус колеса,
откуда
Fсопр N
k
N h,
R
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h
k
R
во много раз
меньше коэффициента трения скольжения для тех же соприкасающихся тел, то
сила Fсопр на один-два порядка меньше силы трения скольжения. (Это было
известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел
роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N
показывают
без
смещения
в
сторону
скорости
(колесо
и
рельс
рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления
качению. Для колеса железнодорожного экипажа и рельса рост сопротивления
качению заметен после скорости колесной пары 100 км/час и происходит по
параболическому
закону.
Это
объясняется
деформациями
колес
гистерезисными потерями, что влияет на коэффициент трения качения.
Трение верчения
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 149
и

150.

Трение верчения возникает при вращении тела,
опирающегося на некоторую поверхность. В этом
случае следует рассматривать зону контакта тел, в
Fск
Fск
r
О
точках которой возникают силы трения скольжения
FСК (если контакт происходит в одной точке, то
трение верчения отсутствует – идеальный случай)
Fск
(рис.2.6).
Рис. 2.6.
А – зона контакта вращающегося тела, ось
вращения которого перпендикулярна к плоскости
этой зоны. Силы трения скольжения, если их привести к центру круга (при
изотропном трении), приводятся к паре сил сопротивления верчению, момент
которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех
точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту
поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или
оси стрелки компаса острием и опорной плоскостью. Момент сопротивления
верчению стремятся уменьшить, используя для острия и опоры агат, рубин,
алмаз и другие хорошо отполированные очень прочные материалы, для
которых коэффициент трения скольжения менее 0,05, при этом радиус круга
опорной площадки достигает долей мм. (В наручных часах, например, М сопр
менее 5 10 5 мм).
Таблица коэффициентов трения скольжения и качения.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 150

151.

f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное
сцепление
приводит
к
образованию
связей
между
трущимися парами. При сдвиге они разрушаются. Из-за шероховатости
поверхностей трения контактирование пар происходит площадками. На
площадках с небольшим давлением имеет место упругая, а с большим
давлением - пластическая деформация. Фактическая площадь соприкасания
пар представляется суммой малых площадок. Размеры площадок контакта
достигают 30-50 мкм. При повышении нагрузки они растут и объединяются. В
процессе разрушения контактных площадок выделяется тепло, и могут
происходить химические реакции.
Различают три группы износа: механический - в форме абразивного
износа, молекулярно-механический - в форме пластической деформации или
хрупкого разрушения и коррозийно-механический - в форме коррозийного и
окислительного износа. Активным фактором износа служит газовая среда,
порождающая
окислительный
износ.
Образование
окисной
пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота
обусловливает физико-химические процессы в слое трения, переводящие
связующие в жидкие фракции, действующие как смазка. Металлокерамические
материалы на железной основе способствуют повышению коэффициента
трения и износостойкости.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 151

152.

Важна быстрая приработка трущихся пар. Это приводит к быстрому
локальному износу и увеличению контурной площади соприкосновения тел.
При
медленной
приработке
локальные
температуры
приводят
к
нежелательным местным изменениям фрикционного материала. Попадание
пыли, песка и других инородных частиц из окружающей среды приводит к
абразивному разрушению не только контактируемого слоя, но и более
глубоких слоев. Чрезмерное давление, превышающее порог схватывания,
приводит к разрушению окисной пленки, местным вырывам материала с
последующим, абразивным разрушением поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий
эксплуатации:
давление
поверхностей
трения,
скорость
относительного
скольжения пар, длительность одного цикла нагружения, среднечасовое число
нагружений, температура контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают
стабильность коэффициента трения, высокую износостойкость пары трения,
малые модуль упругости и твердость материала, низкий коэффициент
теплового расширения, стабильность физико-химического состава и свойств
поверхностного слоя, хорошая прирабатываемость фрикционного материала,
достаточная механическая прочность, антикоррозийность, несхватываемость,
теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии
изготовления
деталей,
фрикционных
даже
в
элементов; отклонения
пределах
установленных
размеров отдельных
допусков;
несовершенство
конструктивного исполнения с большой чувствительностью к изменению
коэффициента трения.
Абразивный
износ
фрикционных
пар
подчиняется
следующим
закономерностям. Износ пропорционален пути трения s,
=ks s,
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(2.1)
Всего листов 96
Лист 152

153.

а интенсивность износа— скорости трения
k s v
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу
пути трения пропорциональна удельной нагрузке р,
kp p
s
Мера
(2.3)
интенсивности
износа
рv
не
должна
превосходить
нормы,
определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется
интегральной функцией времени или пути трения
t
s
k p pvdt k p pds .
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален
работе сил трения W
k w W
kp
f
s
W ; W Fds .
(2.5)
0
Здесь сила трения F=f N = f p ; где f – коэффициент трения, N – сила
нормального давления; - контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и
окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за
период колебаний Т == 2л/ определяется силой трения F и амплитудой
колебаний а
W= 4F а.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(2.6)
Всего листов 96
Лист 153

154.

3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС
3.1. Исходные посылки для разработки методики
расчета ФПС
Исходными посылками для разработки методики расчета ФПС
являются
экспериментальные
исследования
одноболтовых
нахлесточных соединений [13], позволяющие вскрыть основные
особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг.
были выполнены экспериментальные исследования деформирования
нахлесточных соединений такого типа. Анализ полученных диаграмм
деформирования позволил выделить для них 3 характерных стадии
работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности
соединения [Т], рассчитанной как для обычного соединения на
фрикционных высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил трения по
контактным плоскостям соединяемых элементов при сохраняющих
неподвижность шайбах высокопрочных болтов. При этом за счет
деформации болтов в них растет сила натяжения, и как следствие
растут силы трения по всем плоскостям контактов.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 154

155.

На третьей стадии происходит
срыв с места одной из шайб и
дальнейшее взаимное смещение
соединяемых
элементов.
процессе
В
подвижки
наблюдается интенсивный износ
во
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
всех
контактных
парах,
сопровождающийся
падением
натяжения
болтов
и,
следствие,
снижение
как
несущей
способности соединения.
В
процессе
испытаний
наблюдались следующие случаи
выхода из строя ФПС:
• значительные взаимные перемещения соединяемых деталей, в
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
• значительные пластические деформации болта, приводящие к
его
необратимому
удлинению
и
исключению
из
работы
при
“обратном ходе" элементов соединения;
• значительный износ контактных поверхностей, приводящий к
ослаблению болта и падению несущей способности ФПС.
Отмеченные
результаты
экспериментальных
исследований
представляют двоякий интерес для описания работы ФПС. С одной
стороны для расчета усилий и перемещений в элементах сооружений
с ФПС важно задать диаграмму деформирования соединения. С
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 155

156.

другой стороны необходимо определить возможность перехода ФПС в
предельное состояние.
Для
описания
диаграммы
деформирования
наиболее
существенным представляется факт интенсивного износа трущихся
элементов соединения, приводящий к падению сил натяжения болта
и несущей способности соединения. Этот эффект должен определять
работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения
вследствие деформации болта.
Для оценки возможности перехода соединения в предельное
состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае
исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент
закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие,
что закрытие зазора приводит к недопустимому росту ускорений в
конструкции,
то
проверки
(б)
и
(в)
заменяются
проверкой,
ограничивающей перемещения ФПС и величиной фактического
зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и
подвижке в соединении должно базироваться на задании диаграммы
деформирования
соединения,
представляющей
зависимость
его
несущей способности Т от подвижки в соединении s. Поэтому
получение зависимости Т(s) является основным для разработки
методов
расчета
ФПС
и
сооружений
с
такими
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
соединениями.
Всего листов 96
Лист 156

157.

Отмеченные особенности учитываются далее при изложении теории
работы ФПС.
3.2. Общее уравнение для определения несущей
способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся к более сложному случаю нахлесточного соединения,
характеризующегося трехстадийной диаграммой деформирования. В
случае стыкового соединения второй участок на диаграмме Т(s) будет
отсутствовать.
Первая стадия работы ФПС не отличается от работы обычных
фрикционных соединений. На второй и третьей стадиях работы
несущая способность соединения поменяется вследствие изменения
натяжения болта. В свою очередь натяжение болта определяется его
деформацией (на второй стадии деформирования нахлесточных
соединений) и износом трущихся поверхностей листов пакета при их
взаимном
смещении.
При
этом
для
теоретического
описания
диаграммы деформирования воспользуемся классической теорией
износа
[5,
14,
23],
согласно
которой
скорость
износа
V
пропорциональна силе нормального давления (натяжения болта) N:
V K N,
(3.1)
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в
виде:
N N0 a N1 N2
(3.2)
здесь N 0 - начальное -натяжение болта, а - жесткость болта;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 157

158.

a
EF , где l - длина болта, ЕF - его погонная жесткость,
l
N1 k f ( s ) -
увеличение
натяжения
болта
вследствие
его
деформации;
N2 ( s ) - падение натяжения болта вследствие его пластических
деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки N1 N 2 0 .
Если пренебречь изменением скорости подвижки, то скорость V
можно представить в виде:
V
d d ds
V ср ,
dt
ds dt
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a k N0 к f ( s ) ( s ) ,
(3.4)
где k K / Vср .
Решение уравнения (3.4) можно представить в виде:
k N0 a
1
1 e
kas
k e ka( s z ) k f ( z ) ( z ) dz ,
s
0
или
k N0 a
1
e
kas
s
k k f ( z ) ( z ) e kazdz N0 a 1 .
0
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно
упрощается, так как в этом случае N 1 N 2 0 , и обращаются в 0
функции
f(z)
и
( z ) ,
входящие в (3.5). С учетом сказанного
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 158

159.

использование интеграла. (3.5) позволяет получить следующую
формулу для определения величины износа :
1 e kas k N0 a 1
(3.6)
Падение натяжения N при этом составит:
N 1 e kas k N0 ,
а
(3.7)
несущая
соединений
способность
определяется
по
формуле:
T T0 f N T0 f 1 e kas k N 0 a 1
T0 1 1 e kas k a 1 .
(3.8)
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
Как
видно
из
полученной
формулы относительная несущая
способность соединения КТ =Т/Т0
определяется
всего
двумя
параметрами - коэффициентом износа k и жесткостью болта на
растяжение а. Эти параметры могут быть заданы с достаточной
точностью и необходимые для этого данные имеются в справочной
литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24
мм и коэффициента износа k~5×10-8 H-1 при различных значениях
толщины пакета l, определяющей жесткость болта а. При этом для
наглядности
соединения
начальному
несущая
Т
способность
отнесена
значению
графические
к
T0,
своему
т.е.
зависимости
представлены в безразмерной форме.
Рис.3.3. Падение несущей способности ФПС в
Испытание тeрмического
коменсатора,
зависимости
от величины подвижки
длягасителя
болта температруных пожарных напряжений
24 мм при коэффициенте износа k=3 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
Всего листов 96
Лист 159

160.

Как видно из рисунка, с ростом толщины пакета падает влияние
износа листов на несущую способность соединений. В целом падение
несущей
способности
соединений
весьма
существенно
и
при
реальных величинах подвижки s 2 3см составляет для стыковых
соединений 80-94%. Весьма существенно на характер падений
несущей способности соединения сказывается коэффициент износа k.
На рис.3.3 приведены зависимости несущей способности соединения
от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения
должно приводить к существенному росту взаимных смещений
соединяемых деталей и это обстоятельство должно учитываться в
инженерных расчетах. Вместе с тем рассматриваемый эффект будет
приводить к снижению нагрузки, передаваемой соединением. Это
позволяет при использовании ФПС в качестве сейсмоизолирующего
элемента конструкции рассчитывать усилия в ней, моделируя ФПС
демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных Ф ПС
Для нахлесточных ФПС общее решение (3.5) определяется видом
функций f(s) и >(s).Функция f(s) зависит от удлинения болта
вследствие искривления его оси. Если принять для искривленной оси
аппроксимацию в виде:
u( x ) s sin
x
2l
(3.9)
,
где x — расстояние от середины болта до рассматриваемой точки
(рис. 3.3), то длина искривленной оси стержня составит:
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 160

161.

1
L
1
2
du
1 dx
dx
1
1
1
2
2
2
s 2 2
1
2
x
8l 2 1
2
2l
2
cos
1 s
2
4l
cos
2
dx 1
2l
1
dx
2
2 2
1 s cos x dx
8l 2
2l
1
2
s 2 2
.
8l
Удлинение болта при этом определится по формуле:
s 2 2
l L l
.
8l
Учитывая,
(3.10)
что
приближенность
представления
(3.9)
компенсируется коэффициентом k, который может быть определен из
экспериментальных данных, получим следующее представление для
f(s):
f(s) s
2
l
.
Для дальнейшего необходимо учесть, что деформирование тела
болта будет иметь место лишь до момента срыва его головки, т.е. при
s < s0. Для записи этого факта воспользуемся единичной функцией
Хевисайда :
s2
f ( s ) ( s s0 ).
l
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо
учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s
некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при
котором напряжения в стержне достигнут предела текучести,
т.е.:
lim ( N0 кf ( s ) ( s )) 0 .
s
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(3.12)
Всего листов 96
Лист 161

162.

Указанным условиям удовлетворяет функция (s) следующего
вида:
( s ) N пл ( NТ N пл ) ( 1 e q( s S пл ) ) 1 ( s s0 ) ( s S пл).
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к
следующим зависимостям износа листов пакета от перемещения s:
при s<Sпл
s
N0
k
2
2
( 1 e k1as ) s 2
s
1 e k1as ,
a
al
k1a
k1a 2
(3.14)
при Sпл< s<S0
( s ) I ( Sпл ) k1(
),
NT
N N пл
1 ek1a( S пл s ) T
k1a
k1 a
(3.15)
e ( S пл s ) ek1a( S пл s )
при s<S0
( s ) II ( S0 )
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
Несущая
способность
(3.16)
соединения
определяется
при
этом
выражением:
(3.17)
T T0 fv a .
Здесь fv— коэффициент трения, зависящий в общем случае от
скорости
подвижки
v.
Ниже
мы
используем
наиболее
распространенную зависимость коэффициента трения от скорости,
записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная
зависимость
содержит
9
неопределенных
параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны
определяться из данных эксперимента.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 162

163.

В отличие от стыковых соединений в формуле (3.17) введено два
коэффициента
износа
-
на
втором
участке
диаграммы
деформирования износ определяется трением между листами пакета
и характеризуется коэффициентом износа k1, на третьем участке
износ определяется трением между шайбой болта и наружным
листом пакета; для его описания введен коэффициент износа k2.
На
рис.
3.4
приведен
пример
теоретической
диаграммы
деформирования при реальных значениях параметров k1 = 0.00001;
k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН.
Как видно из рисунка, теоретическая диаграмма деформирования
соответствует описанным выше экспериментальным диаграммам.
Рис. 3.4
Теоретическая диаграмма деформирования ФПС
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 163

164.

26
4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами 48 мм
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД.
Высокопрочные болты были изготовлены тензометрическими из стали 40Х "селект" в
соответствии с требованиями [6]. Контактные поверхности пластин были обработаны
протекторной цинкосодержащей грунтовкой ВЖС-41 после дробеструйной очистки. Болты
были предварительно протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с тарировочными
зависимостями ручным ключом на заданное усилие натяжения N0.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
4.
Лист 164

165.

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями
необходимы
фактические
данные
соединений.
Экспериментальные
о
параметрах
исследования
исследуемых
работы
ФПС
достаточно трудоемки, однако в 1980-85 гг. такие исследования были
начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены
записи
Т(s)
для
нескольких
одноболтовых
и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с
болтами диаметром 22, 24, 27 и 48 мм. Принятые размеры образцов
обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее
Рис. 4.1 Общий вид образцов ПС с болтами 48
ммпри этом в соединении необходимо
распространенными. Однако
размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо
увеличение их диаметра. Поэтому было рассмотрено ФПС с болтами
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 165

166.

наибольшего диаметра 48 мм. Общий вид образцов показан на рис.
4.1.
Пластины ФПС были выполнены из толстолистовой стали марки
10ХСНД.
Высокопрочные
тензометрическими
требованиями
из
[6].
стали
болты
40Х
Контактные
были
"селект"
в
поверхности
изготовлены
соответствии
пластин
с
были
обработаны протекторной цинкосодержащей грунтовкой ВЖС-41
после
дробеструйной
очистки.
Болты
были
предварительно
протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с
тарировочными зависимостями ручным ключом на заданное усилие
натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на
универсальном динамическом стенде УДС-100 экспериментальной
базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС
обеспечивалась путем удара движущейся массы М через резиновую
прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались
таким образом, чтобы при неподвижной рабочей тележке получился
импульс силы с участком, на котором сила сохраняет постоянное
значение, длительностью около 150 мс. Амплитудное значение
импульса силы подбиралось из условия некоторого превышения
несущей способности ФПС. Каждый образец доводился до реализации
полного смещения по овальному отверстию.
Во
время
испытаний
на
стенде
и
пресс-пульсаторах
контролировались следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 166

167.

• абсолютные скорости сдвига пластин ФПС;
• ускорение движения пластин ФПС и ударные массы (для
испытаний на стенде).
После
каждого
нагружения
проводился
замер
напряжения
высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес
представляют для нас зависимости продольной силы, передаваемой
на соединение (несущей способности ФПС), от величины подвижки S.
Эти зависимости могут быть получены теоретически по формулам,
приведенным выше в разделе 3. На рисунках 4.2 - 4.3 приведено
графическое
Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования
ФПС для болтов 22 мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из
рисунков видно, что характер зависимостей Т(s) соответствует в
целом принятым гипотезам и результатам теоретических построений
предыдущего раздела. В частности, четко проявляются три участка
деформирования
соединения,
соединения:
после
до
проскальзывания
проскальзывания
листов
пакета
элементов
и
после
проскальзывания шайбы относительно наружного листа пакета.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 167

168.

Вместе
с
тем,
необходимо
отметить
существенный
разброс
полученных диаграмм. Это связано, по-видимому, с тем, что в
проведенных испытаниях принят наиболее простой приемлемый
способ обработки листов пакета. Несмотря на наличие существенного
разброса,
полученные
диаграммы
оказались
пригодными
для
дальнейшей обработки.
В результате предварительной обработки экспериментальных
данных построены диаграммы деформирования нахлесточных ФПС. В
соответствии с ранее изложенными теоретическими разработками
эти диаграммы должны описываться уравнениями вида (3.14). В
указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0

коэффициент,
определяющий
влияние
скорости
на
коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл

предельное
смещение,
при
котором
возникают
пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы
болта относительно листа пакета;
к — коэффициент, характеризующий увеличение натяжения
болта вследствие геометрической нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения
болта вследствие его пластической работы.
Обработка
экспериментальных
данных
заключалась
в
определении этих 9 параметров. При этом параметры варьировались
на сетке их возможных значений. Для каждой девятки значений
параметров по методу наименьших квадратов вычислялась величина
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 168

169.

невязки
между
деформирования,
расчетной
причем
и
экспериментальной
невязка
диаграммами
суммировалась
по
точкам
цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром
24 мм последние варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с
шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом
1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
Н
а рис.
4.4 и
4.5
приве
дены
харак
терн
Рис. 4.5
Рис.4.4
ые
диаграммы деформирования ФПС, полученные экспериментально и
соответствующие
им
теоретические
диаграммы.
Сопоставление
расчетных и натурных данных указывают на то, что подбором
параметров ФПС удается добиться хорошего совпадения натурных и
расчетных диаграмм деформирования ФПС. Расхождение диаграмм
на конечном их участке обусловлено резким падением скорости
подвижки
перед
остановкой,
не
учитываемым
в
рамках
предложенной теории расчета ФПС. Для болтов диаметром 24 мм
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 169

170.

было обработано 8 экспериментальных диаграмм деформирования.
Результаты определения параметров соединения для каждой из
подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
5
14
35
0.1
8 4.2 0.0006
0.3 370 310
1
6
6
11
0.2 12
9 0.0000 0.3 120 100
7
8
20
0.2 19 16 0.0000
0.3 106 130
2
8
8
15
0.3
9 2.5 0.0002
0.35
154 75
1
8
Приведенные в таблице 4.1 результаты вычислений параметров
соединения
были
статистически
обработаны
и
получены
математические ожидания и среднеквадратичные отклонения для
каждого из параметров. Их значения приведены в таблице 4.2. Как
видно
из
приведенной
таблицы,
значения
параметров
характеризуются значительным разбросом. Этот факт затрудняет
применение
одноболтовых
ФПС
с
поверхности (обжиг листов пакета).
одноболтовых
к
многоболтовым
рассмотренной
обработкой
Вместе с тем, переход от
соединениям
должен
снижать
разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое
я
ожидание
отклонение
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 170

171.

k1 106, КН-1
k2 106, кН-1
kv с/мм
S0, мм
Sпл , мм
q, мм-1
f0
Nо,кН
9.25
21.13
0.269
11.89
8.86
0.00019
0.329
165.6
165.6
2.76
9.06
0.115
3.78
4.32
0.00022
0.036
87.7
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования
одноболтовых ФПС позволяют перейти к анализу многоболтовых
соединений. Для упрощения задачи примем широко используемое в
исследованиях фрикционных болтовых соединений предположение о
том, что болты в соединении работают независимо. В этом случае
математическое ожидание несущей способности T и дисперсию DT
(или среднеквадратическое отклонение T ) можно записать в виде:
T( s )
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(5.1)
Всего листов 96
Лист 171

172.

DT
( T T ) p1 p2 ... pk d 1d 2 ...d k
2
2
... T 2 p1 p2 ... pk d 1d 2 ...d k T
(5.2)
T DT
(5.3)
В приведенных формулах:
T ( s , 1 , 2 ,... k ) - найденная выше зависимость несущей способности
T от подвижки s и параметров соединения i; в нашем случае в
качестве параметров выступают коэффициент износа k, смещение
при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по
имеющимся данным нам известны лишь среднее значение i
и их
стандарт (дисперсия).
Для дальнейших исследований приняты два возможных закона
распределения
возможном
параметров
диапазоне
ФПС:
равномерное
в
некотором
изменения
параметров
min i max
и
нормальное. Если учесть, что в предыдущих исследованиях получены
величины
математических
ожиданий
i и
стандарта
i ,
то
соответствующие функции плотности распределения записываются в
виде:
а) для равномерного распределения
pi
1
при 3 3
2 i 3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
1
i 2
e
a
i i
2 i 2
2
.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(5.5)
Всего листов 96
Лист 172

173.

Результаты расчетного определения зависимостей T(s) и (s) при
двух законах распределения сопоставляются между собой, а также с
данными натурных испытаний двух, четырех, и восьми болтовых
ФПС.
5.2. Построение уравнений деформирования стыковых
многоболтовых ФПС
Для
вычисления
несущей
способности
соединения
сначала
рассматривается более простое соединение встык. Такое соединение
характеризуется всего двумя параметрами - начальной несущей
способностью Т0 и коэффициентом износа k. При этом несущая
способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание
несущей способности соединения из п болтов составит:
k T 3
dk
dT
kas
T
e
2
3
2
3
k
T
3
k T 3
T0 T 3
T n
T0 T
nT0 e kas
При
sh( sa k 3 )
sa k
(5.7)
.
нормальном
законе
распределения
математическое
ожидание несущей способности соединения из п болтов определится
следующим образом:
T n
kas
Te
1
T 2
e
( T T ) 2
2 T 2
1
k 2
e
( k k )2
2 k 2
dkdT
( k k )2
( T T ) 2
1
1
2 k 2
2 T 2
kas
n
Te
dT
e
e
dk
.
T 2
k 2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 173

174.

Если
учесть,
что
математическим
для
ожиданием
любой
случайной
функцией
x
величины
распределения
x
с
р(х}
выполняется соотношение:
x x p( x ) dx ,
то первая скобка. в описанном выражении для вычисления
несущей
способности
соединения
Т
равна
математическому
ожиданию начальной несущей способности Т0. При этом:
T nT0
1
k
kas
( k k )2
2 k 2
e
2
dk .
Выделяя в показателе степени полученного выражения полный
квадрат, получим:
T nT0
nT0
1
k 2
1
k 2
k k as k2 2 as k as k2
2 k2
e
2
dk
2
as 2
k k as k2
k
as k
2
2 k2
e
e
dk .
Подынтегральный член в полученном выражении с учетом
множителя
1
k 2
представляет не что иное, как функцию плотности
нормального распределения с математическим ожиданием k as k2 и
среднеквадратичным отклонением k . По этой причине интеграл в
полученном выражении тождественно равен 1
и выражение для
несущей способности соединения принимает окончательный вид:
T nT0 e
ask
a 2 s 2 k2
2
.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(5.8)
Всего листов 96
Лист 174

175.

Соответствующие принятым законам распределения дисперсии
составляют:
для равномерного закона распределения
2
2
D nT0 e 2 ask 1 T F ( 2 x ) F ( x )2 ,
2
T0
где F ( x )
(5.9)
shx
; x sa k 3
x
для нормального закона распределения
2
2
2 1 A
A1
2
D n T0 T 1 ( A1 ) e T0 e 1 ( A ) ,
2
(5.10)
где A1 2 as( k2 as k ).
Представляет интерес сопоставить полученные зависимости с
аналогичными
зависимостями,
выведенными
выше
для
одноболтовых соединений.
Рассмотрим,
прежде
всего,
характер
изменения
несущей
способности ФПС по мере увеличения подвижки s и коэффициента
износа
k
для
случая
использования
равномерного
закона
распределения в соответствии с формулой (5.4). Для этого введем по
аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
sh( x )
kas
T
x
1
e
nT0
.
(5.11)
коэффициент перехода от одноболтового к многоболтовому
соединению
1
T
nT0 e
kas
sh( x )
.
x
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(5.12)
Всего листов 96
Лист 175

176.

Наконец
для
относительной
величины
среднеквадратичного
отклонения с с использованием формулы (5.9) нетрудно получить
1
nT0 e kas
2
1
T2 sh2 x shx
1
.
2 2 x
n
x
T
0
(5.13)
Аналогичные зависимости получаются и для случая нормального
распределения:
2
1 A
e 1 ( A ) ,
2
(5.14)
k2 s 2
1 2 kas
1 ( A ) ,
2
(5.15)
2 e
2
2
T2
1
A1 1 A
1
1
(
A
)
e
e
1
(
A
)
1
2
,
2
n
T0
(5.16)
где
k2 s 2
A
2 s ka ,
2
A1 2 As ( k2 sa k ) ,
( A )
2
A
2
z
e dz .
0
На рис. 5.1 - 5.2 приведены зависимости i и i от величины
подвижки s. Кривые построены при тех же значениях переменных,
что использовались нами ранее при построении зависимости T/T0 для
одноболтового соединения. Как видно из рисунков, зависимости i ( k , s )
аналогичны
зависимостям,
полученным
для
одноболтовых
соединений, но характеризуются большей плавностью, что должно
благоприятно сказываться на работе соединения и конструкции в
целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода
i ( k , a , s ) . По своему смыслу математическое ожидание несущей способности многоболтового
соединения T получается из несущей способности одноболтового соединения Т1 умножением на ,
т.е.:
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 176

177.

T T1
(5.17)
Согласно (5.12) lim x 1 . В частности, 1 при неограниченном увеличении
математического ожидания коэффициента износа k или смещения s. Более того, при выполнении
условия
k k 3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s,
что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения
условием (5.18).
Что касается нормального распределения, то возможность его применения определяется
пределом:
lim 2
s
1
lim e ( kas A ) 1 ( A ) .
2 s
Для анализа этого предела учтем известное в теории вероятности соотношение:
x2
1 2 1
lim 1 x lim
e
.
x
x
x
2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 177

178.

1=
а)
2=Т/nT0
S, мм
Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины
подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 178

179.

1
а)
S, мм
Коэффициент перехода 2
б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС
от величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 179

180.

● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм
С учетом сказанного получим:
A2
1
1 2 1
0.
lim 2 lim e kas A
e
s
s 2
A
2
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при
любых соотношениях k и k.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что
разброс значений несущей способности ФПС для случая обработки поверхностей соединяемых
листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом
случае применение ФПС вполне приемлемо, если перейти от одноболтовых к многоболтовым
соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного отклонения
1 последнее убывает пропорционально корню из числа болтов.
На рисунке 5.3 приведена
зависимость относительной величины среднеквадратичного отклонения 1 от безразмерного
параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и
T0 приняты в соответствии с данными выполненных экспериментальных исследований. Как видно из
графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не
превосходит 25%, что следует считать вполне приемлемым.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 180

181.

Рис.5.3. Зависимость относительного разброса несущей
способности ФПС от величины подвижки при различном
числе болтов n
5.3. Построение уравнений деформирования
нахлесточных многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений
достаточно громоздко из-за большого количества случайных параметров, определяющих работу
соединения. Однако с практической точки зрения представляется важным учесть лишь
максимальную силу трения Тmax, смещение при срыве соединения S0 и коэффициент износа k. При
этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется
линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция :
1 при 0 S S 0
0 при S S 0
S , S 0
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k , S0 ) 1 ( S , S0 ) ,
где T1( S ) T0 ( Tmax T0 )
S
,
S0
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 181

182.

Математическое ожидание несущей способности нахлесточного соединения из n болтов
определяется следующим интегралом:
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax n I1 I 2
T n
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22)
представления для Т1 согласно (5.20) интеграл I1 может быть представлен в виде суммы трех
интегралов:
s
I 1 T0 ( Tmax T0 ) s , S 0 p( S 0 ) p( T0 ) p( Tmax )
S0
S0 T0 Tmax
dS 0 dT0 dTmax I 1,1 I 1,2 I 1,3
(5.23)
где
I1,1
T0 p( T0 ) ( s ,S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0 s , S0 p( S0 )dS0 Tmax p( Tmax )dTmax
T0
S0
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
p( x )dx 1
и
xp( x )dx x ,
то получим
I 1,1 T ( s , S0 )p( S0 ) dS0 .
S0
Аналогично
I1,2
s
Tmax S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T max
( s , S0 )
S0
S0
p( S0 ) dS0 .
s
I1,3
T0 S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T0
S0
( s , S0 )
S0
p( S0 ) dS0 .
Если ввести функции
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 182

183.

1 ( s ) ( s , S 0 ) p( S 0 ) dS0
(5.24)
и
( s , S0 )
S0
1( s )
p( S 0 ) dS0 ,
(5.25)
то интеграл I1 можно представить в виде:
I 1 T 1( s ) ( T max T 0 )s 2 ( s ).
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся
и примут вид:
1( s ) p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция 1 1 erf ( s ) , а
функция записывается в виде:
( S0 S 0 )2
2
s
e
2 s2
S0
dS0 .
(5.29)
Для равномерного распределения функции 1 и 2 могут быть
представлены аналитически:
1 при s S 0 s 3
1 S0 s 3 s при S 0 s 3 s S 0 s 3
0 при s S 0 s 3 .
(5.30)
S0 s 3
1
ln
при s S 0 s 3
2 s 3 S 0 s 3
S0 s 3
1
2
ln
при S 0 s 3 s S 0 s 3
s
2 s 3
0 при s S 0 s 3
(5.31)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 183

184.

Аналитическое
представление
для
интеграла
(5.23)
весьма
сложно. Для большинства видов распределений его целесообразно
табулировать; для равномерного распределения интегралы I1 и I2
представляются в замкнутой форме:
S0 s 3
S
ln
при S S 0 s 3
T 0 ( T max T 0 )
2 s 3 S 0 s 3
S0 s 3
S0 s 3
1
( T max T 0 )S ln
I1
T 0 S 0 s 3 S ln
(5.32)
s
s
2
3
s
при S 0 s 3 S S 0 s 3
0 при S S 0 3
s
0 при S S 0 s 3
I2 T m
F( S ) F( s 3 )
2 s 3
(5.33)
при S S 0 s 3 ,
причем F ( x ) Ei ax( k k 3 ) Ei ax( k k 3 ) . В формулах (5.32, 5.33)
Ei - интегральная показательная функция.
Полученные
экспериментальных
формулы
подтверждены
исследований
многоболтовых
результатами
соединений
и
рекомендуются к использованию при проектировании сейсмостойких
конструкций с ФПС.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 184

185.

42
6. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ
ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
диаметр по сечения
телу по резьбе
по
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
болта
16
201
157
12
15
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78
42
1386
1120
26
34
65
72,1
8
45
90
48
1810
1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в
соответствии с данными табл.6.2.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 966 .
Лист 185

186.

РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС И
СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология
элементов
изготовления
соединения,
транспортировку
и
ФПС
включает
подготовку
хранение
выбор
контактных
деталей,
сборку
материала
поверхностей,
соединений.
Эти
вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС и
опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 55377, гайки по ГОСТ 22354-74, шайбы по ГОСТ 22355-75 с обработкой
опорной поверхности по указаниям раздела 6.4 настоящего пособия.
Основные размеры в мм болтов, гаек и шайб и расчетные площади
поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номина Расчетная Высота Высот Разме Диамет
льный
диаметр
болта
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 186

187.

24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 2235575 назначается в соответствии с данными табл.6.2.
Таблица 6.2.
Номинальна Длина резьбы 10 при номинальном диаметре
16 18 20 22 24 27 30 36 42 48
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50 *
65
38 42 46 50 54
70
38 42 46 50 54 60
75
38 42 46 50 54 60 66
80
38 42 46 50 54 60 66
85
38 42 46 50 54 60 66
90
38 42 46 50 54 60 66 78
95
38 42 46 50 54 60 66 78
100
38 42 46 50 54 60 66 78
105
38 42 46 50 54 60 66 78 90
110
38 42 46 50 54 60 66 78 90 102
115
38 42 46 50 54 60 66 78 90 102
120
38 42 46 50 54 60 66 78 90 102
125
38 42 46 50 54 60 66 78 90 102
130
38 42 46 50 54 60 66 78 90 102
140
38 42 46 50 54 60 66 78 90 102
150
38 42 46 50 54 60 66 78 90 102
160,
170,
190,
200, 44 48 52 56 60 66 72 84 96 108
180
240,260,280,
220
Примечание:
знаком * отмечены болты с резьбой по всей длине стержня.
300
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 187

188.

Для консервации контактных поверхностей стальных деталей
следует применять фрикционный грунт ВЖС 83-02-87 по ТУ. Для
нанесения на опорные поверхности шайб методом плазменного
напыления антифрикционного покрытия следует применять в
качестве материала подложки интерметаллид ПН851015 по ТУ14-1-3282-81, для несущей структуры - оловянистую бронзу
БРОФ10-8 по ГОСТ, для рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке
хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В
конструкциях
соединений
должна
быть
обеспечена
возможность свободной постановки болтов, закручивания гаек и
плотного
стягивания
постановки
с
пакета
болтами
применением
во
всех
местах
их
динамометрических
ключей
и
гайковертов.
Номинальные
диаметры
круглых
и
ширина
овальных
отверстий в элементах для пропуска высокопрочных болтов
принимаются по табл.6.3.
Таблица 6.3.
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
Группа
х геометрию
Не
20
23
25
28
30
33
36
40
45
52
элементах
для
пропуска
определяющи
Длины овальных
х геометрию
отверстий
в
высокопрочных болтов назначают по результатам вычисления
максимальных абсолютных смещений соединяемых деталей для
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 188

189.

каждого ФПС по результатам предварительных расчетов при
обеспечении
несоприкосновения
болтов
о
края
овальных
отверстий, и назначают на 5 мм больше для каждого возможного
направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не
сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС
устанавливают
с
учетом
назначения
ФПС
и
направления
смещений соединяемых элементов.
При необходимости в пределах одного овального отверстия
может быть размещено более одного болта.
Все
контактные
поверхности
деталей
ФПС,
являющиеся
внутренними для ФПС, должны быть обработаны грунтовкой
ВЖС 83-02-87 после дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей
деталей ФПС, которые являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от
толщины соединяемых пакета соединяемых деталей.
Во всех случаях несущая способность основных элементов
конструкции, включающей ФПС, должна быть не менее чем на
25%
больше
несущей
способности
ФПС
на
фрикционно-
неподвижной стадии работы ФПС.
Минимально
допустимое
расстояние
от
края
овального
отверстия до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 189

190.

В соединениях прокатных профилей с непараллельными
поверхностями
полок
или
при
наличии
непараллельности
наружных плоскостей ФПС должны применяться клиновидные
шайбы, предотвращающие перекос гаек и деформацию резьбы.
Конструкции
ФПС
и
конструкции,
обеспечивающие
соединение ФПС с основными элементами сооружения, должны
допускать
возможность
ведения
последовательного
не
нарушающего связности сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов
и методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС
должны быть подготовлены посредством либо пескоструйной
очистки
в
соответствии
с
указаниями
ВСН
163-76,
либо
дробеструйной очистки в соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть
удалены заусенцы, а также другие дефекты, препятствующие
плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под
навесом,
или
на
открытой
площадке
при
отсутствии
атмосферных осадков.
Шероховатость поверхности очищенного металла должна
находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел,
воды и других загрязнений.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 190

191.

Очищенные
контактные
соответствовать
первой
поверхности
степени
должны
удаления
окислов
и
обезжиривания по ГОСТ 9022-74.
Оценка
шероховатости
контактных
поверхностей
производится визуально сравнением с эталоном или другими
апробированными способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним
осмотром поверхности при помощи лупы с увеличением не менее
6-ти кратного. Окалина, ржавчина и другие загрязнения на
очищенной поверхности при этом не должны быть обнаружены.
Контроль
степени
обезжиривания
осуществляется
следующим образом: на очищенную поверхность наносят 2-3
капли бензина и выдерживают не менее 15 секунд. К этому
участку поверхности прижимают кусок чистой фильтровальной
бумаги и держат до полного впитывания бензина. На другой
кусок фильтровальной бумаги наносят 2-3 капли бензина. Оба
куска выдерживают до полного испарения бензина. При дневном
освещении
сравнивают
фильтровальной
бумаги.
внешний
вид
Оценку
степени
обоих
кусков
обезжиривания
определяют по наличию или отсутствию масляного пятна на
фильтровальной бумаге.
Длительность
перерыва
между
пескоструйной
очисткой
поверхности и ее консервацией не должна превышать 3 часов.
Загрязнения, обнаруженные на очищенных поверхностях, перед
нанесением консервирующей грунтовки ВЖС 83-02-87 должны
быть
удалены
жидким
калиевым
стеклом
или
повторной
очисткой. Результаты проверки качества очистки заносят в
журнал.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 191

192.

6.4. Приготовление и нанесение протекторной
грунтовки ВЖС 83-02-87. Требования к
загрунтованной поверхности. Методы контроля
Протекторная грунтовка ВЖС 83-02-87 представляет собой
двуупаковочный
лакокрасочный
материал,
состоящий
из
алюмоцинкового сплава в виде пигментной пасты, взятой в
количестве 66,7% по весу, и связующего в виде жидкого
калиевого стекла плотностью 1,25, взятого в количестве 33,3%
по весу.
Каждая
партия
документации
поступившие
на
материалов
должна
соответствие
ТУ.
без
быть
проверена
Применять
документации
по
материалы,
завода-изготовителя,
запрещается.
Перед смешиванием составляющих протекторную грунтовку
ингредиентов
следует
довести
жидкое
калиевое
стекло
до
необходимой плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная
часть и связующее тщательно перемешиваются и доводятся до
рабочей вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ4 (ГОСТ 9070-59) по методике ГОСТ 17537-72.
Перед
и
во
время
нанесения
следует
перемешивать
приготовленную грунтовку до полного поднятия осадка.
Грунтовка
ВЖС
83-02-87
сохраняет
малярные
свойства
(жизнеспособность) в течение 48 часов.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 192

193.

Грунтовка ВЖС 83-02-87 наносится под навесом или в
помещении. При отсутствии атмосферных осадков нанесение
грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению
грунтовки ВЖС 83-02-87 должна быть не ниже +5°С.
Грунтовка
ВЖС
83-02-87
может
наноситься
методами
пневматического распыления, окраски кистью, окраски терками.
Предпочтение следует отдавать пневматическому распылению.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно
перпендикулярным
направлениям
с
промежуточной
сушкой
между слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем,
добиваясь окончательной толщины нанесенного покрытия 90110 мкм. Время нанесения покрытия при естественной сушке при
температуре воздуха 18-20 С составляет 24 часа с момента
нанесения последнего слоя.
Сушка загрунтованных элементов и деталей во избежание
попадания
атмосферных
осадков
и
других
загрязнений
на
невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места
и другие дефекты не допускаются. Высохшая грунтовка должна
иметь серый матовый цвет, хорошее сцепление (адгезию) с
металлом и не должна давать отлипа.
Контроль
толщины
покрытия
осуществляется
магнитным
толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с
ГОСТ
15140-69
на
контрольных
образцах,
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
окрашенных
Всего листов 96
Лист 193
по

194.

принятой технологии одновременно с элементами и деталями
конструкций.
Результаты
проверки
качества
защитного
покрытия
заносятся в Журнал контроля качества подготовки контактных
поверхностей ФПС.
6.4.1 Основные требования по технике безопасности
при работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные
применением
правила
ручных
при
окрасочных
распылителей"
работах
с
(Министерство
здравоохранения СССР, № 991-72)
"Инструкцию по санитарному содержанию помещений и
оборудования производственных предприятий" (Министерство
здравоохранения СССР, 1967 г.).
При
пневматическом
увеличения
методе
туманообразования
распыления,
во
и
лакокрасочного
расхода
избежание
материала, должен строго соблюдаться режим окраски. Окраску
следует производить в респираторе и защитных очках. Во время
окрашивания
в
располагаться
таким
материала
имела
закрытых
образом,
направление
помещениях
маляр
чтобы
лакокрасочного
струя
преимущественно
в
должен
сторону
воздухозаборного отверстия вытяжного зонта. При работе на
открытых площадках маляр должен расположить окрашиваемые
изделия так, чтобы ветер не относил распыляемый материал в
его сторону и в сторону работающих вблизи людей.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 194

195.

Воздушная магистраль и окрасочная аппаратура должны
быть оборудованы редукторами давления и манометрами. Перед
началом
работы
маляр
должен
проверить
герметичность
шлангов, исправность окрасочной аппаратуры и инструмента, а
также
надежность
присоединения
краскораспределителю
воздушных
и
шлангов
воздушной
к
сети.
Краскораспределители, кисти и терки в конце рабочей смены
необходимо
тщательно
очищать
и
промывать
от
остатков
грунтовки.
На каждом бидоне, банке и другой таре с пигментной частью
и связующим должна быть наклейка или бирка с точным
названием и обозначением этих материалов. Тара должна быть
исправной с плотно закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87
нужно соблюдать осторожность и не допускать ее попадания на
слизистые оболочки глаз и дыхательных путей.
Рабочие
и
ИТР,
работающие
на
участке
консервации,
допускаются к работе только после ознакомления с настоящими
рекомендациями, проведения инструктажа и проверки знаний по
технике
безопасности.
На
участке
консервации
и
в
краскозаготовительном помещении не разрешается работать без
спецодежды.
Категорически запрещается прием пищи во время работы.
При попадании составных частей грунтовки или самой грунтовки
на слизистые оболочки глаз или дыхательных путей необходимо
обильно промыть загрязненные места.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 195

196.

6.4.2 Транспортировка и хранение элементов и
деталей, законсервированных грунтовкой
ВЖС 83-02-87
Укладывать,
хранить
законсервированные
элементы
исключить
возможность
и
и
транспортировать
детали
нужно
механического
так, чтобы
повреждения
и
загрязнения законсервированных поверхностей.
Собирать можно только те элементы и детали, у которых
защитное
покрытие
высохло.
Высохшее
контактных
защитное
поверхностей
полностью
покрытие
контактных
поверхностей не должно иметь загрязнений, масляных пятен и
механических повреждений.
При наличии загрязнений и масляных пятен контактные
поверхности
должны
быть
обезжирены.
Обезжиривание
контактных поверхностей, законсервированных ВЖС 83-02-87,
можно
производить
водным
раствором
жидкого
калиевого
стекла с последующей промывкой водой и просушиванием.
Места механических повреждений после обезжиривания должны
быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного
покрытия на опорные поверхности шайб
Производится очистка только одной опорной поверхности
шайб в дробеструйной камере каленой дробью крупностью не
более 0,1 мм. На отдробеструенную поверхность шайб методом
плазменного напыления наносится подложка из интерметаллида
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 196

197.

ПН851015 толщиной . …..м. На подложку из интерметаллида
ПН851015 методом плазменного напыления наносится несущий
слой
оловянистой
бронзы
БРОФ10-8.
На
несущий
слой
оловянистой бронзы БРОФ10-8 наносится способом лужения
припой ПОС-60 до полного покрытия несущего слоя бронзы.
6.6. Сборка ФПС
Сборка
ФПС
фрикционным
проводится
покрытием
с
использованием
одной
из
шайб
поверхностей,
с
при
постановке болтов следует располагать шайбы обработанными
поверхностями внутрь ФПС.
Запрещается
деталей
ФПС.
очищать
внешние
Рекомендуется
поверхности
использование
внешних
неочищенных
внешних поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой,
другую под гайкой). Болты и гайки должны быть очищены от
консервирующей смазки, грязи и ржавчины, например, промыты
керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания
гайки от руки на всю длину резьбы. Перед навинчиванием гайки
ее резьба должна быть покрыта легким слоем консистентной
смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное
положение;
устанавливают
гайковертами
на
болты
90%
от
и
осуществляют
проектного
их
усилия.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
натяжение
При
сборке
Всего листов 96
Лист 197

198.

многоболтового ФПС установку болтов рекомендуется начать с
болта находящегося в центре тяжести поля установки болтов, и
продолжать установку от центра к границам поля установки
болтов;
после
проверки
плотности
стягивания
ФПС
производят
герметизацию ФПС;
болты затягиваются до нормативных усилий натяжения
динамометрическим ключом.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 198

199.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 199

200.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 200

201.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 201

202.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 202

203.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 203

204.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 204

205.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 205

206.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 206

207.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 207

208.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 208

209.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 209

210.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 210

211.

Применение фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости
строительных конструкций мостов и других сооружений
https://cyberleninka.ru/article/n/primenenie-friktsionno-podvizhnyh-boltovyh-soedineniy-dlyaobespecheniya-seysmostoykosti-stroitelnyh-konstrutsiy-mostov-i-drugih
Применение фрикционно-подвижных болтовых соединений в виде
демпфирующего шарнира для обрушения верхнего этажа при
многокаскадном демпфировании, для обеспечения сейсмостойкости
эксплуатирующих зданий, в зонах сейсмической активности, с
расчетом пластического шарнира в ПК SCAD для хрущевок :
Нефтегорск, Грозный, Сочи, Севастополь, выполненных по изобретению
проф дтн ПГУПС А.М.Уздина № 2010136746 "СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,
1174616 https://disk.yandex.ru/d/lv2Nx4MnEeDuYg https://pptonline.org/988153
https://cyberleninka.ru/article/n/primenenie-friktsionno-podvizhnyh-boltovyh-soedineniy-dlyaobespecheniya-seysmostoykosti-stroitelnyh-konstrutsiy-mostov-i-drugih/viewer
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 211

212.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 212

213.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 213

214.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 214

215.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 215

216.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 216

217.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 217

218.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 218

219.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 219

220.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 220

221.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 221

222.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 222

223.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 223

224.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 224

225.

Применение гасителя динамических колебаний с использованием фрикционно-подвижные
болтовые соединения с длинными овальными отверстиями на пятом обрушающимся этаже
и легко сбрасываемыми панелями и кровли пятого этажа хрущевки ( согласно патента
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 225

226.

№154506 «Панель противовзрывная»), с демонтажем сварочных креплений на пятом этаже,
для повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не
разрушенных землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их
программная реализация расчета
существующих двух пятиэтажек на прогрессирующее лавинообразное обрушение,
взаимодействие здания с геологической средой, в среде вычислительного комплекса SCAD
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 226

227.

Office, согласно изобретения № 2010136746 испытаны в 2021 в лаборатории ПКТИ ул
Афонская 2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 227

228.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 228

229.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 229

230.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 230

231.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 231

232.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 232

233.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 233

234.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 234

235.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 235

236.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 236

237.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 237

238.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 238

239.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 239

240.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 240

241.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 241

242.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 242

243.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 243

244.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 244

245.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 245

246.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 246

247.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 247

248.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 248

249.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 249

250.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 250

251.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 251

252.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 252

253.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 253

254.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 254

255.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 255

256.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 256

257.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 257

258.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 258

259.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 259

260.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 260

261.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 261

262.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 262

263.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 263

264.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 264

265.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 265

266.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 266

267.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 267

268.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 268

269.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 269

270.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 270

271.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 271

272.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 272

273.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 273

274.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 274

275.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 275

276.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 276

277.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 277

278.

РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября
1988 г.
Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75
и СНиП 3.03.01-87. С изданием настоящих рекомендаций отменяется "Руководство по
проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя
базы данных.
Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид
болтовых монтажных соединений, их применение в конструкциях одно- и многоэтажных зданий и
сооружений позволяет существенно повысить производительность труда и сократить сроки монтажа
конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных
болтов, основные положения по конструированию и расчету фланцевых соединений, особенности
технологии изготовления и монтажа конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических
исследований, выполненных во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им.
Мельникова, а также другие отечественные и зарубежные материалы по исследованиям фланцевых
соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук
В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук, А.Г.Соскин; ЦНИИПроектстальконструкцией
им. Мельникова (канд. техн. наук И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук
Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).
1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в
части изготовления и СНиП 3.03.01-87 в части монтажа конструкций, а также в дополнение к ОСТ
36-72-82 "Конструкции строительные стальные. Монтажные соединения на высокопрочных болтах.
Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 278

279.

фланцевых соединений (ФС) несущих стальных строительных конструкций производственных
зданий и сооружений, возводимых в районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:
эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие
подвижные, вибрационные или другого вида нагрузки с количеством циклов 10 и более при
коэффициенте асимметрии напряжений в соединяемых элементах
.
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует выполнять только с предварительно напряженными
высокопрочными болтами. Такие соединения могут воспринимать местные поперечные усилия за
счет сопротивления сил трения между контактирующими поверхностями фланцев от
предварительного натяжения болтов и наличия "рычажных усилий".
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию
сжатия с изгибом при однозначной эпюре сжимающих напряжений в соединяемых элементах (в
дальнейшем ФС сжатых элементов), следует выполнять на высокопрочных болтах без
предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения
могут воспринимать сдвигающие усилия за счет сопротивления сил трения между контактирующими
поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля широкополочные двутавры и тавры, парные уголки, замкнутого профиля - круглые трубы,
изгибаемых элементов из широкополочных двутавров, которые следует, как правило, применять при
проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в
соответствии с требованиями, изложенными в разделе 6 настоящих рекомендаций, а также с учетом
положительного опыта освоенной технологии изготовления ФС Белгородским, Кулебакским,
Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским
заводом металлоконструкций (г.Назарово) Минэнерго СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических
исследований,
выполненных
в
1981-1987
гг.
во
ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкции им. Мельникова и ВНИИКТИСтальконструкции. В рекомендациях
отражен опыт внедрения ФС, выполненных в соответствии с "Руководством по проектированию,
изготовлению и сборке монтажных фланцевых соединений стропильных ферм с поясами из
широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с
требованиями главы СНиП II-23-81*, постановления Государственного строительного комитета
СССР от 21 ноября 1986 г. N 28 о сокращенном сортаменте металлопроката в строительных
стальных конструкциях и приказа Министерства монтажных и специальных строительных работ
СССР от 28 января 1987 г. N 34 "О мерах, связанных с утверждением сокращенного сортамента
металлопроката для применения в строительных стальных конструкциях".
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 279

280.

Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ
8509-72, балки двутавровые по ГОСТ 8239-72* , балки с параллельными гранями полок по ГОСТ
26020-83, швеллер горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили
гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные
прямошовные трубы по ГОСТ 10704-76 и горячедеформированные трубы по ГОСТ 8732-78* (для
сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ
10704-91, соответственно. - Примечание изготовителя базы данных.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или
их совместному действию, следует применять листовую сталь по ГОСТ 19903-74* марок 09Г2С-15
по ГОСТ 19282-73
и 14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими
свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей,
предназначенных для строительных стальных конструкций по ГОСТ 19282-73, при этом сталь
должна удовлетворять следующим требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
категория качества стали - 12;
относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали
по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.)
должно удовлетворять требованиям, указанным в табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Площадь дефекта, см
Допустимая
Максимальная
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Минимальное
Всего листов 96
Лист 280

281.

частота
дефекта
минимального
учитываемого
допустимая
длина дефекта
допустимое
расстояние между
дефектами
максимального
допустимого
см
Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0

4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности
минимального из них, оцениваются как один дефект.
2. По
усмотрению
завода
строительных
стальных
конструкций
разрешается
дефектоскопический контроль материала фланцев производить только после приварки их к
элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных стальных конструкций.
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект"
климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а
также высокопрочные гайки и шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по
тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок.
Геометрические и механические характеристики таких болтов должны отвечать требованиям ГОСТ
22353-77, ГОСТ 22356-77 - для болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 2235677. Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с
проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание
изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по
ГОСТ 2246-70 или порошковую проволоку ПП-АН8 по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же
марок, что и основные соединяемые профили.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 281

282.

3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и
коэффициенты условий работы следует принимать в соответствии с указаниями главы СНиП II-2381*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:
,
где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков,
подверженных воздействию растяжения или сжатия. Растянутые участки фланцев передают внешние
усилия через предварительно натянутые пакеты "фланец-болт", сжатые - через плотное касание
фланцев.
4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без
разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты
диаметром 24 мм (М24); использование болтов М20 и М27 следует допускать в тех случаях, когда
постановка болтов М24 невозможна или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра
болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 282

283.

М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных
стенками (полками профиля, ребрами жесткости) с двух и более сторон, и болты наружных зон,
ограниченных с одной стороны (рис.1); характер работы и расчет ФС в этих зонах различны.
Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по
контуру и как можно ближе к элементам присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 283

284.

- ширина фланца, приходящаяся на
-ый болт наружной зоны;
- катет углового шва.
Если по конструктивным особенностям ФС
(раздел 5) величину
принимают равной
, то в расчетах на прочность ФС
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального
растяжения, болты следует располагать безмоментно относительно центра тяжести присоединяемого
профиля с учетом неравномерности распределения внешних усилий между болтами наружной и
внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с
учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.)
должна обеспечивать возможность свободной установки и натяжения болтов, в том числе
выполнения контроля усилий натяжения болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна
для передачи внешних силовых воздействий или необходимо повысить несущую способность
растянутых участков ФС без увеличения числа болтов или толщины фланцев, последние следует
усиливать ребрами жесткости (рис.1 и 2).
Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля,
длина должна быть не менее 200 мм. Ребра жесткости следует располагать так, чтобы концентрация
напряжений в сечении основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта
и т.п.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 284

285.

4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность
ФС должна удовлетворять суммарному усилию в узле, а не усилию в смежной панели пояса.
4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует
строго соблюдать требования точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
на сжатых участках устанавливать дополнительное количество болтов с предварительным их
натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не
предусмотрены, расчетные рамные моменты следует снижать до 15%.
4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального
растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости.
Рекомендуемый сортамент ФС этого типа (приложение 1) с фланцами толщиной 25-40 мм включает
в себя профили от 20Ш1 до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН
(163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные
сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального
растяжения, следует выполнять с фасонками для обеспечения необходимой несущей способности
сварных швов. Рекомендуемый сортамент ФС этого типа (приложение 2) с фланцами толщиной 2040 мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного
типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения,
следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый
сортамент ФС этого типа (приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3,
расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров
данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения,
следует выполнять, как правило, со сплошными фланцами и ребрами жесткости в количестве не
менее 3 шт. Ширина ребер определяется разностью радиусов фланцев и труб, длина - не менее 1,5
диаметра трубы (см. рис.2).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 285

286.

Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные
прямошовные и горячедеформированные трубы размерами от 114х2,5 до 377х10, расчетные
продольные усилия 630-3532 кН (64-360 тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными
сопротивлениями
МПа, болты высокопрочные М20, М24 и М27.
Для ФС элементов из круглых труб, выполненных из малоуглеродистой стали, допустимо
применение сплошных фланцев без ребер жесткости при условии выполнения сварных швов
равнопрочными этим элементам и экспериментальной проверки натурных ФС данного типа.
4.16. ФС элементов из гнутосварных профилей прямоугольного или квадратного сечений,
подверженных воздействию центрального растяжения, следует выполнять со сплошными фланцами
и ребрами жесткости, расположенными, как правило, вдоль углов профиля (см. рис.2). Ширина ребер
определяется размерами фланца и профиля, длина - не менее 1,5 высоты меньшей стороны профиля.
Если между ребрами жесткости будет размещено более двух болтов или ребра жесткости будут
установлены не только вдоль углов профиля, то ФС элементов из гнутосварных профилей данного
типа могут быть применены только после экспериментальной проверки натурных соединений
данного типа.
4.17. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, следует выполнять, как правило, со сплошными фланцами с постановкой ребра
жесткости на растянутом поясе в плоскости стенки двутавра. При необходимости увеличения
количества болтов и ширины фланцев соответствующее уширение поясов двутавров следует
осуществлять за счет приварки дополнительных фасонок (рис.3, а).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 286

287.

Рис.3. Схемы фланцевых соединений изгибаемых элементов из прокатных или сварных
двутавров
Рекомендуемый сортамент ФС этого типа (приложение 5) включает в себя профили от 26Б1 до
100Б2 и от 23Ш1 до 70Ш2 с несущей способностью 127-2538 кН·м (13-259 тс·м). Несущая
способность ФС на изгиб для данного типа соединения и данного типоразмера двутавра определена
из условия прочности фланца, болтов и сварных швов соединения, воспринимающих данный
изгибающий момент.
Для этого типа соединений предусмотрено применение высокопрочных болтов М24 и М27.
4.18. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, возможно выполнять со сплошными фланцами, высота которых не превышает
высоты двутавра (см. рис.3, б). Такие соединения следует применять, если расчетный момент в
рамных соединениях ниже несущей способности двутавров на изгиб.
При необходимости уменьшения количества болтов или увеличения жесткости растянутых
участков ФС допустимо применять составные фланцы, увеличивая их толщину на растянутом
участке до 36-40 мм (см. рис.3, в).
Если изгибающий момент в рамных соединениях превышает несущую способность двутавра на
изгиб, следует предусматривать устройство вутов (см. рис.3, г).
ФС указанных типов следует проектировать в соответствии с указаниями настоящих
рекомендаций.
4.19. Для ФС элементов, подверженных воздействию сжатия, когда непредусмотренные
проектом (КМ) эксцентриситеты передачи продольных усилий недопустимы, необходимо строго
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 287

288.

выполнять требования по точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций. В таких соединениях следует предусматривать также установку болтов с
суммарным предварительным натяжением, равным расчетному усилию сжатия в соединяемых
элементах.
4.20. ФС элементов, подверженных центральному растяжению, следует, как правило,
применять для передачи усилий (кН), не превышающих для элементов из:
парных уголков - 3000;
одиночных уголков - 1900;
широкополочных двутавров и круглых труб - 3500;
широкополочных тавров и прямоугольных труб - 2500.
ФС сварных или прокатных двутавров, подверженных изгибу или совместному действию
изгиба и растяжения, следует, как правило, применять, если суммарное растягивающее усилие,
воспринимаемое ФС от растянутой зоны присоединяемого элемента, не превышает 3000 кН.
5. РАСЧЕТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
5.1. ФС элементов стальных конструкций следует проверять расчетами на:
прочность болтов;
прочность фланцев на изгиб;
прочность соединений на сдвиг;
прочность сварных швов соединения фланца с элементом конструкции.
5.2. Методы расчета следует применять только для ФС, конструктивная форма которых
отвечает требованиям раздела 4.
5.3. Предельное состояние ФС определяют следующие yсловия:
усилие в наиболее нагруженном болте, определенное с учетом совместной работы болтов
соединения, не должно превышать расчетного усилия растяжения болта;
изгибные напряжения во фланце не должны превышать расчетных сопротивлений стали
фланца по пределу текучести.
5.4. Расчет прочности ФС элементов открытого профиля, подверженных центральному
растяжению.
Количество болтов внутренней зоны
определяет конструктивная форма соединения.
Количество болтов наружной зоны предварительно назначают из условия:
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 288

289.

,
где
(1)
- внешняя нагрузка на соединение;
- предельное внешнее усилие на один болт внутренней зоны, равное 0,9
;
- предельное внешнее усилие на один болт наружной зоны, равное
;
- коэффициент, учитывающий неравномерное распределение внешней нагрузки между
болтами внутренней и наружной зон, определяемый по табл.2.
Таблица 2
Диаметр болта
Толщина фланца, мм
Соотношение внешних усилий на один болт внутренней и
наружной зон
М20
М24
М27
16
2,5
20
1,7
25
1,4
30
1,2
20
2,6
25
1,8
30
1,5
40
1,1
25
2,1
30
1,7
40
1,2
Прочность фланца и болтов, относящихся к внутренней зоне, следует считать
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 289

290.

обеспеченной, если: болты расположены в соответствии с указаниями п.4.6, толщина
фланца составляет 20 мм и выше, а усилие на болт от действия внешней нагрузки не
превышает величины
.
5.5. При расчете на прочность болтов и фланца, относящихся к наружной зоне,
выделяют отдельные участки фланцев, которые рассматривают как Т-образные (см. рис.1)
шириной
.
Прочность ФС следует считать обеспеченной, если
,
где
- расчетное усилие растяжения, воспринимаемое ФС, определяемое по формулам
если
если
где
(2)
,
(3)
,
(4)
;
;
,
,
- расчетное усилие на болт, определяемое из условия прочности соединения по болтам;
- расчетное усилие на болт, определяемое из условия прочности фланца на изгиб.
,
(5)
где
- коэффициент, зависящий от безразмерного параметра жесткости болта
определяемый по табл.3 или по формуле:
;
;
,
(8)
,
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
(6)
(7)
,
где
,
Всего листов 96
Лист 290

291.

- параметр, определяемый по табл.4 или из уравнения
,
(9)
где - толщина фланца;
- ширина фланца, приходящаяся на один болт наружной зоны
участка фланца;
-го Т-образного
- расстояние от оси болта до края сварного шва
-го Т-образного участка фланца.
Таблица 3
0,02
0,04
0,06 0,08
0,1
0,2
0,4
0,6
0,8
1,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
8,0
10
15
0,907 0,836 0,79 0,767 0,744 0,67 0,602 0,561 0,53 0,509 0,467 0,438 0,41 0,396 0,367 0,34 0,325 0,296 0,27 0,232
6
3
2
5
4
3
Таблица 4
Параметр
при
1,4
1,6
1,8
2,0
2,2
2,4
2,7
3,0
4,0
5,0
0,02
3,252
2,593
2,221
1,986
1,826
1,710
1,586
1,499
1,333
1,250
0,06
2,960
2,481
2,171
1,962
1,812
1,702
1,582
1,497
1,333
1,250
0,1
2,782
2,398
2,130
1,939
1,799
1,694
1,578
1,494
1,332
1,249
0,5
2,186
2,036
1,908
1,776
1,711
1,636
1,545
1,475
1,327
1,248
1,0
1,949
1,860
1,780
1,707
1,643
1,586
1,514
1,454
1,321
1,246
2,0
1,757
1,704
1,653
1,607
1,564
1,524
1,470
1,424
1,312
1,242
3,0
1,660
1,621
1,584
1,548
1,515
1,483
1,440
1,402
1,303
1,238
4,0
1,599
1,568
1,537
1,508
1,480
1,454
1,417
1,384
1,296
1,235
5,0
1,555
1,529
1,503
1,478
1,454
1,431
1,399
1,370
1,289
1,232
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 291

292.

6,0
1,522
1,498
1,476
1,454
1,433
1,413
1,384
1,357
1,283
1,230
8,0
1,473
1,454
1,436
1,418
1,401
1,384
1,360
1,337
1,273
1,224
10
1,438
1,422
1,406
1,391
1,377
1,362
1,341
1,322
1,264
1,219
15
1,381
1,369
1,358
1,346
1,335
1,324
1,308
1,293
1,247
1,210
Примеры расчета и проектирования соединений элементов, подверженных растяжению,
приведены в приложении 6.
5.6. Расчет ФС элементов открытого профиля, подверженных изгибу и совместному действию
изгиба и растяжения.
Максимальные и минимальные значения нормальных напряжений в присоединяемом
профиле
от действия изгиба и продольных сил определяют в плоскости его соединения с
фланцем по формуле*:
,
где
и
(10)
- изгибающий момент и продольное усилие, воспринимаемые ФС;
- момент сопротивления сечения присоединяемого профиля;
- площадь поперечного сечения присоединяемого профиля.
_______________
* При расчете
с целью упрощения наличием ребер, ужесточающих фланец,
можно пренебречь.
Усилия в поясах присоединяемого профиля
определяют по формуле
,
где
- площадь поперечного сечения пояса
или
(11)
(рис.4);
- площадь поперечного сечения участка стенки в зоне болтов растянутого
пояса;
;
;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 292

293.

- толщина стенки,
обозначения приведены на рис.4.
полок
и
высота
присоединяемого
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
профиля;
остальные
Всего листов 96
Лист 293

294.

Рис.4. Схема к расчету фланцевых соединений изгибаемых элементов из двутавров
Усилия в растянутой части стенки присоединяемого профиля определяют по формуле
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 294

295.

при
,
при
где
,
;
(12)
,
,
.
Прочность ФС считается обеспеченной, если:
при
,
(13)
;
при
,
(14)
,
где
- расчетное усилие, воспринимаемое болтами растянутого пояса
при наличии ребра жесткости (см. рис.4)
, равное:
;
(15)
при симметричном расположении болтов относительно пояса
;
(16)
;
(17)
при отсутствии ребра жесткости
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 295

296.

при отсутствии болтов ряда
;
(18)
- расчетное усилие, воспринимаемое болтами растянутой части стенки, равное:
;
(19)
- расчетное усилие, воспринимаемое болтами растянутого пояса
, равное:
при наличии ребра жесткости
;
(20)
;
(21)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
(22)
- расчетное усилие на болт наружной зоны
-го Т-образного участка фланца
растянутого пояса или стенки, определяемое по формулам (2)-(9) в соответствии с указаниями п.5.5;
- число болтов наружной зоны растянутого пояса
;
- число болтов наружной зоны растянутого пояса
;
- число рядов болтов растянутой части стенки;
;
;
;
;
;
- коэффициент, равный 0,8 для
случаях 1,0.
400 мм, 0,9 для
мм, в остальных
Пример расчета фланцевого соединения изгибаемых элементов приведен в приложении 7.
5.7. Расчет прочности ФС элементов замкнутого профиля, подверженных центральному
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 296

297.

растяжению.
Прочность соединения, конструктивная форма которого отвечает требованиям раздела 4,
следует считать обеспеченной, если
мм,
,
где
(23)
- количество болтов в соединении;
- коэффициент, значение которого следует принимать по табл.5.
Таблица 5
Диаметр болта, мм
Толщина фланца, мм
М20
0,85
М24
0,8
0,85
М27
0,8
0,85
5.8. Прочность ФС растянутых элементов открытого и замкнутого профилей на
действие местной поперечной силы
следует проверять по формуле
,
(24)
где - количество болтов наружной зоны для ФС элементов открытого профиля и количество
болтов для ФС элементов замкнутого профиля;
- контактные усилия, принимаемые равными 0,1
для ФС элементов замкнутого
профиля, а для элементов открытого профиля определяемые по формуле
;
(25)
- расчетное усилие на болт, определяемое по формуле (5) в соответствии с указаниями
п.5.5;
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 297

298.

- коэффициент трения соединяемых поверхностей фланцев, принимаемый в соответствии с
указаниями п.11.13* главы СНиП II-23-81*.
При отсутствии местной поперечной силы в расчет вводится условное значение
.
5.9. Прочность ФС сжатых элементов открытого и замкнутого профилей, а также ФС
изгибаемых элементов открытого профиля на действие сдвигающих сил следует проверять
по формуле
,
(26)
где
- усилие сжатия в ФС от действия внешней нагрузки, для ФС изгибаемых элементов
определяемое по формуле
,
(27)
где
- усилие растяжения или сжатия в присоединяемом элементе от действия внешней
нагрузки.
5.10. Расчет прочности сварных швов соединения фланца с элементом конструкции следует
выполнять в соответствии с требованиями главы СНиП II-23-81* с учетом глубины проплавления
корня шва на 2 мм по трем сечениям (рис.5):
Рис.5. Схемы расчетных сечений сварного соединения (сварка механизированная):
1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления с профилем; 3 сечение по металлу границы сплавления с фланцем
по металлу шва (сечение 1)
;
(28)
по металлу границы сплавления с профилем (сечение 2)
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 298

299.

;
(29)
по металлу границы сплавления с фланцем в направлении толщины проката (сечение 3)
,
где
(30)
- расчетная длина шва, принимаемая меньше его полной длины на 10 мм;
- коэффициенты:
=0,7;
принимается по табл.34* главы СНиП II-23-81*;
- коэффициенты условий работы шва;
- коэффициент условий работы сварного соединения,
=1,0;
- расчетные сопротивления угловых швов срезу (условному) по металлу шва и
металлу границы сплавления с профилем соответственно, принимаются по табл.3 главы СНиП II-2381*;
- расчетное сопротивление растяжению стали в направлении толщины фланца, принимается
по табл.1* главы СНиП II-23-81*.
6. ИЗГОТОВЛЕНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
Материал и обработка деталей ФС
6.1. Качество проката, применяемого для изготовления фланцев в соответствии с требованиями
п.2.2, должно быть гарантировано сертификатом завода - поставщика проката.
Завод строительных стальных конструкций (в дальнейшем завод-изготовитель) обязан
маркировать каждый фланец с указанием марки стали, номера сертификата завода - поставщика
проката, номера плавки, номера приемного акта завода - изготовителя конструкций.
Маркировку следует выполнять металлическими клеймами на поверхности фланца в месте,
доступном для осмотра после монтажа конструкций. Глубина клеймения не должна превышать 0,5
мм. Место для клейма должно быть указано в чертежах КМ.
6.2. При входном контроле проката, применяемого для изготовления фланцев, следует
проверить соответствие данных сертификата требованиям, предъявляемым к качеству этого проката.
При отсутствии сертификата завод-изготовитель должен проводить испытания проката с целью
определения требуемых механических свойств и химического состава, определяющих качество
проката. При этом проверку механических свойств стали в направлении толщины проката следует
проводить по методике, приведенной в приложении 8. Контроль качества стали фланцев методами
ультразвуковой дефектоскопии следует выполнять в соответствии с указаниями п.2.4.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 299

300.

6.3. Заготовку фланцев следует выполнять машинной термической резкой.
6.4. Заготовку элементов, присоединяемых к фланцам, следует выполнять машинной
термической резкой или механическим способом (пилы, отрезные станки). При применении ручной
термической резки торцы элементов должны быть затем обработаны механическим способом
(например, фрезеровкой).
6.5. Отклонения размеров фланцев, отверстий под болты и элементов, соединяемых с фланцем,
должны удовлетворять требованиям, изложенным в табл.6.
Таблица 6
Контролируемый параметр
Предельное отклонение
1. Отклонения торца присоединяемого к
фланцу элемента
0,002
, где
- высота и ширина сечения элемента. Максимальный зазор между
фланцем и торцом присоединяемого элемента не должен превышать 2 мм
2. Шероховатость торцевой поверхности
элемента, присоединяемой к фланцу
320, допускаются отдельные "выхваты" глубиной не более 1 мм в количестве 1
шт. на длине 100 мм
3. Отклонение габаритных размеров фланца
±2,0 мм
4. Разность диагоналей фланца
±3,0 мм
5. Отклонение центров отверстий в пределах
группы
±1,5 мм
6. Отклонение диаметра отверстия
+0,5 мм
6.6. Отверстия во фланцах следует выполнять сверлением. Заусенцы после сверления должны
быть удалены.
Сборка и сварка ФС
6.7. Сборку элементов конструкций с фланцевыми соединениями следует производить только
в кондукторах.
6.8. В кондукторе фланец следует фиксировать и крепить к базовой поверхности не менее чем
двумя пробками и двумя сборочными болтами.
6.9. Базовые поверхности кондукторов должны быть фрезерованы. Отклонение тангенса угла
их наклона не должно превышать 0,0007 в каждой из двух плоскостей.
6.10. ФС следует сваривать только после проверки правильности их сборки. Сварные швы
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 300

301.

следует выполнять механизированным способом с применением материалов, указанных в п.2.7, и
проплавлением корня шва не менее 2 мм.
6.11. Технология сварки должна обеспечивать минимальные сварочные деформации фланцев.
6.12. После выполнения сварных швов ФС сварщик должен поставить свое клеймо, место
расположения которого должно быть указано в чертежах КМ.
6.13. После выполнения сварки внешние поверхности фланцев должны быть отфрезерованы.
Толщина фланцев после фрезеровки должна быть не менее указанной в чертежах КМД.
Запрещается осуществлять наклон соединяемых элементов за счет изменения толщины фланца
(клиновидности).
6.14. Точность изготовления отправочных
соответствовать требованиям, изложенным в табл.7.
элементов
конструкций
с
ФС
должна
Таблица 7
Контролируемый параметр
1. Тангенс угла отклонения фрезерованной поверхности фланцев
Предельное отклонение
Не более 0,0007
2. Зазор между внешней плоскостью фланца и ребром стальной
линейки
0,3 мм
3. Отклонение толщины фланца (при механической обработке
торцевых поверхностей)
±0,02
4. Смещение фланца от проектного положения относительно осей
сечения присоединяемого элемента
±1,5 мм
5. Отклонение длины элемента с ФС
0; -5,0 мм
6. Совпадение отверстий в соединяемых фланцах при контрольной
сборке
Калибр диаметром, равным номинальному диаметру болта,
должен пройти в 100% отверстий
Грунтование и окраска
6.15. При отсутствии специальных указаний в чертежах КМ фланцы должны быть
огрунтованы и окрашены теми же материалами и способами, что и конструкция в целом.
Контроль качества ФС
6.16. Контрольную сборку элементов конструкций с ФС следует проводить в объеме не менее
10% общего количества, но не менее 4 шт. взаимно соединяемых элементов.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 301

302.

Обязательной контрольной сборке подлежат первые и последние номера элементов в
соответствии с порядковым номером изготовления.
6.17. В процессе выполнения работ по сварке ФС следует контролировать:
квалификацию сварщиков в соответствии с правилами предприятия, изготавливающего
конструкции;
качество сварочных материалов в соответствии с действующими стандартами и паспортами
изделий;
качество подготовки и сборки деталей под сварку в соответствии с главой СНиП III-18-75,
раздел 1 и настоящими рекомендациями;
качество сварных швов в соответствии со СНиП III-18-75: в соединениях сжатых элементов по
поз.1.2 табл.3 раздела 1, в соединениях растянутых и изгибаемых элементов категории швов сварных
соединений 1 по поз.3 табл.41 и поз.1, 2, 3 табл.42 разд.9; а также в соответствии с ГОСТ 14771-76 и
требованиями пп.6.10 и 6.11 настоящих рекомендаций.
6.18. 100-процентному контролю следует подвергать параметры, указанные в пп.1, 2 табл.6 и
пп.1-6 табл.7 настоящих рекомендаций, а также наличие и правильность маркировки и клейма
сварщиков на фланце.
6.19. Фланцы после их приварки к соединяемым элементам следует подвергать 100процентному контролю ультразвуковой дефектоскопией. Результаты контроля должны
удовлетворять требованиям п.2.5 настоящих рекомендаций.
6.20. При отправке конструкций с ФС завод-изготовитель кроме документации,
предусмотренной п.1.22 главы СНиП 3.03.01-87, должен представить копию сертификата,
удостоверяющего качество стали фланцев, а также документы о контроле качества сварных
соединений. Если фланцы изготовлены из марок стали, отличных от указанных в п.2.2, заводизготовитель должен представить документы о качестве проката, применяемого для фланцев в
соответствии с указаниями пп.2.3 и 2.4 настоящих рекомендаций.
7. МОНТАЖНАЯ СБОРКА ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
7.1. Проекты производства работ (ППР) по монтажу конструкций должны содержать
технологические карты, предусматривающие выполнение ФС в конкретных условиях монтируемого
объекта в соответствии с указаниями "Рекомендаций по сборке фланцевых монтажных соединений
стальных
строительных
конструкций"
(ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкция. - М.: ЦБНТИ Минмонтажспецстроя СССР, 1986).
7.2. Подготовку и сборку ФС следует проводить под руководством лица (мастера, прораба),
назначенного приказом по монтажной организации ответственным за выполнение этого вида
соединений на объекте.
7.3. Технологический процесс выполнения ФС включает:
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 302

303.

подготовительные работы;
сборку соединений;
контроль натяжения высокопрочных болтов;
огрунтование и окраску соединений.
7.4. Высокопрочные болты, гайки и шайбы к ним должны быть подготовлены в соответствии с
п.4.25 главы СНиП 3.03.01-87, пп.3.1.2-3.1.8 ОСТ 36-72-82.
7.5. Подготовку контактных поверхностей фланцев следует осуществлять в соответствии с
указаниями чертежей КМ и КМД по ОСТ 36-72-82. При отсутствии таких указаний контактные
поверхности очищают стальными или механическими щетками от грязи, наплывов грунтовки и
краски, рыхлой ржавчины, снега и льда.
7.6. Применение временных болтов в качестве сборочных запрещается.
7.7. Под головки и гайки высокопрочных болтов необходимо ставить только по одной шайбе.
Выступающая за пределы гайки часть стержня болта должна иметь не менее одной нитки
резьбы.
7.8. Натяжение высокопрочных болтов ФС необходимо выполнять от наиболее жесткой зоны
(жестких зон) к его краям.
7.9. Натяжение высокопрочных болтов ФС следует осуществлять только по моменту
закручивания.
7.10. Натяжение высокопрочных болтов на заданное усилие следует производить
закручиванием гаек до величины момента закручивания
, который определяют по
формуле
,
(31)
где - коэффициент, принимаемый равным: 1,06 - при натяжении высокопрочных болтов; 1,0 при контроле усилия натяжения болтов;
- среднее значение коэффициента закручивания для каждой партии болтов по сертификату
или принимаемое равным 0,18 при отсутствии таких значений в сертификате;
- усилие натяжения болта, Н;
- номинальный диаметр резьбы болта, м.
Отклонение фактического момента закручивания от момента, определяемого по формуле (31),
не должно превышать 0; +10%.
7.11. После натяжения болтов гайки ничем дополнительно не закрепляются.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 303

304.

7.12. После выполнения ФС монтажник обязан поставить на соединение личное клеймо (набор
цифр) в месте, предусмотренном в чертежах конструкций КМ или КМД, и предъявить собранное
соединение ответственному лицу.
7.13. Качество выполнения ФС на высокопрочных болтах ответственное лицо проверяет путем
пооперационного контроля. Контролю подлежат: качество обработки (расконсервации) болтов;
качество подготовки контактных поверхностей фланцев; соответствие устанавливаемых болтов, гаек
и шайб требованиям ГОСТ 22353-77 - ГОСТ 22356-77, а также требованиям, указанным в чертежах
КМ и КМД; наличие шайб под головками болтов и гайками; длина части болта, выступающей над
гайкой; наличие клейма монтажника, осуществляющего сборку соединения; выполнение требований
табл.8.
Таблица 8
Наименование отклонения
Допускаемое
отклонение, мм
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
линии стенок и полок профиля
0,2
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
краям фланцев:
для фланцев толщиной не более 25 мм
0,6
для фланцев толщиной более 32 мм
1,0
Примечание. Щуп толщиной 0,1 мм не должен проникать в зону радиусом 40 мм от оси болта
7.14. Контроль усилия натяжения следует осуществлять во всех установленных высокопрочных
болтах тарированными динамометрическими ключами. Контроль усилия натяжения следует
производить не ранее чем через 8 ч после выполнения натяжения всех болтов в соединении, при этом
усилия в болтах соединения должны соответствовать значениям, указанным в п.3.3 или табл.9.
Таблица 9
Усилие натяжения болтов (контролируемое), кН (тс)
М20
М24
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
М27
Всего листов 96
Лист 304

305.

167(17)
239(24,4)
312(31,8)
7.15. Отклонение фактического момента закручивания от расчетного не должно превышать 0;
+10%. Если при контроле обнаружатся болты, не отвечающие этому условию, то усилие натяжения
этих болтов должно быть доведено до требуемого значения.
7.16. Документация, предъявляемая при приемке готового объекта, кроме предусмотренной
п.1.22 главы СНиП 3.03.01-87, должна содержать сертификаты или документы завода-изготовителя,
удостоверяющие качество стали фланцев, болтов, гаек и шайб, документы завода-изготовителя о
контроле качества сварных соединений фланцев с присоединяемыми элементами, журнал контроля
за выполнением монтажных фланцевых соединений на высокопрочных болтах.
Приложение 1
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ДВУТАВРОВ
N
Схема фланцевого соединения
Марка профиля
,
кН
(тс)
, мм
2
3
4
5
6
7
20Ш1
1593
(163)
25
8
6
20К1
1626
(166)
25
9
6
20К2
1879
40
10
6
п
/
п
1
1
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
, мм
Всего листов 96
Лист 305
, мм

306.

(192)
2
23Ш1
1608
(164)
25
9
6
3
23К1
2237
(228)
30
9
6
23K2
2274
(232)
30
10
6
26Ш1
1913
(195)
30
10
7
26Ш2
1937
(197)
30
11
6
4
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 306

307.

5
6
7
26К1
2815
(287)
30
10
6
26K2
2933
(299)
30
12
8
30К1
3306
(337)
30
12
8
30К2
4032
(411)
40
12
8
30Ш1
2197
(224)
30
10
7
30Ш2
2668
(272)
40
12
7
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Болты М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77.
Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4 тс).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 307

308.

4. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
5. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
сечения двутавра;
пределу текучести);
, где
- площадь
- максимальное расчетное сопротивление стали двутавра растяжению по
- толщина фланцев;
- катеты угловых сварных швов стенки и полки двутавра соответственно.
Приложение 2
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ПАРНЫХ
РАВНОПОЛОЧНЫХ УГОЛКОВ
N
Схема фланцевого соединения
Сечение элемента, мм
мм
, кН (тс)
, мм
2
3
4
5
п
/
п
1
1
100
7
957
(97,6)
20
2
100
8
1224 (124,8)
25
110
8
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 308

309.

3
4
5
6
125
8
125
9
140
9
140
10
160
10
160
11
180
11
180
12
1579*
(161,0)
30
1928** (196,5)
40
2156 (219,8)
30
2613 (266,4)
30
_______________
* Марка сварочной проволоки - Св-10HMA; Св-10Г2 по ГОСТ 2246-70*.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 309

310.

** Марка сварочной проволоки - Св-10ХГ2СМА, Св-08ХН2ГМЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали равнополочных уголков по ГОСТ 8509-72
соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных
конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты (за исключением болтов по схеме 6) М24 высокопрочные из стали 40Х "Селект"
по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27. Усилие предварительного натяжения 239
кН (24,4 тс).
5. Болты по схеме 6 - М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН (31,8 тс).
6. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
7. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения уголка с максимальными типоразмерами из указанных в графе 3 для каждого фланцевого
соединения;
текучести);
- максимальное расчетное сопротивление стали уголка растяжению по пределу
- толщина фланцев;
- катет угловых сварных швов.
Приложение 3
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ТАВРОВ
Таблица 1
N п/п
Схема фланцевого соединения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 310

311.

1
10Шт1
800**
(81,5)
30
881**
(89,8)
25
1439* (146,7)
30
1919**
(195,6)
30
11,5Шт1
2
13Шт1
13Шт2 (см. п.6 примечаний)
3
15Шт1
15Шт2
15Шт3
4
17,5Шт1
17,5Шт2
17,5Шт3
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 311

312.

20Шт1
5
2537*
(258,6)
40
20Шт2
20Шт3
Таблица 2
N п/п
Схема фланцевого сечения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5
10Шт1
958
(97,6)
20
1227*
(125,1)
25
1
11,5Шт1
2
13Шт1
13Шт2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 312

313.

3
15Шт1
1494**
(152,3)
25
1919**
(195,6)
30
2681**
(273,3)
40
15Шт2
4
17,5Шт1
17,5Шт2
17,5Шт3
5
20Шт1
20Шт2
20Шт3
_______________
* Марка сварочной проволоки - Св-10НМА; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Cв-08XH2ГMЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали тавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г20-15 по ГОСТ 19282-73.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 313

314.

3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты, за исключением болтов по схеме 5 (табл.1 и табл.2), М24 высокопрочные из стали
40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие
предварительного натяжения 239 кН (24,4 тс).
5. Болты по схеме 5 (табл.1 и табл.2) М27 высокопрочные из стали 40Х "Селект" по ГОСТ
22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН
(31,8 тс).
6. На схеме (табл.1) представлено фланцевое соединение тавров с расчетным сопротивлением
не выше 315 и 270 МПа для 13Шт1 и 13Шт2 соответственно.
7. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
8. Обозначения, принятые в таблицах:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения тавра с максимальными типоразмерами из указанных в графе 3 для каждой схемы
фланцевых соединений;
- максимальное расчетное сопротивление стали тавра растяжению по
пределу текучести);
- толщина фланцев;
- катеты угловых сварных швов стенки и полки тавра соответственно.
Приложение 4
COPTAМEHT ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ КРУГЛЫХ ТРУБ
N
п/п
Схема фланцевого соединения
1
2
Сечение трубы, мм
мм
, кН (тс)
, мм
, мм
,
, мм
мм
3
4
5
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
6
7
Всего листов 96
Лист 314
8

315.

1
114
2,5
121
245
175
5,0; 6,0*
255
185
127
3,0
4,0
255
185
140
3,5; 4,5
275
205
20
140
4,0
8,0*
(92,2)
903
25
310
220
24
159
3,5; 5,5
630
20
300
220
20
168
4,0
903
25
350
250
24
(138,2) 1356
25
350
250
24
400
300
400
300
430
330
168
2
3
5,0
6,0
8,0
219
6,0; 8,0*
219
10,0*
245
20
20
6,0*
168
219
(64,2)
630
10,0*
4,0
(184,3) 1808
25
6,0
8,0*
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 315
24

316.

4
5
219
7,0; 8,0
(230,4) 2260
25
400
300
245
10,0
12,0*
430
330
273
4,5.....**6,0
460
360
273
8,0; 10,0*
325
5,0; 5,5
535
425
377
5,0
560
460
273
7,0; 8,0
460
360
273
12,0*
460
360
377
9,0; 10,0
560
460
325
6,0
520
410
8,0
(276,5) 2712
8,0
(360)
3532
25
30
24
24
27
_______________
* Горячедеформированные трубы по ГОСТ 8732-78*
** Брак оригинала. - Примечание изготовителя базы данных.
Примечания: 1. Типоразмеры и марки стали электросварных прямошовных труб по ГОСТ
10704-76 и горячедеформированных труб по ГОСТ 8732-78* соответствуют сокращенному
сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали ребер жесткости назначают в соответствии с указаниями п.2.8 настоящих
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 316

317.

рекомендаций. Толщина ребер принимается равной толщине стенки трубы с округлением в большую
сторону. Длина ребер определяется конструктивными особенностями соединения, но не менее 1,5
диаметра трубы для четных и 1,7 диаметра трубы для нечетных ребер.
4. Болты М20, М24 и М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 23, 28 и 31 мм. Усилие предварительного натяжения 167, 239 и 312 кН
соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
6. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения трубы с типоразмерами из указанных в графе 3 для каждого фланцевого соединения;
расчетное сопротивление стали трубы растяжению по пределу текучести);
-
- толщина фланцев;
- диаметр фланцев;
- диаметр болтовой риски;
- диаметр болтов.
Приложение 5
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 317

318.

Геометрические параметры соединений
Диаметр
болта
Параметры,
мм
Номер профиля ригеля
26Б1
30Б1
35Б1
35Б2
40Б1
М24
М27
45Б1
50Б1
55Б1
60Б1
45Б2
50Б2
55Б2
60Б2
70Б1
70Б2
80Б1
90Б1
100Б1
100Б2
23Ш1
26Ш1
26Ш2
30Ш1
35Ш1
40Ш1
50Ш1
30Ш2
35Ш2
40Ш2
60Ш1
70Ш1
70Ш2
90
90
100
100
90
90
100
100
60
60
60
60
60
60
60
60
40
45
45
50
40
45
45
50
100
100
110
110
100
100
110
110
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 318

319.

70
70
70
70
70
70
70
70
45
50
50
55
45
50
50
55
Примечание. Параметр
может быть изменен в зависимости от типа колонны при
выполнении условий, изложенных в разделе 4 (п.4) настоящих рекомендаций.
НЕСУЩАЯ СПОСОБНОСТЬ СОЕДИНЕНИЯ (тс·м)
Тип
фла
н- ца
1
2
3
4
Диаметр
болт
а
Номер профиля ригеля
26
Б1
30Б1
35
Б1
35
Б2
40Б1
40Б2
45
Б1
45
Б2
50Б1
50Б2
55
Б1
55
Б2
60Б1 70Б1 80Б1
60Б2 70Б2
90
Б1
100Б
1
23Ш
1
26Ш
1
26Ш
2
30
1
30
2
М24
15,
5
18,5
22,
2
25,9
31,
7
35,6
41,
9
46,7
-
-
-
-
13,0
15,2
17
М27
-
-
-
36,3
40,
7
-
-
-
-
-
-
-
-
19,4
22
М24
-
-
-
28,8
35,
3
40,2
48,
1
53,5
63,9
74,4
-
-
-
-
-
М27
-
-
-
-
-
50,5
58,
6
-
-
-
-
-
-
-
-
М24
-
-
-
-
-
63,5
73,
8
81,9
97,4
112,
9
12
9,5
145,
4
-
-
31
М27
-
-
-
-
-
-
-
100,
7
119,
8
139,
0
-
-
-
-
-
М24
-
-
-
-
-
-
-
-
136,
159,
18
206,
-
-
-
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 319

320.

М27
-
-
-
-
-
-
-
-
7
4
3,7
8
-
-
22
2,0
258,
6
-
-
-
40
Ш
50
Ш
60
Ш
70Ш
СВАРНЫЕ ШВЫ
Номер
профиля
ригеля
26
Б
30Б
35Б
40Б
45
Б
50
Б
55
Б
60
Б
70
Б
8
0
Б
90
Б
100Б
23
Ш
26
Ш
30
Ш
35
Ш
8
8
8
8
8
10
12
12
*
14
*
1
4
*
14
*
14*
8
10
10
12
*
12*
10
10
10
10
14
14
16
16
*
16
*
1
6
*
16
*
20*
10
14
16
16
*
18*
_______________
* Марка сварочной проволоки Св-10 НМА, Св-10Г2 по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ГОСТ
19282-73, 09Г2С-15 по ГОСТ 19282-73.
3. Болты высокопрочные М24 и М27 из стали 40Х ’’Селект" климатического исполнения
ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а также гайки
высокопрочные и шайбы к ним по ГОСТ 22353-77 - ГОСТ 22356-77.
Усилие предварительного натяжения болтов: М24 - 239 кН; М27 - 312 кН.
4. Диаметр отверстий 28 и 31 мм под высокопрочные болты М24 и М27 соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
Приложение 6
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 320

321.

ПРИМЕРЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ПРОЧНОСТИ ФЛАНЦЕВЫХ
СОЕДИНЕНИЙ ЭЛЕМЕНТОВ, ПОДВЕРЖЕННЫХ РАСТЯЖЕНИЮ
1. Фланцевое соединение растянутых элементов из парных равнополочных уголков
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - парные равнополочные уголки
по
ГОСТ 8509-72 из стали марки 09Г2С-6 по ГОСТ 19282-73 с расчетным сопротивлением стали
растяжению по пределу текучести
=360 МПа (3650 кгс/см ) и временным сопротивлением стали
разрыву с
=520 МПа (5300 кгс/см ), площадь сечения профиля =2х22=44 см ;
усилие растяжения, действующее на соединение,
=1557 кН (159 тс);
материал фланца - сталь марки 09Г2С-15 по ГОСТ 19282-73 с расчетным
сопротивлением растяжению по пределу текучести
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
МПа (1480 кгс/см ).
Толщина фланца =30 мм;
болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов
=239 кН (24,4 тс);
=266 кН (27,1 тс), расчетное
катеты сварных швов принять равными
=10 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2390 кгс/см
);
материал фасонки - сталь марки 09Г2С-12-2 по ТУ 14-1-3023-80, толщина фасонки
=14 мм.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.1):
см, а также необходимые для расчета
параметры в соответствии с требованиями главы СНиП II-23-81*:
=0,7,
=1,0,
=1,0,
=1,0,
=1,0. Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем
по трем сечениям:
по металлу шва по формуле (28):
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 321

322.

;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2390 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Рис.1. Схема к примеру расчета фланцевого соединения парных равнополочных уголков 125х9
Таким образом, прочность сварных швов обеспечена.
Для предотвращения внецентренного приложения внешнего усилия на соединение
центр тяжести сварных швов должен совпадать с центром тяжести соединяемого профиля.
Поэтому необходимо выполнение условия:
=0, где
- статический момент сварных швов
относительно оси
, или
= , где
и
- статические моменты сварных швов выше и ниже
оси
соответственно.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 322

323.

Разница между
и
составляет
.
Конструирование и расчет прочности ФС
Конструктивная форма соединения принята, как показано на рис.1. В таком соединении
количество болтов внутренней зоны
=4. Количество болтов наружной зоны
предварительно
назначаем из условия (1) [см. раздел 5]:
,
где
- предельное внешнее усилие на болт внутренней зоны от действия внешней
нагрузки;
- предельное внешнее усилие на один болт наружной зоны, определяемое по табл.2
(раздел 5). По конструктивным особенностям соединения предварительно назначаем количество
болтов наружной зоны
=4.
Расстановку болтов производим в соответствии с указаниями п.4.6. В соответствии с
указаниями п.4.7 болты должны быть расположены безмоментно относительно оси
(см.
рис.1), поэтому
. С учетом, что
=1,5 имеем:
,
таким образом это условие выполнено.
Прочность ФС следует считать обеспеченной, если выполняется условие (2):
,
где - расчетное усилие растяжения, воспринимаемое ФС и определяемое по формулам (3)
или (4). Для определения необходимо найти величину
- расчетное усилие на болт наружной
зоны -го участка фланца, представляемого условно как элементарное Т-образное ФС. Заметим, что
в силу конструктивных особенностей в этом соединении можно выделить два участка наружной
зоны I и II (на рис.1 эти участки заштрихованы). Поэтому для нахождения величины необходимо
определить значения
и
и выбрать наименьшее из них.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к участку I
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 323

324.

наружной зоны, определяем из условия:
.
Значение
определяем по формуле (5)
, где
находим по формуле (6)
,a
- по формуле (7)
,
здесь
=24 мм - номинальный диаметр резьбы болта,
- ширина фланца, приходящаяся на один
болт участка I наружной зоны,
мм - усредненное расстояние между осью болта и
краями сварных швов полки уголка и фасонки.
Тогда:
кН (17,7 тс).
Значение
определяем по формуле (8)
,
для чего находим значения
и
:
,
а значение
Тогда:
определяем по табл.4 (
).
кН (28,4 тс).
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 324

325.

Поскольку
, принимаем
кН (17,7 тс).
Определение
находим так же, как и
, с той лишь разницей, что для участка II
Значение
мм, а
С учетом этого
тогда
кН (17,6 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
значение
тогда:
определяем по табл.4 (
=1,5),
кН (20,7 тс).
Поскольку
, принимаем
кН.
Так как
, принимаем
.
Поскольку
,
расчетное
усилие
растяжения,
воспринимаемое ФС, определяем по формуле (3)
(162 тс).
Проверяем выполнение условия (2):
.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 325

326.

Условие (2) выполнено, таким образом, прочность ФС следует считать обеспеченной.
2. Фланцевое соединение растянутых элементов из круглых труб
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - электросварная прямошовная труба 273х8 мм
по ГОСТ 10704-76 из стали марки 09Г2С по ТУ 14-3-500-76 с расчетным сопротивлением
стали растяжению по пределу текучести
=250 МПа (2550 кгс/см ) и временным
сопротивлением стали разрыву
=470 МПа (4800 кгс/см ), площадь сечения трубы =66,62 см
;
усилие растяжения, действующее на соединение,
=1666 кН (170 тс);
материал фланца - сталь марки 09Г2С-15 по
сопротивлением растяжению по пределу текучести
ГОСТ 19282-73 с расчетным
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
МПа (1480 кгс/см ).
Толщина фланца =25 мм;
болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов
=239 кН (24,4 тс);
=266 кН (27,1 тс), расчетное
катеты сварных швов принять равными
=8 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2160 кгс/см );
материал ребер жесткости - сталь марки 09Г2С по ТУ 14-1-3023-80, толщина ребер
жесткости
=10 мм.
Расчет прочности и проектирование ФС
В соответствии с указаниями п.5.7 прочность ФС элементов замкнутого профиля считается
обеспеченной, если:
при
мм.
Из этого условия определим необходимое количество болтов
в соединении:
шт.
Количество болтов в соединении принимаем
=8 шт.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 326

327.

Конструирование ФС осуществляем в соответствии с указаниями раздела 4.
При принятом количестве болтов в соединении минимальное количество ребер
жесткости
=4. Длина нечетных ребер:
мм,
длина четных ребер:
мм, принимаем
где
=470 мм.
- диаметр трубы.
В соответствии с указаниями п.4.6 болты располагаем как можно ближе к элементам
присоединяемого профиля, при этом:
мм,*
_________________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.
мм, с округлением принимаем =50 мм.
Определяем диаметр риски болтов:
мм, принимаем
=355 мм, а диаметр фланца:
мм.
Угол между радиальными осями ребра и болтов, расположенными у ребра:
, с округлением принимаем
=20°.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.2):
мм, а также необходимые для
расчета параметры в соответствии с требованиями главы СНиП II-23-81*:
=1,0,
=1,0,
=0,7,
=1,0,
=1,0.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 327

328.

Рис.2. Схема к примеру расчета фланцевого соединения элементов из круглых труб 273х8
Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем
сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2160 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Таким образом, прочность сварных швов обеспечена.
Приложение 7
ПРИМЕР РАСЧЕТА ФЛАНЦЕВОГО СОЕДИНЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 328

329.

Провести проверочный расчет фланцевого соединения (см. рисунок).
Схема к примеру расчета фланцевого соединения широкополочного двутавра 160Б1,
подверженного
воздействию изгиба и растяжения
Данные, необходимые для расчета:
профиль присоединяемого элемента - 160Б1 по ГОСТ 26020-83 из стали марки 09Г2С,
площадь сечения профиля
=131 см , площадь сечения пояса
=35,4 см , момент
сопротивления профиля =2610 см ;
изгибающий момент и продольное усилие, действующие
соответственно
=686 кН·м (70 тс·м) и
=490,5 кH (50 тс);
на
соединение,
материал фланца - сталь марки 14Г2АФ-15 по ТУ 14-105-465-82 с расчетным
сопротивлением изгибу по пределу текучести
=368 МПа (3750 кгс/см ), толщина фланца
принята равной =25 мм;
болты высокопрочные М24, расчетное усилие растяжения болта
расчетное усилие предварительного натяжения болтов
=239 кН (24,4 тс);
катеты сварных швов по поясам профиля
=12 мм, по стенке
=266 кН (27,1 тс),
=8 мм.
Максимальное и минимальное значения нормальных напряжений в присоединяемом профиле
от действия изгиба и продольных усилий определяем по формуле (10) [см. раздел 5]:
;
.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 329

330.

Усилие в растянутом поясе присоединяемого элемента определяем по формуле (11):
,
где
- площадь сечения участка стенки в зоне болтов растянутого пояса (см. рис.4 и
рисунок в настоящем приложении);
;
=10 мм - толщина стенки профиля;
=70 мм - ширина фланца, приходящаяся на один болт, расположенный вдоль стенки
профиля;
=15,5 мм - толщина пояса профиля.
мм,
=80·10=800 мм, тогда
=(3540+800)·300=1302 кН (132,5 тс).
Усилие в растянутой части стенки определяем по формуле (12):
,
где
,
;
мм,
тогда
кН (30,5 тс).
Прочность ФС считаем обеспеченной, если при
условие (13):
и
выполняется
;
.
При принятом конструктивном решении ФС (наличие ребра жесткости растянутого
пояса и симметричное расположение болтов относительно пояса
, см.
рисунок) расчетное усилие растяжения, воспринимаемое болтом и фланцем, относящимися к
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 330

331.

растянутому поясу,
определяем по формуле (16):
,
то же, к растянутой части стенки,
- по формуле (19):
.
Определение
Поскольку
мм, то
,
,
,
мм - расстояние от оси болтов ряда
до пояса профиля.
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к наружной
зоне пояса, определяем из условия:
.
Значение
определяем по формуле (5):
, где
находим по формуле (6):
,a
- по формуле (7):
,
здесь
=24 мм - номинальный диаметр резьбы болта,
=70 мм - ширина фланца, приходящаяся на один болт наружной зоны растянутого пояса
профиля;
=33 мм - расстояние от оси болтов ряда
профиля (
до края сварного шва растянутого пояса
мм).
Тогда:
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 331

332.

,
и
кН (15,7 тс).
Значение
определяем по формуле (8):
,
для чего находим значения
и
:
Н·см;
.
Значение
определяем по табл.4 (
=1,48).
Тогда:
кН (20,1 тс).
Поскольку
, принимаем
кН (15,7 тс) и
.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к растянутой
части стенки профиля, определяем из условия:
.
Значения
и
определяем по формулам (5) и (8). Расчет всех параметров,
необходимых для определения
и
, выполняем так же, как и при определении
лишь разницей, что для болтов и фланца, относящихся к стенке профиля, параметр
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
, с той
=37 мм (
Всего листов 96
Лист 332

333.

мм). Тогда:
;
,
кН (14,7 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
Н·см;
;
значение
определяем по табл.4 (
=1,42);
кН (18,2 тс).
Поскольку
, то принимаем
кН (14,7 тс).
Находим значение
:
кН (31,8 тс).
Определив значения
кН (132,5 тс)
кН (30,5 тс)
и
, проверяем условие (13):
кН (138,4 тс);
кН (31,8 тс).
Условие (13) выполнено. Проверка прочности сварных швов выполнена в соответствии с п.5.10
настоящих рекомендаций. Прочность сварных швов обеспечена.
Таким образом, прочность фланцевого соединения обеспечена.
Приложение 8
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 333

334.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ТОЛСТОЛИСТОВОГО
ПРОКАТА ДЛЯ ФЛАНЦЕВ
1. Общие положения
1.1. Настоящие указания распространяются на толстолистовой прокат строительных
сталей толщиной от 12 до 50 мм включительно, предназначенный для изготовления
фланцев соединений растянутых и изгибаемых элементов, и устанавливают методику
испытаний на статическое растяжение с целью определения следующих характеристик
механических свойств металлопроката в направлении толщины при температуре
°С:
предела текучести (физического или условного); временного сопротивления разрыву;
относительного удлинения после разрыва; относительного сужения после разрыва.
1.2. Определяемые в соответствии с настоящими методическими указаниями механические
свойства могут быть использованы для контроля качества проката для металлоконструкций; анализа
причин разрушения конструкций; сопоставления материалов при обосновании их выбора для
конструкций; расчета прочности несущих элементов с учетом их работы по толщине листов;
сравнения сталей в зависимости от химического состава, способа выплавки и раскисления, сварки,
вида термообработки, толщины и т.д.
1.3. При испытании на статическое растяжение принимаются следующие обозначения и
определения:
рабочая длина *, мм - часть образца с постоянной площадью поперечного сечения между его
головками или участками для захвата;
_______________
* Буквенные обозначения приняты по ГОСТ 1497-73**.
** На территории Российской Федерации действует ГОСТ 1497-84. Здесь и далее. Примечание изготовителя базы данных.
начальная расчетная длина образца
которой определяется удлинение;
, мм - участок рабочей длины образца до разрыва, на
конечная расчетная длина образца после его разрыва
, мм;
начальный диаметр paбочей части цилиндрического образца до разрыва
минимальный диаметр цилиндрического образца после его разрыва
, мм;
, мм;
начальная площадь поперечного сечения рабочей части образца до разрыва
площадь поперечного сечения образца после его разрыва
осевая растягивающая нагрузка
испытания;
предел текучести (физический)
,
, мм ;
, мм ;
- нагрузка, действующая на образец в данный момент
, МПа - наименьшее напряжение, при котором образец
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 334

335.

деформируется без заметного увеличения нагрузки;
предел текучести условный
, МПа - напряжение, при котором остаточное удлинение
достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении
указанной характеристики;
временное сопротивление
, МПа - напряжение, соответствующее наибольшей нагрузке
, предшествующей разрушению образца;
относительное удлинение после разрыва
- отношение приращения расчетной длины
образца (
) после разрыва к ее первоначальной длине ;
относительное сужение после разрыва
площади поперечного сечения после разрыва
образца
.
, % - отношение разности начальной площади и
к начальной площади поперечного сечения
2. Форма, размеры образцов и их изготовление
2.1. Для испытания на растяжение в направлении толщины проката применяют укороченные
цилиндрические образцы (см. рисунок, а) диаметром 5 мм, начальной расчетной длиной
мм по п.2.1 ГОСТ 1497-73. При этом металл, испытываемый в направлении
толщины, условно рассматривается как хрупкий. Рабочая длина образца в соответствии с п.2.3 ГОСТ
1497-73 составляет
мм.
Образцы для испытаний на растяжение в направлении толщины проката
2.2. Образец вырезают из испытываемого листа так, чтобы ось образца была перпендикулярна
к поверхности листа.
2.3. На торцах образцов, выполненных из металлопроката толщиной 30 мм, сохраняется
прокатная корка. При толщине испытываемого проката более 30 мм такая корка сохраняется на
одном торце образца.
2.4. Для испытания металлопроката толщиной 12-29 мм применяются сварные образцы. С этой
целью к листовой заготовке испытываемого металла приваривают в тавр две пластины из стали той
же прочности, чтобы получить крестовое соединение со сплошным проваром. Цилиндрические
образцы вырезают из сварного соединения так, чтобы испытываемый металл попадал в рабочую
часть образца. При этом продольная ось образца должна совпадать с направлением толщины
испытываемого листа. Этапы изготовления сварных образцов указаны на рисунке, б.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 335

336.

2.5. Для испытания металлопроката толщиной 24-29 мм допускается применять несварные
образцы с укороченной рабочей длиной по сравнению с указанной в п.2.1 и на рисунке, а. При этом
высота головок образцов не изменяется.
2.6. Образцы рекомендуется обрабатывать на металлорежущих станках. Глубина резания при
последнем проходе не должна превышать 0,3 мм. Чистота обработки поверхности образцов и
точность изготовления должны соответствовать требованиям ГОСТ 1497-73.
2.7. При определении относительного удлинения нужно обходиться без нанесения кернов на
рабочей части образца; за начальную расчетную длину следует принимать общую длину образца
вместе с головками.
2.8. Начальную и конечную длину образца измеряют штангенциркулем с точностью до
0,1 мм, и полученные значения округляют в большую сторону. Диаметр рабочей части
образца до испытания измеряют микрометром в трех местах (посередине и с двух краев) с
точностью до 0,01 мм; в каждом сечении диаметр измеряют дважды (второе измерение
производят при повороте образца на 90°), и за начальный диаметр принимают среднее
значение из двух измерений; причем фиксируют все три значения начальных диаметров (в
середине и с двух краев рабочей части образца). После испытания определяют, вблизи
какого измеренного сечения произошел разрыв образца, и в дальнейшем при определении
относительного сужения после разрыва
диаметр этого сечения принимают за начальный
диаметр. Диаметр образцов после испытания следует измерять штангенциркулем с точностью до 0,1
мм.
2.9. Для испытания изготавливают по три образца от каждого листа, пробы отбирают из
средней трети листа (по ширине).
3. Испытание образцов
3.1. Для определения механических свойств в направлении толщины проката при статическом
растяжении используют универсальные испытательные машины с механическим, гидравлическим
или электрогидравлическим приводом с усилием не выше 100 кН (10 тс) при условии соответствия
их требованиям ГОСТ 1497-73 и ГОСТ 7855-74.
3.2. При проведении испытаний должны соблюдаться следующие основные условия:
надежное центрирование образца в захватах испытательной машины;
плавность нагружения;
скорость перемещения подвижного захвата при испытании до предела текучести - не более 0,1,
за пределом текучести - не более 0,4 длины расчетной части образца, выраженная в мм/мин.
3.3. Рекомендуется оснащать машины регистрирующей аппаратурой для записи диаграмм
"усилие-перемещение" в масштабе не менее 25:1.
3.4. Испытания на растяжение образцов для определения механических свойств в направлении
толщины проката и подсчет результатов испытаний проводят в полном соответствии с § 3 и 4 ГОСТ
1497-73.
3.5. При разрушении сварных образцов вне основного металла испытываемого листа из-за
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 336

337.

возможных дефектов соединения (поры непроваров, шлаковые включения, трещины и др.)
результаты их испытания не принимают во внимание и испытание повторяют на новых образцах.
3.6. Результаты испытаний каждого образца в виде значений
вносят в
журнал испытаний и фиксируют в протоколе, прикладываемом к сертификату на
металлоконструкции. Величины
и
нормируются и служат критериями при выборе и
назначении толстолистового проката для изготовления фланцев. Значения других характеристик
и факультативны и используются для накопления данных.
В журнал испытаний вносят также данные из сертификата металлургического заводаизготовителя металлоизделий: марку стали, номер партии, номер плавки, номер листа, химический
состав и механические свойства при обычных испытаниях.
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ
"РЕКОМЕНДАЦИЙ ПО РАСЧЕТУ, ПРОЕКТИРОВАНИЮ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ
ФЛАНЦЕВЫХ СОЕДИНЕНИЙ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ"
Содержание пункта 2.2 раздела ’’Материалы’’ заменяется на следующее.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует принять листовую сталь по ГОСТ 19903-74* с гарантированными
механическими свойствами в направлении толщины проката по ТУ 14-1-4431-88 классов 3-5 марок
09Г2С-15 и 14Г2АФ-15 (по ГОСТ 19282-73) или по ТУ 14-105-465-89 марки 14Г2АФ-15.
Допускается применение листовой стали электрошлакового переплава марки 16Г2АФШ по ТУ 14-11779-76 и 10 ГНБШ по ТУ 14-1-4603-89.
______________
Механические характеристики листовой стали марки 10ГНБШ толщиной 10-40 мм:
временное сопротивление
=52-70 кгс/мм , предел текучести
=40 кгс/мм ,
относительное удлинение
%, относительное сужение в направлении толщины %,
ударная вязкость при температуре - 60 °С KCV не менее 8,0 кгс/см .
Содержание пункта 2.3 раздела ’’Материалы’’ заменяется на следующее.
2.3. Фланцы могут быть выполнены из листовой низколегированной стали марок С345, С375 по
ГОСТ 27772-88, при этом сталь должна удовлетворять следующим требованиям:
- категория качества стали (только для С345 и С375) - 3 или 4 в зависимости от требований к
материалу конструкции по СНиП II-23-81*;
- относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
Содержание пункта 2.5 раздела "Материалы" заменяется на следующее.
2.5. Качество стали для фланцев по характеристикам сплошности в зонах шириной 80 мм
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 337

338.

симметрично вдоль оси симметрии каждого из элементов профиля, присоединяемого к фланцу,
должно удовлетворять требованиям в таблице 1.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных конструкций. На рисунке в качестве примера показаны зоны контроля стали фланцев
для соединений элементов открытого и замкнутого профилей.
Таблица 1
Зона
дефектоскопии
Характеристика сплошности
Площадь несплошности, см
Контролируема
я зона фланцев
Минимальная
учитываемая
Максимальна
я
учитываемая
0,5
1,0
Допустимая
частота
несплошностей
Максимальная
допустимая
протяженность
несплошности
Минимальное
допустимое
расстояние
несплошностями*
10 м
4 см
10 см
_________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.
Оценку качества стали фланцев марки 10ГНБШ по характеристикам сплошности можно
осуществлять по дефектограммам, прилагаемым заводом-поставщиком стали к каждому листу. При
удовлетворении требований, указанных в таблице 1, ультразвуковую дефектоскопию завод
строительных конструкций не выполняет.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 338

339.

Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
/ Министерство монтажных и специальных
строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 339

340.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 340

341.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 341

342.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 342

343.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 343

344.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 344

345.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 345

346.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 346

347.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 347

348.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 348

349.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 349

350.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 350

351.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 351

352.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 352

353.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 353

354.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 354

355.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 355

356.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 356

357.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 357

358.

https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-EtajaObespecheniya-Seismostoykosti-351-Str
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 358

359.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 359

360.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 360

361.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 361

362.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 362

363.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 363

364.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 364

365.

Используемая литература при выравнивании крена аварийных железнодорожных мостов с
использованием антисейсмических фрикционно- демпфирующих опор с зафиксированными
запорными элементов в штоке, по линии выправления крена моста , согласно изобретения №
165076 «Опора сейсмостойкая» и испытаниях на сейсмостойкость выравнивающейся
сейсмоизоляции
1 СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 365

366.

2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий»,
А.И.Коваленко
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
миллиарды»,
21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
А.И.Коваленко
21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления –
дом на грунте. Строительство на пучинистых и просадочных
грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации
инженеров «Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли
через четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения»
А.И.Коваленко, Е.И.Коваленко.
24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных
волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004
гг. А.И.Коваленко и др. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом
народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых
башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл.
Островского, д.3
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 366

367.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 367

368.

Для маслотрубопроводов для оборудования для очистки промышленного масла (ТУ 3616-001-47992552-2010), с трубопроводами
( ГОСТ Р 55989-2014), предназначенное для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск (в районах с
сейсмичностью 8 баллов и выше для установки оборудования и трубопроводов необходимо использование сейсмостойких телескопических
опор, а для соединения трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием фрикци болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно
рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и
изобрет. №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device и согласно
изобретения «Опора сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от 10.10.2016, в местах подключения трубопроводов к
оборудованию для очистки промышленного масла, трубопроводы должны быть уложены в виде "змейки" или "зигзага " испытывался в
ПК SCAD косой на фланцевых подвижных соедииениях ( ФПС ) с растянутым
поясом трубопроводов , которые
испытывались в ПК SCAD, при действии растяжения с изгибом, при однозначной эпюре
растягивающих напряжений в поясах. Известно стыковое соединение элементов из гнутосварных
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 368

369.

профилей прямоугольного или квадратного сечения, подверженных воздействию центрального
растяжения, которое выполняют со сплошными фланцами и ребрами жесткости, расположенными,
как правило, вдоль углов профиля. Ширина ребер определяется размерами фланца и профиля, длина
– не менее 1,5 высоты меньшей стороны профиля
Косой стык для оборудование для очистки промышленного масла (ТУ 3616-001-479925522010), с трубопроводами ( ГОСТ Р 55989-2014), предназначенное для сейсмоопасных районов с
сейсмичностью до 9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше
для установки оборудования и трубопроводов необходимо использование сейсмостойких
телескопических опор, а для соединения трубопроводов - фланцевых фрикционно- подвижных
соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из латунной
шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным
клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.6380,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-frictiondamping-device и согласно изобретения «Опора сейсмостойкая» Мкл E04H 9/02, патент №
165076 RU, Бюл.28, от 10.10.2016, в местах подключения трубопроводов к оборудованию для очистки
промышленного масла, трубопроводы должны быть уложены в виде "змейки" или "зиг-зага ")
С целью повышения надежности, снижения расхода стали и упрощения стыка, было разработано
новое техническое решение монтажных стыков растянутых элементов на косых фланцах,
расположенных под углом 30 градусов относительно продольных осей стержневых элементов и
снабженных смежными упорами. Указанная цель достигается тем, что каждый упор входит в
отверстие смежного фланца и взаимодействует с ним.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие
смежного фланца и своим торцом упирается в кромку отверстия во фланце так, что смежные упоры
друг с другом не взаимодействуют, а только со смежными фланцами, при этом, на упор приходится
только половина усилия, действующего на стык в плоскости фланцев, а другая половина усилия
передается непосредственно на фланец упором смежного фланца.
На фиг.1 приведен общий вид стыка сверху {применительно к стропильной ферме}, на фиг.2
показано горизонтальное сечение стыка по оси соединяемых элементов, на фиг.3 показаны
разомкнутый стык и расчетная схема стыка, на фиг.4 приведен вид фланца в разрезе 1-1 на фиг.3.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 369

370.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 370

371.

Стык состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси,
фланцев 2, приваренных к скошенным концам соединяемых элементов 1, упоров 3, приваренных к
фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с другом. Оси стыка 5 и 6 расположены в
плоскости фланцев и нормально фланцам соответственно.
Стык растянутых элементов на косых фланцах устраивается следующим образом.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 371

372.

Отправочные марки конструкции {стропильной фермы} изготавливаются известными приемами,
характерными для решетчатых конструкций. Фланец 2 в сборе с упором 3 изготавливается отдельно
из стального листа на сварке. Из центральной части фланца вырезается участок для образования
отверстия, в котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется
дополнительный материал. Благодаря этому экономится до 25% стали на стык. Контактные
поверхности упора и кромки отверстия во фланце выравниваются стружкой, фрезерованием или
другими способами. Фланец изготавливается с использованием шаблонов и кондукторов. Возможно
изготовление фланца способом стального литья, что более предпочтительно. Фланцы крепятся к
скошенным концам соединяемых элементов с помощью кондукторов.
Стык работает следующим образом. Усилие N, возникшее в соединяемых элементах 1 под
воздействием внешних нагрузок на конструкцию, раскладывается в стыке на две составляющих,
направленных по осям 5 и 6 стыка {фиг.2}, то есть в плоскости фланцев Nb
и нормально фланцам Nh {фиг.3}, острый угол между фланцем и осью стыкуемых элементов;
Nb=Ncosα=Ncos30=0.866N
Nh=Nsinα=Nsin30=0.5N
Усилие Nb
, действующая в плоскости фланцев 2, наполовину воспринимается упором 3, а другая половина –
непосредственно фланцем, которая передается на него упором смежного фланца {фиг.4}.
Такое распределение усилия Nb
между упором и фланцем обусловлено тем, что смежные упоры не взаимодействуют друг с другом, а
взаимодействуют только со смежными фланцами. Снижение усилия, действующего на упор, вдвое
обеспечивает технический и экономический эффект за счет уменьшения длины торца упора,
контактирующего с кромкой отверстия во фланце, и объема сварных швов крепления упора к
фланцу. С уменьшением длины торца упора уменьшается эксцентриситет приложения усилия на
упор, а равно и крутящий момент в элементах стыка, вызванный этим эксцентриситетом. Все это
способствует повышению надежности стыка.
Усилие Nh
, действующее нормально фланцам, воспринимается частью силами трения на контактных торцах
упоров 3 и фланцев 2, а остальная часть – стяжными болтами 4. Расчетное усилие, воспринимаемое
болтами Nb=Nh−Nμ, где Nμ=μNc, μ
– коэффициент трения на контактных поверхностях упоров, равный для необработанных
поверхностей 0.25;
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие
фланцы, а это позволяет принять для них более тонкие листы, сокращая тем самым расход
конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения
позитивно влияют возможные уменьшения диаметров стяжных болтов 4, снижение их количества
или комбинация первого или второго.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 372

373.

Теоретическое исследование напряжений в зонах узловых соединений классическими методами
теории упругости весьма затруднительно. Это вызвано разнообразием конструкций узлов,
особенностями внешнего нагружения, а также крайне сложным взаимодействием элементов узла. В
связи с этим, расчет напряженно-деформированного состояния модели узла стыка растянутых поясов
ферм на косых фланцах выполняется МКЭ. В ввиду ограничения объема публикации, о результатах
МКЭ анализа стыка будет рассказано в следующей статье.
Практическое использование для сборно-разборных мостов,
предназначенное для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше
для установки оборудования и трубопроводов необходимо использование сейсмостойких телескопических опор, а для соединения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из
латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП
им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device и согласно изобретения «Опора
сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от 10.10.2016, в местах подключения трубопроводов к оборудованию для
очистки промышленного масла, трубопроводы должны быть уложены в виде "змейки" или "зиг-зага ")
Конструктивное решение болтового соединения растянутых поясов ферм на косых фланцах впервые
было апробировано в покрытии каркаса склада металлоконструкций КМК "Корал"
Производственная база в промышленной зоне района Рудный в Чкаловском районе г. Екатеринбурга.
Для изготовления опытного образца покрытия были разработаны рабочие чертежи стадии КМ и
КМД. Изготовление элементов конструкции и контрольная сборка производилась в ремонтномеханических мастерских производственной базы. Инструкция по креплению фланцев к поясу ферм
предусматривала такую последовательность производства работ.
1. Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть
проектными болтами;
2. Установить полуфермы в одной плоскости {в плане и по высоте}. Плотно прижать
полуфермы к фланцам;
3. Приварить фланцы к полуфермам;
4. Выполнить именную маркировку полуферм, разъединить полуфермы
После производились окончательная установка и затяжка всех высокопрочных болтов. На рисунках
приведены фотоизображения проектной модели каркаса склада с покрытием с узлами на косых
фланцах и узлов стыка после окончательной сборки, перед покраской и подготовкой к монтажу.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 373

374.

В данном случае, когда запроектированная конструкция применяется впервые, очевидна
необходимость проведения экспериментальных исследований как конструкции в составе покрытия в
целом, так и отдельных элементов узловых сопряжений. При этом проверяется также верность
методик расчета, необходимость совершенствования которых диктуется потребностью в надежных
результатах при проектировании.
В процессе работы над диссертацией, проводя обзор теоретических и экспериментальных
исследований в области существующих узловых сопряжений поясов ферм, замечено, что первый
стык растянутых поясов ферм на косом фланце был изобретен в 1979 году, молодыми учеными
Уральского электромеханического института инженеров железнодорожного транспорта, Х. М.
Ягофаровым и В. Я. Котовым.
Продолжая исследования в 1986 году, инж. А. Будаевым под руководством к.т.н. Х. М. Ягофарова, с
целью подтверждения работоспособности стыка, а также обоснования основных расчетных
предпосылок, были изготовлены три стыка с номинальным углом наклона фланцев к осям элементов
45, 30 и 20 градусов. Каждый стык представлен двумя одинаковыми половинами, в которых
стыкуемый элемент выполнен из уголка 60х6. Испытания проводились на машине ГСМ – 50
нарастающей статической нагрузкой до разрыва болтов и разрушения фланцев. Эксперимент
подтвердил работоспособность стыка, а так же основные расчетные предпосылки. Кроме того,
результаты позволили назначить в первом приближении величины расчетных коэффициентов.
В 2010 году, в Уральском государственном университете путей сообщения были изданы
методические указания для студентов «Проектирование и изготовление стыков на косых фланцах».
А так же, необходимый и достаточный запас несущей способности болтовых стыков растянутых
стержневых элементов с косыми фланцами подтвержден итогами пробной контрольной
серии исследований опытных образцов, проведенных в лаборатории Пятигорского государственного
технологического университета канд. техн. наук, доц. Марутяном А.С в 2011 году. Разрывные
усилия опытных образцов, превысили уровень расчетных нагрузок в 1.7…2.5 раза, а
экспериментальные и расчетные деформации имели достаточно приемлемую сходимость. Даны
рекомендации о внедрении в практику строительства. Работы по исследованию стыка растянутых
поясов ферм на косом фланце ведутся и сегодня, изготовлены опытные образцы и трубы 120х5,
заглушенной с одной стороны приваренной пластиной толщиной 30мм с 45мм стержнем для захвата
в разрывной машине, с другой – фланцем с упором толщиной 25мм. Материал конструкций –
малоуглеродистая сталь, электроды типа Э50А. Болты М24 класса 10.9. Идет подготовка
эксперимента, целью которого являются анализ напряженно-деформированного состояния узла
стыка и уточнения инженерной методики решения.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 374

375.

Таким образом, обобщая результаты исследования работы стыка растянутых элементов на косых
фланцах, можно сказать, что предлагаемый стык растянутых элементов на косых фланцах надежен,
экономичен и прост в осуществлении.
Библиографический список
lxxxv.
lxxxvi.
lxxxvii.
lxxxviii.
lxxxix.
xc.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное
строительство и инженерные сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах»
Методические указания для студентов всех форм обучения специальности «Промышленное и
гражданское строительство» и слушателей Института дополнительного профессионального
образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и
их расчет» Пятигорский государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной
структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых
стержней
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 375

376.

ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 820
(13)
C1
(51) МПК
E04B 1/58 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
Приоритет(ы):
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ
(73)
В.В. Металлические конструкции. В 3 т. - Стальные конструкции
Патентообладатель(и):
зданий и сооружений (Справочник проектировщика). - М.: АСВ, 1998,
Марутян Александр
т.2. с.157, рис.7.6. б). SU 68853 A1, 31.07.1947. SU 1534152 A1, 07.01.1990.
Суренович (RU)
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская,
90, кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых
элементов замкнутого профиля. Технический результат заключается в уменьшении массы
конструкционного материала. Фланцевое соединение растянутых элементов замкнутого профиля
включает концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами.
Фланцы установлены под углом 30° относительно продольных осей стержневых элементов.
Листовую прокладку составляют парные опорные столики. Столики жестко скреплены с фланцами и
в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 376

377.

Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям
растянутых элементов замкнутого профиля, и может быть использовано в монтажных стыках поясов
решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы
стержневых элементов с фланцами, дополнительные ребра и стяжные болты, установленные по
периметру замкнутого профиля попарно симметрично относительно ребер (Металлические
конструкции. В 3 т. Т.1. Общая часть. (Справочник проектировщика) / Под общ. ред. В.В.Кузнецова.
- М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных
деталей, что увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего
(растянутого) пояса ферм из гнутосварных замкнутых профилей, включающее концы стержневых
элементов с фланцами, дополнительные ребра, стяжные болты и листовую прокладку между
фланцами для прикрепления стержней решетки фермы и связей между фермами (1. Металлические
конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. С.295, рис.9.27; 2. Металлические конструкции. В 3 т. Т.1. Элементы конструкций: Учебник для
вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости
монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов
замкнутого профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого
профиля, включающем концы стержней с фланцами, стяжные болты и листовую прокладку между
фланцами, фланцы установлены под углом 30° относительно продольных осей стержневых
элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с
фланцами и в собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так,
его можно применить в монтажных стыках решетчатых конструкций из труб круглых, овальных,
эллиптических, прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве
еще одного примера использования предлагаемого соединения можно привести аналогичные стыки
на монтаже элементов конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров,
Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано
предлагаемое фланцевое соединение растянутых элементов замкнутого профиля, вид сверху; на
фиг.2 - то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая прикрепления элемента
решетки, вид сбоку; на фиг.4 - фланцевое соединение растянутых элементов незамкнутого профиля,
вид сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных болтов в
наружных зонах незамкнутого профиля; на фиг.7 - расчетная схема растянутого элемента замкнутого
профиля с фланцем и опорным столиком.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 377

378.

Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит
прикрепленные с помощью сварных швов цельнолистовые фланцы 2, установленные под углом 30°
относительно продольных осей растянутых элементов. С фланцами 2 посредством сварных швов
жестко скреплены опорные столики 3. В выступающих частях 4 фланцев 2 и опорных столиков 3
размещены соосные отверстия 5, в которых после сборки соединения на монтаже установлены
стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные
столики 3 продолжены за пределы выступающих частей 4 фланцев 2 таким образом, что в них можно
разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов
незамкнутого профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные
болты 6 могут быть расположены не только за пределами сечения (поперечного или косого)
незамкнутого (открытого) профиля, но и в его внутренних зонах. При полном отсутствии стяжных
болтов 6 в наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое соединение
более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы
примыкания раскосов к поясу должны быть не менее 30° для обеспечения плотности участка
сварного шва со стороны острого угла (Металлические конструкции: Учебник для вузов / Под ред.
Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом
соединении растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные
столики 3 установлены под углом 30° относительно продольных осей. В таком случае продольная
сила F, вызывающая растяжение элемента замкнутого профиля 1, раскладывается на две
составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866
F, передающуюся на опорные столики 3. Уменьшение болтовых усилий в два раза во столько же раз
снижает моменты, изгибающие фланцы, а это позволяет применять для них более тонкие листы,
сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость
предлагаемого соединения позитивно влияют возможные уменьшение диаметров стяжных болтов 6,
снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового
объекта принято типовое монтажное соединение на фланцах ферм покрытий из гнутосварных
замкнутых профилей системы «Молодечно» (Стальные конструкции покрытий производственных
зданий пролетами 18, 24, 30 м с применением замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала
сравниваемых вариантов приведен в таблице, из которой видно, что в новом решении он уменьшился
в 47,1/26,8=1,76 раза.
Наименование Размеры, мм Кол-во, шт.
Масса, кг
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
Сварные швы (1,5%)
47,1
Примеч.
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
5,2
26,8 Предлагаемое решение
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 378

379.

Сварные швы (1,5%)
0,4
*Учтена треугольная форма
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и
предлагаемом фланцевых соединениях количество стяжных болтов одинаково и составляет 8 шт.
Если в первом из них использованы болты М24, то во втором - M18 того же класса прочности. Тогда
очевидно, что в новом решении расход материала снижен пропорционально уменьшению площади
сечения болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами, отличающееся тем, что фланцы
установлены под углом 30° относительно продольных осей стержневых элементов, а листовую
прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в собранном
соединении взаимно упертые друг в друга.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 379

380.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 380

381.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 381

382.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 382

383.

ИЗВЕЩЕНИЯ
MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за
поддержание патента в силе
Дата прекращения действия патента: 27.10.2011 Дата публикации: 20.08.2012 Изобретение
стыковое соединение растянутых элементов
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 383

384.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 384

385.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 385

386.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 386

387.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 387

388.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 388

389.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 389

390.

Адреса американских и немецких фирм внедрили изобретения ОО Сейсмофонд
осуществляя технический шпионаж с помощью консультантов и аудиторов иностранного ,
олигархического Правительства СПб занимающихся откатами, распилами, уничтожением
заводов , фабрик , и пособничеству в изготовлением краденных изобретений ОО
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 390

391.

"Сейсмофонд СПб" в США, Израиле, для сейсмозащиты мостов, зданий, сооружений и
магистральных трубопроводов в США ,где активно внедряются фрикционно-подвижные
соединения (ФПС) и изобретения ОО "Сейсмофонд ", проф. ПГУПС дтн А.М.Уздина и
других русских изобретателей
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1-800-585-TAPS (8277)
Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel
21919 20th Avenue SE • Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021
[map] Toll Free: 800.426.9341 Local: 425.951.6200 Fax: 425.951.620 Website address: www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite 1019, Wayne, PA 19087
Telephone: (610) 971-4850 Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019 Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40 540093-47
[email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Subsidiary Berlin Breitenbachstra?e 7 – 9 13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected]
Gummiteknik A/S Finlandsgade 29 4690 Haslev Denmark
WILLBRANDT
www.willbrandt.dk www.willbrandt.se
Fluid Sealing Association
994 Old Eagle School Road #1019
Wayne, PA 19087-1866
610.971.4850 (USA)
WILLBRANDT KG
Schnackenburgallee 180
22525 Hamburg
Germany
Phone +49 40 540093-0
Fax +49 40 540093-47
[email protected]
Subsidiary Hanover
Reinhold-Schleese-Str. 22
30179 Hannover
Germany
Tel +49 511 99046-0
Fax +49 511 99046-30
[email protected]
Subsidiary Berlin
Breitenbachstraße 7 - 9
13509 Berlin
Germany
Tel +49 30 435502-25
Fax +49 30 435502-20
[email protected]
WILLBRANDT
Gummiteknik A/S
Finlandsgade 29
4690 Haslev
Denmark
www.willbrandt.dk
www.willbrandt.se
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 391

392.

Адреса американских и немецких фирм, организация занимающихся
проектированием, изготовлением, кражей технических идей и монтажом
сальниковых компенсаторов для магистральных трубопроводов в Израиле,
США , Германии, Китае и др старнах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free:
1-800-585-TAPS (8277) Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919 20th Avenue SE
Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map]
Local: 425.951.6200 Fax: 425.951.620 Website address: www.romac.com
Toll Free: 800.426.9341
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite
1019, Wayne, PA 19087 Telephone: (610) 971-4850 Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40
540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Breitenbachstra?e 7 – 9 13509 Berlin
Subsidiary Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk www.willbrandt.se
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Gummiteknik A/S
Всего листов 96
Лист 392

393.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 393

394.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 394

395.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 395

396.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 396

397.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 397

398.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 398

399.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 399

400.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 400

401.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 401

402.

Описание изобретения Огнестойкий компенсатор гаситель температурных напряжений МПК
F16L 27/ 2
Предлагаемое техническое решение предназначено для защиты строительных конструкций от
термических и температурных колебаний при пожарных нагрузках , температурных напряжениях
, динамических , многокаскадных нагрузках на строительные конструкции , металлических ферм ,
магистральных трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет использования
фланцевого соединение растянутых элементов использование термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода строительных
конструкция, со скошенными торцами, с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при многокаскадном
демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей".
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 402

403.

Известны фрикционные соединения для защиты строительных конструкций, объектов от
динамических воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент Фланцевое соединение растянутых элементов замкнутого профиля № 2413820,
«Стыковое соединение растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от
11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой
балкой ", RU № 2148 805 G 01 L 5/24 "Способ определения коэффициента закручивания
резьбового соединения "
Изобретение относится к области огнестойкости строительства, магистральных
трубопроводов, и может быть использовано для фланцевых соединение растянутых элементов
трубопровода со скошенными торцами для технологических , магистральных трубопроводов.
Система содержит фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с разной жесткостью, демпфирующий элемент с зазором 50 -100 мм(для
сдвига ) . Использование изобретения позволяет повысить огнестойкость
металлоконструкций, трубопроводов с косым стыком для сейсмозащиты и виброизоляции в
резонансном режиме фланцевые соединения в растянутых элементов и трубопровода со
скошенными торцами
Изобретение относится к огнестойкости строительных конструкций, трубопроводов,
строительству и машиностроению и может быть использовано для виброизоляции
магистральных трубопроводов, технологического оборудования, агрегатов трубопроводов и
со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является фланцевое
соединение растянутых элементов замкнутого профиля № 2413820 , стыковое соединение
растянутых элементов № 887748 система по патенту РФ (прототип), содержащая и
описание работы фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
Недостатком известного устройства является недостаточная эффективность
огнестойкости из-за отсутствия демпфирования колебаний. Технический результат повышение эффективности термической и демпфирующей сейсмоизоляции в резонансном
режиме и упрощение конструкции и монтажа термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Это достигается тем, что в демпфирующем фланцевом соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами , содержащей по крайней
мер, за счет демпфирующего фланцевого соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и сухого трения установлена с использованием фрикциболта с забитым обожженным медным упругопластичным клином, конце демпфирующий
элемент, а демпфирующий элемент выполнен в виде медного клина забитым в паз латунной
шпильки с медной втулкой, при этом нижняя часть штока соединена с основанием
строительных конструкции, трубопровода , опоры , жестко соединенным с демпирующей на
фрикционно –подвижных болтовых соединениях для обеспечения демпфирования фланцевого
соединение растянутых элементов строительных конструкций , кровли, трубопровода со
скошенными торцами для термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
На фиг. 1 представлена стальная ферма с огнестойким компенсатором гасителем
температурных напряжений с использованием фланцевых соединений в строительных
конструкциях, фермах, пролетных строений, растянутых элементов трубопровода со
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 403

404.

скошенными торцами с упругими демпферами сухого трения с пружинистыми демпферами
сухого трения в овальных отверстиях для монтажа, крепления термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, виброизолирующая система для
зданий и сооружений, содержит основание и овальные отверстия , для болтов и имеющих
одинаковую жесткость и связанных с строительными конструкциями и опорными элементами
верхней части пояса зданий или сооружения я с использованием термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Система дополнительно содержит фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, к которая крепится фрикци-болтом с пропиленным пазов в латунной
шпильки для забитого медного обожженного стопорного клина ( не показан на фигуре 2 ) и
которая опирается на нижний пояс основания и демпфирующий элемент, в виде
строительных конструкций, трубопровода с упругими демпферами сухого трения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по изобретению
проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746 «Способ защиты зданий», 165076
«Опора сейсмостойкая»
Демпфирующий элемент фланцевого соединение растянутых элементов строительные
конструкции, трубопровода со скошенными торцами, с упругими демпферами сухого трения за
счет фрикционно-подвижных соединениях (ФПС)и термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
При термических нагрузках , колебаниях и колебаниях грунта сейсмоизолирующая и
виброизолирующее фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, для демпфирующей сейсмоизоляции трубопровода (на
чертеже не показан) с упругими демпферами сухого трения , с упругими демпферами сухого
трения , элементы и воспринимают как вертикальные, так и горизонтальные нагрузки,
ослабляя тем самым динамическое воздействие на демпфирующею сейсмоизоляцию объект,
т.е. обеспечивается пространственную сейсмозащиту, виброзащиту и защита от
термической ударной нагрузки
Огнестойкий компенсатор - гаситель температурных напряжений, с упругими демпферами
сухого трения, поглощает как термическую, так и сейсмическую энергию и так же работает
, как виброизолирующая система работает следующим образом.
При колебаниях температурных колебаний , используется для как виброизоляция объекта ,
фланцеве соединение растянутых элементов трубопровода со скошенными торцами на основе
фрикционо-подвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание, сооружение, трубопровод, за счет зазора 50-100 мм между стыками на
болтовых креплениях
Упругодемпфирующая фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами с упругими демпферами сухого трения работает
следующим образом.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 404

405.

При колебаниях объекта фланцевое соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание , сооружение . Горизонтальные колебания гасятся за счет фрикциболта расположенного в при креплении опоры к основанию фрикци-болтом , что дает ему
определенную степень свободы колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами и силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное
проскальзывание листов фланцевого соединение растянутых элементов строительных конструкций
трубопровода со скошенными торцами или прокладок относительно накладок контакта листов с
меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий для
скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании, уже не работают упруго.
После того как все болты соединения дойдут до упора края, в длинных овальных отверстий,
соединение начинает работать упруго за счет трения, а затем происходит разрушение
соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг по вертикали
допускается 1 - 2 см или более и пожарных нагрузках, термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Недостатками известного решения аналога являются: не возможность использовать
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса
по трению. Известно также устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий, патент TW201400676(A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B1/98, F16F15/10, патент США Structural stel bulding frame
having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ определения
коэффициента закручивания резьбового соединения" , RU № 2413820 "Фланцевое соединение
растянутых элементов замкнутого профиля", Украина № 40190 А "Устройство для измерения
сил трения по поверхностям болтового соединения" , Украина патент № 2148805 РФ "Способ
определения коэффициента закручивания резьбового соединения"
Таким образом получаем огнестойкий компенсатор - гаситель температурных напряжений, как
фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения и виброизолирующею конструкцию
кинематической или маятниковой опоры, которая выдерживает вибрационные и сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения в термическом компенсаторе, гасителе температурных
колебаний в строительных конструкций , трубопроводе
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов
из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых
креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 405

406.

скошенными торцами, а также повышение точности расчета при использования тросовой
втулки (гильзы) на фрикци- болтовых демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение растянутых
элементов строительных конструкций ,трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус, закрепленный на
фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток
сборный в виде, фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, установленный с возможностью перемещения
вдоль оси и с ограничением перемещения за счет деформации и виброизолирующего фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, под действием
запорного элемента в виде стопорного фрикци-болта с тросовой виброизолирующей втулкой
(гильзой) с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами выполнены овальные длинные отверстия, и
поперечные отверстия (перпендикулярные к центральной оси), в которые скрепляются фланцевыми
соединениями в растянутых элементов трубопровода со скошенными торцами с установлением
запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с медным клином,
забитым в пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами, параллельно центральной оси, выполнены восемь открытых длинных пазов, которые
обеспечивают корпусу возможность деформироваться за счет протяжных соединений с фрикциболтовыми демпфирующими, виброизолирующими креплениями в радиальном направлении
строительных конструкций.
В теле фланцевого соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения в конструкциях термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами, вдоль
центральной оси, выполнен длинный паз ширина которого соответствует диаметру запирающего
элемента (фрикци- болта), а длина соответствует заданному перемещению трубчатой,
квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении
опоры - корпуса, с продольными протяжными пазами с контролируемым натяжением фрикциболта с медным клином обмотанным тросовой виброизолирующей втулкой (пружинистой гильзой)
, забитым в пропиленный паз стальной шпильки и обеспечивает возможность деформации корпуса
и «переход» сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под вибрационные, сейсмической нагрузкой, взрывные от
воздушной волны.
Сущность предлагаемой конструкции термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода , поясняется чертежами, где на
фиг.1 изображено огнестойкий компенсатор - гаситель температурных напряжений, для
строительных конструкций испытанный в США американскими инженерами на Аляске, как
фланцевое соединение растянутых элементов строительных конструкций используемо и
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 406

407.

испытанной в США, Канаде для строительных конструкций и трубопровода со скошенными
торцами, с упругими демпферами сухого трения на фрикционных соединениях с контрольным
натяжением для строительных конструкций ;
на фиг.2 изображены виды термического компенсатора американской фермы смонтированной на
болтах , гасителя температурных колебаний , с боку фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения со
стопорным (тормозным) фрикци –болт с забитым в пропиленный паз стальной шпильки
обожженным медным стопорным клином;
На фиг 3 изображен вид с верху , фланцевого соединение растянутых элементов трубопровода со
скошенными торцами для строительных конструкций, стальных ферм на фланцевых креплениях
фиг. 4 изображен разрез фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения виброизолирующею,
сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
термического компенсатора гасителя температурных колебаний строительных конструкций ,
трубопровода
фиг. 7 изображены Японские гасители динамических колебаний, вид медной или тросовой гильзу
для латунной шпильки –болта в тросовой обмотке два раза, с верху фланцевого соединение с
овальными отверстиями растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое косого соединение по замкнутому контуру
растянутых элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
фиг. 10 изображено фланцевое Канадское соединение растянутых элементов трубопровода
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов косого
компенсатора для трубопровода со скошенными торцами с косым демпфирующим компенсатором
и с овальными отверстиями ( не показаны )
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов трубопровода со
скошенными торцами термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
фиг. 13 изображен способ определения коэффициента закручивания резьбового соединения" по
изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания
резьбового соединения" и № 2413098 "Способ для обеспечения несущей способности
металлических конструкций с высокопрочными болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по подготовленным
поверхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление на
выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера
Л.М. Червинский А.Е "Пути совершенствования технологии выполнения фрикционных соединений
на высокопрочных болтах" Национальная металлургический Академия Украины , журнал
Металлургическая и горная промышленность" 2010№ 4 стр 109-112
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 407

408.

На фиг 15 изображен огнестойкий компенсатор - гаситель температурных напряжений,
используемые в США разные термические компенсаторы и графики на английском языке
.Изображен образец для испытания Канадского демпфера и американские (США) затяжные
болты для определение коэффициента трения в ПК SCAD между контактными поверхностями
соединяемых элементов СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ
«ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научно-исследовательским центром
«Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В.
Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на
вибростойкость, сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно
подвижных соединений (ФПС) по изобретениям проф ПГУПС А .М Уздина №№ 1143895, 1168755,
1174616, 165076 «Опора сейсмостойкая»
Огнестойкий компенсатор - гаситель температурных напряжений, как аналог огнестойкости
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, состоит из двух фланцев (нижний
целевой), (верхний составной), в которых выполнены вертикальные длинные овальные отверстия
диаметром «D», шириной «Z» и длиной . Нижний фланец охватывает верхний корпус
строительных конструкций, трубы (трубопровода) . При монтаже демпфирующего
компенсатора, поднимается до верхнего предела, фиксируется фрикци-болтами с контрольным
натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и предварительно забитым
в шпильке обожженным медным клином. и тросовой пружинистой втулкой (гильзой) В стенке
корпусов строительных конструкций и виброизолирующей, сейсмоизолирующей кинематической
опоры или строительных конструкций, перпендикулярно оси корпусов строительных конструкций
выполнено восемь или более длинных овальных отверстий строительных конструкций, в которых
установлен запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой,
пружинистой гильзой, с забитым в паз стальной шпильки болта стопорным ( пружинистым )
обожженным медным многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой
и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов строительных конструкций, трубопровода со
скошенными торцами , с упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход болта –шпильки
) соответствующий по ширине диаметру калиброванного фрикци - болта, проходящего через
этот паз. В нижней части демпфирующего компенсатора, выполнен фланец для фланцевого
подвижного соединения с длинными овальными отверстиями для крепления на фундаменте, а в
верхней части корпуса выполнен фланец для сопряжения с защищаемым объектом,
строительных конструкций ,сооружением, мостом
Сборка фланцевого соединение растянутых элементов строительных конструкций, трубопровода
со скошенными торцами , заключается в том, что составной ( сборный) фланцевое соединение
растянутых элементов трубопровода со скошенными торцами, в виде основного компенсатора
по подвижной посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, совмещают, скрепленных фрикци-болтом (высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с контрольным натяжением до заданного
усилия в зависимости от массы строительных конструкций, трубопровода, агрегата. Увеличение
усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 408

409.

от «Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой,
квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для фланцевого
соединение растянутых элементов строительных конструкций, трубопровода со скошенными
торцами, зависит от величины усилия затяжки гайки (болта) с контролируемым натяжением и
для каждой конкретной конструкции и фланцевого соединение растянутых элементов
трубопровода со скошенными торцами (компоновки, габаритов, материалов, шероховатости и
пружинистости стального тонкого троса уложенного между контактирующими поверхностями
деталей поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами демпфирующего компенсатора , сверху и
снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время
вибрационных нагрузок или взрыве за счет трения между верхним и нижним фланцевым
соединением растянутых элементов трубопровода со скошенными торцами, происходит
поглощение вибрационной, взрывной и сейсмической энергии. Фрикционно- подвижные соединения
состоят из скрученных пружинистых тросов- демпферов сухого трения и свинцовыми (возможен
вариант использования латунной втулки или свинцовых шайб) поглотителями вибрационной ,
термической, сейсмической, взрывной энергии за счет демпфирующих фланцевых соединений в
растянутых элементов строительных конструкций, трубопровода со скошенными торцами с
тросовой втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно забиты в
пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, представляют собой двойную фрикционную пару,
имеющую стабильный коэффициент трения для термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими
ключами или гайковертами на расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса строительных конструкций, трубопровода
Сама составное фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см всего, термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями
забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 409

410.

Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для строительных конструкций, стыкового демпфирующего косого соединения ,
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, является
энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается термическая,
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает
пожарную нагрузкуи сейсмическу. на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность
работы строительных конструкций, трубопровода, за счет уменьшения пиковых ускорений, за
счет использования протяжных фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта
при виброизоляции нагревается за счет трения между верхней составной и нижней целевой
пластинами (фрагменты опоры) до температуры плавления и плавится, при этом поглощаются
пиковые ускорения температурных напряжений, пожарной нагрузки, взрывной, сейсмической
энергии и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также
исключается разрушение строительных конструкций ,теплотрасс горячего водоснабжения от
тяжелого автотранспорта и вибрации от ж/д.
В основе повышения огнестойкости строительных конструкций, виброзащиты с использованием
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, с упругими демпферами сухого трения на фрикционных соединениях, на
фрикци-болтах с тросовой втулкой, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии.
Огнезащита, виброизолирующая , сейсмоизолирующая кинематическая строительных
конструкций, трубопровод, опора рассчитана на одну сейсмическую нагрузку (9 баллов), либо на
одно температурное напряжение или взрывную нагрузку. После пожарной нагрузки,
температурных напряжений, взрывной или сейсмической нагрузки необходимо заменить смятые
или сломанные гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
демпфирующего узла забить новые демпфирующий и пружинистый медные клинья, с помощью
домкрата поднять, выровнять строительные конструкции, кровлю, опору и затянуть болты на
проектное контролируемое протяжное натяжение.
При воздействии пожарной нагрузки, температурных напряжений , вибрационных, взрывных
нагрузок , сейсмических нагрузок превышающих силы трения в сопряжении в фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, трубчатого вида , происходит сдвиг трущихся элементов типа, как шток,
строительных конструкций, стыков металлической фермы, корпуса опоры, в пределах длины
паза, без разрушения строительных конструкций, оборудования, здания, сооружения, моста.
О характеристиках пожарной нагрузки , температурных напряжений в строительных
конструкций виброизолирующего демпфирующего компенсатора - фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, сообщалось на научной XXVI
Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических
моделей температурных напряжений строительных конструкций на фланцевых фрикционно-
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 410

411.

подвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" при СПб ГАСУ Мажиев Х Н, можно
ознакомиться на сайте: https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на фланцевых фрикционно-подвижных соединений (ФПС) строительных конструкций и
демпфирующих узлов крепления (ДУК), можно ознакомиться: см. изобретения №№ 1143895,
1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_Tech
nischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода и лабораторными испытаниями
демпфирующего косого компенсатора на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на основе фланцевых фрикционно –подвижных соединений
для виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул Афонская дом 2 можно
ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8 https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующих строительных конструкций, трубопровода, косого
компенсатора для трубопроводов на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения, показаны
следующие существенные отличия:
1. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода при пожарной нагрузке косого фланцевое соединение растянутых
элементов строительных конструкций, трубопровода со скошенными торцами с упругими
демпферами сухого трения выдерживает термические нагрузки от перепада температуры
при транспортировке по трубопроводу газа, кислорода в больницах
2. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода и упругая податливость демпфирующего фланцевого соединение
растянутых элементов строительных конструкций , трубопровода со скошенными торцами
регулируется повышает огнестойкость строительных конструкций , трубопровода
4. В отличие от монтажа строительных конструкций без термических компенсаторов
гасителей температурных колебаний , огнестойкость каркаса здания увеличивается в разы, и
свойства которой ухудшаются со временем, из-за отсутствия огнезащиты ,а свойства
фланцевое косое демпфирующее соединение растянутых элементов строительных конструкций.
трубопровода со скошенными торцами, остаются неизменными во времени, а при
температурном напряжении, пожарная нагрузка возрастает и огнестойкость строительных
конструкций падают .
Огнестойкость достигнут за счет использования термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода , что повышает
долговечность демпфирующей упругого фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами , так как прокладки на
фланцах быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет и
монтаже. Пожарная безопасность достигнут также из-за удобства обслуживания узла при
эксплуатации строительных конструкций , фланцевого косого компенсатора соединение
растянутых элементов строительных конструкций, трубопровода со скошенными торцами
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 411

412.

Литература которая использовалась для составления заявки на изобретение: Огнестойкий
компенсатор гаситель температурных напряжений для строительных конструкций ,
трубопровода, металлических ферм, трубопроводовс использованием фланцевых соединений,
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка
№2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без
заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров
«Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через
четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации
электромагнитных
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и
другие зарубежные научные издания и
журналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами
Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ
СПб пл. Островского, д.3 .
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 412

413.

Формула изобретения огнестойкий компенсатор- гаситель температурных
напряжений" МПК F16L 27/2 для фланцевых демпфирующих крепления, в том
числе и косого и традиционного фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого
трения
1. Огнестойкий компенсатор - гаситель температурных напряжений, как и
фланцевое соединение, растянутых элементов строительных конструкций ,
трубопровода со скошенными торцами с упругими демпферами сухого
трения, демпфирующего косого компенсатора для строительных
конструкций и магистрального трубопровода , содержащая: фланцевое
соединение растянутых элементов трубопровода со скошенными и не
скошенными торцами с упругими демпферами сухого трения на
фрикционно-подвижных болтовых соединениях, с одинаковой
жесткостью с демпфирующий элементов при многокаскадном
демпфировании, для термической защиты и сейсмоизоляции строительных
конструкций трубопровода и поглощение сейсмической энергии, в
горизонтальнойи вертикальной плоскости по лини нагрузки, при этом
упругие демпфирующие косые компенсаторы , выполнено в виде фланцевого
соединение растянутых элементов трубопровода со скошенными торцами
2. Огнестойкий компенсатор - гаситель температурных напряжений,
фланцевое соединение растянутых элементов трубопровода со скошенными и
не скошенными торцами с упругими демпферами сухого трения , повышенной
надежности с улучшенными демпфирующими свойствами, содержащая ,
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными
соединениями и упругой втулкой (гильзой), закрепленные запорными
элементами в виде протяжного соединения контактирующих поверхности
детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что
с целью повышения надежности к термическим и температурным колебаниям
при пожаре для строительных конструкций, за счет демпфирующее т
термической эффективности сухого трения при термических и динамических
колебаниях , за счет соединенныя, между собой с помощью фрикционноподвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзы) , расположенных в длинных овальных
отверстиях , с помощью фрикци-болтами с медным упругоплатичном,
пружинистым многослойным, склеенным клином или тросовым пружинистым
зажимом , расположенной в коротком овальном отверстии верха и низа косого
компенсатора для трубопроводов
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 413

414.

3. Способ работы огнестойкого компенсатора - гасителя температурных
напряжений, с использованием фланцевого соединение растянутых элементов
трубопровода со скошенными и не скошенными торцами с упругими
демпферами сухого трения, для обеспечения несущей способности при
пожаре и высокой температуре строительных конструкций , трубопровода
на фрикционно -подвижного соединения с высокопрочными фрикциболтами с тросовой втулкой (гильзой), включающий, контактирующие
поверхности которых предварительно обработанные, соединенные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия
натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают
нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в
зависимости от величины отклонения, осуществляют коррекцию технологии
монтажа сейсмоизолирующей опоры, отличающийся тем, что в качестве
показателя сравнения используют проектное значение усилия натяжения
высокопрочного фрикци- болта с медным обожженным клином забитым в
пропиленный паз латунной шпильки с втулкой -гильзы из стального тонкого
троса , а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия
и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига при
огнестойком компенсаторе - гасителе температурных напряжений, к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа, сам огнестойкий компенсатор, гаситель
температурных напряжений , с использованием сдвиговой для перемещения
компенсатора, как перемещающегося по линии нагрузки , как косой
компенсатор или не косого демпфирующего огнестойкий компенсатор , при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение
болта, а при отношении менее 0,50, кроме увеличения усилия натяжения,
дополнительно проводят обработку контактирующих поверхностей
фланцевого перемещающихся, сдвиговых соединение растянутых элементов
строительных конструкции или трубопровода со скошенными торцами с
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 414

415.

использованием цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Фигуры к заявке на изобретение полезная модель Огнестойкий компенсатор
- гаситель температурных напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 415

416.

Фиг. 1 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 416

417.

Фиг. 2
Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 417

418.

Фиг. 3 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 418

419.

Фиг. 4 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 419

420.

Фиг. 5 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 420

421.

Фиг. 6 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 421

422.

Фиг. 7 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 422

423.

Фиг. 8 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 423

424.

Фиг. 9 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 424

425.

Фиг. 10 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 425

426.

Фиг. 11 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 426

427.

Фиг. 13 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 427

428.

Фиг. 14 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 428

429.

Фиг. 15 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 429

430.

Фиг. 16 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 430

431.

Фиг.
17 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 431

432.

Фиг. 18 Огнестойкий компенсатор - гаситель температурных
напряжений" МПК F16L 27/2
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 432

433.

РЕФЕРАТ Огнестойкий компенсатор - гаситель температурных напряжений"
МПК F16L 27/2
Огнестойкий компенсатор - гаситель температурных напряжений с упругими демпферами
сухого трения предназначена для термической и сейсмической виброзащиты
строительных конструкций , трубопроводов , оборудования, сооружений, объектов, зданий
от сейсмических, взрывных, вибрационных, неравномерных воздействий за счет
использования спиралевидной сейсмоизолирующей опоры с упругими демпферами
сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения сеймоизолирующих
свойств спиральной демпфирующей опоры или корпус опоры выполнен сборным с
трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней
целевой части и сборной верхней части подвижной в вертикальном направлении с
демпфирующим эффектом, соединенные между собой с помощью фрикционно-подвижных
соединений и контактирующими поверхностями с контрольным натяжением фрикциболтов с упругой тросовой втулкой (гильзой) , расположенных в длинных овальных
отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой
перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в
коротком овальном отверстии верха и низа строительных конструкций .
https://findpatent.ru/patent/241/2413820.html
Огнестойкий компенсатор - гаситель температурных напряжений- фланцевое соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами
сухого трения , содержащая трубообразный спиралевидный корпус-опору в виде
перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с ним
подвижный узел из контактирующих поверхностях между которыми проложен
демпфирующий трос в пластмассой оплетке с фланцевыми фрикционно-подвижными
соединениями с закрепленными запорными элементами в виде протяжного соединения.
Кроме того в строительных конструкциях , трубопроводе со скошенными торцами ,
параллельно центральной оси, выполнено восемь симметричных или более открытых
пазов с длинными овальными отверстиями, расстояние от торца корпуса, больше
расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов трубопровода
со скошенными торцами, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной опоры и к
увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому
листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой
со свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной фланцевом
соединение растянутых элементов трубопровода со скошенными торцами, с упругими
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 433

434.

демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса ( массы)
оборудования, сооружения, здания, моста и расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения, выполнено
со скошенными торцами в виде , стаканчато-трубного вида на фланцевых, фрикционно –
подвижных соединениях с фрикци-болтами .
Огнестойкий компенсатор - гаситель температурных напряжений - фланцевое соединение
растянутых элементов трубопровода со скошенными торцами соединяется , на
изготовлено из фрикци-болтах, с тросовой втулкой (гильзой) - это вибропоглотитель
пиковых ускорений (ВПУ) с помощью которого поглощается вибрационная, взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясениях и взрывной нагрузки от ударной
воздушной волны. Фрикци–болт повышает надежность работы вентиляционного
оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные трубопроводы за счет
уменьшения пиковых ускорений, за счет протяжных фрикционных соединений,
работающих на растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Огнестойкий компенсатор - гаситель температурных напряжений вместе с
упругой втулкой – гильзой - фрикци-болтом , использующая для Огнестойкий компенсатор гаситель температурных напряжений, для фланцевого соединения растянутых элементов
трубопровода со скошенными торцами , состоящая из стального троса в пластмассовой
оплетке или без пластмассовой оплетки, пружинит за счет трения между тросами,
поглощает при этом вибрационные, взрывной, сейсмической нагрузки , что исключает
разрушения сейсмоизолирующего основания , опор под агрегатов, мостов , разрушении
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д .
Надежность friction-bolt на виброизолирующих опорах достигается путем обеспечения
многокаскадного демпфирования при динамических нагрузках, преимущественно при
импульсных растягивающих нагрузках на здание, сооружение, оборудование, трубопроводы,
которое устанавливается на спиральных сейсмоизолирующих опорах, с упругими
демпферами сухого трения, на фланцевых фрикционно- подвижных соединениях (ФФПС)
по изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 , опубликовано: 10.10.2016 №
28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко А.И, RU 2413098 F 16 B
31/02 "Способ для обеспечения несущей способности металлоконструкций с
высокопрочными болтами"
В основе огнестойкого компенсатора - гасителя температурных напряжени
используются фланцевые соединения растянутых элементов трубопровода со скошенными
торцами ,с упругими демпферами сухого трения, на фрикционных фланцевых
соединениях, на фрикци-болтах (поглотители энергии) лежит принцип который
называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для фланцевых
соединений растянутых элементов трубопровода со скошенными торцами , с упругими
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 434

435.

демпферами сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет
пару структурных элементов, соединяющих эти структурные элементы со скольжением,
разной шероховатостью поверхностей в виде демпфирующих тросов или упругой гофры (
обладающие значительными фрикционными характеристиками, с многокаскадным
рассеиванием сейсмической, взрывной, вибрационной энергии. Совместное скольжение
включает зажимные средства на основе friktion-bolt ( аналог американского Hollo Bolt ),
заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате пожара, взрыва, вибрации при землетрясении, происходит перемещение
(скольжение) фрагментов фланцевых фрикционно-подвижных соединений ( ФФПС)
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, с
упругими демпферами сухого трения, скользящих и демпфирующих фрагментами
спиральной , винтовой опоры , по продольным длинным овальным отверстиям .
Происходит поглощение термической, тепловой энергии, за счет трения частей корпуса
опоры при сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и
раскачиваться спирально-демпфирующей и пружинистого фланцевого соединение
растянутых элементов трубопровода со скошенными торцами на расчетное
допустимое перемещение, до 1-2 см ( по расчету на сдвиг в SCAD Office , и фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, рассчитана на
одно, два землетрясения или на одну взрывную нагрузку от ударной взрывной волны.
После длительных температурных напряжений, вибрационной, взрывной, сейсмической
нагрузки, на фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, необходимо заменить, смятые троса
,вынуть из контактирующих поверхностей, вставить опять в новые втулки (гильзы) ,
забить в паз латунной шпильки демпфирующего узла крепления, новые упругопластичный
стопорные обожженные медный многослойный клин (клинья), с помощью домкрата
поднять и выровнять фланцевое соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и затянуть новые фланцевые фрикци- болтовые
соединения, с контрольным натяжением, на начальное положение конструкции с
фрикционными соединениями, восстановить протяжного соединения на фланцевое
соединение растянутых элементов трубопровода со скошенными торцами , для
дальнейшей эксплуатации после взрыва, аварии, землетрясения для надежной
сейсмозащиты, виброизоляции от многокаскадного демпфирования фланцевого соединение
растянутых элементов трубопровода со скошенными торцами трубопровода с упругими
демпферами сухого трения и усилить основания под трубопровод, теплотрассу, агрегаты,
оборудования, задний и сооружений
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 435

436.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 436

437.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 437

438.

Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 438

439.

Описание изобретения Огнестойкий компенсатор гаситель температурных напряжений МПК
F16L 27/ 2
Предлагаемое техническое решение предназначено для защиты строительных конструкций от
термических и температурных колебаний при пожарных нагрузках , температурных напряжениях
, динамических , многокаскадных нагрузках на строительные конструкции , металлических ферм ,
магистральных трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет использования
фланцевого соединение растянутых элементов использование термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода строительных
конструкция, со скошенными торцами, с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при многокаскадном
демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей".
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 439

440.

Известны фрикционные соединения для защиты строительных конструкций, объектов от
динамических воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент Фланцевое соединение растянутых элементов замкнутого профиля № 2413820,
«Стыковое соединение растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от
11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой
балкой ", RU № 2148 805 G 01 L 5/24 "Способ определения коэффициента закручивания
резьбового соединения "
Изобретение относится к области огнестойкости строительства, магистральных
трубопроводов, и может быть использовано для фланцевых соединение растянутых элементов
трубопровода со скошенными торцами для технологических , магистральных трубопроводов.
Система содержит фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с разной жесткостью, демпфирующий элемент с зазором 50 -100 мм(для
сдвига ) . Использование изобретения позволяет повысить огнестойкость
металлоконструкций, трубопроводов с косым стыком для сейсмозащиты и виброизоляции в
резонансном режиме фланцевые соединения в растянутых элементов и трубопровода со
скошенными торцами
Изобретение относится к огнестойкости строительных конструкций, трубопроводов,
строительству и машиностроению и может быть использовано для виброизоляции
магистральных трубопроводов, технологического оборудования, агрегатов трубопроводов и
со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является фланцевое
соединение растянутых элементов замкнутого профиля № 2413820 , стыковое соединение
растянутых элементов № 887748 система по патенту РФ (прототип), содержащая и
описание работы фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
Недостатком известного устройства является недостаточная эффективность
огнестойкости из-за отсутствия демпфирования колебаний. Технический результат повышение эффективности термической и демпфирующей сейсмоизоляции в резонансном
режиме и упрощение конструкции и монтажа термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Это достигается тем, что в демпфирующем фланцевом соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами , содержащей по крайней
мер, за счет демпфирующего фланцевого соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и сухого трения установлена с использованием фрикциболта с забитым обожженным медным упругопластичным клином, конце демпфирующий
элемент, а демпфирующий элемент выполнен в виде медного клина забитым в паз латунной
шпильки с медной втулкой, при этом нижняя часть штока соединена с основанием
строительных конструкции, трубопровода , опоры , жестко соединенным с демпирующей на
фрикционно –подвижных болтовых соединениях для обеспечения демпфирования фланцевого
соединение растянутых элементов строительных конструкций , кровли, трубопровода со
скошенными торцами для термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
На фиг. 1 представлена стальная ферма с огнестойким компенсатором гасителем
температурных напряжений с использованием фланцевых соединений в строительных
конструкциях, фермах, пролетных строений, растянутых элементов трубопровода со
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 440

441.

скошенными торцами с упругими демпферами сухого трения с пружинистыми демпферами
сухого трения в овальных отверстиях для монтажа, крепления термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, виброизолирующая система для
зданий и сооружений, содержит основание и овальные отверстия , для болтов и имеющих
одинаковую жесткость и связанных с строительными конструкциями и опорными элементами
верхней части пояса зданий или сооружения я с использованием термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Система дополнительно содержит фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, к которая крепится фрикци-болтом с пропиленным пазов в латунной
шпильки для забитого медного обожженного стопорного клина ( не показан на фигуре 2 ) и
которая опирается на нижний пояс основания и демпфирующий элемент, в виде
строительных конструкций, трубопровода с упругими демпферами сухого трения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по изобретению
проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746 «Способ защиты зданий», 165076
«Опора сейсмостойкая»
Демпфирующий элемент фланцевого соединение растянутых элементов строительные
конструкции, трубопровода со скошенными торцами, с упругими демпферами сухого трения за
счет фрикционно-подвижных соединениях (ФПС)и термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
При термических нагрузках , колебаниях и колебаниях грунта сейсмоизолирующая и
виброизолирующее фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, для демпфирующей сейсмоизоляции трубопровода (на
чертеже не показан) с упругими демпферами сухого трения , с упругими демпферами сухого
трения , элементы и воспринимают как вертикальные, так и горизонтальные нагрузки,
ослабляя тем самым динамическое воздействие на демпфирующею сейсмоизоляцию объект,
т.е. обеспечивается пространственную сейсмозащиту, виброзащиту и защита от
термической ударной нагрузки
Огнестойкий компенсатор - гаситель температурных напряжений, с упругими демпферами
сухого трения, поглощает как термическую, так и сейсмическую энергию и так же работает
, как виброизолирующая система работает следующим образом.
При колебаниях температурных колебаний , используется для как виброизоляция объекта ,
фланцеве соединение растянутых элементов трубопровода со скошенными торцами на основе
фрикционо-подвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание, сооружение, трубопровод, за счет зазора 50-100 мм между стыками на
болтовых креплениях
Упругодемпфирующая фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами с упругими демпферами сухого трения работает
следующим образом.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 441

442.

При колебаниях объекта фланцевое соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание , сооружение . Горизонтальные колебания гасятся за счет фрикциболта расположенного в при креплении опоры к основанию фрикци-болтом , что дает ему
определенную степень свободы колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами и силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное
проскальзывание листов фланцевого соединение растянутых элементов строительных конструкций
трубопровода со скошенными торцами или прокладок относительно накладок контакта листов с
меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий для
скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании, уже не работают упруго.
После того как все болты соединения дойдут до упора края, в длинных овальных отверстий,
соединение начинает работать упруго за счет трения, а затем происходит разрушение
соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг по вертикали
допускается 1 - 2 см или более и пожарных нагрузках, термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Недостатками известного решения аналога являются: не возможность использовать
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса
по трению. Известно также устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий, патент TW201400676(A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B1/98, F16F15/10, патент США Structural stel bulding frame
having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ определения
коэффициента закручивания резьбового соединения" , RU № 2413820 "Фланцевое соединение
растянутых элементов замкнутого профиля", Украина № 40190 А "Устройство для измерения
сил трения по поверхностям болтового соединения" , Украина патент № 2148805 РФ "Способ
определения коэффициента закручивания резьбового соединения"
Таким образом получаем огнестойкий компенсатор - гаситель температурных напряжений, как
фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения и виброизолирующею конструкцию
кинематической или маятниковой опоры, которая выдерживает вибрационные и сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения в термическом компенсаторе, гасителе температурных
колебаний в строительных конструкций , трубопроводе
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов
из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых
креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 442

443.

скошенными торцами, а также повышение точности расчета при использования тросовой
втулки (гильзы) на фрикци- болтовых демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение растянутых
элементов строительных конструкций ,трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус, закрепленный на
фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток
сборный в виде, фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, установленный с возможностью перемещения
вдоль оси и с ограничением перемещения за счет деформации и виброизолирующего фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, под действием
запорного элемента в виде стопорного фрикци-болта с тросовой виброизолирующей втулкой
(гильзой) с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами выполнены овальные длинные отверстия, и
поперечные отверстия (перпендикулярные к центральной оси), в которые скрепляются фланцевыми
соединениями в растянутых элементов трубопровода со скошенными торцами с установлением
запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с медным клином,
забитым в пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами, параллельно центральной оси, выполнены восемь открытых длинных пазов, которые
обеспечивают корпусу возможность деформироваться за счет протяжных соединений с фрикциболтовыми демпфирующими, виброизолирующими креплениями в радиальном направлении
строительных конструкций.
В теле фланцевого соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения в конструкциях термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами, вдоль
центральной оси, выполнен длинный паз ширина которого соответствует диаметру запирающего
элемента (фрикци- болта), а длина соответствует заданному перемещению трубчатой,
квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении
опоры - корпуса, с продольными протяжными пазами с контролируемым натяжением фрикциболта с медным клином обмотанным тросовой виброизолирующей втулкой (пружинистой гильзой)
, забитым в пропиленный паз стальной шпильки и обеспечивает возможность деформации корпуса
и «переход» сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под вибрационные, сейсмической нагрузкой, взрывные от
воздушной волны.
Сущность предлагаемой конструкции термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода , поясняется чертежами, где на
фиг.1 изображено огнестойкий компенсатор - гаситель температурных напряжений, для
строительных конструкций испытанный в США американскими инженерами на Аляске, как
фланцевое соединение растянутых элементов строительных конструкций используемо и
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 443

444.

испытанной в США, Канаде для строительных конструкций и трубопровода со скошенными
торцами, с упругими демпферами сухого трения на фрикционных соединениях с контрольным
натяжением для строительных конструкций ;
на фиг.2 изображены виды термического компенсатора американской фермы смонтированной на
болтах , гасителя температурных колебаний , с боку фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения со
стопорным (тормозным) фрикци –болт с забитым в пропиленный паз стальной шпильки
обожженным медным стопорным клином;
На фиг 3 изображен вид с верху , фланцевого соединение растянутых элементов трубопровода со
скошенными торцами для строительных конструкций, стальных ферм на фланцевых креплениях
фиг. 4 изображен разрез фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения виброизолирующею,
сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
термического компенсатора гасителя температурных колебаний строительных конструкций ,
трубопровода
фиг. 7 изображены Японские гасители динамических колебаний, вид медной или тросовой гильзу
для латунной шпильки –болта в тросовой обмотке два раза, с верху фланцевого соединение с
овальными отверстиями растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое косого соединение по замкнутому контуру
растянутых элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
фиг. 10 изображено фланцевое Канадское соединение растянутых элементов трубопровода
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов косого
компенсатора для трубопровода со скошенными торцами с косым демпфирующим компенсатором
и с овальными отверстиями ( не показаны )
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов трубопровода со
скошенными торцами термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
фиг. 13 изображен способ определения коэффициента закручивания резьбового соединения" по
изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания
резьбового соединения" и № 2413098 "Способ для обеспечения несущей способности
металлических конструкций с высокопрочными болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по подготовленным
поверхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление на
выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера
Л.М. Червинский А.Е "Пути совершенствования технологии выполнения фрикционных соединений
на высокопрочных болтах" Национальная металлургический Академия Украины , журнал
Металлургическая и горная промышленность" 2010№ 4 стр 109-112
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 444

445.

На фиг 15 изображен огнестойкий компенсатор - гаситель температурных напряжений,
используемые в США разные термические компенсаторы и графики на английском языке
.Изображен образец для испытания Канадского демпфера и американские (США) затяжные
болты для определение коэффициента трения в ПК SCAD между контактными поверхностями
соединяемых элементов СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ
«ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научно-исследовательским центром
«Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В.
Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на
вибростойкость, сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно
подвижных соединений (ФПС) по изобретениям проф ПГУПС А .М Уздина №№ 1143895, 1168755,
1174616, 165076 «Опора сейсмостойкая»
Огнестойкий компенсатор - гаситель температурных напряжений, как аналог огнестойкости
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, состоит из двух фланцев (нижний
целевой), (верхний составной), в которых выполнены вертикальные длинные овальные отверстия
диаметром «D», шириной «Z» и длиной . Нижний фланец охватывает верхний корпус
строительных конструкций, трубы (трубопровода) . При монтаже демпфирующего
компенсатора, поднимается до верхнего предела, фиксируется фрикци-болтами с контрольным
натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и предварительно забитым
в шпильке обожженным медным клином. и тросовой пружинистой втулкой (гильзой) В стенке
корпусов строительных конструкций и виброизолирующей, сейсмоизолирующей кинематической
опоры или строительных конструкций, перпендикулярно оси корпусов строительных конструкций
выполнено восемь или более длинных овальных отверстий строительных конструкций, в которых
установлен запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой,
пружинистой гильзой, с забитым в паз стальной шпильки болта стопорным ( пружинистым )
обожженным медным многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой
и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов строительных конструкций, трубопровода со
скошенными торцами , с упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход болта –шпильки
) соответствующий по ширине диаметру калиброванного фрикци - болта, проходящего через
этот паз. В нижней части демпфирующего компенсатора, выполнен фланец для фланцевого
подвижного соединения с длинными овальными отверстиями для крепления на фундаменте, а в
верхней части корпуса выполнен фланец для сопряжения с защищаемым объектом,
строительных конструкций ,сооружением, мостом
Сборка фланцевого соединение растянутых элементов строительных конструкций, трубопровода
со скошенными торцами , заключается в том, что составной ( сборный) фланцевое соединение
растянутых элементов трубопровода со скошенными торцами, в виде основного компенсатора
по подвижной посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, совмещают, скрепленных фрикци-болтом (высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с контрольным натяжением до заданного
усилия в зависимости от массы строительных конструкций, трубопровода, агрегата. Увеличение
усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 445

446.

от «Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой,
квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для фланцевого
соединение растянутых элементов строительных конструкций, трубопровода со скошенными
торцами, зависит от величины усилия затяжки гайки (болта) с контролируемым натяжением и
для каждой конкретной конструкции и фланцевого соединение растянутых элементов
трубопровода со скошенными торцами (компоновки, габаритов, материалов, шероховатости и
пружинистости стального тонкого троса уложенного между контактирующими поверхностями
деталей поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами демпфирующего компенсатора , сверху и
снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время
вибрационных нагрузок или взрыве за счет трения между верхним и нижним фланцевым
соединением растянутых элементов трубопровода со скошенными торцами, происходит
поглощение вибрационной, взрывной и сейсмической энергии. Фрикционно- подвижные соединения
состоят из скрученных пружинистых тросов- демпферов сухого трения и свинцовыми (возможен
вариант использования латунной втулки или свинцовых шайб) поглотителями вибрационной ,
термической, сейсмической, взрывной энергии за счет демпфирующих фланцевых соединений в
растянутых элементов строительных конструкций, трубопровода со скошенными торцами с
тросовой втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно забиты в
пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, представляют собой двойную фрикционную пару,
имеющую стабильный коэффициент трения для термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими
ключами или гайковертами на расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса строительных конструкций, трубопровода
Сама составное фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см всего, термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями
забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 446

447.

Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для строительных конструкций, стыкового демпфирующего косого соединения ,
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, является
энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается термическая,
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает
пожарную нагрузкуи сейсмическу. на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность
работы строительных конструкций, трубопровода, за счет уменьшения пиковых ускорений, за
счет использования протяжных фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта
при виброизоляции нагревается за счет трения между верхней составной и нижней целевой
пластинами (фрагменты опоры) до температуры плавления и плавится, при этом поглощаются
пиковые ускорения температурных напряжений, пожарной нагрузки, взрывной, сейсмической
энергии и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также
исключается разрушение строительных конструкций ,теплотрасс горячего водоснабжения от
тяжелого автотранспорта и вибрации от ж/д.
В основе повышения огнестойкости строительных конструкций, виброзащиты с использованием
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, с упругими демпферами сухого трения на фрикционных соединениях, на
фрикци-болтах с тросовой втулкой, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии.
Огнезащита, виброизолирующая , сейсмоизолирующая кинематическая строительных
конструкций, трубопровод, опора рассчитана на одну сейсмическую нагрузку (9 баллов), либо на
одно температурное напряжение или взрывную нагрузку. После пожарной нагрузки,
температурных напряжений, взрывной или сейсмической нагрузки необходимо заменить смятые
или сломанные гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
демпфирующего узла забить новые демпфирующий и пружинистый медные клинья, с помощью
домкрата поднять, выровнять строительные конструкции, кровлю, опору и затянуть болты на
проектное контролируемое протяжное натяжение.
При воздействии пожарной нагрузки, температурных напряжений , вибрационных, взрывных
нагрузок , сейсмических нагрузок превышающих силы трения в сопряжении в фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, трубчатого вида , происходит сдвиг трущихся элементов типа, как шток,
строительных конструкций, стыков металлической фермы, корпуса опоры, в пределах длины
паза, без разрушения строительных конструкций, оборудования, здания, сооружения, моста.
О характеристиках пожарной нагрузки , температурных напряжений в строительных
конструкций виброизолирующего демпфирующего компенсатора - фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, сообщалось на научной XXVI
Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических
моделей температурных напряжений строительных конструкций на фланцевых фрикционно-
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 447

448.

подвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" при СПб ГАСУ Мажиев Х Н, можно
ознакомиться на сайте: https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на фланцевых фрикционно-подвижных соединений (ФПС) строительных конструкций и
демпфирующих узлов крепления (ДУК), можно ознакомиться: см. изобретения №№ 1143895,
1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_Tech
nischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода и лабораторными испытаниями
демпфирующего косого компенсатора на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на основе фланцевых фрикционно –подвижных соединений
для виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул Афонская дом 2 можно
ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8 https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующих строительных конструкций, трубопровода, косого
компенсатора для трубопроводов на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения, показаны
следующие существенные отличия:
1. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода при пожарной нагрузке косого фланцевое соединение растянутых
элементов строительных конструкций, трубопровода со скошенными торцами с упругими
демпферами сухого трения выдерживает термические нагрузки от перепада температуры
при транспортировке по трубопроводу газа, кислорода в больницах
2. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода и упругая податливость демпфирующего фланцевого соединение
растянутых элементов строительных конструкций , трубопровода со скошенными торцами
регулируется повышает огнестойкость строительных конструкций , трубопровода
4. В отличие от монтажа строительных конструкций без термических компенсаторов
гасителей температурных колебаний , огнестойкость каркаса здания увеличивается в разы, и
свойства которой ухудшаются со временем, из-за отсутствия огнезащиты ,а свойства
фланцевое косое демпфирующее соединение растянутых элементов строительных конструкций.
трубопровода со скошенными торцами, остаются неизменными во времени, а при
температурном напряжении, пожарная нагрузка возрастает и огнестойкость строительных
конструкций падают .
Огнестойкость достигнут за счет использования термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода , что повышает
долговечность демпфирующей упругого фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами , так как прокладки на
фланцах быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет и
монтаже. Пожарная безопасность достигнут также из-за удобства обслуживания узла при
эксплуатации строительных конструкций , фланцевого косого компенсатора соединение
растянутых элементов строительных конструкций, трубопровода со скошенными торцами
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 448

449.

Литература которая использовалась для составления заявки на изобретение: Огнестойкий
компенсатор гаситель температурных напряжений для строительных конструкций ,
трубопровода, металлических ферм, трубопроводовс использованием фланцевых соединений,
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка
№2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без
заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров
«Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через
четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации
электромагнитных
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и
другие зарубежные научные издания и
журналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами
Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ
СПб пл. Островского, д.3 .
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 449

450.

Формула изобретения огнестойкий компенсатор- гаситель температурных
напряжений" МПК F16L 27/2 для фланцевых демпфирующих крепления, в том
числе и косого и традиционного фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого
трения
1. Огнестойкий компенсатор - гаситель температурных напряжений, как и
фланцевое соединение, растянутых элементов строительных конструкций ,
трубопровода со скошенными торцами с упругими демпферами сухого
трения, демпфирующего косого компенсатора для строительных
конструкций и магистрального трубопровода , содержащая: фланцевое
соединение растянутых элементов трубопровода со скошенными и не
скошенными торцами с упругими демпферами сухого трения на
фрикционно-подвижных болтовых соединениях, с одинаковой
жесткостью с демпфирующий элементов при многокаскадном
демпфировании, для термической защиты и сейсмоизоляции строительных
конструкций трубопровода и поглощение сейсмической энергии, в
горизонтальнойи вертикальной плоскости по лини нагрузки, при этом
упругие демпфирующие косые компенсаторы , выполнено в виде фланцевого
соединение растянутых элементов трубопровода со скошенными торцами
2. Огнестойкий компенсатор - гаситель температурных напряжений,
фланцевое соединение растянутых элементов трубопровода со скошенными и
не скошенными торцами с упругими демпферами сухого трения , повышенной
надежности с улучшенными демпфирующими свойствами, содержащая ,
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными
соединениями и упругой втулкой (гильзой), закрепленные запорными
элементами в виде протяжного соединения контактирующих поверхности
детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что
с целью повышения надежности к термическим и температурным колебаниям
при пожаре для строительных конструкций, за счет демпфирующее т
термической эффективности сухого трения при термических и динамических
колебаниях , за счет соединенныя, между собой с помощью фрикционноподвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзы) , расположенных в длинных овальных
отверстиях , с помощью фрикци-болтами с медным упругоплатичном,
пружинистым многослойным, склеенным клином или тросовым пружинистым
зажимом , расположенной в коротком овальном отверстии верха и низа косого
компенсатора для трубопроводов
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 450

451.

3. Способ работы огнестойкого компенсатора - гасителя температурных
напряжений, с использованием фланцевого соединение растянутых элементов
трубопровода со скошенными и не скошенными торцами с упругими
демпферами сухого трения, для обеспечения несущей способности при
пожаре и высокой температуре строительных конструкций , трубопровода
на фрикционно -подвижного соединения с высокопрочными фрикциболтами с тросовой втулкой (гильзой), включающий, контактирующие
поверхности которых предварительно обработанные, соединенные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия
натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают
нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в
зависимости от величины отклонения, осуществляют коррекцию технологии
монтажа сейсмоизолирующей опоры, отличающийся тем, что в качестве
показателя сравнения используют проектное значение усилия натяжения
высокопрочного фрикци- болта с медным обожженным клином забитым в
пропиленный паз латунной шпильки с втулкой -гильзы из стального тонкого
троса , а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия
и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига при
огнестойком компенсаторе - гасителе температурных напряжений, к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа, сам огнестойкий компенсатор, гаситель
температурных напряжений , с использованием сдвиговой для перемещения
компенсатора, как перемещающегося по линии нагрузки , как косой
компенсатор или не косого демпфирующего огнестойкий компенсатор , при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение
болта, а при отношении менее 0,50, кроме увеличения усилия натяжения,
дополнительно проводят обработку контактирующих поверхностей
фланцевого перемещающихся, сдвиговых соединение растянутых элементов
строительных конструкции или трубопровода со скошенными торцами с
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 451

452.

использованием цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Испытание тeрмического коменсатора, гасителя температруных пожарных напряжений
Всего листов 96
Лист 452
English     Русский Правила