Похожие презентации:
Скрещивающиеся прямые
1.
2.
ОпределениеДве прямые называются скрещивающимися, если они
не лежат в одной плоскости.
a
a b
М
b
3.
Наглядное представление о скрещивающихся прямых даютдве дороги, одна из которых проходит по эстакаде, а другая
под эстакадой.
4.
a ba
b
5.
Найдите на рисунке параллельные прямые.Назовите параллельные прямые и плоскости.
Найдите скрещивающиеся прямые.
6.
Признак скрещивающихся прямыхЕсли одна из двух прямых лежит в некоторой плоскости,
а другая прямая пересекает эту плоскость в точке, не
лежащей на первой прямой, то эти прямые
скрещивающиеся.
D
АВ СD ?
В
А
C
7.
Три случая взаимного расположения двух прямых впространстве
b
a
а b
М
а II b
b
b
a
a
а b
8.
Теорема о скрещивающихся прямыхЧерез каждую из двух скрещивающихся прямых проходит
плоскость, параллельная другой прямой, и притом только
одна.
A
B
С
E
D
9. Задача.
• Построить плоскость α, проходящую черезточку К и параллельную скрещивающимся
прямым а и b.
Построение:
b
1. Через точку К провести
а
прямую а1 || а.
2. Через точку К провести
прямую b1 || b.
а1
К
b1
3. Через пересекающиеся
прямые проведем
плоскость α. α – искомая
плоскость.
10.
Через вершину А ромба АВСD проведена прямая а,параллельная диагонали ВD, а через вершину С – прямая b,
не лежащая в плоскости ромба.
Докажите, что: а) а и СD пересекаются;
б) а и b скрещивающиеся прямые. b a
?
b
a
А
В
C
D
11.
Каково взаимное положение прямых1) AD1 и МN; 2) AD1 и ВС1; 3) МN и DC?
С1
B1
А1
D1
В
С
M
А
N
D
12.
Докажите, что прямые1) AD и C1D1; 2) A1D и D1C; 3) AB1 и D1C
С1
B1
А1
D1
В
С
M
А
N
D
скрещивающиеся.
13. Задача.
Дано: a || bN
М
a
MN ∩ a = M
Определить
взаимное расположение
прямых MN u b.
Скрещивающиеся.
b
α
14. Опрос.
Дано: DАМ = МD; ВN = ND; CP = PD
D
M
А
(АВС),
К ВN.
Определить взаимное
расположение прямых:
P
N
а) ND и AB
б) РК и ВС
в) МN и AB
С
К
Р1
В
15.
Дано: DАМ = МD; ВN = ND; CP = PD
D
M
А
(АВС),
P
N
К
В
К ВN.
Определить взаимное
расположение прямых:
а) ND и AB
б) РК и ВС
в) МN и AB
С
г) МР и AС
д) КN и AС
е) МD и BС