12.38M
Категория: СтроительствоСтроительство
Похожие презентации:

Разработчик конструктивных решения и расчета в 3D-модели и в SCAD средств для преодоления водных преград из стальных ферм-балок

1.

Судебное заседание по апелляции будет 28 марта в 10 -00 в Московском областном суде. М.О. г. Красногорск,
бульвар Строителей, д.4, к. 3. м. Мякинино. Судья Пакша С.И. дело № 22-20552023 Боятся они честных людей
Ярый борец с режимом полковник Шендаков задержан Абсолютно здорового человека ручная медицинская
экспертиза признала невменяемым. Его жизни и здоровью угрожает реальная опасность! Карательная психиатрия
способна превращать людей в "растения"!
Защитим полковника Шендакова Михаил Анатольевича вступившегося за Русь и Русский Мир за
память воинов освободителей СССР, от коричневой чумы, от сатанистов -глоболистов, тирании,
от бесов и эффективных менеджеров в Армии, торгашей под руководством секты Хабад Любавича
из США и Израиля Свободу полковнику Шендакову М.А. Нет -карательной психиатрии !

2.

3.

4.

Положительная характеристики на инженера саперных инженерных войск, военного
консультанта по преодолению водных преград научному консультанту изобретателю
Михаилу Анатольевичу Шендакову, работающего на общественных началах
консультантам в организации "Сейсмофонд" при СПб ГАСУ для суда который
состоится 28 марта 2023 в 10 00 в Московской области от общественной организации
"Сейсмофонд" при СПб ГАСУ
президента организации "Сейсмофонд" Матвеев Владимир Владимирович
тел (911) 194-08-80 [email protected] rodinailismert@list/ru
г.Санкт-Петербург
«25» марта 2023 года
СЛУЖЕБНАЯ ХАРАКТЕРИСТИКА на научного сотрудника организации
"Сейсмофонд" при СПб ГАСУ, военного инженерна , консультанта по форсированию
водных преград , изобретателя быстровозводимых мостов , переправ из стальных
конструкций пролетом 18, 24 и 30 метров, с применением замкнутых гнутосварным
профилей прямоугольного сечения типа "Молодечно" ( серия 1ю460ю3-14 ГПИ
"Ленпроектстальконструкия" ) для системы несущих элементов и элементов проезжей
части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста с быстросъемными упруго пластическими компенсаторами

5.

со сдвиговой жесткостью , разработанные полковником Шендаковым Михаил
Анатольевичем , являющему одновременно военным журналистом "Армия
Защитников Отечества", позывной "Терек"
Михаил Анатольевич Шендаков — советский и российский офицер, полковник
Вооруженных сил запаса, ветеран боевых действий и военной службы. Родился в
Волгограде 31 января 1965 года. Патриот России, талантливый инженер , автор и
разработчик упруго пластических сдвиговых компенсаторов для стальных ферм балок с большими перемещениями на предельное равновесие и приспособляемостью
Разработчик конструктивных решения и расчета в 3D-модели и в
SCAD средств для преодоления водных преград из упругопластических
стальных ферм-балок с пластическими сдвиговыми шарнирами, для
пролетного строения железнодорожного и автомобильного мостов с
большими перемещениями пролетов и приспособляемостью к
нагрузкам, со встроенным бетонным настилом, что позволяет
уменьшить массу (вес) пролетного строения моста до 30 процентов
за счет пластинчатости стальных ферм-балок
(металлоконструкций),что уменьшит сметную стоимость СМР до 30
процентов.

6.

Шендаков Михаил «31» января 1965 года рождения, образование: высшее , от
несения воинской обязанности освобожден, в настоящее время работает инженером конструктором на общественных началах
внештатным журналистом на общественных началах в редакции газеты "Армия
Защитников Отечества" , на должности военного корреспондента по расследованию
преступлений в Правительстве РФ (трудовой договор № 01 от «23»марта 2023 года.
На данную должность Шендаков Михаил . был принят «23» марта 2022 года в
соответствии с Приказом № 01 23 марта 2022 года.
За время своей трудовой деятельности Михаил Шендаков всегда добросовестно
относился к исполнению своих трудовых обязанностей, выполнял все требования
руководства. Энергичен, стрессоустойчив, ответственен. В трудовом коллективе со
всеми имеет ровные отношения, коллеги его уважают, ценят опыт и профессионализм.
За время работы со стороны руководства редакции газеты "Армия Защитников
Отечества" нареканий и замечаний не имел, зарекомендовал себя как добросовестный

7.

работник. К дисциплинарной ответственности не привлекался. Документ выдан по
месту требования в суд для приобщения к сфабрикованному уголовному делу
Дополнение к характеристики на полковника Михаил Анатольевича Шендакова с
уравновешенной психикой , бредовыми идеями не обладает , как утверждают врачи
психиатрической больницы , в стационарном лечении в закрытом учреждении
психиатрической больницы не нуждается, это образец мужества всем мужчинам !!!! ...
Отставной полковник правдоруб, безжалостный критик разрушения армии Михаил
Шендаков не должен быть признан нуждающимся в принудительных мерах
медицинского характера.
При этом в заключении экспертов указано, что у Михаила не обнаружено признаков
алкогольной, наркотической или иной зависимости. Более того, ранее Михаил сам
участвовал в отправлении правосудия в качестве присяжного, и вопросов по его
психическому состоянию у суда не возникло. ...
Дополнительно редакция сообщает , что единственный народный депутат Ступин
Готовлю для суда положительную характеристику в отношении Михаила Анатольевича
Шендакова
И принимая во внимание, что имеются не достаточные данные , а сфабрикованные
указывающие на признаки не состава преступления, а преследование честного ученого,

8.

инженера, журналиста за убеждения не предусмотренного п. «а» ч. 2 ст. 282 УК РФ,
руководствуясь ст. 140, 145, 146 (147) Координационный Комитет организации
"Сейсмофонд" при СПб ГАСУ считает что дело возбуждено по политическим
мотивам , а ст. прията в корыстных целях 156 У ПК РФ из за его политических
убеждений, по указанию иностранного агента , зарегистрированного а Нью-Йорке
(США) секты Хабад Любавича
Редактор газеты Армия Защитников Отечества" полковник Матвеев Владимир
Владимирович
Электронный адрес редакции газеты "Армия Защитников Отечества"
79111940880 [email protected] [email protected] [email protected]
[email protected] [email protected]
подпись
Дата
инициалы, фамилия
25 марта 2023
М.П.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Конструктивные решения и расчет в 3D-модели и в SCAD средств для преодоления
водных преград из упругопластических стальных ферм-балок с пластическими
сдвиговыми шарнирами для пролетного строения железнодорожного и
автомобильного мостов с большими перемещениями пролетов и
приспособляемостью к нагрузкам, со встроенным бетонным настилом, что
позволяет уменьшить массу (вес) пролетного строения моста до 30 процентов за
счет пластинчатости стальных ферм-балок (металлоконструкций),что уменьшит
сметную стоимость СМР до 30 процентов.
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд"
при СПб ГАСУ ОГРН: 1022000000824 ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от
26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при
СПб ГАСУ 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф: (812) 69478-10 https://www.spbstu.ru (921) 962-67-78, (951) 644-16-48 [email protected]
[email protected] [email protected]
[email protected] (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Изготовитель Сборно-разборных автомобильных надвижных мостов, переправ
"Сейсмофонд" при СПб ГАСУ Испытания на соответствие требованиям (тех. регламент ,
ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98
(сейсмостойкость - 9 баллов).
[email protected] [email protected]
[email protected] [email protected]

23.

Design solutions and calculation in a 3D model and in SCAD of means for overcoming water
obstacles made of elastic-plastic steel girders with plastic shear joints for the superstructure of
railway and automobile bridges with large span movements and adaptability to loads, with
built-in concrete flooring, which reduces the mass (weight) of the superstructure
Предварительная деловая программа Сочи 2023 г. [email protected]
VI Международная конференция для заводов металлоконструкций, проектировщиков и
заказчиков*
Место и дата проведения: 23–24 марта 2023 г., конференц-зал отеля Radisson Collection
Paradise
Организатор: Ассоциация развития стального строительства (АРСС)
Фокус программы: Анализ реализованных кейсов объектов общественного назначения,
реальное мнение заказчиков, взгляд с позиции монтажника и ЗМК
День 1. 23 марта 2023 года
9.15–10.00Встреча участников и регистрация. Приветственный кофе-брейк
10.00–
АРСС, Приветственное слово Данилова А. Н., Генерального директора
10.10
10.10–
Вступительная часть
10.30
10.30–
АРСС, Антропов Е.: Развитие нормативно-технической базы в сфере
10.45
стального строительства

24.

10.45–
11.00
11.00–
11.20
11.20–
11.45
11.45–
12.15
12.15–
12.45
12.45–
13.10
13.10–
13.30
13.30–
14.30
ФАУ ФЦС, Быков Владимир Геннадьевич. Расширение области
применения стали в строительстве и совершенствование технического
регулирования в области проектирования и строительства объектов
капитального строительства с применением стальных конструкций.
ПАО «Северсталь», Веселов Ю. В., ITEM, Кинзябулатова Д.: Технология
стального каркаса в многоэтажном жилом строительстве: выгоды, решения,
преодоление барьеров. Открытые вопросы.
ГК Самолет, Морозов В. В. Вопросы взаимодействия девелоперов и
металлургов. Пилотные проекты жилых домов на стальном каркасе.
КОФЕ-БРЕЙК
Ферро-Строй, Кольцов С. В.: Применение металлокаркаса в строительстве
и на монтаже зданий общественного назначения. Примеры ошибок и их
решение на разборе кейсов ЖК Речники, ДОУ на 225 мест ЖК «Катуар», ЖК
с компанией ГК «Самолет».
ПСК Маяк, Буланов А. А., Стальконтроль, Лубенец С. Ю.: Опыт
строительства школ на стальном каркасе. Типовые ошибки, специфика
изготовления и монтажа металлоконструкций, преимущества стального
каркаса для заказчика.
А101, Чернец Ю. А.: Опыт строительства школ на металлокаркасе.
Преимущества решения.
ОБЕД

25.

14.30–
14.55
14.55–
15.20
15.20–
15.45
15.45–
16.15
16.15–
16.35
16.35–
16.55
16.55–
17.15
17.15–
17.35
19.00–
23.30
ЦНИИСК им. В. А. Кучеренко, Гуров С. В.: Разбор критических моментов
сварки на монтаже металлоконструкций, системные ошибки и их решение на
примере Зенит Арены и других уникальных объектов.
СК Титан, Никитин С.: Особенности строительства зданий на
металлокаркасе в северной части Красноярского края (на примере кейсов 6этажных домов и детского сада).
Фабрика Каркасов, Лозенко В. В.: Практика применения ЛСТК в
социальных и уникальных объектах.
КОФЕ-БРЕЙК
АО «ОМК», Стукалин С. В.: Применение труб из высокопрочных сталей и
трубобетона в уникальных сооружениях, высотном и жилищном
строительстве.
Прогресс Сталь Констракшн, Мигаленюк В. В.: Опыт и особенности
монтажных работ при реализации гражданских объектов.
КРОН, Рубанникова Т. Н.: Нанесение огнезащиты в цеху и на монтаже –
«за» и «против». Разбор кейсов. Обсуждение СП на огнезащиту.
НК «Роснефть»-НТЦ, Поверенный Ю. С., Лира-СОФТ, Колесников А.
В.: Особенности применения атмосферостойких сталей и новых конструкций
опор ВЛ.
Гала-ужин в ресторане

26.

День 2. 24 марта 2023 года
10.15–
Сбор гостей
10.30
11.00–
Экскурсия на объект Дворец зимнего
15.00
спорта «Айсберг».
https://steel-development.ru/ru/news/events/6th-conference
Особое специальное пленарное заседание на секции: Заводы металлоконструкций
Сборные переправы для Фронта Все для Победы !
Дистанционное сообщение доклад по телефону (812) 694-7810 Организация
"Сейсмофонд" при СПБГАСУ ИНН 2014000780 ОГРН 1022000000824. (911) 175- 8465, (921) 962-67-78-78, (981) 276-49-92 Шендаков М А , [email protected] Уздин
А.М, [email protected] Егорова О.А [email protected] Матвеев В В 911
1940880 [email protected]
Расчет упругопластических стальных упругопластических ферм-балок и
конструктивные решения для создания пластических сдвиговых шарниров для стальных
ферм -балок для быстро собираемого за 24 час пролетного строения железнодорожного
и автомобильного моста с большими перемещениями и приспособляемости со
встроенным бетонным настилом

27.

Более подробно об изготовлении и скоростной сборке за 24 часа сборно-разборных
железнодорожных мостов , переправ через реку Днепр
.
, ,
. .
.
Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sborno-razborniy
zheleznodorozhniy most 593 str https://disk.yandex.ru/i/UQDIXNWigk7zng
Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sborno-razborniy
zheleznodorozhniy most 593 str
https://studylib.ru/doc/6395518/minpromtorg-manturovu--minstroy-fayzulinu-niokrtexniches...
https://ibb.co/album/ymsxvw https://ibb.co/nfB5tzp
LISI Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sbornorazborniy zheleznodorozhniy 497 str
https://ppt-online.org/1320794
Аннотация или новизна идеи полковника Шендакова Михаил Анатольевича по
использованию новой технологии и ускоренному монтажу и сборке упруго
пластических стальных балок-ферм для пролетных строений железнодорожного
моста с большой экономией строительных материалов до 30 процентов
сконструированных со встроенным бетонным настилом и предназначенных для
критических и чрезвычайных ситуациях ( разрушение старого

28.

железнодорожного моста и в других чрезвычайных ситуациях, для оказания
помощи в условиях бедствия; землетрясений, наводнений, просадки грунта
после паводков, армейских переправ через реку Днепр ( в Смоленской области начало реки Днепра ) разработан организацией "Сейсмофонд" при СПб ГАСУ
быстро собираемый стальной надвижного с большими перемещениями и
приспособляемостью балки-фермы пролетного строения железнодорожного
моста (пролет: 12, 18, 24, 30 метров, грузоподъемность железнодорожного моста
70 тонн) с пластическими демпфирующими сдвиговыми компенсаторам , так
называемыми пластическим шарнирами , разработанные проф дтн
А.М.Уздиным, (согласно изобретениям №№ 1143895, 1168755, 1174616,
2550777, 176020, 2550777, 165076, 154506 ) на болтовых сдвиговых и
демпфирующих соединениях.
Эта система состоит их из сборно-разборных стальных балка -ферм
с диагональными натяжными сжатыми элементами верхним сжатым
и нижних растянутыми поясами стальных ферм-балок.
При лабораторных испытаниях фрагментов и узлов демпфирующего
компенсатора проф дтн ПГУПС А.М.Уздина , использовании
программ 3D -модели конечных элементов. ПК SCAD

29.

Мост проф Уздина , собирается ускоренным способом за 24 часа в
полевых условиях
Для более точного расчета распределения нагрузки на полосу
движения для грузовых автомобилей и железнодорожного транспорта
по отдельным фермам была использована 3D - модель конечных
элементов и программ ПК SCAD
Элементы балки-фермы и пластических соединений для разных
вариантов конструкции были спроектированы с упругими
пластическими шарнирами, которые состоят их демпфирующих
тросовых и сдвиговых компенсаторов.
Верхний с применением сжатых замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно" серия 1.160.314 ГПИ "Ленпроектстальконструкция" ) для демпфирования
компенсатора при больших перемещениях, используется тросовая

30.

толстая петля, с диаметром троса ( расчету) от 100 мм до 200 мм ,
залитого свинцом или гудроном, на болтовых соединениях , стянутого
болтами с прижимной пружиной , для верхнего сжатого пояса ферм.
с учетом сдвиговой прочности SCAD 21.1..1, 1 СП 16.1333. 2011
п.п 8.2.1 ( сдвиговая прочность при действии поперечной силы Q z
)
Нижний -растянутый пояс стальной фермы -балки собирается на
косых стыках со сдвигом, с длинными овальными отверстиями на
болтовых соединениях с тросовой демпфирующей втулкой , которая
при нагрузках, на сдвиговых болтах демпфирует, за счет толстого
троса -втулки со стальной шпилькой и демпфирует поглощая
равномерно динамическую нагрузку от груженого транспорта.
Диагональные раскосы- связи фермы-балки крепятся , по расчет
крепятся в больших овальных отверстиях , с тросовой толстой
гильзой ( 100 -200 мм) , с помощью стального болта - шпильки с
гильзой демпфирующей из тросовой обмотки.

31.

Натяжения косых связей-раскосов ( для выпуклости балки фермы по
центру перед сбороко), создается за счет крепления расчетном месте
овального длинного отверстия.
Монтажный подъем стальной балки -фермы по центру до 500 -1000
см ( уклон до 10-20 градусов) по расчету SCAD
Большая экономия стали достигается за счет , пластичности фермы
балки и равномерное распределение нагрузки одновременно на все
пластические скрепленные и просчитаны на все узлы со сдвигом по
SCAD.
Несущая способность пластической балки- фермы. повышается в два
раза из- за больших равномерных перемещений , при предельном
равновесии неразрезной балки -фермы с упругими сдвиговыми
шарнирами и высотой приспособляемости, что позволяет

32.

уменьшить массу на 30 процентов стальной баки мост, что позволить
сэкономит строительные материал до 30 процентов.
Ускоренный способ сборки стальной балки фермы в полевых
условиях , достигается , за счет использованием стальной шпильки (
фрикци- бот ) с пропиленным пазом , куда одинакова по
предварительному расчету забивается медный обожженный
тарированный -КЛИН, согласно изобретения , номер заявки на
изобретение № 2018105803 от 19.07.2018 ФИПС
"Антисейсмическое фланцевое фрикционно -подвижное соединение
для трубопроводов" для одинакового натяжения , который одинаково
и быстро, скрепляет секции балки моста для пластинчато -балочной
системы пролетного строения , на монтажных площадках,
двигающихся медленно, со скорость 4 км в час , КАМАЗов паровозиком , по мере сборки секций моста и происходит
надвижкат моста проф Уздина .

33.

За 24 часа по китайской технологии (КНР) армейский мост
собирается в полевых условиях
Смотрите ниже ссылки собранного аналогичного моста в 2022 году
в КНР , пролетом 54 метра , однопутный КНР .
Грузоподъемность китайского моста 10 тонн, собирается за 24 час
How can China build a temporary highway bridge within 24 hours?
https://www.youtube.com/watch?v=Xf-_NX5xUm0
В КНР в 2022 из сверхлегких и сверхпрочных материалов
спроектирован, испытан и построен в полевых условия первый мост
для критических ситуаций и бедствий.
В США в штате Монтана в 2017 году при переправе через реку
Суон , длиной 205 футов ( 54 метра)

34.

В КНР проектирование, испытание и строительство в полевых
условия финансировалось Министерством МЧС Китая,
В США проектирование, испытание и строительство
финансировалось Министерством транспорта США .
В России работы по проектированию, испытанию и строительству
сборно-разборного быстровозводимого из стальных конструкций
пролетом 12, 18, 24, 30 метров с применением замкнутых
гнутосварных профилей прямоугольного сечения типа Молодечно»"
серии 1.640.3-14 ГПИ "Ленпроектстальконструкция ") для системы
несущих элементов проезжей части железнодорожного сборноразборного пролетного надвижного строения железнодорожного
моста с быстросъемными упруго пластичными компенсаторами , со
сдвиговой фрикционно- демпфирующей жесткостью или с учетом
сдвиговой прочности SCAD 21.1..1, 1 СП 16.1333. 2011 п.п 8.2.1 (
сдвиговая прочность при действии поперечной силы Q z ) ведется
организацией "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824

35.

ИНН 2014000780 (Президент организации "Сейсмофонд" при СПб
ГАСУ Мажиев Хасан Нажоевич ) на общественных началах. Все для
Фронта . Все для Победы.
Новизна идеи полковника Михаил Анатольевича Шендакова по
использованию новой технологии и ускоренному монтажу и сборке
упруго пластических стальных балок-ферм для пролетных строений
железнодорожного моста с большой экономией строительных материалов
до 30 процентов сконструированных со встроенным бетонным настилом и
предназначенных для критических и чрезвычайных ситуациях (
разрушение старого железнодорожного моста и в других чрезвычайных
ситуациях, для оказания помощи в условиях бедствия; землетрясений,
наводнений, просадки грунта после паводков, армейских переправ через
реку Днепр ( в Смоленской области -начало реки Днепра ) разработан
организацией "Сейсмофонд" при СПб ГАСУ быстро собираемый
стальной надвижного с большими перемещениями и приспособляемостью
балки-фермы пролетного строения железнодорожного моста (пролет: 12,
18, 24, 30 метров, грузоподъемность железнодорожного моста 70 тонн) с
пластическими демпфирующими сдвиговыми компенсаторам , так

36.

называемыми пластическим шарнирами , разработанные проф дтн
А.М.Уздиным, (согласно изобретениям №№ 1143895, 1168755, 1174616,
2550777, 176020, 2550777, 165076, 154506 ) на болтовых сдвиговых и
демпфирующих соединениях.
Эта система состоит их из сборно-разборных стальных балка -ферм с
диагональными натяжными сжатыми элементами верхним сжатым и
нижних растянутыми поясами стальных ферм-балок.
При лабораторных испытаниях фрагментов и узлов демпфирующего
компенсатора полковника М.А.Шендакова , использовании программ 3D
-модели конечных элементов. ПК SCAD
Мост полковника М.А.Шендакова , собирается ускоренным способом за
24 часа в полевых условиях
Для более точного расчета распределения нагрузки на полосу движения
для грузовых автомобилей и железнодорожного транспорта по отдельным
фермам была использована 3D - модель конечных элементов и программ
ПК SCAD

37.

Элементы балки-фермы и пластических соединений для разных вариантов
конструкции были спроектированы с упругими пластическими
шарнирами, которые состоят их демпфирующих тросовых и сдвиговых
компенсаторов.
Верхний с применением сжатых замкнутых гнутосварных профилей
прямоугольного сечения типа «Молодечно" серия 1.160.3-14 ГПИ
"Ленпроектстальконструкция" ) для демпфирования компенсатора при
больших перемещениях, используется тросовая толстая петля, с
диаметром троса ( расчету) от 100 мм до 200 мм , залитого свинцом или
гудроном, на болтовых соединениях , стянутого болтами с прижимной
пружиной , для верхнего сжатого пояса ферм. с учетом сдвиговой
прочности SCAD 21.1..1, 1 СП 16.1333. 2011 п.п 8.2.1 ( сдвиговая
прочность при действии поперечной силы Q z )
Нижний -растянутый пояс стальной фермы -балки собирается на косых
стыках со сдвигом, с длинными овальными отверстиями на болтовых
соединениях с тросовой демпфирующей втулкой , которая при нагрузках,

38.

на сдвиговых болтах демпфирует, за счет толстого троса -втулки со
стальной шпилькой и демпфирует поглощая равномерно динамическую
нагрузку от груженого транспорта.
Диагональные раскосы- связи фермы-балки крепятся , по расчет крепятся
в больших овальных отверстиях , с тросовой толстой гильзой ( 100 -200
мм) , с помощью стального болта - шпильки с гильзой демпфирующей из
тросовой обмотки.
Натяжения косых связей-раскосов ( для выпуклости балки фермы по
центру перед сбороко), создается за счет крепления расчетном месте
овального длинного отверстия.
Монтажный подъем стальной балки -фермы по центру до 500 -1000 см (
уклон до 10-20 градусов) по расчету SCAD
Большая экономия стали достигается за счет , пластичности фермы балки
и равномерное распределение нагрузки одновременно на все

39.

пластические скрепленные и просчитаны на все узлы со сдвигом по
SCAD.
Несущая способность пластической балки- фермы. повышается в два раза
из- за больших равномерных перемещений , при предельном равновесии
неразрезной балки -фермы с упругими сдвиговыми шарнирами и высотой
приспособляемости, что позволяет уменьшить массу на 30 процентов
стальной баки мост, что позволить сэкономит строительные материал до
30 процентов.
Ускоренный способ сборки стальной балки фермы в полевых условиях ,
достигается , за счет использованием стальной шпильки ( фрикци- бот ) с
пропиленным пазом , куда одинакова по предварительному расчету
забивается медный обожженный тарированный -КЛИН, согласно
изобретения , номер заявки на изобретение № 2018105803 от 19.07.2018
ФИПС "Антисейсмическое фланцевое фрикционно -подвижное
соединение для трубопроводов" для одинакового натяжения , который
одинаково и быстро, скрепляет секции балки моста для пластинчато балочной системы пролетного строения , на монтажных площадках,

40.

двигающихся медленно, со скорость 4 км в час , КАМАЗов -паровозиком ,
по мере сборки секций моста и происходит надвижка моста полковника
Шендакова .
За 24 часа по китайской технологии (КНР) армейский мост собирается в
полевых условиях
Смотрите ниже ссылки собранного аналогичного моста в 2022 году в
КНР , пролетом 54 метра , однопутный КНР .
Грузоподъемность китайского моста 10 тонн, собирается за 24 час
How can China build a temporary highway bridge within 24 hours?
https://www.youtube.com/watch?v=Xf-_NX5xUm0
В КНР в 2022 из сверхлегких и сверхпрочных материалов
спроектирован, испытан и построен в полевых условия первый мост для
критических ситуаций и бедствий.

41.

В США в штате Монтана в 2017 году при переправе через реку Суон ,
длиной 205 футов ( 54 метра)
В КНР проектирование, испытание и строительство в полевых условия
финансировалось Министерством МЧС Китая,
В США проектирование, испытание и строительство финансировалось
Министерством транспорта США .
В России работы по проектированию, испытанию и строительству
сборно-разборного быстровозводимого из стальных конструкций пролетом
12, 18, 24, 30 метров с применением замкнутых гнутосварных профилей
прямоугольного сечения типа Молодечно»" серии 1.640.3-14 ГПИ
"Ленпроектстальконструкция ") для системы несущих элементов
проезжей части железнодорожного сборно-разборного пролетного
надвижного строения железнодорожного моста с быстросъемными
упруго пластичными компенсаторами , со сдвиговой фрикционнодемпфирующей жесткостью или с учетом сдвиговой прочности SCAD
21.1..1, 1 СП 16.1333. 2011 п.п 8.2.1 ( сдвиговая прочность при действии

42.

поперечной силы Q z ) ведется организацией "Сейсмофонд" при СПб
ГАСУ ОГРН 1022000000824 ИНН 2014000780
(Президент организации "Сейсмофонд" при СПб ГАСУ Мажиев Хасан
Нажоевич ) на общественных началах. Все для Фронта . Все для Победы.
Konstruktivnie resheniyay raschet 3D SCAD sredstv dlya preodalebiya vodnix
pregrad uprugoplsticheskix ferm-balok 436 str
https://disk.yandex.ru/d/z4Y2p57j9nejUw
USA Konstruktivnie resheniyay raschet 3D SCAD sredstv dlya preodalebiya
vodnix pregrad uprugoplsticheskix ferm-balok 489 str
https://ppt-online.org/1321525
KNR Konstruktivnie resheniyay raschet 3D SCAD sredstv dlya preodalebiya
vodnix pregrad uprugoplsticheskix ferm-balok 507 str
https://disk.yandex.ru/d/aASop_voUxp_qQ
KNR Konstruktivnie resheniyay raschet 3D SCAD sredstv dlya preodalebiya
vodnix pregrad uprugoplsticheskix ferm-balok 507 str

43.

https://studylib.ru/doc/6395887/knr-konstruktivnie-resheniyay--raschet-3d-scadsredstv-dl...
https://mega.nz/file/mcIGGTpC#mZVAHEKuGGNx_q89pZHPClapVU7K7Av
4OWp8o0-P5_M
https://ibb.co/2FL3D7k
СПАСИБО полковнику Михаил Анатольевичу Шендакову , заместителю редактора газеты
"Армия Защитников Отечества" который не только конструктор, но сам организации
"Сейсмофонд" при СПб ГАСУ ( ИНН :2011000780 ) оказывал материальную помощи Русской
Армии, иметь быстро собираемые мосты и переправы реку Днепр в Смоленской области
В первую очередь редакция газеты "Армия Защитников Отечества" благодарит Михаил
Анатольевича Шендакова за оказание финансовой помощи в объем 3 тыс руб
А также ИА "Русская Народная Дружина" благодарит руководителя "Марша Славянское Вече"
СЗФО РФ , заместителя редактора газеты "Армия Защитников Отечества"
А так же редакция газеты "Армия Защитников Отечества" благодарит Главу Русского
Славянского Движения тел (812) 470-48-03 Протасова Борис Ивановича [email protected] за
оказание финансовой помощи в объем 3 тыс руб на НИОКР и проектные работы

44.

Обещал по телефону помочь деньгами и депутат от КПРФ ЗакСа СПб Бороденчик Вячеслав
Иванович от КПРФ тел 941--25-13 , и помощник деп ЗакСа СПб Бондаренко Николай
Леонидович от партии "Единая Россия" (Приморский район) , тел помощника депутата (812)
241 -29-44
Если у кого есть возможность , просьба позвонить и напомнить депутатам СПб о предвыборных
обещаниях и обязанности помогать нашим братьям и Русской Армии истекающая кровью, из -за
отсутствия сборно-разборных переправ , собираемых за 24 часа , через реку Днепр ! Все для
Фронта все для Победы !
Более подробно расчет упругопластических стальных и конструктивные решения для создания
пластических сдвиговых шарниров для ферм -балок для быстро собираемого за 24 час
отечественного пролетного строения железнодорожного моста с большими перемещениями и
приспособляемости
.
, ,
Желающие помочь Русские люди , просьба от редакции газеты "Армия Защитников Отечества" и
информационного
агентство "Русская Народная Дружина"
оказать посильную помощь
организации "Сейсмофонд" при СПб ГАСУ и который могут перечислить на карту Сбер 2202
2007 8669 7605, Счет получателя 40817810555031236845 и на помощь на разработку, чертежей
зарплата конструкторам за проектирование и испытание быстровозводимого армейского моста,
переправы через реку Днепр для морпехов Республики Крым и г Севастополя.
Судебное заседание по апелляции будет 28 марта в 10 -00 в
Московском областном суде. М.О. г. Красногорск, бульвар

45.

Строителей, д.4, к. 3. м. Мякинино. Судья Пакша С.И. дело №
22-20552023 Боятся они честных людей Ярый борец с режимом
полковник Шендаков задержан Абсолютно здорового человека
ручная медицинская экспертиза признала невменяемым. Его
жизни и здоровью угрожает реальная опасность! Карательная
психиатрия способна превращать людей в "растения"!
Подпишите данную петицию! Не проходите мимо чужой беды - завтра она может
постучаться в дом каждого из нас.
Полковнику Михаилу Шендакову Красногорский городской суд 1 февраля заменил
условный срок на реальный из-за видео на ютубе. Его преследуют из-за видеоролика
«Сурков обещал Донбассу войну!».
20 февраля состоялось заседание о замене Шендакову еще одного условного наказания
на реальный срок: ему запросили три года лишения свободы из-за видео с анекдотом о
росгвардейце и хирурге. Об этом ОВД-Инфо рассказала жена осужденного Марина
Шендакова.
Полковника задержали 31 января. Сейчас он содержится в ИВС Красногорска. Затем, по
словам жены, его планируют перевести в СИЗО-2 по Московской области, находящийся
в Волоколамске.

46.

В 2022 году Михаила Шендакова дважды привлекали к административной
ответственности за дискредитацию армии (ч. 1 ст. 20.3.3 КоАП). 28 октября суд
назначил ему штраф 30 тысяч рублей из-за антивоенных публикаций Шендакова в
«Одноклассниках». 23 ноября на него наложили еще одно административное наказание,
но решение пока не опубликовано на сайте суда.
В феврале 2021 года Шендакова признали виновным в возбуждении ненависти либо
вражды (ч. 1 ст. 282 УК) и публичных призывах к экстремизму в интернете (ч. 2 ст. 280
УК). Суд посчитал, что в видео «Сурков обещал Донбассу войну!» Шендаков призывает
зрителей к насильственным действиям в отношении сотрудников ФСБ.
В ноябре того же года ему вынесли приговор по статье о возбуждении ненависти либо
вражды (ч. 2 ст. 282 УК) из-за видео с анекдотом о росгвардейце и хирурге: после того,
как блогер рассказал анекдот, его, по его словам, «понесло» и он предложил врачам
«резать этим тварям яйца».
Ярый борец с режимом - полковник Шендаков задержан! Абсолютно здорового
человека, "ручная" медицинская экспертиза признала невменяемым. Его жизни и
здоровью угрожает реальная опасность! Карательная психиатрия способна превращать
людей в "растения"!
Подпишите данную петицию! Не проходите мимо чужой беды - завтра она может
постучаться в дом каждого из нас.
Его сослуживец Королѐв Николай создал петицию https://www.change.org/p/свободу-

47.

полковнику-шендакову..
ПОДПИСЫВАЕМ, РЕПОСТИМ!!!
https://www.change.org/p/свободу-полковнику-шендакову?signed=true
Дорогие друзья!
Мой друг, ярый борец с режимом - полковник Шендаков задержан! Абсолютно
здорового человека, "ручная" медицинская экспертиза признала невменяемым, его
жизни и здоровью угрожает реальная опасность! Карательная психиатрия способна
превращать людей в "растения"!
Нужна максимальная огласка данной ситуации.
Не проходите мимо чужой беды - завтра она может постучаться в дом каждого из нас.
https://vk.com/wall-188621382_113783
РОДСТВЕННИКАМ ВЫПИСАТЬ ПОД СВОЮ ОТВЕТСТВЕННОСТЬ ПОД
ДОМ.ИЗОЛЯЦИЮ И НАЙТИ "СЕМЕЙНОГО ДОКТОРА" И АДВОКАТА....ИМЕЕТ
АЛЛЕРГИЮ И ВОСПРИИМЧИВ К ПОБОЧНЫМ ЭФФЕКТАМ УКОЛОВ И
ЛЕКАРСТВ..КОТОРЫЕ МОГУТ НАНЕСТИ НЕПОПРАВИМЫЙ ВРЕД ЗДОРОВЬЮ И
МОГУТ ПОВЛЕЧЬ ИНВАЛИДНОСТЬ СОГЛАСНО "ИНСТРУКЦИЯМ ПО
ПРИМЕНЕНИЮ ОНЫХ" НА ЕГО СОСТОЯНИЕ ОРГАНИЗМА И ИЗ ЗА НЕХВАТКИ
СВЕЖЕГО ВОЗДУХА И ВОЗДЕЙСТВИЯ "НЕРВНЫХ ЛЮДЕЙ И БОЯЗНИ
ВРАЧЕЙ,НЕДОВЕРИЯ К МЕТОДАМ ЭКСПЕРИМЕНТАЛЬНЫМ И С ПЛОХИМИ
РЕЗУЛЬТАТАМИ(СУИЦИД.БОЛЬШЕЕ РАССТРОЙСТВО И .ПОВТОРНОЕ И

48.

УХУДШЕНИЕ ЖИЗНИ И ЗДОРОВЬЯ ОЧЕНЬ ЧАСТО)РЕШЕТОК С ИЗОЛЯЦИЕЙ ОТ
ДОМА И СЕМЬИ БЛИЗКИХ И ПРИРОДЫ..А ТАК ЖЕ ОНИ И ОН САМ
ОТКАЗЫВАЮТСЯ ОТ ОПЫТОВ (МНОГИЕ ЛЕЧИЛКИ ДЛЯ МОНИТОРИНГА И
ИСПЫТАНИЙ ..А ТАК ЖЕ ВСЕМИРНО ЗАПРЕЩЕНЫ И ПРИЗНАНЫ
ОПАСНЫМИ"..ДАЧА..ПОКОЙ! СВЕЖИЙ ВОЗДУХ И ПСИХОТЕРАПЕВТ И
ЛИЧНЫЙ ПСИХОЛОГ ПОДСКАЖУТ ДОВЕДЕННОМУ ДО ИСТОЩЕНИЯ
МОРАЛЬНЫХ И ФИЗИЧЕСКИХ СИЛ ЧЕЛОВЕКУ ОТДЫХ..ДИЕТУ И ПРОГУЛКИ С
ОБЩЕНИЕМ С БЛИЗКИМИ В ДОМАШНЕЙ ОБСТАНОВКЕ И ЛЮБИМЫМИ
ЖИВОТНЫМИ В ГАРМОНИИ НА ПРИРОДЕ И ДОМА..БУМАГИ В ПРОКУРАТУРУ
И ВЫШЕ ..ВО ВСЕ ОДНОВРЕМЕННО И С ПРИЛОЖЕНИЕМ И ТРЕБОВАНИЕМ
ОТКРЫТОСТИ РАССМОТРЕНИЯ С ПРЕССОЙ И РАСКРЫТИЯ КАК
ВРАЧЕБ.ТАЙНЫ ТАК СУДИЛИЩЬ ..ГДЕ УСМАТРИВАЕТСЯ ПРЕВЗЯТОСТЬ И
ЗАИНТЕРЕСОВАННОСТЬ..А ТАК ЖЕ СВИДЕТЕЛЬСТВА И СВИДЕТЕЛИ . И ЕГО
ПОКАЗАНИЯ НО..С УСЛОВИЕМ.ЧТО ЕГО НЕ ЗАКОЛОЛИ ИЛИ НЕ НАКАЧАЛИ
ТАБЛЕТКАМИ ИЛИ ИНЫМ НЕОБРАБОТАЛИ И МОГ СПОКОЙНО СПАТЬ
НЕСКОЛЬКО СУТОК СПОКОЙНО И САМ В ПРИСУТСТВИИ РОДНЫХ И ПОД
"ВИДЕО"
https://vk.com/wall188621382_113783?z=video40961596_456239651%2F8f727b2f72df1eb548%2Fpl_post_409
61596_6597
Пообщался с супругой Михаила.
Судебное заседание по апелляции будет 28 марта в 10 -00 в Московском областном суде.

49.

М.О. г. Красногорск, бульвар Строителей, д.4, к. 3. м. Мякинино.
Судья Пакша С.И. дело № 22-20552023
Михаил идѐт по 280 и 282 статьям УК РФ.
Для желающих помочь материально номер карты:
5536 9140 5716 4711
Шендаков Александр Михайлович
Полковнику Михаилу Шендакову заменили условный срок на реальный из-за видео на
ютубе
02.02.2023
Красногорский городской суд 1 февраля заменил полковнику в запасе и активисту
Михаилу Шендакову условный срок на два с половиной года реального лишения
свободы. Его преследуют из-за видеоролика «Сурков обещал Донбассу войну!».
20 февраля состоялось заседание о замене Шендакову еще одного условного наказания
на реальный срок: ему запросили три года лишения свободы из-за видео с анекдотом о
росгвардейце и хирурге. Об этом ОВД-Инфо рассказала жена осужденного Марина
Шендакова.

50.

Полковника задержали 31 января. Сейчас он содержится в ИВС Красногорска. Затем, по
словам жены, его планируют перевести в СИЗО-2 по Московской области, находящийся
в Волоколамске.
В 2022 году Михаила Шендакова дважды привлекали к административной
ответственности за дискредитацию армии (ч. 1 ст. 20.3.3 КоАП). 28 октября суд
назначил ему штраф 30 тысяч рублей из-за антивоенных публикаций Шендакова в
«Одноклассниках». 23 ноября на него наложили еще одно административное наказание,
но решение пока не опубликовано на сайте суда.
В феврале 2021 года Шендакова признали виновным в возбуждении ненависти либо
вражды (ч. 1 ст. 282 УК) и публичных призывах к экстремизму в интернете (ч. 2 ст. 280
УК). Суд посчитал, что в видео «Сурков обещал Донбассу войну!» Шендаков призывает
зрителей к насильственным действиям в отношении сотрудников ФСБ.
В ноябре того же года ему вынесли приговор по статье о возбуждении ненависти либо
вражды (ч. 2 ст. 282 УК) из-за видео с анекдотом о росгвардейце и хирурге: после того,
как блогер рассказал анекдот, его, по его словам, «понесло» и он предложил врачам
«резать этим тварям яйца».
Ярый борец с режимом - полковник Шендаков задержан! Абсолютно здорового
человека, "ручная" медицинская экспертиза признала невменяемым. Его жизни и
здоровью угрожает реальная опасность! Карательная психиатрия способна превращать
людей в "растения"!

51.

Подпишите данную петицию! Не проходите мимо чужой беды - завтра она может
постучаться в дом каждого из нас.
https://www.change.org/p/свободу-полковникушендакову?recruiter=77384034&recruited_by_id=064d3520-fc49-4591-af85f7d6b0834198&utm_source=share_petition&utm_campaign=share_petition&utm_term=share
_petition&utm_medium=copylink&utm_content=cl_sharecopy_35797081_ru-RU%3A4
https://vk.com/wall-188621382_113783?z=photo-188621382_457255175%2Fwall188621382_113789
При Сталине было гораздо лучше! Сейчас Пи-да-Ры в почѐте.
https://t.me/Korolev_NV/710
Жив-здоров, я уважаю его! Шендаков Михаил Анатольевич один из немногих
настоящих военных, который раскусил путинщину!
https://otvet.mail.ru/question/207345852 https://otvet.mail.ru/question/207345852
Appelyatsiya 28 marta 10 00 Moskovskaya obl Bulvar Stoiteley dom 4 korp 3 metro Mykino
sydya Paksha 41 str
https://disk.yandex.ru/i/6ZHufdsU6yBWSQ

52.

Последнее слово полковника Шендакова в Красногорском городском суде 2 февраля 2021
года
https://ppt-online.org/868100
Appelyatsiya 28 marta 10 00 Moskovskaya obl Bulvar Stoiteley dom 4 korp 3 metro Mykino
sydya Paksha 41 str
https://ppt-online.org/1321711
https://studylib.ru/doc/6395986/1321711 https://studylib.ru/doc/6395986/1321711
Appelyatsiya 28 marta 10 00 Moskovskaya obl Bulvar Stoiteley dom 4 korp 3 metro Mykino
sydya Paksha 41 str
https://studylib.ru/doc/6395987/appelyatsiya-28-marta-10-00--moskovskaya-obl-bulvar-stoit...
https://mega.nz/file/nVZylZrQ#U5FfsYCtFElEW7HJjdcKu3WMoHDs1fNhmXl_QbIMtJU
https://mega.nz/file/nVZylZrQ#U5FfsYCtFElEW7HJjdcKu3WMoHDs1fNhmXl_QbIMtJU
https://mega.nz/file/DYwxWZDY#X3lvnloCvYkJ57T7Fg16z7DaA_w2O3YlmJMzBxlf-64
https://ibb.co/hgTNF5X https://ibb.co/album/qBj880
ТВОРЧЕСТВО АЛЕКСЕЯ МОЗГОВОГО
***
Если я упаду, поднимите мой меч,

53.

Не меня, только меч поднимите!
В неразрывном строю русских витязей плеч,
Несгибаемо правду несите!
***
Неплохо в мае умереть...
Могильщику копать удобно.
И соловьи всѐ будут петь
В последний раз так бесподобно.
Под грохот первых майских гроз
Вместо унылых отпеваний…
И дождь прольѐтся вместо слѐз,
Он смоет грусть воспоминаний.
Могильный холмик приютит,
Под покрывалом трав зелѐных.
Пусть даже крест там не стоит,
Среди берѐзок утомленных.

54.

Под шелест листьев молодых,
Что только к жизни потянулись.
Пока ещѐ нет трав седых,
А только-только всѐ проснулось.
Неплохо в мае умереть…
Остаться в свежести весенней.
И хоть не смог я всѐ успеть,
Но не осталось уж сомнений…
Неплохо в мае умереть…
***
Не могу быть как все, вот досада,
Что-то, где-то не так как у всех....
И ведь делаю всѐ так как надо,
И случается в чем-то успех.
Не прижился к толпе, не притѐрся,
И не смог приспособить себя.

55.

- Эй, прохожий! Постой, познакомься.
Может быть я похож на тебя.
***
Забери меня туман,
Упаду в траву росою.
Напою степной бурьян,
Каждой капелькой, собою.
Забери меня ковыль,
В серебристый омут шѐлка.
Пусть уйду потом я в пыль,
Ветер, пыль поднимет ловко.
Забери меня ручей,
Я к реке найду дорогу.
Сотни солнечных лучей,
Испарят мою тревогу.
Забери меня песок,

56.

Я песчинкой твоей стану.
Видно выпал и мне срок,
Ближе быть, к степи,
К бурьяну...
Мозговой А.Б.
http://www.stihi.ru/avtor/fktrc1975
#Алексей_Мозговой
https://vk.com/wall-129997795_20985
Зона 282 Моя статья два-восемь-два! Иван Душенов.
ОНИ Чужие Контрреволюция Они из тьмы Русский русскому помоги
Rekonstruktiya BEZ viseleniya goev RASCHET SCAD 3D model koneshnix elementov
ispolzovaniem pilonov dlya kombinirovannix prostranstvennix strukturnix pilonov ferm 489 str
https://ppt-online.org/1308980
Ispitanie 3D kombinirovannix prostranstvennix strukturnix plastinchato-balochix ferm Bailey
dridge sertifikat SPbGASU 46 str

57.

https://ppt-online.org/1307183
Проблемы реконструкции 5-ти этажных зданий ВЫПУСКНАЯ
КВАЛИФИКАЦИОННАЯ РАБОТА (МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ) ЮУрГУ–
07.04.01.2018._______. ВКР
https://dspace.susu.ru/xmlui/bitstream/handle/0001.74..
Надстройка зданий при реконструкции
https://ppt-online.org/1084252
А.Н. Шихов РЕКОНСТРУКЦИЯ ГРАЖДАНСКИХ И ПРОМЫШЛЕННЫХ ЗДАНИЙ
Монография
Пермь ИПЦ «ПрокростЪ» 2015
http://pgsha.ru:8008/books/science/?4??4??4??4??1? ?6..
https://studylib.ru/doc/2605301/shihov-a.n.-rekonstru..
rekonstruktsiya zdani perm xrushovok pyatieta;ek 2915
https://disk.yandex.ru/i/NYNOP0iCBleo2Q https://disk.yandex.ru/i/xDmbdSQVkoUtig
https://disk.yandex.ru/i/xDmbdSQVkoUtig
rekonstruktsiya zdani perm xrushovok pyatieta;ek 2915
https://ppt-online.org/1309214
Усиление ограждающих крупноблочных конструкций
https://ppt-online.org/1228222
nadstroyka zdaniy pri rekonstruktsii xruchevki pyatieta;ki bez viseleniya 29 str

58.

https://ppt-online.org/1309215
Надстройка мансардных этажей
https://ppt-online.org/927182
Юлия Андреева "Русский русскому помоги"
https://www.youtube.com/watch?v=vCd5fINoie0
ОНИ Чужие Контрреволюция
https://yandex.ru/video/preview/14128428937062704787
Стонет многострадальная Русь-Матушка под гнетом инородцев и иноверцев, которые
ненавидят всѐ русское, как и сам русский народ. Эти дьяволопоклонники губят его,
пытаясь вовлечь во все смертные грехи и страсти. Но Бог поругаем не бывает! И Он с
нами! Будем каяться и исправлять свою жизнь по заповедям Божьим. И тогда Господь
дарует нам победу! Слава Богу за всѐ! Аминь https://3rm.info/publications/60874kontrrevolyuciya-..
Kontrrevolyuciya_-_Oni_chuzhie_(Gybka.com)
https://disk.yandex.ru/d/LrqIycx9-ofFvg
https://yandex.ru/video/preview/17421790377317893846
https://hits.gybka.com/song/118301318/Kontrrevolyuciy..
https://x-minusovka.ru/?song=контрреволюция+–+они+чужие
https://tropicmusic.ru/?mp3=Контрреволюция

59.

https://mp3mn.net/t/119663190920297593744-контрреволю..
Зона 282. Моя статья два-восемь-два! Иван Душенов (256
kbps) https://disk.yandex.ru/d/cDdh3MIW8RONng
Kontrrevolyuciya_-_Oni_chuzhie_(Gybka.com) https://disk.yandex.ru/d/LrqIycx9-ofFvg
Зона 282
Зона: собаки, прожектора́.
Ржавая шко́нка, мороз и жара.
Менты, наркоманы, блатная братва,
А моя статья — два-восемь-два.
Злобой испачканы сытые лица —
Я упырям помешал веселиться.
Страшней динамита правды слова,
А моя статья — два-восемь-два.
282 — следователь важный.
282 — адвокат продажный.
282 — прокурор умелый.

60.

282 — быстро сшили дело.
282 — и судья картавый.
282 — и конвой усталый.
282 — срок без резона.
282 — зона, зона, зона!
Душит Россию продажное племя,
Но даже в это смутное время
Русская вера и совесть жива,
А моя статья — два-восемь-два.
Нам надоело вздыхать и бояться
И на губах у ребят пузырятся
Кровью окрашенные слова,
А моя статья — два-восемь-два.
282 — ломит вражья сила.
282 — по полям России.
282 — крысы да воро́ны.

61.

282 — сатана на троне.
282 — нищета разрухи.
282 — мусора́ да шлюхи.
282 — русским бедам рады.
282 — суки демократы.
Горькая па́йка казѐнного хлеба,
Рваные клочья осеннего неба.
Шмон, изолятор, в крови́ голова,
А моя статья — два-восемь-два.
Сея слезами стихи и молитвы,
Русь сыновей созывает для битвы.
На лезвии стали — небес синева,
А моя статья — два-восемь-два.
282 — это Русь проснулась,
282 — и земля качнулась,
282 — колокольным звоном

62.

282 — расцветает зона.
282 — это вольный ветер.
282 — пусть смеются дети.
282 — страх душе неведом.
282 — Русская Победа.
<2011>
https://soulibre.ru/Зона:_собаки,_прожектора_(Иван_Ду..
Экстремистский материал №3773 - Аудиоматериал "Иван Душенов - зона 282"

63.

Конструктивные решения и расчет в 3D-модели и в SCAD средств для
преодоления водных преград из упругопластических стальных ферм-балок с
пластическими сдвиговыми шарнирами для пролетного строения
железнодорожного и автомобильного мостов с большими перемещениями
пролетов и приспособляемостью к нагрузкам, со встроенным бетонным
настилом, что позволяет уменьшить массу (вес) пролетного строения
моста до 30 процентов за счет пластинчатости стальных ферм-балок
(металлоконструкций),что уменьшит сметную стоимость СМР до 30
процентов.
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат №
RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29,
организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824,

64.

т/ф: (812) 694-78-10 https://www.spbstu.ru (921) 962-67-78, (951) 644-16-48 [email protected]
[email protected] [email protected] [email protected]
(аттестат № RA.RU.21ТЛ09, выдан 26.01.2017) Изготовитель Сборно-разборных автомобильных
надвижных мостов, переправ "Сейсмофонд" при СПб ГАСУ Испытания на соответствие требованиям (тех.
регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016
Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9
баллов). (921) 962-67-78, (951) 644-16-48 [email protected] [email protected]
[email protected] [email protected]
Design solutions and calculation in a 3D model and in SCAD of means for overcoming water obstacles made of elastic-plastic
steel girders with plastic shear joints for the superstructure of railway and automobile bridges with large span movements and
adaptability to loads, with built-in concrete flooring, which reduces the mass (weight) of the superstructure
Предварительная деловая программа Сочи 2023 г. [email protected]
VI Международная конференция для заводов металлоконструкций, проектировщиков и заказчиков*
Место и дата проведения: 23–24 марта 2023 г., конференц-зал отеля Radisson Collection Paradise
Организатор: Ассоциация развития стального строительства (АРСС)
Фокус программы: Анализ реализованных кейсов объектов общественного назначения, реальное мнение заказчиков,
взгляд с позиции монтажника и ЗМК
День 1. 23 марта 2023 года
9.15–10.00
Встреча участников и регистрация. Приветственный кофе-брейк
10.00–10.10 АРСС, Приветственное слово Данилова А. Н., Генерального директора
10.10–10.30 Вступительная часть
10.30–10.45 АРСС, Антропов Е.: Развитие нормативно-технической базы в сфере стального строительства
10.45–11.00 ФАУ ФЦС, Быков Владимир Геннадьевич. Расширение области применения стали в строительстве и
совершенствование технического регулирования в области проектирования и строительства объектов
капитального строительства с применением стальных конструкций.
11.00–11.20 ПАО «Северсталь», Веселов Ю. В., ITEM, Кинзябулатова Д.: Технология стального каркаса в

65.

11.20–11.45
11.45–12.15
12.15–12.45
12.45–13.10
13.10–13.30
13.30–14.30
14.30–14.55
14.55–15.20
15.20–15.45
15.45–16.15
16.15–16.35
16.35–16.55
16.55–17.15
17.15–17.35
19.00–23.30
многоэтажном жилом строительстве: выгоды, решения, преодоление барьеров. Открытые вопросы.
ГК Самолет, Морозов В. В. Вопросы взаимодействия девелоперов и металлургов. Пилотные проекты
жилых домов на стальном каркасе.
КОФЕ-БРЕЙК
Ферро-Строй, Кольцов С. В.: Применение металлокаркаса в строительстве и на монтаже зданий
общественного назначения. Примеры ошибок и их решение на разборе кейсов ЖК Речники, ДОУ на 225
мест ЖК «Катуар», ЖК с компанией ГК «Самолет».
ПСК Маяк, Буланов А. А., Стальконтроль, Лубенец С. Ю.: Опыт строительства школ на стальном
каркасе. Типовые ошибки, специфика изготовления и монтажа металлоконструкций, преимущества
стального каркаса для заказчика.
А101, Чернец Ю. А.: Опыт строительства школ на металлокаркасе. Преимущества решения.
ОБЕД
ЦНИИСК им. В. А. Кучеренко, Гуров С. В.: Разбор критических моментов сварки на монтаже
металлоконструкций, системные ошибки и их решение на примере Зенит Арены и других уникальных
объектов.
СК Титан, Никитин С.: Особенности строительства зданий на металлокаркасе в северной части
Красноярского края (на примере кейсов 6-этажных домов и детского сада).
Фабрика Каркасов, Лозенко В. В.: Практика применения ЛСТК в социальных и уникальных объектах.
КОФЕ-БРЕЙК
АО «ОМК», Стукалин С. В.: Применение труб из высокопрочных сталей и трубобетона в уникальных
сооружениях, высотном и жилищном строительстве.
Прогресс Сталь Констракшн, Мигаленюк В. В.: Опыт и особенности монтажных работ при реализации
гражданских объектов.
КРОН, Рубанникова Т. Н.: Нанесение огнезащиты в цеху и на монтаже – «за» и «против». Разбор кейсов.
Обсуждение СП на огнезащиту.
НК «Роснефть»-НТЦ, Поверенный Ю. С., Лира-СОФТ, Колесников А. В.: Особенности применения
атмосферостойких сталей и новых конструкций опор ВЛ.
Гала-ужин в ресторане
День 2. 24 марта 2023 года

66.

10.15–10.30 Сбор гостей
11.00–15.00 Экскурсия на объект Дворец зимнего спорта «Айсберг».
https://steel-development.ru/ru/news/events/6th-conference
Особое специальное пленарное заседание на секции: Заводы металлоконструкций
Сборные переправы для Фронта Все для Победы !
Дистанционное сообщение доклад по телефону (812) 694-7810 Организация
"Сейсмофонд" при СПБГАСУ ИНН 2014000780 ОГРН 1022000000824. (911) 175- 8465, (921) 962-67-78-78, (981) 276-49-92, (981) 886-57-42 тел факс (812) 694-78-10
Мажиев Х.Н, [email protected] Уздин А.М, [email protected] Егорова О.А
[email protected] Матвеев В В 911 1940880 [email protected]
Расчет упругопластических стальных упругопластических ферм-балок и
конструктивные решения для создания пластических сдвиговых шарниров для стальных
ферм -балок для быстро собираемого за 24 час пролетного строения железнодорожного
и автомобильного моста с большими перемещениями и приспособляемости со
встроенным бетонным настилом
Более подробно об изготовлении и скоростной сборке за 24 часа сборно-разборных
железнодорожных мостов , переправ через реку Днепр
.
, ,
. .
.
Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sborno-razborniy
zheleznodorozhniy most 593 str https://disk.yandex.ru/i/UQDIXNWigk7zng

67.

Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sborno-razborniy
zheleznodorozhniy most 593 str
https://studylib.ru/doc/6395518/minpromtorg-manturovu--minstroy-fayzulinu-niokrtexniches...
https://ibb.co/album/ymsxvw https://ibb.co/nfB5tzp
LISI Minpromtorg Manturovu Minstroy fayzulinu NIOKR texnicheskoe zadanie sbornorazborniy zheleznodorozhniy 497 str
https://ppt-online.org/1320794
Аннотация или новизна идеи проф А.М.Уздина (ПГУПС) по использованию новой
технологии и ускоренному монтажу и сборке упруго пластических стальных балокферм для пролетных строений железнодорожного моста с большой экономией
строительных материалов до 30 процентов сконструированных со встроенным бетонным
настилом и предназначенных для критических и чрезвычайных ситуациях (
разрушение старого железнодорожного моста и в других чрезвычайных ситуациях, для
оказания помощи в условиях бедствия; землетрясений, наводнений, просадки грунта
после паводков, армейских переправ через реку Днепр ( в Смоленской области -начало
реки Днепра ) разработан организацией "Сейсмофонд" при СПб ГАСУ быстро
собираемый стальной надвижного с большими перемещениями и приспособляемостью
балки-фермы пролетного строения железнодорожного моста (пролет: 12, 18, 24, 30
метров, грузоподъемность железнодорожного моста 70 тонн) с пластическими
демпфирующими сдвиговыми компенсаторам , так называемыми пластическим

68.

шарнирами , разработанные проф дтн А.М.Уздиным, (согласно изобретениям №№
1143895, 1168755, 1174616, 2550777, 176020, 2550777, 165076, 154506 ) на болтовых
сдвиговых и демпфирующих соединениях.
Эта система состоит их из сборно-разборных стальных балка -ферм с диагональными
натяжными сжатыми элементами верхним сжатым и нижних растянутыми поясами
стальных ферм-балок.
При лабораторных испытаниях фрагментов и узлов демпфирующего компенсатора проф
дтн ПГУПС А.М.Уздина , использовании программ 3D -модели конечных элементов.
ПК SCAD
Мост проф Уздина , собирается ускоренным способом за 24 часа в полевых условиях
Для более точного расчета распределения нагрузки на полосу движения для грузовых
автомобилей и железнодорожного транспорта по отдельным фермам была использована
3D - модель конечных элементов и программ ПК SCAD
Элементы балки-фермы и пластических соединений для разных вариантов конструкции
были спроектированы с упругими пластическими шарнирами, которые состоят их
демпфирующих тросовых и сдвиговых компенсаторов.

69.

Верхний с применением сжатых замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно" серия 1.160.3-14 ГПИ "Ленпроектстальконструкция" ) для
демпфирования компенсатора при больших перемещениях, используется тросовая
толстая петля, с диаметром троса ( расчету) от 100 мм до 200 мм , залитого свинцом
или гудроном, на болтовых соединениях , стянутого болтами с прижимной пружиной ,
для верхнего сжатого пояса ферм. с учетом сдвиговой прочности SCAD 21.1..1, 1 СП
16.1333. 2011 п.п 8.2.1 ( сдвиговая прочность при действии поперечной силы Q z )
Нижний -растянутый пояс стальной фермы -балки собирается на косых стыках со
сдвигом, с длинными овальными отверстиями на болтовых соединениях с тросовой
демпфирующей втулкой , которая при нагрузках, на сдвиговых болтах демпфирует, за
счет толстого троса -втулки со стальной шпилькой и демпфирует поглощая равномерно
динамическую нагрузку от груженого транспорта.
Диагональные раскосы- связи фермы-балки крепятся , по расчет крепятся в больших
овальных отверстиях , с тросовой толстой гильзой ( 100 -200 мм) , с помощью стального
болта - шпильки с гильзой демпфирующей из тросовой обмотки.
Натяжения косых связей-раскосов ( для выпуклости балки фермы по центру перед
сбороко), создается за счет крепления расчетном месте овального длинного отверстия.
Монтажный подъем стальной балки -фермы по центру до 500 -1000 см ( уклон до 10-20
градусов) по расчету SCAD

70.

Большая экономия стали достигается за счет , пластичности фермы балки и
равномерное распределение нагрузки одновременно на все пластические скрепленные
и просчитаны на все узлы со сдвигом по SCAD.
Несущая способность пластической балки- фермы. повышается в два раза из- за
больших равномерных перемещений , при предельном равновесии неразрезной балки фермы с упругими сдвиговыми шарнирами и высотой приспособляемости, что
позволяет уменьшить массу на 30 процентов стальной баки мост, что позволить
сэкономит строительные материал до 30 процентов.
Ускоренный способ сборки стальной балки фермы в полевых условиях , достигается , за
счет использованием стальной шпильки ( фрикци- бот ) с пропиленным пазом , куда
одинакова по предварительному расчету забивается медный обожженный
тарированный -КЛИН, согласно изобретения , номер заявки на изобретение №
2018105803 от 19.07.2018 ФИПС "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов" для одинакового натяжения , который
одинаково и быстро, скрепляет секции балки моста для пластинчато -балочной системы
пролетного строения , на монтажных площадках, двигающихся медленно, со скорость 4
км в час , КАМАЗов -паровозиком , по мере сборки секций моста и происходит
надвижкат моста проф Уздина .

71.

За 24 часа по китайской технологии (КНР) армейский мост собирается в полевых
условиях
Смотрите ниже ссылки собранного аналогичного моста в 2022 году в КНР , пролетом
54 метра , однопутный КНР .
Грузоподъемность китайского моста 10 тонн, собирается за 24 час
How can China
build a temporary highway bridge within 24 hours? https://www.youtube.com/watch?v=Xf_NX5xUm0
В КНР в 2022 из сверхлегких и сверхпрочных материалов спроектирован, испытан и
построен в полевых условия первый мост для критических ситуаций и бедствий.
В США в штате Монтана в 2017 году при переправе через реку Суон , длиной 205
футов ( 54 метра)
В КНР проектирование, испытание и строительство в полевых условия финансировалось
Министерством МЧС Китая,
В США проектирование, испытание и строительство финансировалось Министерством
транспорта США .

72.

В России работы по проектированию, испытанию и строительству сборно-разборного
быстровозводимого из стальных конструкций пролетом 12, 18, 24, 30 метров с
применением замкнутых гнутосварных профилей прямоугольного сечения типа
Молодечно»" серии 1.640.3-14 ГПИ "Ленпроектстальконструкция ") для системы
несущих элементов проезжей части железнодорожного сборно-разборного пролетного
надвижного строения железнодорожного моста с быстросъемными упруго
пластичными компенсаторами , со сдвиговой фрикционно- демпфирующей жесткостью
или с учетом сдвиговой прочности SCAD 21.1..1, 1 СП 16.1333. 2011 п.п 8.2.1 (
сдвиговая прочность при действии поперечной силы Q z ) ведется организацией
"Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН 2014000780 (Президент
организации "Сейсмофонд" при СПб ГАСУ Мажиев Хасан Нажоевич ) на
общественных началах. Все для Фронта . Все для Победы.
Приложение : Описание изобретения Антисейсмическое фланцевое фрикционно подвижное соединение трубопроводов
Роспатент ФИПС 2018105803 20 008844 от 27 02 201 государственной пошлина
Антисейсмическое фланц ФПС Коляскина 499 240 34 86 сумма повышена до 25
Описание изобретения
Антисейсмическое фланцевое фрикционно -подвижное
соединение трубопроводов
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др.
Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.

73.

Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и
трубопроводов от сейсмических воздействий за счет использования фрикционноеподатливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки
происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного
соединения (ФФПС), при импульсных растягивающих нагрузках при многокаскадном
демпфировании, которые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно также устройство
для фрикционного демпфирования и антисейсмических воздействий, патент SU
1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько
внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает
демпфирование

74.

Таким образом получаем фрикционно -подвижное соединение на пружинах, которые
выдерживает сейсмические нагрузки но, при возникновении динамических,
импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна,
из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность
болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений в виде фрикци -болта , а также повышение точности расчета при
использования фрикци- болтовых демпфирующих податливых креплений для
шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного
фрикци –болта с пропиленным пазом, в который забит медный обожженный клин, с
бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации
трубопровода под действием запорного элемента в виде стопорного фрикци-болта с
пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.

75.

Фрикционно- подвижные соединения состоят из демпферов сухого трения с
использованием латунной втулки или свинцовых шайб) поглотителями сейсмической и
взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных
частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при
этом начет раскачиваться за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается взрывная, ветровая, сейсмическая, вибрационная энергия.
Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает
надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП,
магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение на
фрикци- болтах, установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п.
10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.

76.

Изобретение относится к машиностроению, а именно к соединениям трубчатых
элементов
Цель изобретения расширение области использования соединения в сейсмоопасных
районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб,
медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж
забивается медный обожженный клин и снабжен энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображен
фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци
–болт с забитым в пропиленный паз стальной шпильки обожженным медным
стопорным клином;
на фиг.2 изображена латунная шпилька фрикци-болта с пропиленным пазом
на фиг.3 изображен фрагмент о медного обожженного клина забитого в латунную
круглую или квадратную латунную шпильку
на фиг. 4 изображен фрагмент установки медного обожженного клина в подвижный
компенсатор ( на чертеже компенсатор на показан ) Цифрой 5 обозначен пропитанный

77.

антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы
исключить вытекание нефти или газа из магистрального трубопровода при
многокаскадном демпфировании)
фиг. 6 изображен сам узел фрикционно -подвижного соединения на фриукци -болту на
фрикционно-подвижных протяжных соедиениях
фиг.7 изображен шаровой кран соединенный на фрикционно -подвижных соединениях
, фрикци-болту с магистральным трубопроводом на фланцевых соединениях
фиг. 8 изображен Сальникова компенсатор на соединениях с фрикци -болтом
фрикционно-подвижных соединений
фиг 9 изображен компенсатор Сальникова на антисейсмических фрикционоподвижных соединениях с фрикци- болтом
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с
пропиленным пазом , куда забивается стопорный обожженный медный, установленных
на стержнях фрикци- болтов Медный обожженный клин может быть также
установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в
отверстиях фланцев.

78.

Однако устройство в равной степени работоспособно, если антисейсмическим или
виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном
направлении, осуществляется смянанием с энергопоглощением забитого медного
обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами ,
расположенными между цилиндрическими выступами . При этом промежуток между
выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого
элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты шарового
кран с трубопроводом в поперечном направлении, можно установить медный втулки
или гильзы ( на чертеже не показаны), которые служат амортизирующие
дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может
служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин ,
который является амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении ,
выполненные из латунной шпильки с забиты с одинаковым усилием медный

79.

обожженный клин , например латунная шпилька , по названием фрикци-болт .
Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами
устанавливаются также дополнительные упругие свинцовые шайбы , повышающие
надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием ,
после чего производится стягивание соединения гайками с контролируемым натяжением
.
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на
строго определенную величину, обеспечивающую рабочее состояние медного
обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются
исходя из условия, чтобы их жесткость соответствовала расчетной, обеспечивающей
надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения
трубопровода и шаровых кранов.

80.

Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны)
повышает герметичность соединения и надежность его работы в тяжелых условиях
вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта
определяется исходя из, частоты вынужденных колебаний вибрирующего трубчатого
элемента с учетом частоты собственных колебаний всего соединения по следующей
формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент
динамичности фрикци -болта будет меньше единицы.
Работа над патентом (изобретением ) частично поддержана грантом РФФИ № 18-0100796
Фигуры к патенту на полезную модель Антисейсмическое фланцевое фрикциооно подвижное соединение трубопроводов
Формула
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ (ФФПС) ТРУБОПРОВОДОВ, содержащее
крепежные элементы, подпружиненные и энергопоглощающие со стороны одного или двух из фланцев,
амортизирующие в виде латунного фрикци -болта, с пропиленным пазом и забитым медным обожженным клином , с
вставленной медной обожженной втулкой или медной тонкой гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью

81.

расширения области использования соединения в сейсмоопасных районах, фланцы выполнены с помощью
энергопоглощающего латунного фрикци -болта , с забитым с одинаковым усилием, медным обожженным клином,
расположенными во фланцевом фрикционно-подвижном соединении (ФФПС) , уплотнительными элемент выполнен в
виде свинцовых тонких шайб , установленные между цилиндрическими выступами фланцев, а крепежные элементы
подпружинены, также на участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным
обожженным энергопоголощающим стопорным клином, установлены тонкие свинцовые или обожженные медные
шайбы, а в латунную шпильку устанавливается тонкая медная обожженная гильза - втулка .
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназначено для защиты
шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и
взрывных воздействий
Конструкция фрикци -болт выполненный из латунной шпильки с забитым медным обожженным клином позволяет
обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении, вибрационных воздействий от
железнодорожного и автомобильного транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной шпильки
, с забитым в пропиленный паз медного клина, которая жестко крепится на фланцевом фрикционно- подвижном
соединении (ФФПС) . Кроме того, между энергопоглощающим клином, вставляются свинцовые шайбы с двух сторон,
а латунная шпилька вставляется в ФФПС с медным обожженным клином и втулкой - медной обожженной гильзой (
на чертеже не показана) 1-9
Антисейсмический сдвиговой фрикционно-демпфирующий компенстаор, фрикци-болт с гильзой, для соединений секций
разборного моста
https://ppt-online.org/1187144
ПРИМЕНЕНИЕ УПРУГО ФРИКЦИОННЫХ СИСТЕМ (УФС) и фрикционно-подвижных соединений (ФПС) при
испытаниях на сейсмос
https://diary.ru/~narodniykontrol/p220954959_primenenie-uprugo-frikcionnyh-sistem-ufs-i-frikcionno-podvizhnyh-soedinenij-fpspr.htm

82.

ФРИКЦИ
–ДЕМПФИРУЮЩИЕ
КОМПЕНСАТОРЫ
ДЛЯ
МАГИСТРАЛЬНЫХ
ТРУБОПРОВОДОВ
ИСПОЛЬЗОВАНИЕМ ФРИКЦИОННО - ДЕМПФИРУЮЩИХ КОСЫХ, ТИПА САЛЬНИКОВА И РЕАЛИЗАЦИЯ
С
https://www.liveinternet.ru/users/c9995354729yandexru/post474357193/
ПРЯМОЙ УПРУГОПЛАCТИЧЕСКИЙ РАСЧЕТ ПРОЛЕТНЫХ СТРОЕНИЙ ЖЕЛЕЗНОДОРОЖНОГО
МОСТА
С
БОЛЬШИМИ
ПЕРЕМЕЩЕНИЯМИ
НА-ПРЕДЕЛЬНОЕ
РАВНОВЕСИЕ
И
ПРИСПОСОБЛЯЕМОСТЬ, НА ПРИМЕРЕ БЫСТРО СОБИРАЕМОГО АМЕРИКАНСКОГО МОСТА, ДЛЯ
ПЕРЕПРАВЫ ЧЕРЕЗ РЕКУ СУОН В ШТАТЕ МОНТАНА, СКОНСТРУИРОВАННОГО СО ВСТРОЕННЫМ
БЕТОННЫМ НАСТИЛОМ ДЛЯ СИСТЕМЫ НЕСУЩИХ ЭЛЕМЕНТОВ И ЭЛЕМЕНТОВ ПРОЕЗЖЕЙ ЧАСТИ
, С ИСПОЛЬЗОВАНИЕМ УПРУГОПЛАСТИЧЕСКИХ ПРОЛЕТНЫХ СТРОЕНИЙ МОСТА, СКРЕПЛЕННЫХ
БОЛТОВЫМИ СОЕДИНЕНИЯМИ, С ДИАГОНАЛЬНЫМИ НАТЯЖНЫМИ РАСКОСАМИ, ВЕРХНЕГО И
НИЖНЕГО ПОЯСА https://www.liveinternet.ru/users/majiev/post496788513/
Метод предельного равновесия для упругопластического расчета в ПК SCAD
статически неопределимых стальных ферм для железнодорожных ,
автомобильных мостов, переправ, с большими перемещениями, с применением
замкнутых гнутосварных профилей, прямоугольного сечения типа "Молодечно" (
серия 1.460.3.-14 ГПИ "Ленпроектстальконструкция" ), для системы несущих
элементов и элементов проезжей части сборно-разборного пролетного
надвижного строения моста , с быстросъемными упругопластическими
компенсаторами , со сдвиговой фрикционно-демпфирующей жесткостью
Тезисы доклада на XIII всероссийском съезда по фундаментальным проблемам
теоретической прикладной механике 21 - 25 августа 2023 в Политехническом
Университете Докладчик Президент организации "Сейсмофонд" при СПб ГАСУ
Мажиев Х Н [email protected] [email protected] Политехническом Университете Организация

83.

"Сейсмофонд" ОГРН: 1022000000824 ИНН"
6947810 [email protected] https://vk.com/wall782713716_906
2014000780
т/ф
(812)
Испытания узлов и фрагпментов пролетного строения из упругопластических
стальных ферм
https://ppt-online.org/1290617
СПАСИБО ЛЮДИ РУССКИЕ Дорогие друзья редакция газеты "Армия
Защитников Отечества" отчитывается перед русским народом о своих
финансовых делах в организации "Сейсмофонд" при СПб ГАСУ ( ИНН
:2011000780 ) по оказанию материальной помощи Русской Армии, иметь быстро
собираемые мосты и переправы реку Днепр в Смоленской области
https://dzen.ru/b/ZBrJ3-TTBglAyJwX
ПРЯМОЙ УПРУГОПЛАСТИЧЕСКИЙ РАСЧЕТ СТАЛЬНЫХ
ФЕРМ С БОЛЬШИМИ
ХЕЙДАРИ АЛИРЕЗ 1,
ГАЛИШНИКОВА ВЕРА ВЛАДИМИРОВНА 1
https://elibrary.ru/item.asp?id=21709764

84.

Прямой упругоплаcтический расчет пролетных строений
железнодорожного моста
https://ppt-online.org/1278181 https://vk.com/wall782713716_906
Расчет фермы SCAD https://www.youtube.com/watch?v=Fwz5L72R528
Расчет фермы в SCAD. косяки.
https://forum.dwg.ru/showthread.php?t=21046&page=2
DesigninglongspansteelgirdersbyapplyingdisplacementcontrolconceptsENGINEERINGSTRUCTURES
13 стр
https://disk.yandex.ru/i/hsslxuwp1Z_4sg
DesigninglongspansteelgirdersbyapplyingdisplacementcontrolconceptsENGINEERINGSTRU
CTURES 13 стр

85.

https://ppt-online.org/1321493
Секция III. Механика деформируемого твердого тела - 2. Теория пластичности и ползучести 21-25 августа 2023 Политехнический Университет Петера Великого Доклад СПб
ГАСУ XIII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, Санкт-Петербург, 21-25 августа 2023 года тед./факс: (812) 694-78-10
[email protected] [email protected]
Учитывая изложенное, Департамент Минпромторгка просит повторно направить обращение, в котором будут определены проблемные вопросы и/или сформулированы
конкретные предложения по использованию названной технологии

86.

«УТВЕРЖДАЮ» техническое задание № 569 от 21 марта 2023 Президент «Сейсмофонд» при СПб ГАСУ
/Мажиев Х.Н. 23.03.2023 Испытания на соответствие
требованиям прошли в СПб ГАСУ и Политехничес ком Университете (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016
Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78 Адрес испытательной лаборатории :
190005 , 2-я Краноармейская ул.д 4 СПб ГАСУ. 195251, СПб , ул Политехническая , д 29 Политехнический Университет Всего : 584 стр
«УТВЕРЖДАЮ» протокол № 568 от 21 декабря 2022 Президент «Сейсмофонд» при СПб ГАСУ
/Мажиев Х.Н. 21.12.2022 Испытания на соответствие требованиям (тех.
регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98
(сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
Адрес испытательной лаборатории : 190005 , 2-я Краноармейская ул.д 4 СПб ГАСУ. 195251, СПб , ул Политехническая , д 29 Политехнический Университет Всего : 584 стр

87.

Испытания в ПК SCAD на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII,
3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78

88.

ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул.,д. 4, ИЦ «ПКТИ - Строй-ТЕСТ», «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780
[email protected]

89.

Техническое задание номер 569 от 21 марта 2023 и задание на испытания узлов и фрагпментов в ПК SCAD пролетного строения из упругопластических китайских стальных
ферм 6, 9, 12, 18, 24 и 30 метров c большими перемещениями, однопутного, автомобильного , ширина проезжей части 3 метра, грузоподъемностью до 5 тонн , с ускоренным
способом сборки, со встроенным бетонным настилом по американской технологии при переправе через реку Суон в штате Монтане , длиной 205 футов, с пластическими
шарнирами ( по американским чертежам ) , с системой стальных ферм, соединенных на болтовых и соединений, между диагональными натяжными элементами, верхним и
нижним поясом фермы из пластинчатых балок с использованием расчет в 3D -модель (ANSIS) кончных элементов, блока НАТО (США) скомбинацией нагрузок ASHTO Strength
Fatigue 1 Sevice 11 с использованием отечественных изобретений Красноярского ГАСУ , Томского ГАСУ и ПГУПС №№ 2155259 основная , 2188287 Томск ГАСУ, 2136822
Трехмерный блок, 2208103 Ферма, 2208103, 2188915 Способ монтажа, 2136822, 2172372 патентный отдел, 2228415 Узловое сопряжение 2155259
https://www.youtube.com/watch?v=t3WxHO6i418

90.

Учитывая изложенное Департамент Минпромторга Минстроя ЖКХ просит повторно направить обращение, в котором будут определены проблемные вопросы и/или
сформулированы конкретные предложения по использованию названной технологии по применению быстро собираемой сборно -разборных стальных балок-ферм, для
пролетного автомобильного ( пролет автодорожного моста 12 , 16, 24 метра, грузоподъемность 5 тонн, ширина колеи проезжей части 3.0 метра, однопутный для
автомобильного транспорта ) и железнодорожного строения моста пролетом 30 метров ( грузоподъемность для железнодорожного моста 70 тонн) их замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконструкция") стальных неразрезных статически неопределимых
ферм -балок упругопластическим сдвиговым шарниром с большими перемещениями на предельное равновесие и приспособляемость
«УТВЕРЖДАЮ» техническое задание № 569 от 21 марта 2023 Президент «Сейсмофонд» при СПб ГАСУ
/Мажиев Х.Н. 23.03.2023 Испытания на соответствие
требованиям прошли в СПб ГАСУ и Политехническом Университете (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016
Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78 Адрес испытательной лаборатории :
190005 , 2-я Красноармейская ул.д 4 СПб ГАСУ. 195251, СПб , ул Политехническая , д 29 Политехнический Университет Всего : 584 стр
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ
ОГРН: 1022000000824 ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я
Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф: (812) 694-78-10 (921) 962-67-78, [email protected] [email protected] [email protected]
[email protected] (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Изготовитель Сборно-разборных автомобильных надвижных мостов, переправ "Сейсмофонд" при СПб ГАСУ Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9
баллов). (921) 962-67-78, [email protected] [email protected] [email protected]
Секция III. Механика деформируемого твердого тела - 2. Теория пластичности и ползучести 21-25 августа 2023 Политехнический Университет Петера Великого Доклад СПб
ГАСУ XIII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, Санкт-Петербург, 21-25 августа 2023 года тед./факс: (812) 694-78-10
[email protected] [email protected]
Техническое задание номер 569 от 21 марта 2023 и задание на испытания узлов и фрагпментов в ПК SCAD пролетного строения из упругопластических китайских стальных
ферм 6, 9, 12, 18, 24 и 30 метров c большими перемещениями, однопутного, автомобильного , ширина проезжей части 3 метра, грузоподъемностью до 5 тонн , с ускоренным
способом сборки, со встроенным бетонным настилом по американской технологии при переправе через реку Суон в штате Монтане , длиной 205 футов, с пластическими
шарнирами ( по американским чертежам ) , с системой стальных ферм, соединенных на болтовых и соединений, между диагональными натяжными элементами, верхним и
нижним поясом фермы из пластинчатых балок с использованием расчет в 3D -модель (ANSIS) кончных элементов, блока НАТО (США) скомбинацией нагрузок ASHTO Strength
Fatigue 1 Sevice 11 с использованием отечественных изобретений Красноярского ГАСУ , Томского ГАСУ и ПГУПС №№ 2155259 основная , 2188287 Томск ГАСУ, 2136822
Трехмерный блок, 2208103 Ферма, 2208103, 2188915 Способ монтажа, 2136822, 2172372 патентный отдел, 2228415 Узловое сопряжение 2155259
https://www.youtube.com/watch?v=t3WxHO6i418
В Министерстве обороны РФ, выяснилось имеются незначительные недостатки и ошибки.

91.

Однако, выяснилось, что в Департаменте транспортного обеспечения Минобороны РФ ( Ярошевича Александра Викторовича ) , нет для критических ситуаций при
разрушении эксплуатируемых мостов построенных в СССР, нет альтернативных сборно-разборных мостов , и их отсутствия на вооружении инженерных войск ( заместителя
руководителя
Департамента строительства О. Оцепаева 8 499 390 34 34 Соколов ) и отсутствует , по незначительному недоразумению или халатности бывших руководителей, и отсутствуют
быстровозводимые, сборно-разборные автомобильные мосты-переправы в Минобороне РФ , а в Китае (КНР) и блок НАТО ( США и Великобритания), имеют на вооружении
отличные сверхлегких ферм, отличные автомобильные мосты, нового поколения : Bailey bridge - мосты. В КНР из пластинчато-балочных, упруго-пластичных ферм,
собирается скоростным способом мост, со встроенным бетонным настилом, длиной 60 метров, грузоподъемность 60 тонн, за 24 часа, с помощью надвижки автомобилями !
Более подробно успешно испытании по ускоренному монтажу за 24 часа, (пролет моста 60 метро, грузоподъемность 5 тонн )
в 2022 году
смотрите о сборке за 24 часа в КНР моста
В 2023 в КНР испытан, сборный мост КНР , грузоподъемностью уже 50 тонн для грузовых автомобилей
How can China build a temporary highway bridge within 24 hours? https://www.youtube.com/watch?v=Xf-_NX5xUm0
Аннотация: Отвечая на вопрос зам директора Департамента металлургии и материалов И.Маркова Минпромторг РФ ( от 28.02.2023 № 5610-0Г/08 Скотарь Дарья
Александровна 7 495 870 21 21 ( доб 283-45) ) по использованию новой технологии ускоренной сборки упруго пластических стальных балок-ферм для пролетных строений
железнодорожного моста с большой экономией строительных материалов до 30 процентов сконструированных со встроенным бетонным настилом и предназначенных для
критических ситуаций ( разрушение старого железнодорожного моста и в других чрезвычайных ситуациях, для оказания помощи в условиях бедствия; землетрясений,
наводнений, просадки грунта после паводков, армейских переправ черз реку Днепр ( в Смоленской области -начало реки Днепра ) разработан организацией "Сейсмофонд"
при СПб ГАСУ быстро собираемый стальной надвижного с большими перемещениями и приспособляемостью балки-фермы пролетного строения железнодорожного моста
(проель 12, 18, 24, 30 метров, грузоподъемность 50 тонн) с пластическими демпфирующими сдвиговыми компенсаторам , так называемыми пластическим шарнирами ,
разработанные проф дтн А.М.Уздиным, (согласно изобретениям №№ 1143895, 1168755, 1174616, 2550777, 176020, 2550777, 165076, 154506 ) на болтовых соединениях. Эта
ситема состоит их из сборно-разборных стальных балка -ферм с диагональными натяжными сжатыми элементами верхним сжатым и нижни растянутыми поясами стальных
ферм-балок.
При использовании 3D -модели конечных элементов. ПК SCAD Мост собирается ускоренным способом за 24 часа в полевых условиях Для более точного расчета
распредедения нагрузки на полусу движения для грузовых автомобилей и железнодорожного транспорта по отдельным фермам была использована 3D - модель конечных
элементов. Элемнты балки-фермы и платических соедиений для разных вариантов конструкции были спроектированы с упругими пластическими шарнирами, которые состоят

92.

их демпфирующих тросовых и сдвиговых компенсаторов. Верхний с применением сжатых замкнутых гнутосварных профилей прямоугольного сечения типа №Молодечно"
серия 1.160.3-14 ГПИ "Ленпроектстальконструкция" ) для демпфирования компенсатора при больщих перемещениях используется тросовая пета с диаметром троса ( расчету)
от 100 мм до 200 мм , залитого свинцом или гудроном на болтовых соединениях , стянутого болтами с прижимной пружиной , для верхеного сжатого пояса ферм.
Нижний -растянутый пояс стальной фермы -балки собирается на косых стыках с длинными овальными отверстиями на болтовых соединениях с тросовой демпфирующей
втулкой , которая при нагрузках, на сдвиговых болтах демпфирует за счет толстого троса -втулки и демпфирует поглощая равномерно динамическую нагрузку от груженого
транспорта. Диагональные раскосы- соединения , по расчет крепятся в больших овальных отверстиях с тросовой толстой гильзой ( 100 -200 мм) , с помощью стального болта шпильки с гильзой демпфирующей из тросовой обмотки. Натяжения ( для выпуклости балки фермы по центру) создается за счет крепления расчетном месте овального
длинного отверстия. Монтажный подъем стальной балки -фермы по центру до 500 -1000 см ( уклон до 10-20 градусов)
Большая . экономия стали достигается за счет , пластичности фермы балки и равномерное распределение нагрузки одновременно на все пластические скрепленные и
просчитаны на все узлы со сдвигом по SCAD/ Несущая способность пластической балки фермы повышается из- за больших равномерных перемещений при предельном
равновесии неразрезной балки -фермы с упругими сдвиговыми шарнирами и высотой приспособляемости, что позволяет уменьшить массу на 30 процентов стальной баки
мост, что позволить сэкономит строительные материал на 30 процентов.
Ускоренный способ сборки стальной балки фермы в полевых условиях , достигается , за сет использованием стальной шпильки ( фрикци- бот ) с пропиленным пазом , куда
одинакова по предварительному расчету забивается медный обожженный тарированный -КЛИН, для одинакового натяжения , который одинаково и быстро, скрепляет секции
балки моста для пластинчато -балочной системы пролетного строения , на монтажных площадках, двигающихся медленно, со скорость 4 км в час , КАМАЗов -паровозиком , по
мере сборки секций моста и происходит надвижка. За 24 часа по китайской технологии .
Смотрите ниже ссылки собранного аналогичного моста в 2022 году в КНР , проетом 54 метра , однопутный , Грузоподъемность китайского моста 10 тонн, собирается за 24 час
How can China build a temporary highway bridge within 24 hours? https://www.youtube.com/watch?v=Xf-_NX5xUm0
В КНР в 2022 из серхлегких и сверхпрочных материалов спроектирован, испытан и построен в полевых условия первый мост для критических ситуаций и бедствий. В США в
штате Монтана в 2017 году при переправе через реку Суон , длиной 205 футов ( 54 метра) В КНР проектирование, испытание и строительство в полевых условия
финансировалось Министерством МЧС Китая,
В США проектирование, испытание и строительство финансировалось Министерством транспорта США . В России работы по проектированию, испытанию и строительству
сборно-разборного быстровозводимого из стальных конструкций пролетом 12, 18, 24, 30 метров с применением замкнутых гнутосваных профилей прямоугольного сечения

93.

типа ЦМонтан " серии 1.640ю3-14 ГПИ "Ленпроектстальконструкция ") для системы несущих элементов проезжей чати железнодорожного сборно-разборного пролетного
надвижного строения железножорожного моста с быстросъемными упруго пластичными компенсаторами , со сдвигово фрикционно- демпфирующей сдвиговой жесткостью
или с учетом сдвиговой прочностью , ведется организацией "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН 2014000780 (Президент организации "Сейсмофонд" при СПб
ГАСУ Мажиев Хасан Нажоевич ) на общественных началах. Все для Фронта . Все для Победы.
Желающие помочь русские люди , просьба от редакции газеты "Армия Защитников Отечества" и информационного агентство "Русская народная Дружина" оказать посильную
помощь организации "Сейсмофонд" при СПб ГАСУ могут перечислить на карту Сбер 2202 2007 8669 7605, Счет получателя 40817810555031236845 или на карту СБЕР 2202 2006
4085 5233 . счет получателя 40817810455030402987 помощь на разработку, чертежи конструкторам зарплата за испытание быстровозводимого армейского моста,
переправы через реку Днепр для морпехов Республики Крым и г Севастополя.
Редакция газеты "Армия Защитников Отечества" благодарит Главу Русского Славянского Движения тел (812) 470-48-03 [email protected] за оказание финансовой помощи
в объем 3 тыст руб И благодарит руководителя Марша Славянское Вече" СЗФО РФ , заместителя редактора газеты "Армия Защитников Отечества" Татьяну Кукущкину
выделавшая 5 тыс руб
Обещал по телефону помочь деньгами и депутат от КПРФ ЗакСа СПб Броденчик Вячеслав Иванович от КПРФ тел 941--25-13 , и помощник деп ЗакСа СПб Бондаренко
Николай Леонидович от партии "Единая Россия" (Приморский район) , тел помощника 241 -29-44
Если у кого есть возможность , просьба позвонить и напомнить депутатам о предвыборных обещаниях и обязанности помогать нашим братьям и русской армии истекающая
кровью, из -за отсутствия сборно-разборных переправ , собираемых за 24 часа , через реку Днепр Все для Фронта все для Победы !
.
, ,
. .
.
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
Лабораторные испытания для директора департамента строительства Минобороны РФ Роман Филимонов 8 499 390 34 34 Заместитель О.Оцепаев помощник Соколов

94.

Ответ бодрящий, а удар в спину морпехам Республики Крым и Русской Армии и морпехам Севастополя , настоящий Министерство обороны Российское Федерации
Москва 119160
Все для Фронта Все для Победы !
(МИНОБОРОНЫ РОССИИ)
МАЖИЕВУ Х.Н. [email protected]
«20» января 20 23 г № 257/5/1034 Уважаемый Хасан Нажоевич!
Ваше обращение от 15 января 2023 г. № П48-5396 в Департаменте транспортного обеспечения Министерства обороны Российской Федерации рассмотрено.
Для организации дальнейшей работы просим Вас предоставить полный комплект конструкторской документации на армейский сборно- разборный мост.
Руководитель Департамент транспортного обеспечения Минобороны Российской Федерации Александр Валентинович Ярошевич
Исп. Гусев А. А т. 8-495-693-26-04 Юрий Бирюков [email protected]

95.

96.

97.

98.

В Министерстве обороны РФ, выяснилось имеются незначительные недостатки и ошибки.
Однако, выяснилось, что в Департаменте транспортного обеспечения Минобороны РФ ( Ярошевича Александра Викторовича ) , нет для критических ситуаций при
разрушении эксплуатируемых мостов построенных в СССР, нет альтернативных сборно-разборных мостов , и их отсутствия на вооружении инженерных войск ( заместителя
руководителя
Департамента строительства О. Оцепаева 8 499 390 34 34 Соколов ) и отсутствует , по незначительному недоразумению или халатности бывших руководителей, и отсутствуют
быстровозводимые, сборно-разборные автомобильные мосты-переправы в Минобороне РФ , а в Китае (КНР) и блок НАТО ( США и Великобритания), имеют на вооружении
отличные сверхлегких ферм, отличные автомобильные мосты, нового поколения : Bailey bridge - мосты. В КНР из пластинчато-балочных, упруго-пластичных ферм,
собирается скоростным способом мост, со встроенным бетонным настилом, длиной 60 метров, грузоподъемность 60 тонн, за 24 часа, с помощью надвижки автомобилями !
Более подродно успешно испытынии и и ускоернному монтажу за 24 часа, (пролет моста 60 метро, грузоподьемность 5 тонн )
в 2022 году
В 2023 в КНР испытан, сборный мост КНР , грузоподъемностью уже 50 тонн для грузовых автомобилей
How can China build a temporary highway bridge within 24 hours? https://www.youtube.com/watch?v=Xf-_NX5xUm0
смотрите о сборке за 24 часа в КНР моста

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

Для доклада сообщения проф дтн Малвеева В В тел 79111940880 [email protected] секции III. Механика деформируемого твердого тела - 2. Теория пластичности и
ползучести 21-25 августа 2023 Политехнический Университет Петера Великого Доклад СПб ГАСУ XIII Всероссийский съезд по фундаментальным проблемам теоретической и
прикладной механики, Санкт-Петербург, 21-25 августа 2023 года тед./факс: (812) 694-78-10 [email protected] [email protected]

123.

124.

Редакция газеты «Армия Защитников Отечества» при СПб ГАСУ сообщает о разработанной в КНР конструкции быстро собираеммо автомобильного моста, состоящего из
стеклопластиковой металлической композитной плиты–ферменной балки и имеющего пролет 30 м смонтированного за 24 часа в Китае (КНР) . Указанный мост был
спроектирован на основе оптимизации оригинального 12-метрового образца моста построенного в КНР, США в 2019 г. Разработанный таким образом мост очень легкий,
конструктивно прочным, с возможностью модульной реализации и представлять собой конструкцию, которая требует меньше времени при сборке моста в полевых условиях .
Дирекцией информационного агентство «Русской Народной Дружной» выполнен РАСЧЕТ УПРУГОППЛАСТИЧЕСКОГО СТРУКТУРНОГО СБОРОНО РАЗБОРОНОГО МОСТА НА
ОСНОВЕ ТРЕХГРАННОЙ БЛОК-ФЕРМЫ на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие
и приспособляемость , по чертежам китайским и американских инженеров , уже построенных из упругопластических стальных ферм выполненных из сверхлегких,
сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокон, для армейского быстро собираемого моста, для чрезвычайных ситуациях ,
длинною 24 метра , грузоподъемностью 5 тонн из трубчатых GFRP-элементов в КНР [email protected] [email protected] [email protected]
[email protected] [email protected] [email protected]

125.

МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБОРОНЫ РОССИИ) г. Москва, 119160 от 23 января 2023 " 153/4/888 нс На № УГ -199216 от 28.12.2022
МАЖИЕВУ Х.Н. [email protected]
Уважаемый Хасан Нажоевич!
Ваше обращение от 26 декабря 2022 г. № 1479214 по вопросу использования упруго пластичных ферм-балок (далее - представленная технология) Департаментом
строительства Министерства обороны Российской Федерации по поручению рассмотрено.
В Вашем обращении содержится текстовое описание модели сборно- разборного моста, при этом отсутствуют документы, влияющие на возможность применения
представленной технологии в строительстве:
- документы, гарантирующие невозможность нарушения авторских прав автора объекта интеллектуальной собственности на предполагаемое изобретение по заявке № 2020
137 335 от 13.11.2020, класс, подкласс и т.д. предполагаемого изобретения, формула изобретения, описание изобретения, результаты патентного поиска;
- технические свидетельства на материал (технологию) Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Постановление
Правительства Российской Федерации от 27.12.1997 № 1636);
- сертификационные документы на предлагаемую продукцию в части обеспечения безопасности зданий и сооружений в соответствии с требованиями законов и
национальных стандартов Российской Федерации (Федеральный закон от 30.12.2009 № 384-ФЭ);
- проектно-сметная документация.
Оценка возможности использования представленной технологии будет выполнена после предоставления указанных документов.
Заместитель руководителя Департамента строительства
О.Оцепаев
Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 24 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро
собираемого китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых
автомобилей, из пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным
бетонным настилом и натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.

126.

127.

128.

129.

130.

131.

132.

По просьбе Минстроя ЖКХ для включение в план НИОКР на 2023 год
Пояснительная записка к расчету упруго пластического сдвигаемого шарнира для сборно-разборного железнодорожного моста (длина пролета - 30 метров, ширина проезжей
части 3.0 метра, грузоподъемность -65,0 тонн) с большими перемещениями на предельное равновесие и приспособляемость
Аннотация. В статье приведен краткий обзор характеристик существующих временных мостовых сооружений, история создания таких мостов и обоснована необходимость
проектирования универсальных быстровозводимых мостов построенных в штате Монтана через реку Суон в США
Предпосылкой для необходимости проектирования новой временной мостовой конструкции послужили стихийные бедствия в ДНР, ЛНР во время специальной военной
операции на Украине в 20222012 г., где будут применены быстровозводимых сооружений, что могло бы значительно увеличить шансы спасения человеческих жизней.
Разработанную, в том числе автором, новую конструкцию моста, можно монтировать со скорость не менее 25 метров в сутки без применения тяжелой техники и кранов и
доставлять в любой пострадавший район воздушным транспортом. Разрезные пролетные строения могут достигать в длину от 3 до 60 метров, при этом габарит пролетного
строения так же варьируется. Сечение моста подбирается оптимальным из расчета нагрузка/ количество металла
Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США построенное в 2017 по изобретениям проф дтн Уздина А.М
На настоящий момент построена экспериментальная модель моста в штате Минесота , через реку Суон. Американской стороной проведены всесторонние испытания,
показавшие высокую корреляцию с расчетными значениями (минимальный запас 4.91%). Мостовое сооружение не имеет аналогов на территории Российской Федерации.
На конструкцию армейского моста получен патенты №№ 1143895, 1168755, 1174616, 168076, 2010136746. Доработан авторами , в том числе авторами способ бескрановой
установки надстройки опор при строительстве временного железнодорожного моста № 180193 со сборкой на фланцевых фрикционно-подвижных соединениях проф дтн
А.М.Уздина для сборно-разборного железнодорожного моста демпфирующего компенсатора гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое фрикционное соединение для
сборно-разборного быстрособираемого железнодорожного моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными
компенсаторами, со сдвиговой фрикционно-демпфирующей прочностью и предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В
районах с сейсмичностью более 9 баллов, необходимо использование демпфирующих компенсаторов с упругопластическими шарнирами на фрикционно-подвижных
соединениях, расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного демпфирования при импульсных растягивающих и динамических
нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ
СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» №
2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от 02.06.2022 ФИПС :
"Огнестойкого компенсатора -гасителя температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционно-демпфирующий компенсатор для
трубопроводов" заявка № 2021134630 от 29.12.2021, "Термический компенсатор гаситель температурных колебаний" Заявка № 2022102937 от 07.02.2022 , вх. 006318,
"Термический компенсатор гаситель температурных колебаний СПб ГАСУ № 20222102937 от 07 фев. 2022, вх 006318, «Огнестойкий компенсатор –гаситель температурных
колебаний»,-регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217

133.

от 23 сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для трубопроводов"
№ а 20210354 от 22 февраля 2022 Минск , заявка № 2018105803 от 27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов" № а
20210354 от 22.02. 2022, Минск, "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов № 2018105803 от 15.02.2018 ФИПС, для
обеспечения сейсмостойкости сборно-разборных надвижных армейских быстровозводимых мостов в сейсмоопасных районах в сейсмичностью более 9 баллов
https://disk.yandex.ru/d/ctPqcuCLs1-9Sg
В основном, существующие в Российской Федерации временные сборно-разборные мостовые переходы разработаны еще во времена СССР и «морально» устарели. Их
конструкции, как правило, не универсальны, т.е. неизменны по длине и величине пропускаемой нагрузки. Максимальная длина одного балочного разрезного пролетного
строения составляет 33 метра. Пролетное строение моста через реку Суон 60 метров в Монтане США . Это влечет необходимость устройства промежуточных опор при
перекрытии широких препятствий, что не всегда возможно и занимает дополнительное время. У всех рассмотренных сборно-разборных конструкций невозможна оптимизация
сечений элементов в зависимости от массы пропускаемой нагрузки. Единственным решением, которое смогло исключить этот недостаток, является разрезное пролетное
строение с двумя решетчатыми фермами (патент РФ №2010136746, 1143895, 1168755, 1174616, 2550777, 165076, ). В конструкции этого моста имеется два варианта
грузоподъемности: обычный и повышенный. Для монтажа практически всех без исключения существующих решений временных сооружений необходимо применение тяжелой
техники и большого числа монтажников. Соответственно, даже при возможности быстрого монтажа самой конструкции, доставка в район постройки необходимой техники
займет много времени. Целью данного исследования является обеспечение возобновление пешеходного, автодорожного или железнодорожного движения в зоне стихийного
бедствия в кратчайшие сроки за счет применения при временном восстановлении мостовых сооружений универсальной, сборно-разборной конструкции временного моста.
Из проведенных выше данных следует, что такая мостовая конструкция должна соответствовать следующим современным требованиям:
Максимальная длина пролетного строения не менее 60 метров, ширина 3,5 метра , однопутный , армейский для ДНР, ЛНР ;
Длина пролета должна быть переменной и кратной 3 метрам для случая его использования на сохранившихся опорах капитального моста;
Максимальный вес любого элемента пролетного строения, не должен превышать одной тонны, что позволит ограничиться легким крановым оборудованием;
Конструкция пролетного строения должна обеспечивать возможность изменять его геометрические характеристики, определяющие его несущую способность, в зависимости от
массы и габарита пропускаемой нагрузки;
Продолжительность монтажа пролетных строений для малых и средних мостов не должна превышать 2-3 суток, что соответствует скорости его монтажа примерно 25 метров в
сутки;
Конструкция должна обеспечивать многократность применения;
Время доставки конструкций моста в любую точку России не должно превышать одних суток.
LPI Poyasnitelnaya zapiska raschetu uprugo plasticheskogo sharnira sborno-razbornogo zheleznodorozhnogo mosta 372 str
https://disk.yandex.ru/i/ZHp239MAaq9v6g

134.

LPI Poyasnitelnaya zapiska raschetu uprugo plasticheskogo sharnira sborno-razbornogo zheleznodorozhnogo mosta 372 str
https://ppt-online.org/1319576
О предпосылках создания новых конструкций временных мостовых сооружений в ДНР и ЛНР
https://ppt-online.org/1264806
Антоновский мост. Технология выбора вариантов ускоренного, скоростного восстановления автомобильного моста
https://ppt-online.org/1266985
Газета «Армия Защитников Отечества» №5 от 04.01.23
https://ppt-online.org/1291447
Специальные технические условия ускоренного монтажа сборно-разборного быстро-собираемого автомобильного моста
https://ppt-online.org/1283117
Газета «Армия Защитников Отечества» №6 от 06.01.23
https://ppt-online.org/1291725
LPI Poyasnitelnaya zapiska raschetu uprugo plasticheskogo sharnira sborno-razbornogo zheleznodorozhnogo mosta 372 str
https://studylib.ru/doc/6394964/lpi-poyasnitelnaya-zapiska-raschetu-uprugo-plasticheskogo...
https://mega.nz/file/vYRAVQYI#AOM_Aph7_7WB4rJOa0EFDJOMFqZjRa3jcDmgXV0MT7E
https://mega.nz/file/HcByiKzA#R8K1Y25r9c5tvbKI_brFXnFa4iqW0qN7lRAYdd20jO8
https://ibb.co/album/y6jhY9 https://ibb.co/dgVfvyk
Почти миллиард рублей из бюджета Петербурга выделил Смольный на поддержку собственной репутации https://dzen.ru/a/ZBCQMaSKHGe6c6EL
Сувениры для Беглова: Смольный потратит почти миллион на нужды Петербурга

135.

Администрация города закупит гравюры с видами Петербурга для неизвестных на 909,7 тыс. рублей. Всего за прошлый год чиновники заплатили одной и той же компании за
сувениры 6,1 млн рублей, а в 2021-м — 801 тыс. рублей. https://vk.com/wall-62356431_804402
Блогер Камнев и его коллеги могут заработать миллионы на улучшении имиджа Беглова
https://aobe.ru/80912-bloger-kamnev-i-ego-kollegi-mogut-zarabotat-milliony-na-uluchshenii-imidzha-beglova.html
Смольный потратит почти 1 млн рублей, чтобы Беглову не было скользко
22 декабря 2022, 10:57
Почти миллион рублей выделен бюджетом Санкт-Петербурга на противогололедные материалы для нужд городской администрации. Для сравнения, на обработку территории
школы № 10 Калининского района «выкроено» всего 22,5 тысячи рублей.
https://newia.ru/news/2022-12-22/smolnyy-potratit-pochti-1-mln-rubley-chtoby-beglovu-ne-bylo-skolzko-2622303
Гравюры и балалайки: Смольный потратит почти миллион рублей на сувениры для неизвестных
https://nevnov.ru/23939395-gravyuri_i_balalaiki_smol_nii_potratit_pochti_million_rublei_na_suveniri_dlya_neizvestnih
Беглов потратил из бюджета на собственный пиар более полумиллиарда рублей
https://regionvoice.ru/beglov-potratil-iz-byudzheta-na-sobstvennyy-piar-bolee-polumilliarda-rubley/
Миллиард на пиар Беглова «поделят» между Камневым и другими просмольнинскими блогерами?
https://anonsens.ru/57261_milliard_na_piar_beglova_podelyat_mezhdu_kamnevym_i_drugimi_prosmolninskimi_blogerami_info
Смольный потратит на туалетную бумагу и бумажные полотенца для своих нужд 2,8 млн рублей за год
https://spbvestnik.ru/post/smolnyj-potratit-na-tualetnuyu-bumagu-i-bumazhnye-polotencza-dlya-svoih-nuzhd-28-mln-rublej-za-god/
Основными статьями расходов Смольного в декабре 2022 года стали визитки, туалетная бумага и журналы иноагентов
https://vk.com/@news.lenobl-rss-517107195-643345426

136.

Соль, туалетная бумага и доступ к текстам иноагентов: на что Смольный потратил 12 миллионов
https://dzen.ru/a/Y712_InF-ztSXaLB
«Где деньги, Зин?»: на что потратят «новогодние» 110 млн в Петербурге
Подробнее: https://peterburg2.ru/articles/gde-dengi-zin-na-chto-potratyat-novogodnie-110-mln-v-peterburge-83627.html
А на проект армейский быстро-собираемого железнодорожного моста для морских пехотинцев из Республики Крым не нашлось 400 тыс рубле не нашли депутаты ЗакСа
СПб
Не нашлось денег для фронта . Для армейского моста денег нету никогда !
Зато в КНР и США спроектировали, испытали, и собрали мост пролетом 54 метра за 24 часа в 2022 году для Китайской и Американской армии и для критических ситуаций В
США Минтрас США финансировал проект сборного моста В КНР МЧС Китая
Большое спасибо!
Отправленное 18.03.2023 Вами письмо в электронной форме за номером ID=9932470 будет доставлено и с момента поступления в Администрацию Президента Российской
Федерации зарегистрировано в течение трех дней.
Президенту Российской Федерации
:
Фамилия, имя, отчество: Мажиев Хасан Нажоевич
Организация: Организация "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН 2014000780
Адрес электронной почты: [email protected]
Телефон: 8126947810
Тип: обращение
Текст
Редакция газеты Армия Защитников Отечество по по просьбе Минстроя ЖКХ направляет пояснительную записку для включения в НИОКР на 2023 разработку проекта
быстровозводимого железнодорожного моста пролетом 30 метров, грузоподъемность 60 тонн , время сборки автомобильного и железнодорожного моста 24 часа с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно ( серия 1.460.3-14 ГПИ Ленпроектстальконструкцияч) для системы несущих
элементов проезжей части сборно-разборного надвижного пролетного строения моста с о сдвигой фрикционо-демпфирующей жесткостью с большими перемещениями и
приспособляемости балки-фермы с упруго пластическими шарнирами проф дтн ПГУПС А М Уздина пролетного строения моста
Отправлено: 18 марта 2023 года, 20:05

137.

Ваше обращение в адрес Правительства Российской Федерации поступило на почтовый сервер и будет рассмотрено отделом по работе с обращениями граждан. Номер Вашего
обращения 2090074.
Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 24 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро
собираемого китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых
автомобилей, из пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным
бетонным настилом и натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.

138.

СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
УДК 693.98
РАСЧЕТ УПРУГОППЛАСТИЧЕСКОГО СТРУКТУРНОГО СБОРОНО-РАЗБОРОНОГО МОСТА НА ОСНОВЕ ТРЕХГРАННОЙ МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ на напряженно
деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и приспособляемость на пример расчет китайского
моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для армейского быстро собираемого моста, для
чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро собираемого китайского моста 152 kN ), для
использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых автомобилей, из пластинчато-балочных

139.

стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным бетонным настилом и натяжными элементами
верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.
Леоненко А.В. научный руководитель канд. техн. наук Деордиев С.В.
Сибирский федеральный университет

140.

141.

142.

143.

Метод предельного равновесия для расчета в ПK SCAD ( сдвиговая прочность СП16.1330.2011 SCAD п.7.1.1 придельная поперечная сила ) статически неопределенных
упругопластинчатых ферм ( пластинчато –балочных ситемам ) с большими перемещениями на прельеное равновесие и приспособляемость на основе изобретений проф
А.М.Уздина ( №№ 1143895,, 1168755, 1174616, 255 0777, 2010136746, 1760020, 165076, 154506, 858604 ) [email protected] [email protected] т
(812) 694-78-10
Секция III. Механика деформируемого твердого тела - 2. Теория пластичности и
ползучести Съезд 21-25 августа 2023 Политехнический Университет Петера Великого Доклад СПб ГАСУ XIII Всероссийский съезд по фундаментальным проблемам
теоретической и прикладной механики, Санкт-Петербург, 21-25 августа 2023 года тед./факс: (812) 694-78-10 [email protected] [email protected]
[email protected]
Уворованная ТЕОРИИ ТРЕНИЯ, РАСЧЕТЫ И ТЕХНОЛОГИЯ ФПС, патенты ЛИИЖТа , изобретенные в СССР проф. дтн ПГУПС А.М.Уздиным и внедренная чужими в США, КНР:
паразитами- глобалистами сатанистами США, КНР - разворованная Страна СССР СОЕДИНЕНИЙ на сдвих Application of BRB to Seismic Mitigation of Steel Truss Arch Bridge
Subjected to Near-Fault Ground Motions

144.

Теория и практика применения пластической деформаций и удерживания изгиба пролетного строения моста, при напряженно деформируемом стоянии автомобильного
моста с использованием опыта китайских и американских инженеров для восстановления разрушенных мостов во время специальной военной опрераци в Одесской области
( 8 баллов сейсмичность ) и на Украине.
Тема 2. Применение BRB для смягчения сейсмических воздействий на арочных мостах из стальных ферм, подверженный колебаниям грунта вблизи разлома в г.Одесса.
(Украина)
Application of BRB to Seismic Mitigation of Steel Truss Arch Bridge Subjected to Near-Fault Ground Motions
Сейсмическое проектирование мостов против движений грунта вблизи разломов с использованием комбинированных систем сейсмоизоляции и ограничения LRBs и CDRs
Seismic Design of Bridges against Near-Fault Ground Motions Using Combined Seismic Isolation and Restraining Systems of LRBs and CDRs
Оценка динамического отклика длиннопролетных армированных арочных мостов, подверженных колебаниям грунта в ближнем и дальнем поле
Dynamic Response Evaluation of Long-Span Reinforced Arch Bridges Subjected to Near- and Far-Field Ground Motions

145.

В этой статье изучается сейсмический отклик арочного моста из стальной фермы, подверженного колебаниям грунта вблизи разлома. Затем предложена и подтверждена идея
применения удерживающих изгиб скоб (BRBs) к арочному мосту со стальной фермой в зонах вблизи разломов. Во-первых, идентифицируются и различаются основные
характеристики движений грунта вблизи разломов. Кроме того, сейсмический отклик большого пролета для Одесской области ( Украина )
Секция III. Механика деформируемого твердого тела - 2. Теория пластичности и ползучести 21-25 августа 2023 Политехнический Университет Петера Великого Доклад СПб
ГАСУ XIII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, Санкт-Петербург, 21-25 августа 2023 года тед./факс: (812) 694-78-10
[email protected] [email protected] [email protected]
Development of lightweight emergency bridge using GFRP -metal composite plate-truss girder

146.

Редакция газеты «Армия Защитников Отечества» при СПб ГАСУ сообщает о разработанной в КНР , США конструкции легкого аварийного автомобильного моста,
состоящего из стеклопластиковой металлической композитной плиты–ферменной балки и имеющего пролет 30 м смонтированного за 24 часа в Китае (КНР) . Указанный мост
был спроектирован на основе оптимизации оригинального 12-метрового образца моста построенного в КНР, США в 2019 г. Разработанный таким образом мост очень легкий,
конструктивно прочным, с возможностью модульной реализации и представлять собой конструкцию, которая требует меньше времени при сборке моста в полевых условиях .
Дирекцией информационного агентство «Русской Народной Дружной» выполнен РАСЧЕТ УПРУГОППЛАСТИЧЕСКОГО СТРУКТУРНОГО СБОРОНО РАЗБОРОНОГО МОСТА НА
ОСНОВЕ ТРЕХГРАННОЙ БЛОК-ФЕРМЫ на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие
и приспособляемость , по чертежам китайским и американских инженеров , уже построенных из упругопластических стальных ферм выполненных из сверхлегких,
сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокон, для армейского быстро собираемого моста, для чрезвычайных ситуациях ,
длинною 24 метра , грузоподъемностью 5 тонн из трубчатых GFRP-элементов в КНР [email protected] [email protected] [email protected]
[email protected] [email protected] [email protected] (996) 798-26-54

147.

148.

149.

150.

151.

Заявление(применение) BRB к Сейсмическому Уменьшению Стального Моста Арки(дуги) Связки, подвергнутого Почти Движениям Основания(земли) Ошибки
Древесина всегда была одним из наиболее распространённых материалов используемых для строительства на территории нашей страны. Это обусловлено не только тем, что
она всегда была и остаётся самым доступным и сравнительно недорогим материалом, но и наличием целого ряда других преимуществ по сравнению с другими
традиционными материалами. Древесина имеет высокие прочностные характеристики при достаточно небольшой плотности, а значит и небольшом собственном весе, что в
свою очередь исключает необходимость сооружения массивных и дорогостоящих фундаментов. Кроме того к положительным свойствам древесины как строительного
материала относятся: низкая теплопроводность, способностью противостоять климатическим воздействиям, воздухопроницаемость, экологическая чистота, а также
природной красота и декоративностью, что для современных строений играет немаловажную роль.
Деревянные структуры обладают рядом преимуществ, правильное использование которых позволяет повысить экономическую эффективность по сравнению с традиционными
решениями. К преимуществам относятся: пространственность работы системы; повышенная надёжность от внезапных разрушений; возможность перекрытия больших пролётов;
удобство проектирования подвесных потолков; максимальная унификация узлов и элементов; существенное снижение транспортных затрат; возможность использования
совершенных методов монтажа-сборки на земле и подъёма покрытия крупными блоками; архитектурная выразительность и возможность применения для зданий различного
назначения.
В качестве объекта исследования и компоновки структурного покрытия принята металлодеревянная блок-ферма пролетом 18 метров (рис. 1). Конструкция блок-фермы
представляет собой двускатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит, пространственная решетка
регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через
опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой металлическим элементом нижнего пояса, средний элемент нижнего пояса выполнен из
круглой стали, также в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие опорные узлы со
средним стальным элементом нижнего пояса *1+

152.

Рис. 1. Блок ферма пролетом 18м
Структурное покрытие представляет собой совокупность одиночных блок-ферм связанных между собой в узлах примыкания раскосов решетки к верхнему поясу и установки
дополнительных затяжек между узлами раскосов, что позволяет комбинировать структурные покрытия различных пролетов.
С помощью программного комплекса SCAD v.11.5, реализующий конечно-элементное моделирование были проведены расчеты различных вариантов структур пролетами 6, 9,
12, и 15 метров. Расчет структурной конструкции блок-фермы проводился на основное сочетание нагрузок, состоящее из постоянных и кратковременных нагрузок. На основе
полученных результатов расчета составлена сводная таблица усилий и напряжений различных элементов структурного покрытия (таблица 1).
Таблица 1 – Таблица усилий и напряжений
Пролет
структуры
Мах.сжимающие
усилие раскоса,
кН (напряжение
МПа)
Мах.растягивающее
усилие раскоса, кН
(напряжение МПа)
Мах.усилие в затяжке,
кН (напряжение МПа)
Мах.перемещение, мм

153.

6
120,15 (7,68)
99,06 (6,34)
244,58 (240,4)
46,03
9
183,95 (11,16)
159,9 (10,23)
280,36 (275,58)
57,44
12
254,1 (15,56)
215,47 (12,73)
331,54 (325,88)
73,34
15
296,77 (18,99)
264,35 (13,79)
398,92 (392,12)
98,26
Проведенный анализ структурных покрытия пролетами 6, 9, 12, 15 метров показывает, что более оптимально конструкция работает при относительно небольших пролетах.
Увеличение пролета структуры приводит к увеличению напряжений и деформаций конструкции. Использование структурных покрытий больших пролетов приводят к
значительному повышению собственного веса конструкции и нерациональному использованию материала. Наиболее оптимальным вариантом структурного покрытия является
пролет структуры 18 х 9 метров (рис 2.).
Предлагаемая конструкция представляет собой структуру образованную посредством соединения отдельных блок-ферм, размерами в плане 18х9м, в единый конструктивный
элемент покрытия шарнирно опертый по углам.

154.

Рис. 2 Структурное покрытие размерами 18 х 9 метров
В настоящее время проводится работа по дальнейшему решению задачи применения металлодеревянных структурных покрытий в условиях повышенной сейсмической
опасности.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Инжутов И.С.; Деордиев С.В.; Дмитриев П.А.; Енджиевский З.Л.; Чернышов С.А Патент на изобретение № 2136822 от 10.09.1999 г.
Испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина
проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" )
для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС
А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ
организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя
напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году
и испозования опыта Китайских инженерорв из КНР, расчеты и испытание узлов структутрной фермы кторый прилагаются ниже организаций "Сейсмофонд" при СПб ГАСУ

155.

156.

157.

158.

159.

160.

161.

162.

Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро
собираемого китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых
автомобилей, из пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным
бетонным настилом и натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.
(19)
RU
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(11)
2 228 415
(13)
C2
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,

163.

(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
Филиппов А.П.
(45) Опубликовано: 10.05.2004 Бюл. № 13
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная академия
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р // Информ.
листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1, 07.01.1987. RU
2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический
результат - повышение прочности и жесткости за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного
напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический
элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов
и других аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к
которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней решетки, нижнего пояса. Она

164.

снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего
пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс
П-образного сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских
асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель из полистирольного
пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой
регулярного типа, выполненной из деревянных раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний
пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за
счет ползучести и температурно-влажностных деформаций в древесине и температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия,
включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через
металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в
себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую
нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, и между ними винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания
“следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь ведет к
повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через
металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент соединения раскосов 3,

165.

имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3
размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя
фасонками 5, присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через
шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в
древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в
свою очередь позволяет создать экономичную конструкцию за счет повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический
элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две

166.

шайбы, выполненные из швеллера, и между ними винтовая пружина.

167.

168.

169.

170.

171.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ 2188287

172.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
(11)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 188 287
(13)
C2
(51) МПК
E04C 3/04 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 4 год с 28.06.2003 по 27.06.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000117116/03, 27.06.2000
(24) Дата начала отсчета срока действия патента:
27.06.2000
(45) Опубликовано: 27.08.2002 Бюл. № 24
(56) Список документов, цитированных в отчете о поиске: RU 8716 U1, 16.12.1998. SU 727790 А,
29.04.1980. SU 1255697 А1, 07.09.1986. US 1959756 А, 22.06.1934. GB 898605 А, 14.06.1962.
(71) Заявитель(и):
Томский государственный архитектурно-строительный университет
(72) Автор(ы):
Копытов М.М.,
Ерохин К.А.,
Матвеев А.В.,
Мелехин Е.А.

173.

Адрес для переписки:
634003, г.Томск, 3, пл. Соляная, 2, ТГАСУ, патентный отдел
(73) Патентообладатель(и):
Томский государственный архитектурно-строительный университет
(54) ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
(57) Реферат:
Изобретение относится к области строительства, а более конкретно к несущим металлическим конструкциям покрытия производственных и общественных зданий. Каждая
отдельная трехгранная ферма покрытия состоит из двух верхних коробчатых поясов и одного нижнего, также коробчатого пояса, соединенных между собой раскосной
решеткой. Все коробчатые пояса имеют пентагональное сечение и выполнены каждый из жестко соединенных между собой швеллера и уголка. Раскосная решетка выполнена
из одиночных уголков, прикрепленных полками к полкам поясных уголков. Стенки швеллеров верхних поясов расположены вертикально, а стенка нижнего швеллера
горизонтально. Верхние пояса объединены по полкам швеллеров профнастилом. За счет вертикальной ориентации стенок швеллеров верхних поясов повышается значение
момента сопротивления и радиуса инерции пентагонального сечения. Технический результат изобретения заключается в повышении несущей способности трехгранной фермы
и сокращение количества элементов в покрытии. 3 ил.
Изобретение относится к строительным металлическим конструкциям, а более конкретно к несущим конструкциям покрытия производственных и общественных зданий, и
может быть использовано для подвески технологических устройств, а также в качестве перекрытий, элементов комбинированных систем.
Известны устройства бесфасоночных покрытий из трехгранных ферм с поясами и наклонной решеткой из круглых труб *1+. По верхним поясам этих ферм уложены прогоны, на
которые опираются ограждающие конструкции. Недостатком таких покрытий является большое количество прогонов и сложность выполнения пространственных узлов
сопряжении труб, что ведет к повышенному расходу металла и трудоемкости изготовления. Известны также устройства беспрогонных покрытий из трехгранных ферм *2+ с
коробчатым сечением двух верхних поясов, образованных из состыкованных уголков и нижним поясом из одиночного уголка, к которым с помощью фасонок прикреплены
раскосы. Недостатком таких покрытий является большое количество фасонок, необходимость делать вырезы в полках уголков для пропуска фасонок, что также ведет к
повышенному расходу металла и трудоемкости изготовления.
Наиболее близким к заявляемому покрытию является складчатое покрытие из наклонных ферм *3+. Оно состоит из непрерывной системы плоских ферм, наклоненных под углом
45o к вертикальной плоскости. Каждая смежная ферма имеет общий пояс: либо верхний, представляющий собой пятигранный профиль сечения, образованный из
состыкованного швеллера и уголка; либо нижний, образованный из одиночного уголка, ориентированного обушком вверх. К поясам торцами приварены раскосы из одиночных
уголков. Это позволяет реализовать беспрогонное и бесфасоночное решение кровельного покрытия и является экономичней аналогов. Однако конструкция такого покрытия

174.

вынуждает ориентировать пятигранный профиль сечения с горизонтально расположенной стенкой швеллера, что необходимо для образования складчатой системы. Анализ
показывает, что при такой ориентации поясов на 25...45% снижается прочность сжато-изогнутого стержня верхнего пояса, т.к. момент сопротивления и радиус инерции сечения
оказываются меньше, чем при ортогональной ориентации этого же сечения. Кроме того, непрерывная система складчатого покрытия требует большого количества наклонных
ферм и необходимость выполнения вручную большого объема работ на строительной площадке по укрупнительной сборке конструкции. Раскосная решетка таких ферм слабо
нагружена и имеет большой запас несущей способности, но без нее невозможно образовать конструктивную форму складчатого покрытия. Все это сопровождается
повышенным расходом металла и большой трудоемкостью изготовления.
Задача изобретения состоит в том, чтобы снизить металлоемкость и трудоемкость изготовления покрытия при сохранении его несущей способности.
Задача решается следующим образом. В покрытии из трехгранных ферм, объединенных профнастилом, каждая из которых включает верхние коробчатые пояса пентагонального
сечения из жестко соединенных между собой швеллеров и уголков, нижний пояс, содержащий уголок, направленный обушком вверх, и раскосную решетку, прикрепленную к
полкам поясных уголков, согласно изобретению нижний пояс снабжен швеллером, жестко соединенным с уголком и образующий с ним пентагональное сечение; при этом
стенки швеллеров верхних и нижнего пояса ориентированы ортогонально.
Таким образом, заявляемое устройство отличается от прототипа тем, что:
- нижний пояс снабжен швеллером, жестко соединенным с уголком и образующим с ним пентагональное сечение;
- стенки швеллеров верхних и нижнего поясов распложены ортогонально.
Это говорит о "новизне" заявляемого устройства.
Так как нижний пояс выполнен из пентагонального сечения, а полки швеллеров верхних и нижнего пояса ориентированы ортогонально, это позволило увеличить площадь
растянутого нижнего пояса с одновременным увеличением моментов сопротивления и радиусов инерции сжато-изогнутых верхних поясов, т.е. повысить несущую способность
отдельной фермы. При этом большой запас несущей способности раскосной решетки уменьшится и она станет работать эффективней, что и позволило дискретизировать
систему несущих конструкций покрытия из наклонных ферм. Благодаря качественному изменению конструктивной формы непрерывная складчатая система покрытия
превратилась в блочную, состоящую из трехгранных ферм со свободным пространством между ними. Это позволяет существенно сократить количество элементов в покрытии,
повысить несущую способность поясов конструкции за счет оптимальной ориентации их сечений и в совокупности существенно снизить трудоемкость изготовления,
металлоемкость и стоимость.
Предлагаемая конструкция позволяет осуществить полное заводское изготовление и сборку трехгранной фермы, удобна при транспортировке и монтаже. Таким образом, при
сохранении и соблюдении всех необходимых рабочих параметров заявляемая конструкция требует в сравнении с прототипом меньше металла, меньшего количества
элементов, что в итоге приводит к снижению металлоемкости, трудоемкости и стоимости при сохранении несущей способности покрытия.
На фигуре 1 изображен общий вид покрытия из трехгранных ферм; на фигуре 2 изображен общий вид наклонной плоскости трехгранной фермы; на фигуре 3 - поперечный
разрез трехгранной фермы.
Трехгранная ферма содержит два верхних пояса 1, нижний пояс 2 и раскосы 3. Верхний пояс 1 состоит из состыкованного швеллера и уголка при вертикальной ориентации
стенки швеллера; нижний пояс 2 - то же при горизонтальной ориентации стенки швеллера; раскосы 3 - из одиночных уголков. Стержни раскосов 3 прикреплены торцами к
полкам поясных уголков (фиг.3) посредством сварки. Верхние пояса трехгранных ферм в горизонтальной плоскости связаны сплошным профнастилом 4 (фиг.1), который
завершает формирование покрытия из трехгранных ферм. Между смежными трехгранными фермами не требуется размещения элементов 2 и 3 (фиг.1); достаточно перекрыть
это свободное пространство настилом 4.

175.

Изготовление покрытия из трехгранных ферм производят следующим образом: швеллер и уголок стыкуют между собой продольными сварными швами и образуют элементы
поясов 1 и 2 пятигранного профиля сечения. Два верхних пояса 1 устанавливают с вертикальной ориентацией стенки швеллера (как показано на фиг. 3); нижний пояс 2 - с
горизонтальной ориентацией стенки швеллера. При этом полки швеллеров верхних поясов служат опорами для настила, а наклон плоскостей поясных уголков пятигранных
профилей 1 и 2 соответствует требуемым плоскостям элементов раскосной решетки 3. Элементы раскосной решетки 3, выполненные из одиночных уголков, торцами
приваривают к полкам поясных уголков соответственно верхнего 1 и нижнего 2 поясов. Образуется бесфасоночная пространственная трехгранная ферма полной заводской
готовности. Эта ферма удобна при транспортировке: ее габариты и устройство позволяют перевозить одновременно несколько ферм за счет их укладки "елочкой" в
транспортное средство. На монтажной площадке к верхним поясам пространственной фермы без прогонов устанавливается и крепится профнастил 4 и образуется трехгранный
блок покрытия. Он устанавливается в проектное положение.
Следующий блок покрытия устанавливается так, что между ними образуется свободное пространство, не заполненное стержневыми элементами: достаточно перекрыть его
лишь профнастилом 4, который одновременно совмещает несущие и ограждающие функции. Это позволяет сократить количество элементов в покрытии из трехгранных ферм,
снизить металлоемкость, трудоемкость и стоимость. Конвейерная сборка и блочный монтаж дополнительно упрощают процесс изготовления и монтажа, делают его
технологичным и менее трудоемким.
Покрытие из трехгранных ферм работает как пространственная стержневая система с неразрезными поясами и примыкающими раскосами. Верхний пояс 1 работает как сжатоизогнутый стержень. Максимальное значение изгибающего момента и радиуса инерции соответствует вертикальной плоскости, поэтому вертикальной ориентацией стенки
швеллера достигается максимальное значение момента сопротивления и радиус инерции, которые определяют прочность при сжатии с изгибом, т.е. достигается максимальная
несущая способность сжато-изогнутого пятигранного сечения, и оно работает с максимальной эффективностью. Нижний пояс 2 работает как растянутый стержень;
примыкающие раскосы работают в условиях растяжения или сжатия. Профнастил работает на изгиб как однопролетная или многопролетная гофрированная пластина. Покрытие
из трехгранных ферм отличается повышенной пространственной жесткостью как на стадии монтажа, так и в условиях эксплуатации и является индустриальной и технологичной
конструктивной формой.
Источники информации
1. Беленя Е.И. и др. Металлические конструкции. Специальный курс. - М.: 1982, с. 57...60.
2. Авт. св. СССР 1544921, М.кл. Е 04 С 3/04.
3. Свид. на полез модель 8716, МПК Е 04 С 3/04.
Формула изобретения
Покрытие из трехгранных ферм, объединенных профнастилом, каждая из которых включает верхние коробчатые пояса пентагонального сечения, из жестко соединенных между
собой швеллеров и уголков, нижний пояс, содержащий уголок, направленный обушком вверх, и раскосную решетку, прикрепленную к полкам поясных уголков, отличающееся
тем, что нижний пояс снабжен швеллером, жестко соединенным с уголком и образующим с ним пентагональное сечение, при этом стенки швеллеров верхних и нижнего поясов
размещены ортогонально.

176.

ТРЕХГРАННАЯ БЛОК-ФЕРМА 2 136822 ТРЕХГРАННАЯ БЛОК-ФЕРМА Красноярская государственная архитектурно строительная академия
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)

177.

2 136 822
(13)
C1
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК
E04C 3/17 (1995.01)
E04B 1/19 (1995.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 3 год с 10.09.1999 по 09.09.2000. Патент перешел в общественное
достояние.
(21)(22) Заявка: 97115691/03,
09.09.1997
(24) Дата начала отсчета срока
действия патента:
09.09.1997
(45) Опубликовано: 10.09.1999
(56) Список документов,
цитированных в отчете о
поиске: Дмитриев П.А. и др.
Индустриальные
пространственные деревянные
конструкции. - НИСИ
им.В.В.Куйбышева, 1981, с. 88. SU
(71) Заявитель(и):
Красноярская государственная
архитектурно-строительная
академия
(72) Автор(ы):
Инжутов И.С.,
Деордиев С.В.,
Дмитриев П.А.,
Енджиевский З.Л.,
Чернышов С.А.
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная

178.

1281651 A, 07.01.87. FR 2551789 A,
15.03.85. SU 65455 A, 31.12.45. US
4389829 A, 28.06.83.
академия
Адрес для переписки:
660041, Красноярск,
пр.Свободный 82, Ректору
КрасГАСА Наделяеву В.Д.
(54) ТРЕХГРАННАЯ БЛОК-ФЕРМА
(57) Реферат:
Трехгранная блок-ферма покрытия относится к строительству и может быть использована для соединения стержней пространственных конструкций зданий и сооружений.
Технический результат изобретения заключается в достижении наиболее эффективной работы верхнего пояса с нижним, экономии материалов. Блок-ферма покрытия,
представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит, пространственная решетка
регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через
опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из
круглой стали, в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие опорные узлы со средним

179.

стальным элементом нижнего пояса, 3 ил.
Изобретение относится к области строительства, а именно к конструкциям покрытия.
Известна панель покрытия треугольного очертания, образованная двумя плитами, шарнирно соединенными между собой в коньке и затяжкой с V-образными разветвлениями
по концам в уровне опорных узлов. Плиты подкреплены двумя сжатыми раскосами и двумя растянутыми (с V-образным планом) раскосами. Поперечное сечение панели треугольное. Плиты состоят из нижних (основных несущих) ребер, фанерной обшивки, поперечных ребер, размещенных на обшивке сверху, продольных элементов обрамления
(см. SU 1281651 A, 07.01.87).
Недостатком этой конструкции является большая материалоемкость плит, обусловленная развитой свободной длиной нижних ребер.
Наиболее близкой по техническому решению к предлагаемому изобретению (прототипом) является блок-ферма покрытия, представляющая собой двухскатную
четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного

180.

типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы.
Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали (см.
Дмитриев П.А. и др. "Индустриальные пространственные деревянные конструкции", НИСИ им. В.В. Куйбышева, 1981, с. 88).
Недостатком конструкции прототипа является неэффективная работа верхнего пояса с нижним, т.к. передача усилий с верхнего пояса на нижний передается под большим углом
к направлению волокон древесины, что определяет значительные деформации в узловом сопряжении. Прочность древесины вдоль волокон существенно выше, чем поперек.
Работа крайних раскосов на растяжение не позволяет выполнить элементы решетки взаимозаменяемыми, что является причиной повышенной материалоемкости конструкции.
Целью изобретения является эффективная работа блок-фермы, экономия материалов.
Цель достигается тем, что в блок-ферме покрытия, представляющем собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из
однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых
раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой деревянным
элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали, введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное
разветвление и соединяющие напрямую опорные узлы со средним стальным элементом нижнего пояса.
Благодаря введению крайних стальных стержней нижнего пояса, имеющих по концам V-образное разветвление, улучшилась работы блок-фермы за счет того, что усилие с
нижнего на основные ребра верхнего пояса передается под небольшим углом к направлению волокон древесины, что определяет незначительные деформации в узловом
сопряжении, в связи с этим обусловлена возможность уменьшить размеры поперечных сечений раскосов, а следовательно, достичь экономии древесины.
На фиг. 1 изображена блок-ферма покрытия; на фиг. 2 - совмещенные вид и разрез в плане; на фиг. 3 - совмещенный поперечный разрез.
Блок-ферма покрытия включает верхний пояс, состоящий из однотипных клеефанерных плит 1, имеющих каркас из основных нижних ребер 2, и прикрепленной к нему сверху
шурупами обшивки 3 из плоских асбестоцементных листов. Между вспомогательными дощатыми ребрами 4, расположенными вдоль пролета, на обшивку укладывается
утеплитель 5 из полистирольного пенопласта марки ПСБ. Гидроизоляция устраивается из трех слоев рубероида по выравнивающему слою из стеклоткани. Диафрагмы 7
находятся между основными нижними ребрами 2 в сечениях, совпадающих с узлами сопряжения верхнего пояса 1 конструкции с раскосами 8. Верхний пояс объединен с
нижним пространственной решеткой регулярного типа, выполненной из деревянных поставленных V-образно взаимозаменяемых раскосов 8 квадратного сечения. Нижние узлы
9 крайних и средних раскосов соединены между собой деревянным элементом 10 нижнего пояса. Средний элемент 11 нижнего пояса выполнен из круглой стали. Крайние
стальные стержни 13 нижнего пояса имеют по концам V-образное разветвление и напрямую соединяют опорные узлы со средним стальным элементом нижнего пояса 11.
Разветвление расперто стержнем 12.
Сборка блок-фермы осуществляется на строительной площадке. В начале собирается верхний пояс из однотипных клеефанерных плит 1, затем плиты стыкуются в коньковом
узле. Дальше к плитам навешиваются деревянные взаимозаменяемые раскосы 8. После этого следует выполнение узлов 9 нижнего пояса и в конце производится крепление
крайних стальных стержней 13, имеющих по концам V-образное разветвление и соединяющих напрямую опорные узлы со средним стальным элементом нижнего пояса 11.
Положительные свойства разработанного технического решения заключаются в эффективной работе блок-фермы за счет введения крайних стальных стержней нижнего пояса,
которые напрямую соединяют опорные узлы со средними стальными элементами нижнего пояса. Вследствие этого при нагружениях по всему пролету возникают сжимающие
усилия во всех раскосах. Усилие с нижнего пояса на основные ребра верхнего пояса передается под небольшим углом к направлению волокон древесины, что определяет
незначительные деформации в узловом сопряжении. В связи с этим обусловлена возможность сделать раскосы взаимозаменяемыми, уменьшить размер поперечного сечения,
а следовательно, достичь экономии древесины.

181.

В сравнении с прототипом, данное техническое решение позволяет снизить расход материалов на 12 - 15%, улучшить условия работы верхнего пояса благодаря снижению
величин изгибающих моментов и уменьшению угла между осью передачи продольного усилия и направлением волокон древесины с нижнего пояса на основные работы
верхнего.
Формула изобретения
Блок-ферма покрытия представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит,
пространственная решетка регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним
поясом раскосами через опорные узлы, нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего
пояса выполнен из круглой стали, отличающаяся тем, что в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и
напрямую соединяющие опорные узлы со средним стальным элементом нижнего пояса.

182.

СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ 2503783

183.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(11)
2 503 783
(13)
C1
(51) МПК
E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 26.12.2021)
Пошлина:
учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока
действия патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Закрытое акционерное общество "Казанский

184.

заявки: 25.06.2012
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром") (RU)
(45)
Опубликовано: 10.01.2014 Бюл.
№1
(56) Список документов,
цитированных в отчете о
поиске: RU 103115 U1, 27.03.2011.
RU 2354789 C1, 10.05.2009. AU
568956 B2, 14.01.1988.
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с
поясами. Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел
состоит из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса. Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем
укладывают нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы. После чего к поясам встык
приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм. Затем на узлы полуфермы
накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или полос. Полосы преднапрягают, стягивая их в
середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм из прокатных профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной решетки с сечением из коробчатых профилей, заключающийся
в соединении сваркой односрезных концов раскосов с поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16, 7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими раскосами, выполняемой из прямого коробчатого пояса,
заключающийся в соединении сваркой односрезных концов двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей.

185.

Серия 1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления ферм с треугольной или раскосной решеткой, т.к.
ширина сходящихся в узлах стержней решетки ферм и поясов выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости изготовления
фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решеткой,
заключающийся в соединении сваркой односрезных концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают верхний
пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении
плоскости стенок верхнего пояса и приваренную перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шириной равной верхнему
поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни решетки восходящего направления
полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления,
выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы преднапрягают стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности изготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемых из коробчатых профилей равной ширины «b» (Фиг.1). Все
восходящие раскосы фермы с треугольной или раскосой решеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или полос (Фиг.1). Остальные раскосы 5 фермы нисходящего
направления изготавливают из двух полос, которые накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следующей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: укладывают верхний пояс 1 из коробчатого профиля (Фиг.2), который содержет фланцевый
монтажный стык 6, и опорный узел полуфермы (Фиг.2), состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и приваренную
перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с шириной пояса 2 равного ширине верхнего пояса 1, который содержит
фланцевый монтажный стык 9 нижнего пояса 2 полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3, выполняя
их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы накладывают внахлест раскосы 4 и 5 решетки нисходящего направления
(Фиг.4), выполняя их из двух параллельных неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в узле раскосов, кроме того при изготовлении нисходящих
раскосов нахлестом на узлы полуферм происходит усиление стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении
сваркой односрезных концов раскосов с поясами, отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчатого профиля,
содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса,
и приваренную перпендикулярно фасонкам опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который содержит
фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни решетки восходящего направления полуфермы, выполняя их

186.

коробчатыми и равными по ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.

187.

188.

189.

190.

191.

УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ 2228415
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19)
RU
(11)
2 228 415
(13)
C2
(51) МПК

192.

E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(45) Опубликовано: 10.05.2004 Бюл. № 13
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р // Информ.
листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1, 07.01.1987. RU
2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,
Филиппов А.П.
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная академия
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический
результат - повышение прочности и жесткости за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного
напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический
элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.

193.

Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов
и других аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к
которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней решетки, нижнего пояса. Она
снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего
пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс
П-образного сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских
асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель из полистирольного
пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой
регулярного типа, выполненной из деревянных раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний
пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за
счет ползучести и температурно-влажностных деформаций в древесине и температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия,
включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через
металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов,

194.

имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в
себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую
нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, и между ними винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания
“следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь ведет к
повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через
металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент соединения раскосов 3,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3
размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя
фасонками 5, присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через
шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в
древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в
свою очередь позволяет создать экономичную конструкцию за счет повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический
элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к

195.

металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две
шайбы, выполненные из швеллера, и между ними винтовая пружина.

196.

197.

198.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ 2208103
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 208 103
(13)

199.

C1
(51) МПК
E04C 3/10 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 13.08.2022)
Пошлина:
Патент перешел в общественное достояние.
(21)(22) Заявка: 2002121993/03, 12.08.2002
(24) Дата начала отсчета срока действия патента:
12.08.2002
(45) Опубликовано: 10.07.2003 Бюл. № 19
(56) Список документов, цитированных в отчете о
поиске: БЕЛЕНЯ Е.И. Предварительно напряженные несущие
металлические конструкции. - М.: Стройиздат, 1975, с.250-252,
(рис.V.21). SU 802479 A, 15.02.1981. SU 910985 A, 09.03.1982. GB
2174430 A, 05.11.1986. US 4353190 A1, 12.10.1982. SU 1308731 A1,
07.05.1987.
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный
(71) Заявитель(и):
Петербургский государственный университет путей сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный университет путей сообщения

200.

отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпренгельных блоков покрытия,
применяемых в качестве несущих конструкций покрытий зданий и сооружений и т. п. Технический результат - снижение трудоемкости монтажа предварительно напряженных
шпренгельных блоков покрытия. Способ монтажа предварительно напряженного шпренгельного блока покрытия включает крепление к концам элемента жесткости приопорных
хомутов, объединенных затяжкой, и установку диафрагм шпренгеля. Приопорные хомуты пропускают в петли на концах затяжки. Затем направляющие на концах диафрагм
шпренгеля упирают в сегментообразные торцы стопоров затяжки. Ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их
временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами
криволинейных направляющих. После этого устанавливают фиксаторы и демонтируют временную затяжку. 8 ил.
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпренгельных блоков покрытия,
применяемых в качестве несущих конструкций покрытий зданий и сооружений и т. п.
Известен способ предварительного напряжения шпренгельных балок, преимущественно большепролетных покрытий, включающий установку рычагов, присоединение к их
средним частям концов затяжки и направляющей со стяжными приспособлениями, к которым прикрепляют одни концы рычагов, подвижно соединенные с направляющей, при
этом рычаги выполняют спаренными и соединяют другими концами с предварительно напрягаемой балкой жесткости, а направляющую и концы затяжки размещают между
ними, причем концы затяжки жестко закрепляют к рычагам *1+.
Недостатком известного технического решения является сложность и трудоемкость его осуществления, связанная с необходимостью монтажа мощных рычагов, направляющих,
стяжных приспособлений, а также осуществления прикреплений в местах опирания рычагов на балку жесткости и жесткого закрепления затяжки к рычагам. Кроме того,
известное техническое решение предусматривает объединение затяжки при помощи вставки, помещаемой между спаренными рычагами, что также увеличивает трудоемкость
процесса предварительного напряжения.
Также известен способ монтажа предварительно напряженной несущей конструкции, включающий монтаж элемента жесткости, прикрепление к его торцам гибкой затяжки,
установку средней стойки шпренгеля, после чего производится первый этап натяжения затяжки домкратами двойного действия, закрепленными на концах гибкой затяжки, а
второй этап предварительного натяжения производится посредством удлинения средней стойки шпренгеля, смонтированной на ней винтовой муфтой *2+ (принято за прототип).

201.

Недостатком такого технического решения является повышенная трудоемкость, обусловленная необходимостью присоединения к гибкой затяжке и средней стойке шпренгеля
натяжных устройств (домкратов и стяжной муфты), а также невозможностью демонтажа стяжной муфты, что, в конечном счете, повышает трудоемкость монтажа конструкции в
целом.
Задачей настоящего изобретения является снижение трудоемкости монтажа предварительно напряженных шпренгельных блоков покрытия.
Технический результат достигается тем, что в способе монтажа предварительно напряженного шпренгельного блока покрытия, включающем крепление к концам элемента
жесткости приопорных хомутов, объединенных затяжкой, и установку диафрагм шпренгеля, приопорные хомуты пропускают в петли на концах затяжки, затем направляющие на
концах диафрагм шпренгеля упирают в сегментообразные торцы стопоров затяжки, а ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости
и объединяют их временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с
упорами криволинейных направляющих, после чего устанавливают фиксаторы и демонтируют временную затяжку.
Предлагаемое техническое решение описывается следующими графическими материалами:
- на фиг. 1 приводится общий вид предварительно напряженного шпренгельнго блока (вид по 1-1 на фиг. 2) после монтажа;
- на фиг. 2 - план шпренгельного блока по фиг. 1;
- на фиг. 3 - поперечный разрез по 2-2 на фиг. 2;
- на фиг. 4 - узел А на фиг. 1;
- на фиг. 5 - общий вид предварительно напряженного шпренгельного блока на стадии монтажа;
- на фиг. 6 - узел Б на фиг. 5;
- на фиг. 7 - узел В на фиг. 5;
- на фиг. 8 - вид по 3 - 3 на фиг. 7.
Предлагаемый способ монтажа предварительно напряженного шпренгельного блока покрытия заключается в прикреплении к концам элемента жесткости 1 приопорных
хомутов 2, объединенных затяжкой усиления 3, и установке диафрагм 4 шпренгеля, для чего приопорные хомуты 2 пропускают в петли 5 на концах затяжки усиления 3 и крепят
их к концам элемента жесткости 1 (например, с помощью резьбовых концевиков с гайками), затем направляющие 6 диафрагм 4 шпренгеля упирают в сегментообразные торцы
стопоров 7 затяжки усиления 3, а ригели 8 диафрагм 4 шпренгеля, снабженные прорезями на концах, заводят в криволинейные направляющие 9 элемента жесткости 1 и
объединяют их временной затяжкой 10 с натяжным устройством 11 (например, стяжной муфтой), при помощи которого затем смещают ригели 8 диафрагм 4 шпренгеля
навстречу друг другу до касания с упорами 12 криволинейных направляющих 9, в результате чего диафрагмы 4 шпренгеля поворачиваются относительно точек упора
направляющих 6 диафрагм 4 шпренгеля в стопоры 7 затяжки 3, после чего в отверстия 13 криволинейных направляющих 9 устанавливают фиксаторы 14 и демонтируют
временную затяжку 10.
На концах затяжки 3 устроены петли 5 и стопоры 7, например, в виде спрессованных шайб.
Закрепление временной затяжки 10 к ригелям 8 диафрагм 4 шпренгеля осуществляется, например, с использованием торцевых анкеров.
При стягивании натяжным устройством 11 временной затяжки 10 она укорачивается, что приводит к перемещению ригелей 8 диафрагм 4 шпренгеля навстречу друг другу (в
направлении к середине пролета), при этом ригели 8 перемещаются в направляющих 9 (например, листового типа) вплоть до касания с упорами 12.
При перемещении диафрагм 4 шпренгеля из начального наклонного положения в проектное расстояние между осями элемента жесткости 1 и затяжки 3 увеличивается, что
приводит к появлению в затяжке 3 и приопорных хомутах 2 растягивающих усилий предварительного напряжения.

202.

Стопоры 7 с сегментообразными торцами, смонтированные на затяжке 3, предотвращают смещение направляющих 6 диафрагм 4 шпренгеля и соответственно нижних концов
диафрагм 4 шпренгеля, фиксируя их положение в процессе напряжения временной затяжки 10 натяжным устройством 11. При этом на стопоры 7 воздействуют усилия,
возникающие из-за разности горизонтальных составляющих усилий в затяжке 3 и приопорных хомутах 2.
Торцы стопоров 7 затяжки 3, контактирующие с направляющими диафрагм 4 шпренгеля, выполнены сегментообразными, что позволяет обеспечить поворот диафрагм 4
шпренгеля относительно их точек упора в стопоры 7 затяжки 3 и уменьшить необходимые усилия для перемещения ригелей 8 диафрагм 4 шпренгеля навстречу друг другу, что,
как следствие, приводит к снижению трудоемкости монтажа.
Криволинейные направляющие 9 выполнены по кривым, радиус кривизны которых равен расстоянию от направляющей 6 диафрагмы 4 шпренгеля в месте пропуска затяжки 3
до прорезей ригеля 8 диафрагмы 4 шпренгеля, что позволяет уменьшить дополнительные усилия при перемещении ригеля 8 диафрагмы 4 шпренгеля (повороте диафрагм 4
шпренгеля) по направляющим 9 элемента жесткости 1, и, как следствие, снизить трудоемкость монтажа в целом.
При натяжении временной затяжки 10 натяжным устройством 11 диафрагмы 4 шпренгеля поворачиваются и соответственно угол α между продольной осью диафрагмы 4 и осью
временной затяжки 10 увеличивается, следовательно, усилия во временной затяжке 10 и натяжном устройстве 11, необходимые для перемещения ригелей 8 диафрагмы 4
шпренгеля и равные Fз=Fд•cosα (где Fз - усилие натяжения во временной затяжке 10, Fд - реакция направляющих 9), уменьшаются, что приводит к снижению трудоемкости
процесса предварительного напряжения временной затяжки 10 натяжным устройством 11 и, как следствие, к снижению трудоемкости монтажа всего шпренгельного блока
покрытия в целом.
Кроме того, отпадает необходимость в стационарном натяжном устройстве (стяжной муфте и т. п.), которое остается на установленном предварительно напряженном
шпренгельном блоке покрытия и в дальнейшем не используется.
Демонтируемые временная затяжка 10 и натяжное устройство 11 являются инвентарными элементами многократного применения.
Использование предлагаемого изобретения позволит снизить трудоемкость монтажа предварительно напряженных шпренгельных блоков покрытия на 10... 15%.
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ
1. Авторское свидетельство СССР 802479, Е 04 G 21/12; В 1/22. Исаев П.М. и др. Натяжное устройство преимущественно для предварительного напряжения шпренгельных балок
большепролетных покрытий. - Бюл. 5. - 1981.
2. Беленя Е.И. Предварительно напряженные несущие металлические конструкции. -М.: Стройиздат, 1975. - с. 250...252 (рис. V.21).
Формула изобретения
Способ монтажа предварительно напряженного шпренгельного блока покрытия, включающий крепление к концам элемента жесткости приопорных хомутов, объединенных
затяжкой, и установку диафрагм шпренгеля, отличающийся тем, что приопорные хомуты пропускают в петли на концах затяжки, затем направляющие на концах диафрагм
шпренгеля упирают в сегментообразные торцы стопоров затяжки, а ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их
временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами
криволинейных направляющих, после чего устанавливают фиксаторы и демонтируют временную затяжку.

203.

204.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

205.

RU
(11)
2 188 915
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E04C 3/10 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 17.07.2021)
Пошлина:
учтена за 4 год с 17.07.2004 по 16.07.2005. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2001119753/03, 16.07.2001
(24) Дата начала отсчета срока действия патента:
16.07.2001
(45) Опубликовано: 10.09.2002 Бюл. № 25
(56) Список документов, цитированных в отчете о
поиске: БЕЛЕНЯ Е.И. и др. Металлические конструкции, -М.1982,
с.95, рис.6.14 ж. КИРСАНОВ Н.М. Висячие покрытия
производственных зданий. - М., 1990, с.8, рис.1.1. SU 910985 А,
(71) Заявитель(и):
Петербургский государственный университет путей сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный университет путей сообщения

206.

09.03.1982. GB 2174430 А, 05.11.1986. US 4353190 А1, 12.10.1982.
SU 1308731 А1, 07.05.1987.
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный
отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ШПРЕНГЕЛЬНОЙ РАМЫ
(57) Реферат:
Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть использовано при
возведении несущих каркасов зданий и сооружений, жестких поперечин электрифицированных железных дорог и т.п. Технический результат - упрощение монтажа
предварительно напряженных шпренгельных рам и, как следствие, снижение его трудоемкости. Для этого в способе монтажа предварительно напряженной шпренгельной
рамы, включающем объединение колонн с фундаментами и предварительно напряженным ригелем шпренгельного типа, к балке-распорке ригеля прикрепляют стойки с
вилкообразными наконечниками, а на ее концах устанавливают вилкообразные упоры, затем балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный
подъем, спрессованные на затяжке шайбы заводят за вилкообразные упоры, и опускают ригель, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после
чего ригель перестроповывают и устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом тангенс угла
наклона скошенных поверхностей торцевых башмаков и оголовков колонн при их совмещении равен отношению горизонтальных и вертикальных зазоров между ригелем и

207.

колоннами. 1 з.п.ф-лы, 9 ил.
Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть использовано при
возведении несущих каркасов зданий и сооружений, жестких поперечин электрифицированных железных дорог и т.п.
Известен способ монтажа рамы, заключающийся в предварительном монтаже колонн, ригеля и якорей (анкеров, погруженных в землю, например, гравитационного типа, бутовых, бетонных и т.п., - свайных и др.), к которым присоединяются гибкие ванты, объединяемые с ригелем подвесками, после чего производится предварительное
напряжение вантовой системы натяжными устройствами (например, стяжными муфтами и т.п.) *1+.
Недостатком такого решения является его сложность, обусловленная, в частности, изготовлением и установкой на вантах специальных натяжных устройств и проведением
дополнительных операций, связанных с натяжением вант и регулированием усилий в вантовой системе.
Также известен способ монтажа рамы с предварительно напряженным ригелем, заключающийся: в предварительном монтаже колонн и элемента жесткости ригеля рамы;
присоединении к нему стоек шпренгеля, снабженных на концах направляющими для пропуска гибких затяжек с закреплением их на торцах элемента жесткости; закреплении на
гибкой затяжке натяжных устройств; создание с их помощью в затяжке усилий предварительного напряжения и их регулирования *2+ (принято за прототип).

208.

Недостатком такого решения является его сложность, связанная, в частности, с необходимостью закрепления на гибких затяжках натяжных устройств *3+, проведением операций
по предварительному натяжению гибких затяжек и регулированию усилий в шпренгельной системе. Создание предварительного напряжения в затяжках, кроме того, требует
дополнительных трудозатрат на операции по контролю величины их натяжения и на устройство монтажных подмостей.
Задачей изобретения является упрощение монтажа предварительно напряженных шпренгельных рам и, как следствие, снижение его трудоемкости.
Технический результат достигается тем, что в способе монтажа предварительно напряженной шпренгельной рамы, включающем объединение колонн с фундаментами и
предварительно напряженным ригелем, к балке-распорке ригеля, до ее монтажа в проектное положение, прикрепляют стойки шпренгеля с вилкообразными наконечниками, а
на ее концах устанавливают вилкообразные упоры, затем балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем, спрессованные на затяжке
шайбы заводят за вилкообразные упоры и опускают ригель на временные опоры, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель
перестроповывают и устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом тангенс угла наклона
скошенных поверхностей торцевых башмаков и оголовков колонн принимают равным отношению вертикальных и горизонтальных зазоров между ригелем и колоннами.
Монтаж, включая предварительное напряжение шпренгельной рамы, производится в два этапа.
Первый этап - сборка и предварительное напряжение шпренгельного ригеля рамы. К балке-распорке крепят стойки шпренгеля с вилкообразными наконечниками, а на ее
концах устанавливают вилкообразные упоры. Балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем. Затем к балке-распорке прикрепляют
затяжку, вводя ее в вилкообразные наконечники стоек шпренгеля, а спрессованные на затяжке шайбы заводят за вилкообразные упоры. Положение затяжек в вилкообразных
упорах фиксируют замыкающими фиксаторами (например, шпильками, болтами и т.п.). После чего шпренгельный ригель рамы, включающий балку-распорку, стойки шпренгеля
и затяжку, опускают на временные опоры, размещенные под концами балки-распорки.
Балка-распорка как элемент шпренгельного ригеля воспринимает в основном продольные сжимающие усилия и в связи с этим обладает невысокой изгибной жесткостью. При
строповке в средней части ее длины и промежуточном подъеме балка-распорка деформируется по двухконсольной схеме, при этом концы балки-распорки под действием
собственной массы опускаются, а расстояние между вилкообразными упорами уменьшается, что позволяет завести за них спрессованные шайбы затяжки. В местах крепления
затяжки к вилкообразным упорам устанавливают замыкающие фиксаторы. После установки ригеля на временные опоры, размещенные под концами балки-распорки, и его
расстроповки балка-распорка распрямляется и растягивает гибкую затяжку, создавая в ней усилия предварительного напряжения.
Второй этап - монтаж шпренгельного ригеля, включая предварительное напряжение колонн и дополнительное предварительное напряжение затяжки. На концах балкираспорки шпренгельного ригеля устанавливают торцевые башмаки и прикрепляют к ним концевые упоры затяжки. Так как крепление торцевых башмаков к балке-распорке
выполнено с возможностью их перемещения вдоль оси балки-распорки (болты, прикрепляющие торцевые башмаки к балке-распорке, установлены в овальные отверстия), то
усилий в затяжке на участках между спрессованными шайбами и концевыми стопорами при этом не возникает.
Шпренгельный ригель стропуют с размещением мест захвата строповочных устройств у его концов и производят подъем. При установке шпренгельного ригеля на колонны,
предварительно объединенные с фундаментами, совмещают скошенные поверхности торцевых башмаков и оголовков колонн, при этом между опорными горизонтальными и
вертикальными поверхностями торцевых башмаков и оголовков колонн остаются зазоры Δ1 и Δ2 соответственно. После расслабления строповочных устройств под действием
собственной массы (сил гравитации) преодолеваются силы трения, развивающиеся по контактным плоскостям скошенных поверхностей торцевых башмаков ригеля рамы и
оголовков колонн, происходит самопроизвольная осадка шпренгельного ригеля рамы в проектное положение (до полного касания опорных поверхностей - Δ1=0, Δ2=0), а
торцевые башмаки перемещаются вдоль скошенных поверхностей оголовков колонн. При этом на концевых участках затяжки (на участках между спрессованными шайбами и
концевыми стопорами) возникают дополнительные растягивающие усилия, горизонтальные составляющие которых направлены перпендикулярно продольным осям колонн к
центру рамы. Это вызывает в сечениях колонн усилия предварительного напряжения (начальные изгибающие моменты). Таким образом, на втором этапе производится
предварительное напряжение колонн и дополнительное напряжение затяжки ригеля (за счет донапряжения ее концевых участков).

209.

Изобретение описывается следующими графическими материалами:
- на фиг.1 приводится общий вид предварительно напряженной шпренгельной рамы;
- на фиг.2 - узел "А" на фиг.1;
- на фиг.3 - вид по 1-1 на фиг.2;
- на фиг.4 - узел "Б" на фиг.1;
- на фиг.5 - вид по 2-2 на фиг.2;
- на фиг.6 - вид по 3-3 на фиг.2;
- на фиг.7 - вид по 4-4 на фиг.4;
- на фиг.8 - схема строповки балки-распорки на 1-м этапе монтажа;
- на фиг.9 - схема строповки шпренгельного ригеля на 2-м этапе монтажа.
Предлагаемый способ монтажа заключается в следующем. Колонны 1 шпренгельной рамы объединяются с фундаментами 2 и с предварительно напряженным шпренгельным
ригелем 3.
На 1-м этапе монтажа к балке-распорке 4 шпренгельного ригеля 3 крепят стойки шпренгеля 5 с вилкообразными наконечниками 6, а на ее концах устанавливают вилкообразные
упоры 7. Балку-распорку 4 шпренгельного ригеля 3 стропуют в средней ее части и выполняют промежуточный подъем. Затем к балке-распорке 4 прикрепляют затяжку 8, вводя
ее в вилкообразные наконечники 6 стоек шпренгеля 5, а спрессованные на затяжке 8 шайбы 9 заводят за вилкообразные упоры 7. Положение затяжки 8 на концах фиксируют
замыкающими фиксаторами 10. После чего шпренгельный ригель 3, включающий балку-распорку 4, стойки шпренгеля 5 и затяжку 8, опускают на временные опоры 11,
размещенные под концами балки-распорки 4.
На 2-м этапе монтажа на концах балки-распорки 4 шпренгельного ригеля 3 с помощью болтов 12 устанавливают торцевые башмаки 13 со скошенными поверхностями 14.
Концевые стопоры 15 затяжки 8 крепят к торцевым башмакам 13. Вследствие того что болты 12 проходят через овальные отверстия, расположенные в торцевых башмаках 13, то
возможно взаимное смещение торцевых башмаков 13 относительно балки-распорки 4 вдоль ее продольной оси. При этом в затяжке 8 на участках между спрессованными
шайбами 9 и концевыми стопорами 15 усилий не возникает.
Шпренгельный ригель 3 перестроповывают с размещением мест захвата строповочных устройств у его концов и производят его подъем.
При установке шпренгельного ригеля 3 на колонны 1 совмещают скошенные поверхности 14 торцевых башмаков 13 и оголовков 16 колонн 1, при этом между опорными
горизонтальными и вертикальными поверхностями торцевых башмаков 13 и оголовков 16 остаются зазоры Δ1 и Δ2 соответственно.
После расслабления строповочных устройств под действием собственной массы (сил гравитации) происходит самопроизвольная осадка шпренгельного ригеля 3 рамы в
проектное положение до полного касания опорных поверхностей (Δ1=0, Δ2= 0), а торцевые башмаки 13 перемещаются вдоль скошенных поверхностей 14. При этом тангенс угла
наклона скошенных поверхностей 14 торцевых башмаков 13 и оголовков 16 колонн 1 принимают равным отношению вертикальных (Δ1) и горизонтальных (Δ2) зазоров между
шпренгельным ригелем 3 и колоннами 1.
Силы гравитации преодолевают силы трения, развивающиеся по контактным участкам скошенных поверхностей 14 торцевых башмаков 13 шпренгельного ригеля 3 и оголовков
16 колонн 1. При этом на концевых участках затяжек 8 (на участках между спрессованными шайбами 9 и концевыми стопорами 15) возникают дополнительные растягивающие
усилия, которые создают в местах контакта скошенных поверхностей 14 торцевых башмаков 13 и оголовков 16 колонн 1 горизонтальные составляющие усилий, направленные к
центру рамы перпендикулярно продольным осям колонн 1. Это вызывает в сечениях колонн 1 усилия предварительного напряжения - начальные изгибающие моменты, а на
концевых участках затяжки 8 - дополнительные растягивающие усилия предварительного напряжения.

210.

Балка-распорка 4 как элемент шпренгельного ригеля 3 обладает невысокой изгибной жесткостью. При ее строповке в средней части и промежуточном подъеме балка-распорка
4 работает по двухконсольной схеме, при которой ее концы под действием собственной массы провисают, а расстояния между вилкообразными упорами 7 уменьшаются, что
позволяет завести за них спрессованные на затяжке 8 шайбы 9. Строповка балки-распорки 4 в средней ее части и промежуточный подъем по двухконсольной схеме увеличивает
(в сравнении с другими схемами строповки) перемещения ее концов.
После установки шпренгельного ригеля 3 на временные опоры 11, размещенные под концами балки-распорки 4, и его расстроповки балка-распорка 4 распрямляется и
растягивает гибкую затяжку 8, создавая в ней усилия предварительного напряжения. Шпренгельный ригель 3 становится предварительно напряженным элементом. При этом
для натяжения затяжки 8 не требуются специальные силовые устройства (например, домкраты, грузы, натяжные устройства - стяжные муфты и т. п. ), так как деформирование
балки-распорки 4 осуществляется за счет силы тяжести, возникающей от ее собственной массы. Причем отпадает необходимость в контрольно-измерительной аппаратуре
(например, динамометрах, тензометрах и т.п.), так как расчетные усилия предварительного напряжения в затяжке 8 определяются ее длиной на участке между спрессованными
шайбами 10. Процесс сборки шпренгельного ригеля 3 совмещается с процессом его предварительного напряжения. Это приводит к упрощению его сборки и, как следствие, к
снижению трудоемкости монтажа шпренгельной рамы в целом.
При установке шпренгельного ригеля 3 на оголовки 16 колонн 1 происходит самопроизвольная осадка шпренгельного ригеля 3 в проектное положение до полного касания
опорных поверхностей (Δ1= 0, Δ2=0). При этом на концевых участках затяжки 8 (на участках между спрессованными шайбами 9 и концевыми стопорами 15) возникают
дополнительные растягивающие усилия, под действием которых происходит изгиб колонн 1 вовнутрь рамы. Таким образом, на втором этапе монтажа шпренгельной рамы
создается предварительное напряжение колонн 1 и дополнительное напряжение затяжки 8. При этом процесс установки шпренгельного ригеля 3 в проектное положение
совмещается с процедурой предварительного напряжения колонн 1, что приводит к упрощению их предварительного напряжения и, как следствие, к снижению трудоемкости
монтажа шпренгельной рамы в целом.
Назначение тангенса угла наклона скошенных поверхностей 14 торцевых башмаков 15 и оголовков 16 равным отношению вертикальных зазоров - Δ1 к горизонтальным зазорам
- Δ2 (
) обеспечивает одновременное и полное касание опорных поверхностей шпренгельного ригеля 3 и колонн 1 в проектном положении (Δ1=0, Δ2=0).
Использование изобретения позволяет упростить монтаж рамы за счет совмещения процессов сборки шпренгельного ригеля и его установки в проектное положение с
предварительным напряжением шпренгельного ригеля и колонн рамы. При этом не требуется применение дополнительных силовых устройств для натяжения затяжки и изгиба
колонн, не требуется контроль за величиной усилий предварительного напряжения в затяжке и величинами смещения колонн, в связи с чем отпадает необходимость в
специальной измерительной аппаратуре. В целом это приводит к снижению трудоемкости монтажа до 12-18%.
Источники информации
1. Кирсанов Н.М. Висячие покрытия производственных зданий. - М.: Стройиздат, 1990. - 128 с. - (Наука - строительному производству). Рис. 1.1 на с. 8.
2. Металлические конструкции: Спец. курс. учеб. пособие для вузов /Е.И. Беленя, Н. Н. Стрелецкий и др.; Под общ. ред. Е.И. Беленя. - 2-е изд. перераб. и доп. - М.: Стройиздат,
1982. - 472с. Рис. 6.14, ж на с.95.
3. Руководство по применению стальных канатов и анкерных устройств в конструкциях зданий и сооружений. - М.: Стройиздат, 1978. - 94с.
Формула изобретения
1. Способ монтажа предварительно напряженной шпренгельной рамы, включающий объединение колонн с фундаментами и предварительно напряженным ригелем
шпренгельного типа, отличающийся тем, что на концах балки-распорки ригеля со стойками шпренгеля, имеющими вилкообразные наконечники, устанавливают вилкообразные

211.

упоры, балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем, затем спрессованные шайбы затяжки заводят за вилкообразные упоры, и
опускают ригель на временные опоры, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель перестроповывают и устанавливают на
колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн.
2. Способ монтажа предварительно напряженной шпренгельной рамы по п. 1, отличающийся тем, что тангенс угла наклона скошенных поверхностей торцевых башмаков и
оголовков колонн принимают равным отношению вертикальных и горизонтальных зазоров между ригелем и колоннами.

212.

213.

214.

215.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

216.

RU
(11)
2 172 372
(13)
C1
(51) МПК
E01D 22/00 (2000.01)
E01D 19/00 (2000.01)
E04C 3/10 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 4 год с 22.02.2003 по 21.02.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000104023/03, 21.02.2000
(24) Дата начала отсчета срока действия патента:
21.02.2000
(45) Опубликовано: 20.08.2001 Бюл. № 23
(56) Список документов, цитированных в отчете о поиске: SU
(71) Заявитель(и):
Воронежская государственная архитектурно-строительная
академия
(72) Автор(ы):
Накашидзе Б.В.

217.

1261998 A, 07.10.1986. RU 2117120 C1, 10.08.1998. SU 1090786 A,
07.05.1984. SU 1070248 A, 30.01.1984. SU 1744172 A1, 30.06.1992.
SU 1799944 A1, 07.03.1993. SU 1090784 A, 07.05.1984. DE 1258441
A, 11.01.1968. GB 1241681 A, 04.08.1971. US 4718209 A,
12.01.1988. WO 93/22521 A, 11.11.1993. ГЛИНКА Н.Н., ПОСПЕЛОВ
Н.Д. Клееные пролетные строения мостов. - М.: Транспорт, 1964,
с.52-53. КУЛИШ В.И. Клееные деревянные мосты с
железобетонной плитой. - М.: Транспорт, 1979, с.43-50, рис.III.2.
(73) Патентообладатель(и):
Воронежская государственная архитектурно-строительная
академия
Адрес для переписки:
394006, г.Воронеж, ул. 20-летия Октября, 84, ВГАСА, патентноинформационный отдел
(54) БАЛКА
(57) Реферат:
Изобретение относится к мостостроению и может быть использовано для усиления балочных конструкций промышленных и гражданских зданий, действующих мостовых
конструкций, а также в строительных предварительно напряженных конструкциях из разнородных материалов. Конструкция содержит усиленную продольными арматурными
стержнями по нижней грани деревянную стенку и верхнюю железобетонную плиту, объединенную со стенкой с помощью сдвиговоспринимающих устройств в виде наклонных
тяг, установленных под острым углом в направлении торцов балки. Новым является то, что продольные арматурные стержни снабжены на своих концевых участках
устройствами компенсации реактивных сил в виде контактирующих с анкерами поперечных упоров, подпружиненных цилиндрических гильз, шарнирно соединенных
посредством боковых накладок с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего торца к середине балки, при этом
противоположные концы наклонных тяг также соединены через боковые накладки с продольными ребровыми выступами железобетонной плиты с возможностью вращения,
причем выступы выполнены высотой не менее 1/3 высоты стенки из дерева. Технический результат, достигаемый изобретением, состоит в создании и сохранении длительного
эффекта преднапряжения, а также дополнительного разгружающего момента в балочной конструкции, варьировании жесткостью сдвиговых связей с целью снижения

218.

деформаций между между железобетонной плитой и дощатоклееной стенкой, повышения степени поперечного обжатия для уменьшения скалывающих напряжений. 10 ил.
Изобретение относится к области мостостроения и может быть использовано для усиления балочных конструкций промышленных и гражданских зданий, действующих
мостовых конструкций, а также в строительных предварительно напряженных конструкциях из разнородных материалов.
Известны конструктивные решения по усилению пролетных мостовых балок из железобетона *1+ . Однако такие технические решения не позволяют сохранить длительно
заданный эффект предварительного напряжения, а конструкции балок не обладают демпфирующими свойствами.
Наиболее близкой к изобретению по совокупности признаков является балка деревожелезобетонного пролетного строения, преимущественно моста, включающая стенку из
дерева, усиленную продольными арматурными стержнями по нижней грани, и верхнюю железобетонную плиту, объединенную со стенкой посредством
сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных под острым углом в направлении торцов балки *2].
В известном техническом решении продольные арматурные стержни и наклонные тяги позволяют создать эффект предварительного напряжения, а выполнение стенки из
клееной древесины способствует образованию демпфирующих свойств в конструкции балок при действии подвижной нагрузки.
Однако использование такого технического решения не позволяет сохранить требуемый длительный эффект предварительного напряжения по причине ползучести древесины и
релаксации армирующего материала, не представляется возможным создание дополнительного разгружающего изгибающего момента, противодействующего моменту от
внешней нагрузки, а также усложняется конструктивное решение снижения сдвиговых деформаций между железобетонной плитой и дощатоклееной деревянной стенкой.
Задачей, на решение которой направлено изобретение, является создание и сохранение длительного эффекта преднапряжения, а также дополнительного разгружающего
момента в балочной конструкции, варьирование жесткостью сдвиговых связей с целью снижения деформаций между железобетонной плитой и дощатоклееной деревянной
стенкой, повышение степени поперечного обжатия для уменьшения скалывающих напряжений.
Технический результат достигается за счет взаимосвязи напрягаемых арматурных стержней с устройствами компенсации реактивных сил, а благодаря наклонным тягам, угол
наклона которых увеличивается по мере удаления от соответствующего торца к середине балки, появляется возможность варьирования деформациями между железобетонной
плитой и клееной деревянной стенкой. Выполнение в железобетонной плите в плоскости сдвига прерывистых продольных ребровых выступов высотой не менее 1/3 высоты
стенки из дерева обеспечивает образование дополнительного разгружающего момента в составной деревожелезобетонной балке, а также способствует снижению деформаций
сдвига и отрыва в плоскости сопряжения плиты и стенки.

219.

Сущность предлагаемого изобретения заключается в том, что балка, преимущественно моста, включающая стенку из дерева, усиленную продольными арматурными стержнями
по нижней грани, и верхнюю железобетонную плиту, объединенную со стенкой посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг,
установленных относительно продольных арматурных стержней под острым углом в направлении торцов балки, отличается от прототипа тем, что расположенные под нижней
гранью стенки продольные арматурные стержни снабжены установленными на своих концевых участках устройствами компенсации реактивных сил в виде контактирующих с
анкерами продольных арматурных стержней поперечных упоров, подпружиненных относительно размещенных под нижней гранью стенки и охватывающих концевые участки
упомянутых стержней цилиндрических гильз, шарнирно соединенных посредством боковых накладок, попарно установленных с противоположных сторон стенки, с наклонными
тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего торца к середине балки, при этом противоположными своими концами наклонные тяги
также через боковые накладки связаны с возможностью вращения с прерывистыми продольными ребровыми выступами верхней железобетонной плиты, выполненными
высотой не менее 1/3 высоты стенки из дерева.
Выполнение конструктивной системы путем взаимосвязи напрягаемых арматурных стержней и устройств компенсации реактивных сил позволяет создавать и длительно
сохранять эффект предварительного напряжения, а также повысить степень обжатия всей комбинированно-армированной балки как в продольном, так и в поперечном
направлении; при этом наклонные тяги, связанные шарнирно с прерывистыми продольными ребровыми выступами железобетонной плиты и продольными арматурными
стержнями, создают не только эффект обратного выгиба, противоположного прогибу от внешней нагрузки, но и дополнительный разгружающий момент от внутренних сил
обжатия. Выполнение в плоскости сопряжения железобетонной плиты и деревянной дощатоклееной стенки прерывистых ребровых выступов позволяет значительно увеличить
жесткость и прочность сдвиговых связей и тем самым повысить несущую способность всей балки. Благодаря устройству компенсации реактивных сил, шарнирно связанному с
наклонными тягами и продольными арматурными стержнями, обеспечивается надежный контроль и сохранение начально созданных напряжений в напрягаемой
конструктивной системе и тем самым длительно обеспечивается эффект преднапряжения в балке.
На фиг. 1 изображена балка пролетного строения, общий вид; на фиг. 2 - разрез 1-1 на фиг. 1; на фиг. 3 - разрез 2-2 на фиг. 1; на фиг. 4 изображен фрагмент А на фиг. 1, крепление
продольных арматурных стержней с наклонными сдвиговоспринимающими устройствами посредством компенсатора реактивных сил; на фиг. 5 изображен фрагмент Б на фиг. 1,
крепление наклонных сдвиговоспринимающих устройств с продольным ребровым выступом железобетонной плиты; на фиг. 6 - разрез 3-3 на фиг. 4; на фиг. 7 - фрагмент
выполнения на концевых участках деревянной стенки ниш для ребровых выступов железобетонной плиты; на фиг. 8 - общий вид балки пролетом более 9 м с концевыми и
промежуточными сдвиговоспринимающими устройствами; на фиг. 9 фрагмент выполнения в деревянной стенке промежуточной ниши для ребровых выступов железобетонной
плиты; на фиг. 10 - фрагмент создания дополнительного внутреннего момента, образующегося в плоскости сдвига ребровых выступов плиты и стенки.
Балка содержит деревянную дощатоклееную стенку 1, усиленную по нижней грани продольной арматурой 2, а по верхней - железобетонной плитой 3. Периферийные элементы
усиления 2 и 3 объединены совместно наклонными тягами 4 и боковыми накладками 5, шарнирно соединенными одним концом с цилиндрическими гильзами 6, а другим с
прерывистыми продольными ребровыми выступами 7 железобетонной плиты 3. Цилиндрические гильзы 6, по крайней мере на одном конце балки, взаимодействуют с
устройствами компенсации реактивных сил, например, в виде пружин 8, ориентированных вдоль цилиндрической гильзы 6 и концевого участка продольной арматуры 2.
Пружины 8 закреплены одним концом к упорному столику 9, установленному на боковой грани цилиндрической гильзы 6, а другим концом к поперечному П - образному упору
10, сквозь который пропущен концевой участок продольной арматуры 2, закрепленный при помощи концевого анкера 11. Наклонные тяги 4, имеющие на концах анкера 11,
крепятся шарнирно с боковыми накладками 5 при помощи упорных столиков 9.
Сборку балки производят следующим образом. Первоначально в клееной дощатой деревянной стенке 1 выполняют ниши 12 на концевых участках (фиг. 7) на глубину не менее
1/3 высоты стенки 1, а для перекрываемых пролетов от 9 до 15 м выполняют дополнительно еще промежуточные ниши 13 (фиг. 8, 9) на глубину не менее 1/3 высоты стенки, а
для пролетов от 15 до 18 м вновь дополнительно выполняются промежуточные ниши 13 соответственно на глубину не менее 1/3 высоты стенки 1. Шаг между нишами 12, 13
начиная от концов стенки 1 к ее серединной части принимается равным 1/4 - 1/7 перекрываемого пролета. Затем осуществляется омоноличивание верхней грани стенки 1
железобетоном таким образом, чтобы в образовавшихся продольных ребровых выступах плиты 3 выполнялось сквозное отверстие 14 для шарнирного крепления боковых
накладок 5. С набором требуемой прочности бетона осуществляется установка напрягаемой системы в виде продольных и наклонных арматурных стержней 2, 4, 5. Установка

220.

напрягаемой системы осуществляется таким образом, чтобы угол наклона концевых тяг 4 и боковых накладок 5 в приопорной части балок был в пределах 30 - 45o относительно
продольной оси арматуры 2, а для балок длиной от 9 до 15 м и для перекрываемых пролетов от 15 до 18 м, имеющих дополнительные промежуточные наклонные тяги 4 и
боковые накладки 5, угол наклона которых принимается в пределах 50 - 60o относительно продольной оси арматуры 2. Перед установкой напрягаемой системы первоначально
осуществляется подготовка продольной арматуры 2 к взаимосвязи с устройством компенсации реактивных сил и наклонными тягами 4 с накладками 5. Конструктивное решение
устройств компенсации реактивных сил имеет большое разнообразие (см. Патент РФ N 2109894). Взаимосвязь продольной арматуры 2 и компенсатора реактивных сил 8
осуществляется следующим образом. Первоначально, по крайней мере на одном конце продольной арматуры 2, устанавливается анкер 11, затем к нижней грани стенки 1 балки
на концевых участках устанавливают цилиндрические гильзы 6, к которым шарнирно присоединены одним концом боковые накладки 5, попарно устанавливаемые с
противоположных сторон стенки 1. Затем в сквозные отверстия 14 продольных ребровых выступов 7 плиты 3 вставляют оси 15, на которые крепится шарнирно другая
противоположная пара боковых накладок 5. После установки боковых накладок 5 в уровне верхней и нижней грани стенки 1 осуществляют их взаимное соединение тягами 4,
которые выполнены с концевыми анкерами 11. Продольный арматурный стержень 2 свободным (без анкера 11) концом протягивают сквозь цилиндрические гильзы 6 и
поперечный упор 10, а затем на свободный конец надевают анкер 11 и крепят к домкрату двойного действия (не показан). Для создания дополнительных реактивных сил
обжатия конструкции и их компенсации при потерях в период ползучести материала основы конструкции и релаксации напрягаемой арматуры необходимо устанавливать
компенсатор, например, в виде пружины 8 между поперечным упором 10 и цилиндрической гильзой 6. Таким образом, при действии домкрата пружина 8 сжимается, а
продольная арматура 2 натягивается на требуемую расчетную величину и затем свободный ее конец анкеруется анкером 11.
Напрягаемая система балки работает следующим образом. Используемый домкрат работает по принципу двойного действия, в результате при натяжении продольной арматуры
2 компенсатор реактивных сил, например, пружины 8 и цилиндрические гильзы 6 сжимаются, а наклонные сдвиговоспринимающие элементы в виде боковых накладок 5 и тяг 4
растягиваются. В результате внутреннего перераспределения сил от действия домкрата и сдвиговоспринимающих элементов с компенсатором реактивных сил балка выгибается
в сторону, противоположную прогибу от внешней нагрузки и собственного веса. При действии внешней нагрузки на балку образуется погонное сдвигающее внутреннее усилие
относительно нейтральной оси балки, которое воспринимается, как правило, связями. Податливость связей зависит от их жесткости. Выполнение в плоскости сдвига ж/б плиты 3
и деревянной дощатоклееной стенки 1 дополнительных связей в виде прерывистых продольных ребровых выступов 7 позволяет значительно повысить несущую способность
составной деревобетонной балки благодаря снижению вероятности скалывания в плоскости сдвига, так как касательные напряжения воспринимаются связями. При этом усилия
от наклонных сдвиговоспринимающих элементов 4, 5, передаваемые на оси 15, способствуют созданию дополнительного внутреннего разгружающего момента,
противоположного по знаку моменту от внешней нагрузки. Разгружающий дополнительный внутренний момент образуется следующим образом. При натяжении наклонных тяг
4 и боковых накладок 5 в условной точке сквозного отверстия 14 от оси 15 в ребровом выступе плиты 3 происходит внутреннее разложение усилий вдоль оси балки, поперек и
под соответствующим углом вдоль оси сдвиговоспринимающих элементов 4, 5. Усилие, направленное вдоль, относительно нейтральной оси балки имеет эксцентриситет,
который и способствует созданию дополнительного внутреннего момента (фиг. 10).
Изобретение позволяет повысить степень обжатия и эффект предварительного напряжения в балке благодаря комбинированному функциональному совмещению напрягаемой
продольной арматуры, наклонных сдвиговоспринимающих элементов и устройств компенсации реактивных сил. Принятые углы наклона сдвиговоспринимающих элементов
позволяет варьировать деформациями сдвига и отрыва ж/б плиты от дощатоклееной деревянной стенки, а выполнение прерывистых продольных ребровых выступов в плите в
плоскости сдвига способствует созданию дополнительного разгружающего момента от действия внешней нагрузки на балку, а также позволяет повысить жесткость связей,
воспринимающих сдвиг.
Таким образом, появилась большая надежность и возможность использования клееной древесины в комбинированных конструкциях из железобетона, полимербетона и
металла, так как обеспечивается прочность от возможного раскалывания древесины, являющейся наиболее уязвимым местом в деревянных конструкциях. Совместная
взаимосвязь продольной арматуры, наклонных сдвиговоспринимающих элементов и компенсатора потерь реактивных сил позволяет не только создавать в балке
противодействующий внешней нагрузке изгибающий момент, длительно сохранять эффект предварительного напряжения, значительно упростить процесс предварительного

221.

напряжения балки, но еще появилась возможность создавать дополнительный разгружающий момент от действия внешней нагрузки и гарантировать надежность составной
балочной конструкции от скалывания при действии касательных напряжений.
Изобретение может быть использовано для усиления балочных конструкций из традиционных материалов при действии как статической, так и динамической либо
пульсирующей нагрузки, а также при конструировании подкрановых балок и других изгибаемых конструкций составного сечения с разномодульными характеристиками
составных зон и недостаточной жесткостью связей, воспринимающих их взаимный сдвиг относительно продольной оси.
Источники информации
1. RU, Патент РФ 2117120, кл. E 04 С 3/10.
2. SU, авт. св. 1261998, кл. E 01 D 7/02.
Формула изобретения
Балка, включающая стенку из дерева, усиленную продольными арматурными стержнями по нижней грани и верхнюю железобетонную плиту, объединенную со стенкой
посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных относительно продольных арматурных стержней под острым углом в
направлении торцов балки, отличающаяся тем, что расположенные под нижней гранью стенки продольные арматурные стержни снабжены установленными на своих концевых
участках устройствами компенсации реактивных сил в виде контактирующих с анкерами продольных арматурных стержней поперечных упоров, подпружиненных относительно
размещенных под нижней гранью стенки и охватывающих концевые участки упомянутых стержней цилиндрических гильз, шарнирно соединенных посредством боковых
накладок, попарно установленных с противоположных сторон стенки, с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего
торца к середине балки, при этом противоположными своими концами наклонные тяги также через боковые накладки связаны с возможностью вращения с прерывистыми
продольными ребровыми выступами верхней железобетонной плиты, выполненными высотой не менее 1/3 высоты стенки из дерева.

222.

223.

224.

225.

226.

СТРОИТЕЛЬНАЯ ФЕРМА 2155259
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 155 259

227.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C2
(51) МПК
E04C 3/11 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 5 год с 17.04.2000 по 16.04.2001. Патент перешел в общественное
достояние.
(21)(22) Заявка: 96107742/03,
16.04.1996
(24) Дата начала отсчета срока
действия патента:
16.04.1996
(45)
Опубликовано: 27.08.2000 Бюл.
№ 24
(56) Список документов,
цитированных в отчете о
поиске: SU 781293 A, 23.11.1980.
FR 2237030 A1, 07.02.1975. US
3541749 A, 24.11.1970.
Адрес для переписки:
199053, Санкт-Петербург, В.О., 2-я
линия 23, Государственный
гидрологический институт
(71) Заявитель(и):
Государственный
гидрологический институт
(72) Автор(ы):
Миронов В.Е.
(73) Патентообладатель(и):
Государственный
гидрологический институт

228.

(54) СТРОИТЕЛЬНАЯ ФЕРМА
(57) Реферат:
Изобретение относится к области строительства и может быть использовано в качестве несущей конструкции пролетного строения решетчатых гидрометрических мостов и как
стропильная ферма в перекрытиях зданий, сооружений. Технический результат изобретения - повышение жесткости фермы. Строительная ферма содержит верхний сжатый и
нижний растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также дополнительные стойки и подкосы. Каждая из дополнительных стоек одним концом
прикреплена к раскосу вне узла, а другим концом к нижнему поясу, также вне узла, при этом длины панелей уменьшаются от середины пролета к опорам. Подкосы и
дополнительные стойки расположены только в средней части пролета фермы и имеют меньшее поперечное сечение, чем сопряженные с ними стержни фермы, при этом одна
часть подкосов прикреплена к стойкам под углом 45° вне узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а
другим концом - к верхнему поясу, также вне узла, причем точки крепления к поясам подкосов и дополнительных стоек отстоят от ближайших узлов на расстоянии 1/6 длины
панели. 3 ил., 1 табл.
Изобретение относится к области гидрологии, а также строительства, в частности к гидрометрическим решетчатым мостам, в которых ферма может быть использована как
несущая конструкция пролетного строения и которые могут быть использованы на водных потоках с устойчивыми руслами и берегами для выполнения гидрометрических
измерений, с максимальной шириной по урезу в период горизонта высоких вод до 30 м и при перепаде уровня воды до 3-4 м. В конструкциях перекрытий зданий и сооружений
данное изобретение может найти применение в качестве стропильной фермы, в том числе с местной загрузкой поясов.
Известна строительная ферма с неравными панелями, длина которых уменьшается от середины пролета к опорам, содержащая верхний сжатым и нижний растянутый пояса,
стержни раскосной системы решетки с переменным направлением раскосов (треугольной системы решетки) и стойки. Такая ферма с местной загрузокй поясов считается
наиболее экономичным решением в случае, когда длина панелей фермы уменьшается от середины пролета к опорам *1+ (с. 250, фиг. 13).
Недостатком известной фермы является отсутствие единообразия в схемах узлов, которые по этой причине неудобны и трудоемки для конструирования. Это обстоятельство
практически не позволяет запроектировать ферму, состоящую из сборных унифицированных элементов, что является особенно важным при проектировании пролетных

229.

строений мостов различного назначения. Кроме того, при большой местной загрузке поясов в средней части пролета фермы приходится значительно увеличивать сечения
поясов, что приводит к увеличению материалоемкости.
Известна равнопанельная строительная ферма с параллельными поясами, включающая верхний сжатый и нижний растянутый пояса, стержни треугольной решетки и стойки, а
также дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему растянутому поясу, также вне узла, в точке,
отстоящей от него на расстоянии примерно 1/4 длины панели *2+. Такая конструкция решетки позволяет снизить материалоемкость за счет уменьшения расчетной длины
раскосов. Однако из-за значительной длины дополнительных стоек достигаемый экономический эффект является небольшим.
Наиболее близким к изобретению по технической сущности является равнопанельная строительная ферма моста параболического очертания, содержащая параболический
верхний сжатый и нижний растянутый пояса, нисходящие стержни раскосной системы решетки, стойки и расположенные между всеми стойками подкосы, каждый из которых
одним концом прикреплен к раскосу в средней точке, а другим концом - к нижнему растянутому поясу вне узла в точке, отстоящей от него на расстоянии примерно 1/7 длины
панели *1+ (с. 802). Известная строительная ферма моста параболического очертания принята за прототип.
Недостатком прототипа является то, что его конструкция позволяет только немного снизить материалоемкость за счет уменьшения расчетной длины раскосов, так как подкосы
имеют значительную длину - половину длины раскосов. Кроме этого, снижению материалоемкости не способствует то, что прототип является равнопанельной фермой.
Указанные недостатки в предлагаемой ферме сведены к минимуму. При создании изобретения были решены задачи снижения материалоемкости и повышения надежности
устройства за счет дополнения решетки фермы системой коротких стержней, позволяющих значительно уменьшить расчетные длины стержней решетки, прогибы поясов от
местной загрузки и повысить устойчивость сечения поясов при работе на изгиб.
В предлагаемой строительной ферме треугольного, параболического, полигонального или какого-либо другого очертания с непараллельными поясами, с длинами панелей,
уменьшающимися от середины пролета к опорам, содержащей верхний сжатый и нижний растянутый пояса, стержни раскосной системы решетки, стойки, а также подкосы и
дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, сущность изобретения
заключается в том, что подкосы и дополнительные стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее поперечное сечение, чем
сопряженные с ними стержни фермы, при этом в каждой панели одна часть подкосов прикреплена к стойкам под углом 45o вне узла, а другим концом - к нижнему поясу, также
вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем расстояния между точками крепления подкосов и
дополнительных стоек к поясам и ближайшими узлами (их геометрическими центрами) определяются исходя из приближенного расчета поясов на прочность от местной
загрузки и расчета раскосов на устойчивость при сжатии с учетом их предельной гибкости, устанавливаемой нормами *3+, и составляют примерно 1/6 длины панели.
Предлагаемая строительная ферма соответствует критерию "Новизна", так как она не известна из уровня техники, и соответствует критерию "Изобретательский уровень", так как
для специалиста явным образом не следует из уровня техники.
На фиг. 1 приведена строительная ферма треугольного очертания с подкосами и дополнительными стойками в средней части пролета. На фиг. 2 - фрагмент строительной фермы
треугольного очертания на фиг. 1 в средней части пролета. На фиг. 3 - расчетная схема балки для определения площади поперечного сечения нижнего пояса, используемая для
определения оптимального расстояния
ее элементов.
которое соответствует минимальной материалоемкости строительной фермы и удовлетворяет условиям прочности и устойчивости
Строительная ферма содержит верхний сжатый пояс 1, нижний растянутый пояс 2, раскосную решетку 3, стойки 4, дополнительные стойки 5 и подкосы 6, расположенные в
средней части пролета фермы.
Устройство работает следующим образом.

230.

При загрузке фермы (в том числе при местной загрузке поясов) верхний пояс 1 и раскосы 3 сжимаются, а нижний пояс 2 и стойки 4 растягиваются и, кроме того, от местной
загрузки нижний пояс 2 изгибается и прогибается. Существенному уменьшению изгиба и прогиба нижнего пояса способствуют опорные закрепления подкоса 6 и
дополнительной стойки 5, которые под воздействием подвижной нагрузки P растягиваются и вовлекают в работу стойку 4, раскос 3 и посредством их верхний пояс 1. Кроме
этого, опорные закрепления раскоса 3 посредством подкоса 6 у верхнего пояса 1 и дополнительной стойки 5 у нижнего пояса 2 уменьшают расчетную длину раскоса 3 при его
сжатии и, таким образом, увеличивают устойчивость раскоса.
В целом благодаря наличию подкосов и дополнительных стоек в средней части пролета фермы значительно уменьшаются расчетные длины стержней решетки и местные
прогибы нижнего пояса, а также повышается его устойчивость при работе на изгиб. Кроме этого, повышается жесткость фермы в целом и в результате уменьшаются прогибы
узлов фермы в середине пролета при действии эксплуатационных нагрузок.
Для определения оптимального расстояния
(см. фиг. 2) приведем обоснование расчетных формул и результаты расчета по ним в табличной форме.
Площади поперечных сечений подкосов и дополнительных стоек определяются исходя из расчета на устойчивость при сжатии по нормам *3+. При этом с учетом запаса гибкости
подкосов и дополнительных стоек должны быть не более 150.
При определении площади поперечного сечения дополнительной стойки или подкоса предварительно определяется радиус инерции rg его поперечного сечения
где lg - длина дополнительной стойки или подкоса (расстояние между точками закрепления);
λ - гибкость дополнительной стойки или подкоса, принимаемая по нормам *3+, но не более 150.
Площадь Fg поперечного сечения дополнительной стойки или подкоса определяется по формуле
Fg = Ig/rg 2
где Ig - момент инерции поперечного сечения дополнительной стойки или подкоса.
Оптимальное горизонтальное расстояние
между узлом фермы на нижнем поясе и точкой крепления дополнительной стойки (подкоса) к поясу может быть определено на
основании расчета части длины пояса между точками крепления дополнительной стойки и подкоса как простой однопролетной балки, загруженной сосредоточенной силой P в
середине пролета lп - 2aо, где lп - длина панели. Для выполнения этого расчета предварительно следует задаться некоторым расстоянием aо. На основании расчета для каждого
заданного значения aо определяются геометрические характеристики поперечного сечения нижнего пояса и затем объем материала нижнего пояса
Определяются длина
подкоса и дополнительной стойки в зависимости от расстояния aо, площади поперечных сечений дополнительной стойки и подкоса и затем также объемы материалов подкоса
и дополнительной стойки V'2 и V''2 (см. расчетные формулы, константы и результаты расчетов в таблице). Объемы
V'2, V''2 суммируются. В результате каждому заданному
значению aо соответствует объем материала V, включающий нижний пояс и сопряженные с ним дополнительную стойку и подкос.
Результаты расчетов для определения оптимального расстояния aо представлены в таблице.

231.

Расчетные формулы
F1 = b•h;
Константы*)
lп = 300 см; P = 150 кгс; σ = 1600 кГc/cм2; b = 0,4 см; F2 = 1,46 см2; F'2 = 1,94 см2; tgϕ = 0,857; cos 45o = 0,707.
В приведенных формулах и обозначениях констант:
M - изгибающий момент в середине пролета lп-2aо;
W - момент сопротивления площади поперечного сечения нижнего пояса;
σ - напряжение в крайних волокнах поперечного сечения нижнего пояса от изгиба;
h - высота поперечного сечения нижнего пояса в форме пластины шириною b;
F1 - площадь поперечного сечения нижнего пояса;
объем материала нижнего пояса в пределах длины панели lп;
V'2 - объем материала подкоса;
F2 - площадь поперечного сечения подкоса или дополнительной стойки при aо = 37,5 см;
F'2 - площадь поперечного сечения подкоса или дополнительной стойки при aо = 75,0 см;
V''2 - объем материала дополнительной стойки;
ϕ - угол между направлением раскоса и нижним поясом;
V - суммарный объем материала нижнего пояса, подкоса и дополнительной стойки.
Остальные обозначения были пояснены в тексте ранее.
*) Площадь сечения F2 соответствует площади сечения уголка 20х20х4, а площадь сечения F'2 - площади сечения уголка 32х20х4.
Для определения оптимального значения
соответствующего минимальному значению V, была применена интерполяционная формула Ньютона при равных разностях
аргумента *4+. При этом начальное значение aо принималось равным 0. На основании применения этой формулы оптимальное расстояние
определялось по формуле
где V1, V2, V3 - значения объема V, соответствующие первому, второму и третьему значениям аргумента aо;
Δao - разность аргумента.
В рассматриваемом случае в соответствии с результатами расчета расстояния
по указанной формуле при Δao = 37,5 см равно 49.4 см. При lп = 300 см относительное
расстояние
Аналогичным образом расстояние aп вдоль раскоса между узлом на верхнем поясе и точкой крепления к раскосу подкоса определяется по формуле

232.

где lг - геометрическая длина раскоса (между центрами верхнего и нижнего узлов);
lр - расчетная длина раскоса (расстояние между опорными закреплениями).
Расчетная длина раскоса определяется по формуле
lp = r•λп,
где r - радиус инерции поперечного сечения раскоса, принимаемого по результатам общего статического расчета фермы без учета подкосов и дополнительных стоек;
λп - предельная гибкость раскоса, принимаемая по нормам *3+.
Таким образом, результаты расчетов по приведенным формулам показывают, что оптимальное расстояние
условия прочности и устойчивости элементов строительной фермы.
составляет 1/6 длины панели lп. При этом удовлетворяются
В заявляемом изобретении по сравнению с прототипом благодаря сочетанию неравнопанельной фермы с подкосами и дополнительными стойками в средней части пролета
снижение материалоемкости составляет ≈ 20%. Одновременно благодаря уменьшению прогиба узлов фермы приблизительно на 30% повышается надежность устройства.
Причем подкосы и дополнительные стойки не учитывались в общем статическом расчете фермы. Площади сечения подкосов и дополнительных стоек принимались с запасом
исходя из расчетной гибкости этих элементов при сжатии.
Источники информации
1. Деревянные конструкции. Справочник проектировщика промышленных сооружений. Л., ОНТИ, 1937 - 955 с.
2. Беккер Г.Н. Ферма с параллельными поясами. Авт. свид. СССР N 781293, кл. E 04 C 3/04.
3. Стальные конструкции. Глава СНиП П-23-81*. - М.: Стройиздат, 1990.
4. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Под редакцией д.т.н., проф. А.А. Уманского. Госстройиздат.- М: 1960 - 1040 с.
Формула изобретения
Строительная ферма, содержащая верхний сжатый и нижний растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также подкосы и дополнительные
стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, при этом длины панелей уменьшаются от
середины пролета к опорам, отличающаяся тем, что подкосы и дополнительные стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее
поперечное сечение, чем сопряженные с ними стержни фермы, при этом одна часть подкосов прикреплена к стойкам под углом 45o вне узла, а другим концом - к нижнему
поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем точки крепления к поясам подкосов
и дополнительных стоек отстоят от ближайших узлов на расстоянии 1/6 длины панели.

233.

234.

УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2247813
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
2 247 813
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E04C 3/00 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 13 год с 26.08.2015 по 25.08.2016. Возможность восстановления:
нет.
(21)(22) Заявка: 2003126076/03, 25.08.2003
(24) Дата начала отсчета срока действия патента:
25.08.2003
(72) Автор(ы):
Инжутов И.С. (RU),
Деордиев С.В. (RU),
Рожков А.Ф. (RU)

235.

(45) Опубликовано: 10.03.2005 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: SU1638284 A1, 30.03.1991. RU2228415 C2,
10.09.2001. RU2184819 C1, 10.07.2002.
(73) Патентообладатель(и):
Красноярская государственная архитектурно-строительная ака
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, НИС Красноярская государственная архитектурно-строительная
академия
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ 2247813
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Достигаемый
технический результат изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения. Для решения поставленной задачи узловое сопряжение
верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой закреплены посредством
фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, согласно изобретению снабжено средством для сохранения усилия предварительного
напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на концах нижнего пояса вварены металлические стержни,
которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры, расположенные с наружной стороны траверсы,
фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими арками в прорезах, выполненных на концах
нижнего пояса-затяжки. 5 ил.

236.

Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна пространственная предварительно напряженная металлическая блок-ферма, содержащая верхний и нижний гибкие пояса, составной по длине жесткий стержень,
соединенный с концами фермы при помощи траверс *Авт. свид. №421743, Е 04 С 3/04+.
Недостатком известной фермы является низкая ее эффективность из-за сложности создания предварительного напряжения путем распирания домкратами отдельных частей
жесткого стержня и установки в образовавшийся зазор вставки.
Наиболее близким по технической сущности к изобретению является узловое сопряжение верхнего и нижнего поясов в известной пространственной предварительно
напряженной ферме, принятой за прототип *Авт. свид. №1638284, Е 04 С 3/00+. Известная ферма состоит верхнего пояса, включающего ребристые плиты с утеплителем и
кровлей, уложенные на гибкие арки, нижнего пояса-затяжки в виде тонкой полосы, установленных между ними вертикальных распорок, раскосов и поперечных траверс,
установленных по концам фермы, к которым прикреплены верхний и нижний пояса, причем поперечные траверсы снабжены наклонной полкой, к которой на высокопрочных
ботах прикреплены концы нижнего пояса и фиксаторы-карманы с гибкими арками.

237.

Недостатком прототипа являются потери усилия предварительного напряжения в нижнем поясе, обусловленные деформациями ползучести и температурно-влажностными
деформациями в древесине ребер плит верхнего пояса, температурными деформациями металла нижнего пояса, и, как следствие, не в полной мере использование
прочностных свойств конструкции с жестким выполнением соединения верхнего и нижнего поясов.
Задача изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения.
Для решения поставленной задачи узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с
ребрами жесткости, на которой закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, согласно изобретению снабжено
средством для сохранения усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на
концах нижнего пояса вварены металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры,
расположенные с наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими
арками в прорезах, выполненных на концах нижнего пояса-затяжки.
На фиг.1 изображено узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме; на фиг.2 - то же, вид сверху; на фиг.3 - то
же, вид сбоку; на фиг.4 - вид в объеме с наружной стороны блок-фермы; на фиг.5 - вид в объеме с внутренней стороны блок-фермы.
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме включает траверсу 1 с ребрами жесткости 2 и 3,
расположенными с обеих сторон траверсы. К ребрам 2 приварены фиксаторы 4, в которых закреплены гибкие арки 5 верхнего пояса посредством болтовых соединений 6. С
наружной стороны траверсы на ребра 3 приварены рессоры 7, взаимодействующие с нижним поясом 8, выполненным в виде металлической полосы. При этом на конце
нижнего пояса 8 выполнены прорези 9 под гибкие арки, по контуру приварены стержни 10, выступающие концы которых пропущены через отверстия 11 в траверсе 1 и между
рессорами 7. Стержни 10 оперты на рессоры 7 через упорные шайбы 12, например, в виде швеллеров и гайки 13. С внутренней стороны траверсы 1 нижний пояс 8 установлен с
возможностью перемещения на скошенных ребрах 14 и закреплен на приваренной к ребрам 14 пластине 15 посредством болтовых соединений 16, расположенных в пазах 17,
выполненных в нижнем поясе 8.
В процессе эксплуатации конструкции рессоры будут регулировать усилие предварительного напряжения, сохраняя его, несмотря на ползучие и температурно-влажностные
деформации в древесине и температурные деформации металла.
Использование предлагаемого изобретения по сравнению с прототипом позволяет создавать и сохранять усилие предварительного напряжения в процессе эксплуатации, тем
самым сохраняя несущую способность и жесткость конструкции.
Такое решение дает более полное использование прочностных свойств конструкции, уменьшает потери преднапряжения, что приведет к сохранению несущей способности и
жесткости.
Формула изобретения
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой
закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, отличающееся тем, что оно снабжено средством для сохранения
усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на концах нижнего пояса вварены
металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры, расположенные с другой
стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими арками в прорезах,

238.

выполненных на концах нижнего пояса-затяжки.

239.

240.

ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» при СПб ГАСУ [email protected] ИНН: 2014000780
[email protected], [email protected] [email protected] [email protected] [email protected] (996) 798-26-54, (951) 644-16-48
462 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 [email protected] Мжиев Х.Н. 12.01. 2023
Всего : 375 стр
Специальные технические условия монтажных соединений упругоплатических стальных ферм , пролетного строения моста из стержневых структур, МАРХИ ПСПК",
"Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) с большими перемещениями на предельное равновесие и приспособляемость ( А.Хейдари,
В.В.Галишникова) [email protected] [email protected] [email protected]
[email protected]
[email protected]
Специальный репортаж газета Армия Защитников Отечества при
СПб ГАСУ об использовании надвижного армейского моста дружбы для применения единственный способ спасти жизнь русских и украинцев , объедиение, покаяние, против
истинного врага жeлезнодорожников глобалистов № 7 (7) от 12.01.23 Тезисы, доклад, аннотация для публикации в сборнике ЛИИЖТа IV Бетанкуровского
международного инженерного форума ПГУПС ОО "Сейсмофонд" при СПб ГАСУ 11.01.23 т (812) 694-78-10

241.

242.

243.

244.

245.

«Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru [email protected] с[email protected]
[email protected] (994) 434-44-70, (996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)

246.

Система восстановление конструкции разрушенного участка железнодорожного большепролетного и автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами , имеет
довольно широкую область применения в строительстве. Эта система позволяет перекрывать сооружения любого назначения с пролетами до 100 м включительно . Это могут
быть как конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных
стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и элитные масштабные
сооружения типа музеев, выставочных зданий и крытых стадионов для тренировки футбольных команд, для складских, торговых и специальных производственных помещений,
покрытий машинных залов крупных гидроэлектростанций (Рис. 2. URL: http://www.sistems- marhi.ru/upload/medialibrary/efe/buria3.gif) [10].
На данный момент система имеет широкое распространение на территории РФ восстановление конструкции разрушенного участка железобетонного большепролетного
автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с
высокими геометрическими жесткостными параметрами
Объектом исследования является структурная несущая конструкции большепролетного покрытия конструкции разрушенного участка железобетонного большепролетного
автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с
высокими геометрическими жесткостными параметрами и культурно-развлекательного комплекса в городе Донецке.
Размеры перекрываемой части здания в плане составляют 68,4х42м. (Рис. 3). Шаг колонн различный в продольном и поперечном направлении. Отметка низа покрытия +12.2 м
[3].
В качестве покрытия используется структурная плита типа Восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста,
скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими
жесткостными параметрами и МАРХИ. Несущими элементами структурной плиты являются трубы, соединенные в узлах на болтах, с помощью специальных узловых элементов
(коннекторов). В качестве элементарной ячейки структуры базового варианта принята пирамида с основанием в виде прямоугольника 3х3,6 м (что соответствует шагу колонн
вдоль и поперек здания) и ребрами равными 3,6 м. Высота структурного покрытия составляет 2,73м, угол наклона ребра а = 49,4°+.
Все выбранные сечения труб были приняты по *19, 20+.
Система восстановления конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами, обладает
множеством положительных качеств и является надежным и экономически выгодным вариантом покрытия *18+. Однако, существует определенный ряд проблем, с которыми
возможно столкновение при выборе в качестве покрытия системы Молодечное , Кисловодск и МАРХИ:

247.

1) использование системы МАРХИ при нестандартных пролетах приводит к геометрическому изменению элементарной ячейки и соответственно нестандартного шага колонн;
2) из-за нетрадиционного соотношения размеров объекта в плане (для частного случая, рассматриваемого далее,68,4х42«1, 6:1) в узлах возникают большие усилия. И даже
использование высокопрочных болтов из наиболее прочных марок стали, применяющихся в данный момент в Украине - 40Х «селект», не позволяет решить эту проблему.
Некоторыми возможными способами регулировки усилий в элементах покрытия является:
1) изменение локальных геометрических параметров (в данном случае изменение элементарной ячейки по высоте);
2) изменение общей геометрии покрытия путем «вспарушивания» (перехода от плоской геометрии к криволинейной).
2. Обзор литературы
Выполненный обзор литературы подчинен решению основной задачи, рассматриваемой в данной статье, а именно: установлению таких геометрических параметров
проектируемой конструкции на нетиповом плане, которые обеспечили бы возможность использования типовых элементов системы МАРХИ (стержней и вставок-коннекторов).
Из множества трудов отечественных и зарубежных авторов, посвященных расчету, проектированию и эксплуатации структурных покрытий, прежде всего, следует выделить
работы посвященные:
- нормативному обеспечению процесса проектирования *1,19,20+,
- изложению общих принципов компоновки, расчета и проектирования рассматриваемых конструкций *2,4,8,10,13,14,17,23+,
- численному исследованию особенностей напряженно-деформированного состояния большепролетных структурных конструкций, в том числе на нетиповом плане, с учетом
геометрических несовершенств и других значимых факторов *3,7,9,11,12,21,24,25+,
- разработке аналитических принципов расчета, базирующихся на теории изгиба тонких плит *5,15,16,22+
- типизации и унификации конструктивных элементов структурных покрытий *6,16,18+.
Выполненный обзор и анализ проведенных ранее исследований позволил сформулировать основную
задачу исследования, результаты которого представлены в данной статье, а именно: отыскание таких геометрических параметров типовой ячейки покрытия, которые могли бы
удовлетворять
максимальной несущей способности высокопрочного болта 40Х «селект» (100 т), являющегося одним из основных типовых конструктивных элементов системы МАРХИ,
регламентирующего его несущую способность
3. Основная часть
Для достижения этой цели, в работе используется как аналитический, так и численный расчет напряженно-деформированного состояния конструкций.

248.

Аналитический метод расчета основывается на приближенном методе расчета изгибаемых тонких плит и выполняется в соответствии с методикой, предложенной в изученных
нами отечественных работах *16+ и зарубежных *15, 22+. Однако в качестве фундаментальных работ в этом направлении, конечно следует считать работу А.Г. Трущева *5+.
Численные исследования в данном исследовании были выполнены с помощью программного комплекса «SCAD» - вычислительного комплекса для прочностного анализа
конструкций методом конечных элементов *7+. Единая графическая среда синтеза расчетной схемы и анализа результатов обеспечивает неограниченные возможности
моделирования расчетных схем от самых простых до самых сложных конструкций *25+.
4. Заключение
1. Необходимо использовать для восстановления разрушенных мостов автодорожного моста, скоростным способом с применением комбинированных стержневых
структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
2. При переходе от плоской схемы к пространственной в виде пологой оболочки, требуемое значение начальной стрелы выгиба составляет f/l=1/27, при которой обеспечивается
возможность использования стандартных элементов типа МАРХИ, для пологой оболочки неподвижно закрепленной по контуру.
4. Сопоставление результатов аналитических и численных исследований показывают их удовлетворительность сходимости в пределах 15%. для восстановление конструкции
разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных,
пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
5. Результаты исследования НДС конструкции, полученные путем «вспарушивания», показали, что «вспарушивание» является эффективным методом регулирования параметров
НДС при условии «жесткого защемления» конструкции при восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста,
скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими
жесткостными параметрами
"Влияние монтажных соединений секций разборного железнодорожного моста на его напряженно-деформируемое состояние с использованием сдвигового
компенсатора проф дтн ПГУПС А.М.Уздина на фрикционно- подвижных ботовых соединениях для обеспечения сейсмостойкого строительства сборно-разборных
железнодорожных мостов с антисейсмическими сдвиговыми компенсаторами

249.

на фланцевых фрикционных соединениях, согласно прилагаемых патентов и изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2770777,
858604 , 165076, 154506 , 2010136746 и технические условия по изготовлению упругопластической стальной ферм пролетного строения армейского моста, пролетами 25
метров с использованием опыта КНР, c большими перемещениями на предельное равновесие и приспособляемость , для автомобильного моста, шириной 3,2 метра,
грузоподъемностью 2 тонн , сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА
НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» №
2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от 02.06.2022 ) на болтовых
соединениях с демпфирующей способностью при импульсных растягивающих нагрузках, при многокаскадном демпфировании из пластинчатых балок, с применением
гнутосварных прямоугольного сечения профилей многоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция») с использованием
изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895, 1168755, 1174616, 2550777, 2010136746, 165076,
154506
"Влияние монтажных соединений секций разборного железнодорожного моста на его напряженно-деформируемое состояние с использованием сдвигового
компенсатора проф дтн ПГУПС А.М.Уздина на
фрикционно- подвижных ботовых соединениях для обеспечения сейсмостойкого строительства сборно-разборных железнодорожных мостов с антисейсмическими
сдвиговыми компенсаторами
на фланцевых фрикционных соединениях, согласно прилагаемых патентов и изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2770777,
858604 , 165076, 154506 , 2010136746

250.

251.

Специальные технические условия по изготовлению упругопластической стальной ферм пролетного строения армейского моста, пролетами 25 метров с использованием
опыта КНР, c большими перемещениями на предельное равновесие и приспособляемость , для автомобильного моста, шириной 3,2 метра, грузоподъемностью 2 тонн ,
сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,

252.

ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» №
2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от 02.06.2022 ) на болтовых соединениях с
демпфирующей способностью при импульсных растягивающих нагрузках, при многокаскадном демпфировании из пластинчатых балок, с применением гнутосварных
прямоугольного сечения профилей многоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция») с использованием изобретений №№
2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895, 1168755, 1174616, 2550777, 2010136746, 165076, 154506

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

PGUPS Antonovskiy most opit USA Momtana reka Suon uskorennogo varianta vosstanovleniya mosta cherez Dnepr 478 str
https://ppt-online.org/1267573?ysclid=lbzk5d72kf455761516
Seismofond [email protected] opit bloka NATO USA Antonovskiy most Texnologiya uskorennogo vosstanovleniya mosta chreez reku Dnepr 457 str
https://ppt-online.org/1266985
Появилось видео разрушенного Антоновского моста через Днепр https://ria.ru/20221111/most-1830910643.html
Вероятно, он был подорван». Что произошло с Антоновским мостом
Российские военкоры сообщили о подрыве Антоновского моста в Херсоне
https://www.gazeta.ru/army/2022/11/11/15766321.shtml
USA chertezhi Bailey bridge [email protected] O predposilkax cozdaniya novix konsruktiy vremennikh 410 str
https://ppt-online.org/1264806
Сборно-разборные быстро собираемые армейские переправы многократного применения
https://ppt-online.org/1224871
STU Spets tex usloviya Opit Universiteta Montakha USA bistro vozvodimikh zheleznodorozhnikh mostov Bloka NATO 405 str
https://ppt-online.org/1258617
USA+KNR Minisota Montana reka Suon Protokol ispitaniya plasticheskix uprugix soedineniy zheleznodorozhnogo mosta SCAD 466 str
https://ppt-online.org/1261643
[email protected] Opit Universiteta Montakha USA bistro vozvodimikh zheleznodorozhnikh mostov Bloka NATO 589 str
https://studylib.ru/doc/6368836/s.tyktyk81%40mail.ru-opit-universiteta-montakha-usa-bistro-...
Прямой упругопластический расчет стальных ...
https://miit.ru/content/Диссертация.pdf?id_wm=722242

266.

https://cyberleninka.ru/article/n/raschet-predvaritelno-napryazhennyh-zhelezobetonnyh-ferm-metodom-konechnyh-elementov-s-uchetom-fizicheskoy-nelineynosti
https://elib.sfu-kras.ru/bitstream/handle/2311/147987/pz_buganov.pdf?sequence=1
Затяжка высокопрочных болтов во фланцевых соединениях нижних поясов ферм https://forum.dwg.ru/showthread.php?t=143391
https://stroim-domik.ru/article/167-mostostroenie-metalliceskie-mosty/mosty-so-skvoznymi-fermami
Стыковое болтовое соединение растянутых поясов ферм на косых фланцах
https://3dstroyproekt.ru/useful-inventions/stykovoe-soedinenie-poiasov-ferm

267.

268.

269.

270.

НАРОДОВ
ИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ
КАФЕДРА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ
«К защите допускается»: Заведующий
кафедрой к.т.н., доцент
Галишникова В.В.
«__ »_____________2014 г.
диссертации на соискание ученой степени кандидата технических наук
Прямой упругопластический расчет стальных
пространственных ферм на предельную нагрузку и
приспособляемость с учетом больших перемещений
(название)
РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ

271.

Выполнил
Аспирант Хейдари Алиреза Ф.И.О.
(подпись)
Научный руководитель Галишникова Вера Владимировна Ф.И.О.
к.т.н., доцент (подпись)
(ученая степень, звание)
Москва, 2014

272.

273.

274.

275.

276.

277.

278.

СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
УДК 693.98
МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБОРОНЫ РОССИИ)
МАЖИЕВУ Х.Н. [email protected]
г. Москва, 119160
«УУ ЪЛ10ЛПМ- 20Л? г. № Sfjft/Jfftt
На № ?? -ШРрЗ с^ М-РЛ-ЛсЛЗ
«

279.

УР-
at. рз <м>с23
Уважаемый Хасан Нажоевич!
Ваши обращения по вопросу использования упруго-пластичных ферм- балок в конструкции сборно-разборного моста Департаментом строительства Министерства обороны
Российской Федерации по поручению рассмотрены и сообщается.
Задачи по оборудованию и содержанию переправ, а также содержанию путей движения и маневра войск в настоящее время являются одними из важнейших задач
Вооруженных Сил Российской Федерации.
Состоящие на снабжении Вооруженных Сил Российской Федерации средства преодоления разрушений и препятствий, и средства преодоления водных преград удовлетворяют
предъявляемым к ним требованиям, в том числе по грузоподъемности и времени наведения.
О.Оцепаев
Одновременно сообщается, что в Ваш адрес неоднократно направлялись письменные ответы по существу вопроса, в связи с чем, в соответствии со статьей 11 Федерального
закона № 59-ФЗ от 2 мая 2006 г. «О порядке рассмотрения обращений граждан» переписка с Вами по данному вопросу прекращается.
Заместитель руководителя Департамента строительства
МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБОРОНЫ РОССИИ)
г. Москва. 119160 ъЛШЛ^Рй- 20о?J г. m-YSJ/yJlPJу/с
На № Уг~ 99 сЖ.М-сШЗ
МАТВЕЕВУ Х.Н. [email protected]
Уважаемый Хасан Нажоевич!
Ваше обращение от 27 февраля 2023 г. по вопросу использования упруго-пластичных ферм-балок в конструкции сборно-разборного моста Департаментом строительства
Министерства обороны Российской Федерации по поручению рассмотрено и сообщается.
Задачи по оборудованию и содержанию переправ, а также содержанию путей движения и маневра войск в настоящее время являются одними из важнейших задач
Вооруженных Сил Российской Федерации.

280.

О.Оцепаев
Состоящие на снабжении Вооруженных Сил Российской Федерации средства преодоления разрушений и препятствий, и средства преодоления водных преград удовлетворяют
предъявляемым к ним требованиям, в том числе по грузоподъемности и времени наведения.
Заместитель руководителя Департамента строительства

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

Справки по тел ( 951) 644-16-48, (921) 962-67-78, (996) 798-26-54 [email protected] [email protected] [email protected]
Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННОДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ
ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4
ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru с[email protected] , (996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78 https://innodor.ru
Санкт -Петербургское городское отделение Всероссийской общественной организации ветеранов "Профсоюз Ветеранов Боевых Действий"

291.

Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих деформаций пролетного строения, кроме упругопластического сдвигового компенсатора,
гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного
сечения секций, так и элементов штыревых соединений, а использование упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения снимает
3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина» и
нарастанию общих деформаций (провисов), а упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических
фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность
движения, упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях
для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные
соединения в полной мере соответствуют такому назначению. При применении в гражданском строительстве эту особенность следует учитывать в разработке проектных
решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–
разборного железнодорожного армейского моста исключает обрушение железнодорожного моста

292.

Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных
решений вариантов поперечной и продольной компоновки пролетных строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые
напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного железнодорожного армейского
моста «Уздина»
Выводы Перспективы применения быстровозводимых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической базы, задачи по быстрому временному восстановлению
мостовых переходов будут невыполнимы. Это приведет к предсказуемым потерям
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который
получил патент № 1143895, 1168755, 1174616, 2550777 на сдвиговых болтовых соединениях, а инженер -механик Андреев Борис Иванович получил патент № 165076 "Опора
сейсмостойкая" и № 2010136746 "Способ защита здания и сооружений ", который спроектировал необычный сборно-разборный армейский универсальный
железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов, пластический сдвиговой компенсатор ( Сдвиговая прочность при действии
поперечной силы СП 16.13330.2011, Прочностные проверки SCAD Закон Гука ) для сборно-разборного моста" , названный в честь его имени в честь русского ученого,
изобретателя "Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн ПГУПС Уздина , пока на бумаге. Sborno-razborniy bistrosobiraemiy
universalniy most UZDINA PGUPS 453 str https://ppt-online.org/1162626 https://disk.yandex.ru/d/iCyG5b6MR568RA
Зато, западные партнеры из блока НАТО , уже внедрили похожие изобретения проф дтн ПГУПС Уздина А М. по использованию сдвигового компенсатора под названием
армейский Bailey bridge при использовании сдвиговой нагрузки, по заявке на изобретение № 2022111669 от 27.04.2022 входящий ФИПС 024521 "Конструкция участка
постоянного железобетонного моста неразрезной системы" , № 2021134630 от 06.05.2022 "Фрикционно-демпфирующий компенсатор для трубопроводов", а20210051 от 29
июля 2021 Минск "Спиральная сейсмоизолирующая опора с упругими демпферами сухого терния" . № а 20210217 от 23 сентября 2021, Минск " Фланцевое соединение
растянутых элементов трубопровода со скошенными торцами"
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области при форсировании реки Северский Донец российская армия потеряла
много военнослужащих семьдесят четвёртой мотострелковой бригады из-за отсутствия на вооружение наплавных ложных мостов , согласно изобретениям № 185336, №
77618. Об этом сообщил американский Институт изучения войны. "11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные мосты и плотно
сконцентрированные вокруг них российские войска и технику, в результате чего, как сообщается, погибло много русских солдат и было повреждено более 80 единиц техники»,
— отмечается в публикации. По оценке института, войска РФ допустили значительные тактические ошибки при попытке форсирования реки в районе Кременной, что привело к
таким потерям. Ранее в Институте изучения войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк, отказавшись от плана крупномасштабного
окружения ВСУ и выхода на административные границы Донецкой области https://disk.yandex.ru/i/3ncRcfqDyBToqg
Administratsiya Armeyskie mosti uprugoplasticheskim sdvigovoy jestkostyu 176 str
https://ppt-online.org/1235168

293.

Среди прочих мостов , в том числе и современных разборных конструкций мостов, особое место занимает средний автомобильный разборный мост (САРМ), разработанный в
1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода накопленных на хранении комплектов САРМ в гражданский сектор строительства
выяснилась значительная востребованность этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность всеми элементами моста, включая
опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде. Паспортная
грузоподъемность обозначена как 40 т при однопутном проезде и 60 т при двухпутном проезде.
Так как по ряду геометрических и технических параметров конструкции САРМ не в полной мере соответствуют требованиям современных норм для капитальных мостов, то
применение их ориентировано в основном как временных.
Следует отметить, что при незначительной доработке - постановке современных ограждений и двухпутной поперечной компоновке секций для однополосного движения можно
добиться соответствия требуемым геометрическим параметрам ездового полотна и общей грузоподъемности для мостов на дорогах общего пользования IV и V технической
категории.
В статье рассматривается конструктивная особенность штыревых монтажных соединений секций разборного пролетного строения как фактор, определяющий
грузоподъемность, характер общих деформаций и в итоге влияющий на транспортно- эксплуатационные характеристики мостового сооружения.
Целью настоящего исследования является анализ работы штыревых монтажных соединений секций пролетного строения САРМ с оценкой напряженного состояния элементов
узла соединения. Новизной в рассмотрении вопроса полагаем оценку прочности элементов штыревых соединений и ее влияние на общие деформации - прогибы главных балок.
Ключевые слова: пролетное строение; нижний пояс; верхний пояс; штыревое соединение; проушина; прочность; прогиб, методом оптимизации и идентификации статических
задач теории устойчивости надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых
сред и конструкций с учетом сдвиговой прочности при математическом моделировании.
Введение
Наряду с постоянными, капитальными мостами на автомобильных дорогах общего пользования востребованы сооружения на дорогах временных, объездных,
внутрихозяйственных с приоритетом сборно-разборности и мобильности конструкций надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП

294.

16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании методом оптимизации и
идентификации статических задач теории устойчивости надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в
механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании.
.
Прокладка новых дорог, а также ремонты и реконструкции существующих неизбежно сопровождаются временными мостами, первоначально пропускающими движение
основной магистрали или решающими технологические задачи строящихся сооружений. Подобные сооружения могут быть пионерными в развитии транспортных сетей
регионов с решением освоения удаленных сырьевых районов.
В книге А.В. Кручинкина «Сборно-разборные временные мосты» *1+ сборно-разборные мосты классифицированы как временные с меньшим, чем у постоянных мостов сроком
службы, обусловленным продолжительностью выполнения конкретных задач. Так, для пропуска основного движения и обеспечения технологических нужд при строительстве
нового или ремонте (реконструкции) существующего моста срок службы временного определен от нескольких месяцев до нескольких лет. Для транспортного обеспечения
лесоразработок, разработки и добычи полезных ископаемых с ограниченными запасами временные мосты могут служить до 10-20 лет *1+. Временные мосты применяют также
для обеспечения транспортного сообщения сезонного характера и для разовых транспортных операций.
Особая роль отводится временным мостам в чрезвычайных ситуациях, когда решающее значение имеют мобильность и быстрота возведения для срочного восстановления
прерванного движения транспорта.
В силу особенностей применения к временным мостам как отдельной ветви мостостроения уделяется достаточно много внимания и, несмотря на развитие сети дорог,
повышение технического уровня и надежности постоянных сооружений, задача совершенствования временных средств обеспечения переправ остается актуальной *2+.
Что касается материала временных мостов, то традиционно применялась древесина как широко распространенный и достаточно доступный природный ресурс. В настоящее
время сталь, конкурируя с железобетоном, активно расширяет свое применение в сфере мостостроения становясь все более доступным и обладающим лучшим показателем
«прочность-масса» материалом. Давно проявилась тенденция проектирования и строительства стальных пролетных строений постоянных мостов даже средних и малых,
особенно в удаленных территориях с недостаточной транспортной доступностью и слабо развитой
инфраструктурой. Разумеется, для мобильных и быстровозводимых временных мостов сталь - давно признанный и практически единственно возможный материал.
Конструктивное развитие временных мостов можно разделить на следующие направления:
• цельноперевозимые конструкции максимальной заводской готовности, как например «пакетные» пролетные строения, полностью готовые для пропуска транспорта после их
установки на опоры *3+;

295.

• складные пролетные строения, способные трансформироваться для уменьшения габаритов при их перевозке1 *4+;
• сборно-разборные2 *5; 6+.
Разборность конструкций обусловлена необходимостью в перекрытии пролетов длиной, превышающей габаритные возможности транспортировки, отсюда и большое
разнообразие исполнения временных мостов такого типа. Членение пролетного строения на возможно меньшие части с целью ускорения и удобства сборки наиболее удачно
реализовано в Российской разработке «Тайпан» (патент РФ 1375583) или демпфирующий упругопластичный компенсатор гаситель сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1- антисейсмическое фланцевое фрикционно-подвижное соединение) для сборно-разборного
быстрособираемого армейского моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м. с применением замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов проезжей части
армейского сборно-разборного пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой
фрикционно-демпфирующей прочностью, согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» №
2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755,
1174616, 2550777, 2010136746, 165076, 858604, 154506, в которой отдельные «модули» не только упрощают сборку-разборку без привлечения тяжелой техники, но и являются
универсальными монтажными марками, позволяющими собирать мосты разных габаритов и грузоподъемности *7; 8+.
Основные параметры некоторых инвентарных сборно-разборных мостов
Ожидаемо, что сборно-разборные мобильные мостовые конструкции приоритетным образом разрабатывались и выпускались для нужд военного ведомства и с течением
времени неизбежно попадали в гражданский сектор мостостроения. Обзор некоторых подобных конструкций приведен в ссылке
ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ
СОСТОЯНИЕ
ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ 1
1 ФГБОУ ВО «Тихоокеанский государственный университет», Хабаровск Россия
https://elibrary.ru/item.asp?id=43813437
Временные мосты необходимы для обеспечения движения при возведении или ремонте (реконструкции) капитальных мостовых сооружений, оперативной связи прерванных
путей в различных аварийных ситуациях, для разовых или сезонных транспортных сообщений.

296.

В мостах такого назначения целесообразны мобильные быстровозводимые конструкции многократного применения. Инвентарные комплекты сборно-разборных мостов
разрабатывались и производились прежде всего в интересах военного ведомства, но в настоящее время широко востребованы и применяются в гражданском секторе
мостостроения в силу их экономичности, мобильности, доступности в транспортировке. Среди прочих, в том числе и современных разборных конструкций мостов, особое место
занимает средний автомобильный разборный мост (САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода
накопленных на хранении комплектов САРМ в гражданский сектор строительства выяснилась значительная востребованность этих конструкций, обусловленная следующими их
преимуществами: полная укомплектованность всеми элементами моста, включая опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2
м при однопутном и 7,2 м при двухпутном проезде...
Однако, смотрите ссылку антисейсмический сдвиговой фрикционно-демпфирующий компенсатор, фрикци-болт с гильзой, для соединений секций разборного моста
https://ppt-online.org/1187144
Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННОДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Несмотря на наличие современных разработок *7; 8+, инвентарные комплекты сборно-разборных мостов в процессе вывода их из мобилизационного резерва широко
востребованы в гражданском секторе мостостроения в силу их экономичности, мобильности, доступности в транспортировке и многократности применения *9; 10+.
Среди описанных в таблице 1 инвентарных комплектов мостов особое место занимает САРМ (средний автомобильный разборный мост) 4 . Разработанный в 1968 г. и
модернизированный в 1982 г. инвентарный комплект позволяет перекрывать пролеты 18,6, 25,6 и 32,6 м с габаритом ездового полотна 4,2 м при однопутном и 7,2 м при
двухпутном проезде (рисунок 1). Удобный и эффективный в применении комплект САРМ в процессе вывода накопленных на хранении конструкций в гражданский сектор
строительства показал значительную востребованность, обусловленную, кроме отмеченных выше преимуществ также и полную укомплектованность всеми элементами моста,
включая опоры. Факт широкого применения конструкций САРМ в гражданском мостостроении отмечен тем, что федеральное дорожное агентство «Росавтодор» в 2013 году
выпустило нормативный документ ОДМ 218.2.029 - 20135, специально разработанный для применения этого инвентарного комплекта.
К недостаткам проекта САРМ следует отнести несоответствия некоторых его геометрических и конструктивных параметров действующим нормам проектирования: габариты
ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде, также штатные инвентарные ограждения (колесоотбои) не соответствуют требованиям действующих
норм СП 35.1333.20116, ГОСТ Р 52607-20067, ГОСТ 26804-20128. Выполнение требований указанных выше норм может быть обеспечено ограничением двухсекционной

297.

поперечной компоновки однопутным проездом с установкой добавочных ограждений *10+ или нештатной поперечной компоновкой в виде трех и более секций,
рекомендуемой нормами ОДМ 218.2.029
20135.
Пролетное строение среднего автомобильного разборного моста (САРМ) в продольном направлении набирается из средних и концевых секций расчетной длиной 7,0 и 5,8 м
соответственно. Количество средних секций (1, 2 или 3) определяет требуемую в каждом конкретном случае длину пролета 18,6, 25,6, 32,6 м (рисунок 1).
Объединение секций в продольном направлении в сечениях 3 (рисунок 1) выполняется с помощью штырей, вставляемых в отверстия (проушины) верхнего и нижнего поясов
секций. В поперечном направлении в стыке одной секции расположены два штыревых соединения в уровне верхнего и два - в уровне нижнего пояса (рисунок 2).
4 Средний автодорожный разборный мост. Техническое описание и инструкция по эксплуатации / Министерство обороны СССР. -М.: Военное изд-во мин. обороны СССР, 1982. 137 с.
5 Методические рекомендации по использованию комплекта среднего автодорожного разборного моста (САРМ) на автомобильных дорогах в ходе капитального ремонта и
реконструкции капитальных искусственных сооружений: Отраслевой дорожный методический документ ОДМ 218.2.029 - 2013. - М.: Федеральное дорожное агентство
(РОСАВТОДОР), 2013. - 57 с.
6 Свод правил. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84* (с Изменениями № 1, 2) / ОАО ЦНИИС. - М.: Стандартинформ, 2019.
7 ГОСТ Р 52607-2006. Технические средства организации дорожного движения. Ограждения дорожные удерживающие боковые для автомобилей. Общие технические
требования / ФДА Минтранса РФ, ФГУП РосдорНИИ, Российский технический центр безопасности дорожного движения, ОАО СоюздорНИИ, МАДИ (ГТУ), ДО БДД МВД России,
НИЦ БДДМВД России. - М.: Стандартинформ, 2007, - 21 с.
8 ГОСТ 26804-2012. Ограждения дорожные металлические барьерного типа. Технические условия / ЗАО СоюздорНИИ, ФГУП РосдорНИИ, ООО НПП «СК Мост». - М.:
Стандартинформ, 2014, - 24 с.
Страница 4 из 14
25SATS220
1 - концевая секция; 2 - средняя секция; 3 - сечения штыревых соединений секций
Рисунок : Томилова Сергей Николаевича вставлен

298.

Рисунок 1. Фасад пролетного строения разборного моста САРМ с вариантами длины 18,6 м (а), 25,6 м (б), 32,6 м (в) (разработано автором)
Каждое соединение верхнего пояса секций включает тягу в виде пластины с двумя отверстиями и два вертикальных штыря, а соединение нижнего пояса выполнено одним
горизонтальным штырем через проушины смежных секций (рисунок 4).
Таким образом, продольная сборка пролетного строения осуществляется путем выгрузки и проектного расположения секций, совмещения проушин смежных секций и
постановки штырей.

299.

1 - штыревые соединения верхнего пояса; 2 - штыревые соединения нижнего пояса; а - расстояние между осями штыревых соединений
Рисунок 2. Двухсекционная компоновка поперечного сечения пролетного строения (разработано автором)
Постановка задачи
Штыревое соединение секций пролетных строений позволяет значительно сократить время выполнения работ, но это обстоятельство оборачивается и недостатком невозможностью обеспечения плотного соединения при работе его на сдвиг. Номинальный диаметр соединительных штырей составляет 79 мм, а отверстий под них и проушин 80 мм.
Разница в 1 мм необходима для возможности постановки штырей при сборке пролетных строений.

300.

Цель настоящего исследования - оценить напряженное состояние узла штыревого соединения, сравнить возникающие в материале элементов соединения напряжения смятия и
среза с прочностными параметрами стали, возможность проявления пластических деформаций штыря и проушин и как следствие - их влияние на общие деформации
пролетного строения.
Штыревые соединения как концентраторы напряжений в конструкциях мостов уже привлекали внимание исследователей *11+ и также отмечался характерный для транспортных
сооружений фактор длительного циклического воздействия *8+. Изначально неплотное соединение «штырь-проушина» и дальнейшая его выработка создает концентрацию
напряжения до 20 % против равномерного распределения *11+, что может привести к ускорению износа, особенно с учетом цикличного и динамического воздействия
подвижной автотранспортной нагрузки.
В настоящей статье рассмотрены напряжения смятия и деформации в штыревых соединениях и как их следствие - общие деформации (прогибы) пролетного строения. Оценка
напряженного состояния в соединении выполнена исходя из гипотезы равномерного распределения усилий по расчетным сечениям.
Сравнительный расчет выполним для распространенного пролета 32,6 м в следующей последовательности: прочность основного сечения одной секции при изгибе; прочность
штыревого соединения по смятию металла проушин; прочность металла штыря на срез.
Паспортная (проектная) грузоподъемность при двухсекционной поперечной компоновке и двухпутном ездовом полотне - временные вертикальные нагрузки Н-13, НГ-60 по
нормам СН 200-621. Так как конструкции САРМ запроектированы на нагрузки, уступающие современным, то для обеспечения приемлемой грузоподъемности можно
использовать резервы в компоновке - например двухсекционная поперечная компоновка будет пропускать только одну полосу движения, что на практике зачастую не
организовано и транспорт движется двумя встречными полосами. Рассмотрим именно такой случай и в качестве полосной автомобильной нагрузки примем А11 по СП
35.1333.20116, хотя и меньшую, чем принятая для нового проектирования А14, но в полной мере отражающую состав транспортных средств регулярного поточного движения.
При постоянстве поперечного сечения по длине пролета и исходя из опыта проектирования для оценочного усилия выбираем изгибающий момент.
В работе основного сечения одной секции при изгибе участвуют продольные элементы верхнего и нижнего пояса: верхним поясом являются лист настила шириной 3,0 м,
продольные швеллеры и двутавры № 12; нижним поясом являются два двутавра № 23Ш2 (рисунок 3).
Предельный момент, воспринимаемый основным сечением секции (рисунок 3)
где Ry = 295 МПа - расчетное сопротивление стали 15ХСНД; I - момент инерции сечения секции относительно оси изгиба; - максимальная ордината расчетного сечения
относительно оси изгиба.

301.

1 - лист настила толщиной 0,006м; 2 - швеллер № 12 по ГОСТ 8239; 3 - двутавр № 12 по ГОСТ 8240; 4 - двутавр № 23Ш2 по ТУ 14-2-24-72
Рисунок 3. Поперечное сечение секции пролетного строения САРМ с выделением продольных элементов с функциями верхнего и нижнего пояса при изгибе (разработано
автором)
Данные расчета по (1) приведены в таблице 2.
Расчет предельного изгибающего момента основного сечения секции САРМ
Расчет предельного изгибающего момента основного сечения секции САРМ
Для сравнительной оценки несущей способности основного сечения секции (предельный изгибающий момент, таблица 2) представим расчетный изгибающий момент от
временной нагрузки А11 для двухпутного проезда, а именно 1 полоса А11 - на 1 секцию в поперечном направлении.

302.

Для выделения полезной части грузоподъемности из предельного удерживается изгибающий момент от постоянной нагрузки. Расчетными сечениями по длине пролета
принимаем его середину и сечение штыревого соединения, ближайшее к середине пролета. Результаты расчета путем загружения линий влияния изгибающего момента в
выбранных сечениях приведены в таблице 3.
Как видно, предельный изгибающий момент основного сечения секции (3894,9 кН-м) только на 59,4 % обеспечивает восприятие момента (1134,5 + 5418,6 = 6553,1 кН-м) от
суммы постоянной и временной А11 расчетных нагрузок.
Оценить напряженное состояние металла проушин по смятию штырем можно по схеме контакта штыря с внутренней поверхностью проушин, где усилие N с плечом a составляет
внутренний момент, уравновешивающий внешний, обусловленный нагрузкой на пролет (рисунок 4).
Рисунок 5. Схема штыревого соединения нижнего пояса, вид сверху (разработано автором). Но , есть упругопластический сдвиговой компенсатор гаситель сдвиговых
напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разбороного железнодорожного армейского моста и он
надежнее
1 - одинарная проушина; 2 - двойная проушина; 3 - штырь
Сравним полученные в (3) и (4) результаты с прочностными характеристиками стали 15ХСНД, из которой изготовлены несущие элементы моста САРМ, таблица 4.
Следует определить суммарный расчетный изгибающий момент М от постоянной Мпост и временной Мвр (А11) нагрузок для сечения ближайшего к середине пролета стыка по
данным таблицы 3.

303.

M = Mпост + Mвр = 1081,2 + 5195,3 = 6276,5 кН- м.
1 - вертикальный штырь верхнего пояса; 2 - горизонтальный штырь нижнего пояса
Рисунок 4. Схема стыка секций пролетного строения
При суммарной толщине элементов проушины нижнего пояса, сминаемых в одном направлении, 0,06 м и диаметре штыря 0,079 м площадь смятия составит А = 0,06-0,079 =
0,0047 м2 на один контакт (рисунок 5). При наличии двух контактов нижнего пояса в секции напряжение смятия металла проушины составит
Для расчета сечения штыря на срез следует учесть, что каждый из двух контактов на секцию имеет две плоскости среза (рисунок 5), тогда напряжение сдвига
Примечание:расчетные сопротивления стали смятию и сдвигу определены по таблице 8.3 СП 35.13330.20116 (составлено автором)
Сравнение полученных от воздействия нагрузки А11 напряжений с характеристиками прочности стали 15ХСНД
Напряжение сдвига в штыре превосходит расчетное сопротивление стали, а напряжение смятия в контакте штырь-проушина превосходит как расчетное сопротивление, так и
предел текучести, что означает невыполнение условия прочности, выход металла за предел упругости и накопление пластических деформаций при регулярном и
неорганизованном воздействии временной нагрузки А11.

304.

Практическое наблюдение
В организациях, применяющих многократно использованные конструкции САРМ, отмечают значительные провисы (прогибы в незагруженном состоянии) пролетных строений,
величина которых для длин 32,6 м доходит до 0,10-0,15 м. Это создает искажение продольного профиля ездового полотна и негативно влияет на пропускную способность и
безопасность движения. При этом визуально по линии прогиба отчетливо наблюдаются переломы в узлах штыревых соединений секций. При освидетельствовании таких
пролетных строений отмечается повышенный зазор между штырем и отверстием (рисунок 6).
Рисунок 6. Повышенный зазор в штыревом соединении секций пролетного строения САРМ (разработано автором)

305.

Смещения в штыревых соединениях, обусловленные пластическими деформациями перенапряженного металла, определяют величину общих деформаций (прогибов)
пролетных строений (рисунок 7).
Рисунок 7. Схема общих деформаций вследствие смещения в штыревых соединениях (разработано автором)
Полное смещение (подвижка) на одно соединение с0 = с + с2, где с1 = 1 мм - исходное конструктивное; с2 - добавленное за счет смятия в соединении (рисунок 7).

306.

Вертикальное перемещение f (прогиб) в середине пролета для рассмотренного примера будет суммой xi и Х2 (рисунок 7).
f = Xi + Х2.
Величины x1 и x2 можно определить, зная углы а и 2а, которые вычисляются через угол
где а - расстояние между осями штыревых соединений верхнего и нижнего поясов; I1 - длина средней секции пролетного строения; I2 - длина концевой секции пролетного
строения.
В качестве примера рассмотрим временный объездной мост через р. Черниговка на автодороге Хабаровск - Владивосток «Уссури», который был собран и эксплуатировался в
составе одного пролета длиной 32,6 м из комплекта САРМ на период строительства постоянного моста. Были отмечены значительные провисы пролетных строений временного
моста величиной в пределах 130-150 мм в середине пролета, что вызвало беспокойство организаторов строительства. При обследовании была установлена выработка всех
штыревых соединений главных ферм в среднем на 2,5 мм сверх номинального 1 мм.
Таким образом смещение (подвижка) на одно соединение с0 = с1 + с2 = 1 + 2,5 = 3,5 мм, а так как в уровне верхнего пояса в качестве связующего элемента применена
продольная тяга с двумя отверстиями и двумя расположенными последовательно штырями, то суммарное смещение, отнесенное к уровню нижнего пояса с = 3,5-3 = 10,5 мм.
Далее следуют вычисления по формулам (5) при а = 1,37 м; h = 7,0 м; I2 = 5,8 м.
а = arcsin 0,0105 = 0,205o; а = 2 • 0,205 = 0,41o; xi = 7,0 • sin 0,41 = 0,05 м;
2
2 • 1,47
1
2а = 2 • 0,41 = 0,82o; x2 = 5,8 • sin 0,82o = 0,083 м.
Полная величина прогиба f = Х1 + Х2 = 0,05 + 0,083 = 0,133 м, что вполне согласуется с фактически замеренными величинами f.
Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих деформаций пролетного строения, кроме упругопластического сдвигового компенсатора,
гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста проф дтн ПГУПС А.М.Уздина

307.

2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного
сечения секций, так и элементов штыревых соединений, а использование упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения снимает
3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина» и
нарастанию общих деформаций (провисов), а упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических
фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность
движения, упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях
для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные
соединения в полной мере соответствуют такому назначению. При применении в гражданском строительстве эту особенность следует учитывать в разработке проектных
решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–
разборного железнодорожного армейского моста исключает обрушение железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных
решений вариантов поперечной и продольной компоновки пролетных строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые
напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного железнодорожного армейского
моста «Уздина»

308.

ЛИТЕРАТУРА
1. Кручинкин А.В. Сборно-разборные временные мосты. - М.: Транспорт, 1987. - 191 с.
2. Тыдень В.П., Малахов Д.Ю., Постников А.И. Реализация современных требований к переправочно-мостовым средствам в концепции выгружаемого переправочно-десантного
парома // Вестник Московского автомобильно- дорожного государственного технического университета (МАДИ). - М.: Изд-во МАДИ(ГТУ), 2019. - Вып. 3 (58). - С. 69-74.
3. Томилов С.Н. О применении стальных пакетных конструкций в постоянных мостах // Научные чтения памяти профессора М.П. Даниловского: материалы Восемнадцатой
Национальной научно-практической конференции: в 2 т. - Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - 2 т. - С. 360-363.
4. Mohamad Nabil Aklif Biro, Noor Zafirah Abu Bakar. Design and Analysis of Collapsible Scissor Bridge. MATEC Web of Conferences. Vol. 152, 02013 (2018). DOI:
https://doi.org/10.1051/matecconf/201815202013.
5. Дианов Н.П., Милородов Ю.С. Табельные автодорожные разборные мосты: учебное пособие. - М.: Изд-во МАДИ (ГТУ), 2009. - 236 с.
6. Adil Kadyrov, Aleksandr Ganyukov, Kyrmyzy Balabekova. Development of Constructions of Mobile Road Overpasses. MATEC Web of Conferences. Vol. 108, 16002 (2017). DOI:
https://doi.org/10.1051/matecconf/201710816002.
7. Бокарев С.А., Проценко Д.В. О предпосылках создания новых конструкций временных мостовых сооружений // Интернет-журнал «Науковедение». 2014. № 5(24). URL:
https://naukovedenie.ru/PDF/26KO514.pdf. - С. 1-11.
8. Проценко Д.В. Совершенствование конструктивно-технологических параметров системы несущих элементов и элементов проезжей части универсального сборно- разборного
пролетного строения с быстросъемными шарнирными соединениями. Диссертация на соискание ученой степени кандидата технических наук / Сибирский государственный
университет путей сообщения (СГУПС). Новосибирск: 2018.
9. Матвеев А.В., Петров И.В., Квитко А.В. Оценка по теории инженерного прогнозирования новых образцов мостового имущества МЛЖ-ВФ-ВТ и ИМЖ- 500 // Вестник
гражданских инженеров. - СПб: Изд-во Санкт-Петербургского гос. арх.-строит. ун-та, 2018. Вып. 4 (69). - С. 138-142.
10. Томилов С.Н., Николаев А.Р. Применение комплекта разборного моста под современные нагрузки // Дальний Восток. Автомобильные дороги и безопасность движения:
международный сборник научных трудов (под. ред. А.И. Ярмолинского). - Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - № 18. - С. 125-128.
11. Сухов И.С. Совершенствование конструктивно-технологических решений шарнирных соединений автодорожных мостов. Автореферат диссертации на соискание ученой
степени кандидата технических наук / Научно- исследовательский институт транспортного строительства (ОАО ЦНИИС). М.: 2011.

309.

310.

Сейсмические требования к стальному каркасу в США STAR SEISMIC USA или новые конструктивные решения антисейсмических демпфирующих связей Кагановского
СЕЙСМИЧЕСКАЯ ЗАЩИТА КАРКАСОВ RC С ИСПОЛЬЗОВАНИЕМ фланцевых фрикционных компенсаторов США

311.

Seismic demands on steel braced frame bu Seismic_demands_on_steel_braced_frame_bu
https://ru.scribd.com/document/489003023/Seismic-Demands-on-Steel-Braced-Frame-Bu-1
https://ppt-online.org/846004
https://yadi.sk/i/D6zwaIimCrT5JQ
http://www.elektron2000.com/article/1404.html
https://ppt-online.org/827045
https://ppt-online.org/821532

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

Надвижка пролетного строения из стержневых пространсвенных структур с использованием рамных сбороно-разборных конструкций с использованием замкнутых
гнутосварных профилей прямоуголного сечения, типа "Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектсталь-конструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных мостов в Киевской
Руси Организация - Фонд поддержки и развития сейсмостойкого строительства "Защита и безопасность городов» - «Сейсмофонд» ИНН – 2014000780 при СПб ГАСУ №
RA.RU.21СТ39 от 27.05.2015 (911) 175-84-65 , т/ф (812) 694-78-10 [email protected]
Восстановление скоростным способом железнодорожных мостов в Киевской Руси пролетом 9, 18, 24 метра с применением замкнутых гнутосварных, прямоугольного
сечения профилей типа "Молодечно" (серия 1.460.3.14 ) с использованием опыта модельных испытаний студентов США, и опыта блока НАТО по восстановления мостов в
Ираке, Афганистане, с применением комбинированных стержневых структурных пространственных конструкций "Молодечно", "Кисловодск" , МАРХИ с высокими
геометрическими жесткостными параметрами, при восстановлении разрушенных мостов в Киевской Руси с использованием опыта восстановление мостов блоком НАТО в
Северном Вьетнаме, Югославии, Афганистане, Ираке по восстановлению разрушенных железнодорожных и железобетонных мостов во время боевых действий и их

345.

восстановление , согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№1143895, 1168755, 1174616, 165076, 154506, 2010136746, для доставки гуманитарной помощи в ДНР,
ЛНР ( Новороссию) Киевской Руси. Докладчик редактор газеты "Земля РОССИИ", президента организации "Сейсмофонд" при СПб ГАСУ ИНН :2014000780, ОГРН:
1022000000824 Мажиев Х Н seismofond@list. https://disk.yandex.ru/d/F-tJehKQHKcf_A https://ppt-online.org/1142357
Редакция газеты "Земля России "прилагаем положительный ответ из МЧС РФ
Информация принята к сведению МЧС России проводит постоянную работу по анализу и внедрению современных методов и технологий, направленных на обеспечение
безопасности населения и территории.
В настоящее время в Российской Федерации содействие в реализации инновационных проектов и технологий оказывают такие организации, как Фонд «ВЭБ Инновации», ОАО
«Банк поддержки малого и среднего предпринимательства», ОАО «Российская Венчурная Компания», ОАО «РОСНАНО», Фонд развития инновационного Центра «Сколково»,
ФГБУ «Фонд содействия развитию малых форм предприятий в научно-технической сфере», ФГАУ «Российский фонд технологического развития», которые на сегодняшний день
успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами изделия «огнестойкий компенсатор гаситель температурных напряжений на фрикционноподвижных болтовых соединениях» обратиться в вышеуказанные организации. Сайдулаеву К.М. [email protected]
а так же предлагаем принять участие в научных мероприятиях МЧС России, где Вы сможете поделиться своими технологиями и услышать мнение экспертов. Информацию о
мероприятиях можно получить на официальном сайте МЧС России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов ведомственных периодических изданий МЧС России (газета «Спасатель МЧС России», журналы
«Пожарное дело», «Гражданская защита» и «Основы безопасности жизнедеятельности»), в которых публикуется актуальная информация о перспективных технологиях и
основных тенденциях развития в области гражданской обороны, защиты населения и территорий от чрезвычайных ситуаций, обеспечения пожарной безопасности, а также
обеспечения безопасности людей на водных объектах. Благодарим Вас за активную жизненную позицию и стремление оказать содействие в области защиты населения и
территории от чрезвычайных ситуаций
Директор Департамента образовательной и научно-технической деятельности А.И. Бондар Оригинал ссылки: https://disk.yandex.ru/i/RgKHNzwg3_4wyw https://pptonline.org/1133763

346.

https://disk.yandex.ru/d/F-tJehKQHKcf_A https://ppt-online.org/1142357 https://ppt-online.org/1141400
https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA
English     Русский Правила