1.32M
Категория: АстрономияАстрономия

Космическая энергия

1.

КОСМИЧЕСКАЯ ЭНЕРГИЯ
СТУДЕНТЫ ГРУППЫ С-12: ЧУХАРЕВ, САБЕЛЬНИКОВ,
НИКОЛАЕВ И МАКСИМОВА

2.

Космическая энергетика —
вид альтернативной энергетики, предусматривающий использование
энергии Солнца для выработки электроэнергии, с расположением эн
ергетической станции на Луне или земной орбите.

3.

КАКИЕ ТЕХНОЛОГИИ ИСПОЛЬЗУЮТ В КОСМИЧЕСКОЙ
ЭНЕРГЕТИКЕ
Беспроводная передача энергии
Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или лунной
станции к Земле.
Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой
выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы
региона получения энергии?
Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении
через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более
высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.
Лазеры
Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в
пространстве. В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике.
В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для излучения энергии
лазером на лунные базы.
В 1988 Грант Логан предложили использовать лазер, размещенный на Земле, чтобы обеспечить энергией космические станции,
предположительно, это можно было осуществить в 1989. Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для
преобразования ультрафиолетового лазерного излучения.
Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не
осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления.

4.

КАКИЕ ТЕХНОЛОГИИ ИСПОЛЬЗУЮТ В КОСМИЧЕСКОЙ
ЭНЕРГЕТИКЕ
Преобразование солнечной энергии в электрическую
В космической энергетике, в существующих станциях и при разработках космических электростанций единственный способ эффективного
получения энергии — это использование фотоэлементов.
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на
внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
Наиболее эффективными с энергетической точки зрения устройствами для этого являются полупроводниковые фотоэлектрические
преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии.
КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных условиях
уже достигнут КПД 43%.
Получение энергии от СВЧ-волн, испускаемых спутником
Также важно подчеркнуть способы получения энергии. Один из них — это получение энергии с помощью ректенн. Ректенна — устройство,
представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на нее волны в энергию постоянного
тока.
Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней
проводимостью (например диод).
В таком варианте конструкции антенна совмещается с детектором, на выходе которого при наличии падающей волны появляется ЭДС. Для
повышения усиления такие устройства могут быть объединены в многоэлементные решетки.

5.

6.

7.

Плюсы и минусы космической энергетики
Космическая солнечная энергия — энергия, которую получают за пределами атмосферы Земли. При отсутствии
загазованности атмосферы или облаков на Землю падает примерно 35% энергии от той, которая попала в
атмосферу.
Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96% времени. Таким образом,
фотоэлектрические панели на геостационарной орбите Земли, на высоте 36 тыс. км, будут получать в среднем в
восемь раз больше света, чем панели на поверхности Земли, и даже еще больше, когда космический аппарат будет
ближе к Солнцу, чем к поверхности Земли.
Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов изза отсутствия атмосферы.
С другой стороны, главный недостаток космической энергетики — это высокая стоимость. Вторая проблема создания
ОЭС — большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по
крайней мере, 40–50%.

8.

Основные технологические проблемы космической энергетики
По данным американских исследований 2008 года, есть пять основных технологических
проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной.
• Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью
при высокой температуре.
• Беспроводная передача энергии должна быть точной и безопасной.
• Космические электростанции должны быть недорогими в производстве.
• Поддержание постоянного положения станции над приемником энергии: давление солнечного
света будет отталкивать станцию от нужного положения, а давление электромагнитного
излучения, направленного на Землю, будет толкать станцию от Земли.

9.

Кто собирается добывать энергию из космоса
• Китай
Китай хочет стать первой страной, которая развернет на околоземной орбите солнечную электростанцию. Объект
планируется использовать для сбора, а также передачи собранной энергии на Землю.
Конструкцию планируется разместить на геостационарной орбите, на высоте 35 786 км, где она сможет постоянно
находиться над выбранной точкой Земли, рассказал Лун Лэхао (Long Lehao), главный конструктор китайских ракет
серии «Чанчжэн-9».
Проект предусматривает строительство на орбите больших солнечных панелей. Преимуществом электростанции
станет возможность почти постоянного получения солнечной энергии, независимо от погодных условий. Передавать
энергию на Землю планируется с помощью лазеров или микроволн.
Энергия солнечных лучей будет преобразовываться в электрический ток, а затем при помощи микроволн или
лазерного излучения передаваться на Землю.

10.

Кто собирается добывать энергию из космоса
• Япония
Информация о Японии, скорее всего, потеряла свою актуальность. Однако страна в 2009 году заявляла, что начинает
строительство космической электростанции.
Для участия в проекте стоимостью $21 млрд подрядили корпорации Mitsubishi Electric и IHI. В течение четырех лет они
обязаны были разработать и сконструировать конкретные устройства для транспортировки панелей на стационарную орбиту
36 тыс. км, сборки панелей и передачи электроэнергии на Землю с минимальными потерями. Однако, вероятно, проект по
каким-то причинам решили не реализовывать.
• Россия
Главное научное учреждение Роскосмоса ЦНИИмаш выступило с инициативой создания российских космических солнечных
электростанций (КСЭС) мощностью 1–10 ГВт с беспроводной передачей электроэнергии наземным потребителям.
В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ-излучения,
которое сегодня представляется значительно менее эффективным, чем лазерное.
Проект ФГУП НПО им. Лавочкина предполагает использовать солнечные батареи и излучающие антенны на системе
автономных спутников, управляемых по пилотному сигналу с Земли. Для антенны — использовать коротковолновой СВЧдиапазон вплоть до миллиметровых радиоволн. Это даст возможность формировать в космосе узкие пучки при минимальных
размерах генераторов и усилителей. Небольшие генераторы позволят и принимающие антенны сделать на порядок меньше.

11.

12.

Солнечная энергетика для военных
В 2020 году военно-морская исследовательская лаборатория (NRL) на борту космического
самолета X-37B ВВС протестировала аппаратуру улавливания солнечного света и
преобразования его в электрическую энергию. В эксперименте не предполагалась передача
энергии на Землю. Эту технологию будет отрабатывать исследовательская лаборатория ВВС
(AFRL) в 2025 году в ходе миссии Arachne. Основная задача исследований, на которые выделено
$100 млн, обеспечить удаленные базы альтернативным источником энергии, сделать их
независимыми от подвоза топлива. При этом в лаборатории считают, что проект, получив
государственную поддержку, впоследствии привлечет инвесторов и сформирует коммерчески
успешное предложение, как это в свое время произошло с системой глобального
позиционирования GPS.
Солнечная энергия будет преобразована на борту спутника Northrop Grumman ESPAStar в
радиочастотный сигнал, а на Земле выпрямляющая антенна будет преобразовывать
радиочастотную энергию в полезную мощность.
English     Русский Правила