Похожие презентации:
Лекция №9 Электрический ток в раз средахх
1. Лекция 9 Электрический ток в различных средах
2. Введение
ВВЕДЕНИЕЭлектрическим током называют всякое
упорядоченное движение электрических зарядов.
Электрический ток может проходить через
различные вещества при определенных условиях.
Одним из условий возникновения электрического
тока является наличие свободных зарядов,
способных двигаться под действием
электрического поля.
3. Электрический ток может протекать в пяти различных средах:
МеталлахВакууме
Полупроводниках
Жидкостях
Газах
4.
ЭЛЕКТРИЧЕСКИЙ ТОКВ МЕТАЛЛАХ
5. Электрический ток в металлах:
Электрический ток в металлах – это упорядоченноедвижение электронов под действием электрического
поля. Опыты показывают, что при протекании тока по
металлическому проводнику не происходит переноса
вещества, следовательно, ионы металла не принимают
участия в переносе электрического заряда.
6. Вывод: 1.Носителями заряда в металлах являются электроны;
2. Процесс образования носителей заряда –обобществление валентных электронов;
3.Сила тока прямо пропорциональна напряжению и
обратно пропорциональна сопротивлению
проводника – выполняется закон Ома;
4. Техническое применение электрического тока в
металлах: обмотки двигателей, трансформаторов,
генераторов, проводка внутри зданий, сети
электропередачи, силовые кабели.
7. Электрический ток в жидкостях
Растворы солей, кислот и оснований, способные проводитьэлектрический ток, называются электролитами.
Прохождение электрического тока через электролит
обязательно сопровождается выделением вещества в твёрдом
или газообразном состоянии на поверхности электродов.
Выделение вещества на электродах показывает, что в
электролитах электрические заряды переносят заряженные
атомы вещества – ионы.
Этот процесс называется
электролизом.
8. Закон электролиза
ЗАКОН ЭЛЕКТРОЛИЗАЗакон Фарадея:
масса вещества, выделившегося на электроде за время ∆t
при прохождении электрического тока, пропорциональна
силе тока и времени:
m= kI∆t.
Это уравнение называется законом электролиза.
Коэффициент k, зависящий от выделившегося вещества,
называется электрохимическим эквивалентом вещества.
9. Применение электролиза
Явление электролиза применяется на практике- для получения многих металлов из раствора солей;
- для защиты от окисления или для украшения - производится
покрытие различных предметов и деталей машин тонкими
слоями таких металлов, как хром, никель, серебро, золото;
- в гальванопластике – получение отслаиваемых покрытий;
- для получения электронных плат (основ всех электронных
изделий);
- для создания копий с рельефных поверхностей;
- для получения стереотипов для книг высококачественной
печати.
10. Электрический ток в металлах
К. Рикке - 1901Cu
1. Взвешивал
Al
2. Ток - год
Cu
q = 3,5мин. Кл.
3. Взвешивал
результат -
масса не
изменялась
I
qnS
I,A
0
1913 - Л.И.Мандельштам и
Н.Д.Папалекси
идея обнаружить ток при внезапной остановке
быстро движущегося проводника
опыт - подтвердил существование
инерционного движения носителей заряда
Результаты
опытов -
носителями
тока
могли быть
только
электроны
1916 - Т.Стюарт Р.Толмен
(l=500м; =300м/с;) результат 1. отрицательно заряженные
частицы
2.масса 10-30кг
Скорость упорядоченного
движения составляет
десятые доли миллиметра в
секунду!
Электрическое поле распространяется
со скоростью 300.000км/с
1911 - Камерлинг - Оненнс сверхпроводимость
U
I=
R
R
R= l
S
U,B
Проводник ограничивает силу тока в цепи
Cu
Hq
0
П. Друде природа электрического
сопротивления
R = Rо (1+ t)
Т
ЛЭП
Генераторы,
кабели, ЭВМ,
резонаторы
11. Электрический ток в вакууме
Вакуум - сильно разреженный газ, в которомсредняя длина свободного пробега частицы
больше размера сосуда, то есть молекула
пролетает от одной стенки сосуда до другой
без соударения с другими молекулами. В
результате в вакууме нет свободных
носителей заряда, и электрический ток не
возникает. Для создания носителей заряда в
вакууме используют явление
термоэлектронной эмиссии.
12. Электрический ток в вакууме
Вакуум - изолятор, Но! Термоэлектронная эмиссия.Явление испускание свободных электронов с поверхности нагретых тел наз. термоэлектронной эмиссией.
Т.Эдисон (амер).- 1879г. Если катод нагреть => Термоэлектронная эмиссия!
анод
I,A
ток насыщения
Iн
Закон Ома невыполним
q
eN
IА = t = t
катод
U,B
T– const
IА зависит от
1) U анода
2) А выхода е
(рода материала катода)
3) размеров и расстояния
между электродами
Электрический ток в вакууме - это упорядоченное движение электронов с катода к аноду.
Электронные пучки - поток быстрых электронов ( свойства):
1. Свечение
2. Нагрев
m 2
Использование тока в вакууме:
= Eed = Ue
3. Рентгеновские лучи
электронных лампах,
2
(при торможении)
электровакуумных печах,
Электрическим
4. Откланяются
полем
рентгеновских трубках,
Магнитным
электронно-лучевых трубках,
применяемых в телевизорах,
в осциллографах,
( ()
в дисплеях ЭВМ.
( () ( ()
Катод сетка
аноды
Х
Y
13. Электрический ток в жидкостях. Законы электролиза
Из жидкостей электрический ток проводят только электролиты-растворы солей, кислот и щелочей.А
А
молекула
К
+
Распад молекул электролитов на ионы называется
электрической диссоциацией
-
Cu SO4
ионы
Cu+2
SO - 2
Электрическим током в жидкости называется
направленное движение положительных и
к катоду, а отрицательных - к аноду.
В жидкостях ионная проводимость.
Выделение на катоде вещества, входящего в состав электролита, называется электролизом
.Первый закон Фарадея для электролиза: масса вещества (m) выделившегося на катоде
m = kI t = kq
прямо пропорциональна заряду (q), прошедшему
через электролит.
Где k- электрохимический эквивалент вещества, численно равен массе выделившегося вещества, при
переносе заряда в 1Кулон
.Второй закон Фарадея для электролиза: Электрохимические эквиваленты вещества прямо
k= 1 М
F n
пропорциональны их химическим эквивалентам.
.Объединённый закон Фарадея:
F=eN=96500Кл/моль
1
М
m=
It
постоянная
F n
Фарадея
Применение электролиза: получение алюминия и бокситов; очистка металлов от примесей;
получение водорода. Элетрометаллургия. Гальванопластика - воспроизведение форм
предмета. Гальваностегия покрытие металлических изделий не окисляющимися металлами
(никелирование, хромирование).
14. Электрический ток в газах
Газы в нормальном состоянии являются диэлектриками, таккак состоят из электрически нейтральных атомов и молекул
и поэтому не проводят электричества.
Проводниками могут быть только ионизированные газы,
в которых содержатся электроны, положительные и
отрицательные ионы.
В этом случае среде необходим внешний ионизатор.
Роль такого ионизатора играют нагревание и излучение.
Прохождение электрического тока через газы называют
газовым разрядом.
15. Газовые разряды различают:
Несамостоятельным газовым разрядом называется такойразряд, который, возникнув при наличии электрического поля,
может существовать только под действием внешнего
ионизатора.
16. Самостоятельный разряд
Самостоятельный разряд - такой газовый разряд, в которомносители тока возникают в результате тех процессов в газе,
которые обусловлены приложенным к газу напряжением.
Т. е. данный разряд продолжается и после прекращения
действия ионизатора.
Разновидности такого разряда:
- искровой;
- дуговой;
- коронный;
- тлеющий.
17. Электрический ток в газах
В обычных условиях газы состоят из нейтральныматомов и молекул и является диэлектриком
Распад атомов на положительные ионы и электроны - ионизацией
А
Электрическим током в газах называется направленное движение
положительных ионов к катоду, отрицательных ионов и электронов к
аноду.
В газах электронно - ионная проводимость.
V
--
+
Протекание тока через газ наз. газовым разрядом.
Газовый разряд,протекающий под действием ионизатора,
наз. Несамостоятельным
Самостоятельный - без ионизатора
I,A
0
U,B
m 2
2
= eEl
Условие ионизации электронным ударом
l - длина свободного пробега
Типы самостоятельных разрядов (в зависимости от E;U;P -- формы и материалов электродов)
1. Тлеющий разряд. (небольшая сила тока I = 10 -2А и высокое напряжение десятки сотни вольт)
2. Дуговой разряд. (большой ток до несколько тысяч ампер и малое напряжение между электродами 10 -15В
Впервые открыта профессором физики В.В. Петровым 1802г;
Впервые дуга была применена русским инженером П.Н. Яблочковым для освещения - 1876г;
Дуга широко используется для сварки и резания металлов, который разработан русскими
Н.И.Бенардсоном - 1885г; И Н.Г. Славяновым - 1890г; К.К. Хренов - разработал методы
сварки под водой.
3. Искровой разряд. (при атмосферном давлении и большой напряженности поля I = 500000А; U =10 8 -- 10 9В)
4. Коронный разряд.( при атмосферном давлении и высокой напряжённостью 3x106В/м)
Плазма - это частично или полностью ионизированный газ, в котором плотность
положительных и отрицательных зарядов практически совпадают.
18. Электрический ток в различных средах
СредыНосители заряда
Металлы
Свободные электроны
Электролиты
Положительные и отрицательные
ионы
Газ, плазма
Электроны и ионы
Вакуум
Электроны, вылетевшие в
результате эмиссии с
поверхности металла
Полупроводники Электроны и дырки
Физика