Похожие презентации:
Описанная окружность
1. Описанная окружность
Пятое маяОписанная окружность
2.
Если все вершины многоугольника лежат наокружности, то окружность называется
ОПИСАННОЙ около многоугольника,
а многоугольник – ВПИСАННЫМ в эту
окружность
A
B
E
O
вписанный в окружность
C
не вписанный в окружность
D
3.
На каком рисунке окружность описана около треугольника:1)
2)
4)
3)
5)
4.
ОКОЛО ЛЮБОГО ТРЕУГОЛЬНИКА МОЖНООПИСАТЬ ОКРУЖНОСТЬ
Центром окружности,
описанной около
треугольника является точка
пересечения серединных
перпендикуляров к сторонам
этого треугольника.
В
О
А
С
Замечание 1:
около треугольника можно
описать только одну
окружность
5.
Теорема. Около треугольника можно описать окружность,и притом только одну.
Её центр – точка пересечения
серединных перпендикуляров к сторонам треугольника.
В
Дано:
АВС
Доказать: существует Окр.(О; r),
описанная около
АВС.
p
О
А
k
Доказательство:
n
С
Проведём серединные перпендикуляры
p, k,n к сторонам АВ, ВС, АС
По свойству серединных перпендикуляров к сторонам треугольника
(замечательная точка треугольника):
они пересекаются в одной точке – О, для которой ОА = ОВ = ОС.
Т. е. все вершины треугольника равноудалены от точки О, значит,
они лежат на окружности с центром О.
Значит, окружность описана около треугольника АВС.
6.
Важное свойство:Если окружность описана около прямоугольного
треугольника, то её центр – середина гипотенузы.
A
R = ½ AB
O
C
B
Центр окружности, описанной около
тупоугольного треугольника,
лежит вне треугольника, напротив
тупого угла.
7.
Замечание 2: около четырехугольника не всегдаможно описать окружность
В ЛЮБОМ ВПИСАННОМ ЧЕТЫРЕХУГОЛЬНИКЕ СУММА
ПРОТИВОПОЛОЖНЫХ УГЛОВ РАВНА 180О
B
C
D
A
ЕСЛИ СУММА ПРОТИВОПОЛОЖНЫХ УГЛОВ
ЧЕТЫРЕХУГОЛЬНИКА РАВНА 180О, ТО ОКОЛО НЕГО МОЖНО
ОПИСАТЬ ОКРУЖНОСТЬ
8.
Определение: окружность называется описанной околочетырёхугольника, если все вершины четырёхугольника лежат
на окружности.
Теорема. Если около четырёхугольника описана окружность, то
сумма его противоположных углов равна 1800.
C
B
Дано: Окр.(О;R) описана около АВСD
D
О
B+
A+
C=
D = 1800
Т. к. окружность описана около АВСD, то
А, В, С, D – вписанные, значит,
C=½
BCD + ½
BAD = ½ (
BCD +
D=½
ADC + ½
ABC = ½ (
ADC+
Значит,
B+
Доказательство:
A
А+
Доказать:
A+
C=
B+
BAD) = ½ · 3600 = 1800
ABC) = ½ · 3600 = 1800
D = 1800
Другая формулировка теоремы: во вписанном в окружность
четырёхугольнике сумма противоположных углов равна 1800.
9.
Обратная теорема: если сумма противоположных угловчетырёхугольника равна 1800, то около
него можно описать окружность.
C
B
D
О
Дано: АВСD,
Доказать:
A
A+
C = 1800
Окр.(О;R) описана около АВСD
Доказательство: № 729 (учебник)
Вокруг какого четырёхугольника нельзя описать окружность?
10.
Важное свойство:Около любого прямоугольника можно описать окружность,
её центр – точка пересечения диагоналей.
Около равнобедренной трапеции можно описать окружность.
А
В
К
С
11.
Важные формулыРадиус описанной окружности около квадрата, где
a - сторона квадрата
d - диагональ
Формула радиуса описанной окружности
треугольника, где
a, b, c - стороны треугольника
p - полупериметр
R
a
b
c
Формула
радиуса
описанной окружности треугольника, где
a - сторона
треугольника
2Sin 2Sin 2Sin
α – угол, лежащий против стороны а.
Радиус описанной окружности равностороннего
треугольника, где a - сторона треугольника
Радиус описанной окружности
прямоугольного треугольника,
a, b - катеты прямоугольного треугольника
c - гипотенуза
12.
Формулы для радиуса описанной около треугольникаокружности
c
a
R=
R
R
b
a b c
4S
a
b
c
2Sin 2Sin 2Sin
Задача: найти радиус окружности, описанной около
равностороннего треугольника, сторона которого равна 4 см.
Решение:
R=
a b c
4S
,
R=
a3
4S
43
4
4 3
R
3
4 4 3
3
(см)
a 2 3 42 3
S
4 3
4
4
Ответ:
4 3
3
см
13.
Задача: в окружность, радиус которой 10 см, вписан равнобедренныйтреугольник. Высота, проведённая к его основанию равна 16 см. Найти
боковую сторону и площадь треугольника.
В
Дано: АВС- р/б, ВН АС, ВН = 16 см
Окр.(О; 10 см) описана около АВС
Найти: АВ, SАВС
Решение:
О
А
Н
С
Т. к. окружность описана около
равнобедренного треугольника АВС, то центр
окружности лежит на высоте ВН.
АО = ВО = СО = 10 см, ОН = ВН – ВО =
= 16 – 10 = 6 (см)
АОН – прямоугольный, АО2 = АН2 + АН2, АН2 = 102 – 62 = 64, АН = 8 см
АВН – прямоугольный, АВ2 = АН2 + ВН2 = 82 + 162 = 64 + 256= 320,
АВ = 320 8 5 (см)
АС = 2АН = 2 · 8 = 16 (см), SАВС = ½ АС · ВН = ½ · 16 · 16 = 128 (см2)
Ответ: АВ = 8 5 см , S = 128 см2
14.
Работа с учебником• Читать п. 78, теоремы выучить;
• Решить № 702 (б), 703, 705 (а), 706
В
Реши задачи
?
С
1200
А
?
800
М