1.74M
Категория: МатематикаМатематика

Вероятность события. Задачи с монетами

1.

21.В случайном эксперименте симметричную монету бросают
дважды. Найдите вероятность того, что орел выпадет ровно
один раз.
Решение
Ответ: 0,5
I способ (метод перебора комбинаций)
Монету бросают 2 раза.
Обозначения: О – выпадение орла, Р – выпадение
решки, {О Р}- выпадение орла в первом броске,
решки – во втором.
n = 4 – число всех возможных исходов:
m = 2 – число благоприятных исходов
(выпадение орла ровно один раз)
{О О}
{О Р}
{Р О}
{Р Р}

2.

Р
О
II способ
(дерево возможных вариантов)
m=4
О
Р
О
n=2
Р
IIIспособ
Р(С) = Р(АUВ) = Р(А) + Р(В),
где событие С – орел выпал в двух испытаниях ровно 1 раз;
событие А – орел выпал в первом испытании и не выпал во
втором; событие В – орел выпал во втором испытании и не
выпал в первом;
р = ½– вероятность выпадения орла в одном испытании,
q =1 – ½ = ½ – вероятность не выпадения орла (выпадения
решки).

3.

IVспособ
По формуле Бернулли
P( A) Сnk p k q n k
Сnk
P( A) 2n
вероятность одного успеха (к=1)
в двух испытаниях (n=2), если
р = ½ – вероятность выпадения орла в одном испытании,
q =1 – ½ = ½ – вероятность не выпадения орла (выпадения
решки).
1 1 2 1
2
P( A) С р q
Или по второй
формуле:
0,5.
2!
1 1
1!( 2 1)! 2 2
P( A)
С21
22
1
2
24 0,5.
Ответ: 0,5

4.

22. Перед началом матча по футболу судья бросает монету,
чтобы определить, какая из команд будет первой владеть
мячом. Команда «Меркурий» играет по очереди с командами
«Марс», «Юпитер», «Уран». Найти вероятность того, что
во всех матчах право владеть мячом получит команда
«Меркурий».
Ответ: 0,125
Решение
I способ (перебора комбинаций)
{О О О}
Монету бросают 3 раза.
{Р О О}
Для команды «Меркурий»
{О Р О}
возможные исходы в трех бросках →
{О О Р}
n = 8 – число всех возможных исходов;
{Р Р О}
m = 1 – число благоприятных
{Р О Р}
исходов (выпадение орла в трех
{О Р Р}
бросках).
{Р Р Р}

5.

II способ
По формуле Бернулли вероятность трех успехов (к = 3)
в трех испытаниях (n = 3):
P( A) Сnk p k q n k С33 р3q3 3 3!(33 ! 3)! ( 12 )3 ( 12 )0 18 0,125
III способ
Применим правило умножения вероятностей независимых
событий.
Вероятность выпадения орла в каждом случае равна ½.
Значит, вероятность того, что орел выпадет все три раза,
равна:
Ответ: 0,125

6.

23. Перед началом матча по футболу судья бросает монету,
чтобы определить, какая из команд будет первой владеть
мячом. Команда «Байкал» играет по очереди с командами
«Амур», «Енисей», «Иртыш». Найти вероятность того, что
команда «Байкал» будет первой владеть мячом только в игре с
«Амуром».
Ответ: 0,125
Решение
{О О О}
Монету бросают 3 раза.
{Р О О}
Для команды «Байкал»
{О Р О}
возможные исходы в трех бросках →
{О О Р}
n = 8 – число всех возможных исходов;
{Р Р О}
{Р О Р}
m = 1 – число благоприятных исходов
{О Р Р}
(выпадение орла в первой игре).
{Р Р Р}
Ответ: 0,125

7.

24. У Пети в кармане лежат шесть монет: четыре монеты
по рублю и две монеты по два рубля. Петя, не глядя,
переложил какие-то три монеты в другой карман. Найдите
вероятность того, что теперь две двухрублевые монеты
лежат в одном кармане.
Ответ: 0,4
Решение
Iспособ (метод перебора вариантов):
{123} {234}
{124} {235}
Пронумеруем монеты: рублевые – 1, 2, 3, 4;
двухрублевые – 5, 6.
{125} {236}
n = 20 – число всех исходов
{126} {245}
Взять три монеты можно так:
{134} {246}
(числа в порядке возрастания,
чтобы не пропустить комбинацию) →
{135} {256}
m = 8 – число благоприятных исходов
{136} {345}
(комбинации, в которых монеты 5 и 6
{145} {346}
(двухрублевые) не взяты или взяты обе)
{146} {356}
{156} {456}

8.

IIспособ (комбинаторный):
Р(С) = Р(А) + Р(В), где событие С – двухрублевые монеты
лежат в одном кармане;
событие А – двухрублевые монеты остались в кармане, а
переложил рублевые;
событие В – переложил обе двухрублевые монеты и одну
рублевую;
события А и В несовместные.
С43
Р( А) С 3 0,2
Р( В)
6
С41С22
С63
0,2
Р(С ) 0,2 0,2 0,4

9.

III способ (непосредственного вычисления вероятности):
Монеты окажутся в одном кармане, если переложены три
рублевые или две рублевые и одна двухрублевая монета.
Переложить их последовательно можно четырьмя
способами (обозначения: рублевая – 1, двухрублевая – 2) :
111
Р1 64 53 24
122
Р2 64 52 14 151
221
Р3 62 15 44 151
212
Р4 62 54 14 151
1
5
Р Р1 Р2 Р3 Р4 15 151 151 151 156 0,4
Ответ: 0,4

10.

25. У Пети в кармане лежат шесть монет: четыре монеты
по рублю и две монеты по два рубля. Петя, не глядя,
переложил какие-то три монеты в другой карман. Найдите
вероятность того, что теперь две двухрублевые монеты
лежат в разных карманах.
Ответ: 0,6
Решение
{123} {234}
Iспособ (метод перебора вариантов):
{124} {235}
Пронумеруем монеты: рублевые – 1, 2, 3, 4;
двухрублевые – 5, 6.
{125} {236}
n = 20 – число всех исходов
{126} {245}
Взять три монеты можно так:
{134} {246}
(числа в порядке возрастания,
чтобы не пропустить комбинацию) →
{135} {256}
m = 12 – число благоприятных исходов
{136} {345}
(комбинации, в которых монеты 5 и 6
{145} {346}
(двухрублевые) взяты по одной)
{146} {356}
{156} {456}

11.

IIспособ (комбинаторный)
Событие А - переложили две рублевые монеты и одну
двухрублевую.
2 1
Р( А)
С4 С2
С63
0,6
III способ
Монеты окажутся в разных карманах, если переложены
две рублевые и одна двухрублевая монета.
Переложить их последовательно можно тремя способами:,
112
Р1 64 53 24 15 0,2
121
Р2 64 52 34 15 0,2
211
Р3 62 54 34 15 0,2
Р Р1 Р2 Р3 0,2 0,2 0,2 0,6 Ответ: 0,6

12.

26. Найти вероятность того, что произведение трех
последних цифр случайно выбранного телефонного номера
четно .
Решение
Ответ: 0,875
I способ

13.

II способ
m = (5 ∙ 5 ∙ 5)∙ 3 + (5 ∙ 5 ∙ 5)∙ 3 + (5 ∙ 5 ∙ 5) = 875
(5 ∙ 5 ∙ 5)∙ 3 – количество исходов, когда одна цифра четная, а
две другие нечетные (для каждой цифры исходов – 5,
вариантов расположения – 3).
(5 ∙ 5 ∙ 5)∙ 3 – количество исходов, когда две цифры четные, а
одна – нечетная,
5 ∙ 5 ∙ 5 – количество исходов, когда все три цифры – четные.
n = 10 ∙ 10 ∙ 10 = 1000 – количество всех исходов ( для каждой
цифры – 10)

14.

III способ
IV способ
Выбор четной или нечетной цифры можно сравнить
с выпадением орла или решки при подбрасывании монеты
несколько раз с такой же вероятностью. Тогда выбор трех
нечетных цифр аналогичен выпадению трех решек в трех
испытаниях
Ответ: 0,875
English     Русский Правила