ПЛАН
Геном эукариот
Парадокс величины «С»
Геном человека
Понятие о гене
Понятие о гене
Понятие о гене
Классификация генов
Понятие о гене
Понятие о гене
Понятие о гене
Понятие о гене
Генетический код и его свойства
Генетический код и его свойства
Второй генетический код
Экспрессия генов
Экспрессия генов
Экспрессия генов
Экспрессия генов
Экспрессия генов
Экспрессия генов
Экспрессия генов
Экспрессия генов
Регуляция транскрипции
Регуляция транскрипции
Регуляция транскрипции
Регуляция транскрипции
Регуляция транскрипции у прокариот
Регуляция транскрипции у эукариот
Регуляция транскрипции у эукариот
Регуляция транскрипции у эукариот ( по Бриттену и Девидсону )
Регуляция транскрипции
Экспрессия генов
Регуляция процессинга
Регуляция процессинга
Экспрессия генов
Экспрессия генов
Трансляция
Инициация трансляции
Элонгация трансляции
Терминация трансляции
Регуляция трансляции
Регуляция трансляции
Экспрессия генов ПОМК
Перечислите все функциональные гены. СПАСИБО ЗА ВНИМАНИЕ!
9.91M
Категория: БиологияБиология

Генный уровень организации наследственного материала

1.

Кафедра биологии с экологией и
курсом фармакогнозии
Лекция 3
Генный уровень
организации
наследственного
материала
Доцент
Н.Н.Дегерменджи

2. ПЛАН

• 1. Материальный субстрат
наследственности и
изменчивости.
• 2. Биологический код и его
свойства.
• 3. Экспрессия генетической
информации у про- и эукариот
и ее регуляция.

3.

Наследственность –
способность клеток или
организмов в процессе
самовоспроизведения передавать
новому поколению способность к
определенному обмену веществ и
к онтогенезу, что обеспечивает
формирование признаков и
свойств этого типа клеток и
организмов.

4.

Изменчивость - свойство
живых систем приобретать
изменения и существовать в
различных вариантах.
Материальным субстратом
наследственности и
изменчивости являются
нуклеиновые кислоты в
большинстве - это ДНК.

5.

ДНК
Первичная структура –
полинуклеотидная цепь,
мономеры (нуклеотиды)
соединяются фосфодиэфирными связями (сборка цепи
за счет фермента полимеразы).
Наращивание цепи идет в
направлении 5/
--------3/

6.

Вторичная структура ДНК –
две полинуклеотидные цепи
(антипараллельны), связанные
водородными связями
Третьичная
структура –
трехмерная
структура
ДНП

7.

Свойства ДНК
РЕПЛИКАЦИЯ – способность к
самокопированию
Способ:
ПОЛУКОНСЕРВАТИВНЫЙ

8.

Свойства ДНК. Репликация
Этапы РЕПЛИКАЦИИ:
1 - Разделение материнской цепи на 2
матричные нити (работает фермент
ГЕЛИКАЗА)
2 - Дестабилизирующие белки
располагаются вдоль каждой
полинуклеотидной цепи (роль:
растяжение нити и доступность для
+ комплементарных нуклеотидов)

9.

РЕПАРАЦИЯ – коррекция нарушений
соединения под влиянием реакционноспособных веществ или УФ.
Разновидности:
- ЭКСЦИЗИОННАЯ или дорепликативная (с
вырезками)
- ПОСТРЕПЛИКАТИВНАЯ (путем
рекомбинации)
- СВЕТОВАЯ РЕПАРАЦИЯ
(самопроизвольное устранение нарушений
под действием видимого света).

10.

РЕПАРАЦИЯ
- При
наличии большого объема
поражений включается система
индуцируемых ферментов репарации
(SOS система: восстановление
может идти без соблюдения принципа
комплементарности, что ведет к
стойким изменениям – мутациям)
- При значительном повреждении –
блокада репликации ДНК.

11.

Элементарной
функциональной
единицей
наследственности
является ГЕН

12.

МУТОН - минимальное количество
наследственного материала,
способного изменяться и
приводить к появлению новых
вариантов признака.
Мутон – это элементарная единица
мутационного процесса.
Мутон соответствует 1 паре
комплементарных нуклеотидов.

13.

Мутации со сдвигом рамки
считывания
Причины:
- Спонтанные изменения под
действием химических
веществ
- Рентгеновское облучение
- Ошибки рекомбинации при
неравноценном внутригенном
кроссинговере.

14.

Нарушение реализации
экспрессии генов
РЕЗУЛЬТАТ
- Синтез аномального
белка;
- Выработка избыточного
количества;
- Отсутствие выработки;
- Выработка
уменьшенного
количества нормального
продукта
ГЕННЫЕ
БОЛЕЗНИ –
болезни обмена
веществ

15. Геном эукариот

Геном –
совокупность
ядерной и
цитоплазматичес
кой ДНК в
половой клетке.
Геном – величина
«С», характеризующая вид,
измеряется в н.п.
или дальтонах.

16. Парадокс величины «С»

1. Увеличение «С» с
усложнением
организмов в ходе
филогенеза.
2. Величина «С»
может значительно
различаться даже
у родственных
видов

17. Геном человека

Содержит 3,5 х 109 н.п. (соответствует
1,5 млн. генов)
У человека около 100 тыс. различных
белков – это только 1-3% от всей ДНК.
Гены, регулирующие экспрессию генов –
16%. Более 80% генома – избыточно (?)

18. Понятие о гене


Ген - единица наследственности
Первые представления о сложной
структуре гена возникли в 20- х годах
прошлого столетия.
Советские генетики А.С. Серебровский и
Н.П.Дубинин выдвинули предположение
о дискретной структуре гена
Американский ученый Бензер предложил
назвать часть гена цистроном
Американский ученый Гильберт в 1978 г.
Установил , что ген эукариот состоит
из информативных и неинформативных
участков

19. Понятие о гене

Строение гена прокариот:

20. Понятие о гене

• Строение гена эукариот
Имеет экзон – интронную структуру
Экзон – информативная часть гена, т.е
последовательность, нуклеотидов,
кодирующая синтез белков или РНК
Интрон - неинформативные
последовательности нуклеотидов внутри
одного гена, которые транскрибируются
Экзон
Интрон Экзон
Интрон Экзон
Интрон
Схема строения гена эукариот

21. Классификация генов

I. Структурные
1. Независимые
2. Повторяющиеся
3. Кластерные
II. Регуляторные III. Регулирующие ход
онтогенеза
1. Промотор
2. Оператор
1. Хроногены
3. Регулятор
2. Гены
пространственной
организации
4. Энхонсер
5. Сайленсер
6. Спейсер
7. Псевдоген

22. Понятие о гене

• Классификация генов
Структурные гены :
• Независимые гены – их транскрипция не
связана с функциональными генами, а напрямую
регулируется гормонами
• Повторяющиеся гены (тандемные) – так
устроены гены, несущие информацию о РНК
• Кластерные гены – группы различных генов,
объединенных одной функцией

23. Понятие о гене

• Классификация генов
Функциональные гены :
• Оператор – относится к группе акцепторов.
Определяет время, с которого начинается
транскрипция
• Промотор –участок ДНК, включает 80-90 нп.
Способен связываться с ДНК – зависимой РНК –
полимеразой. Полимераза узнает участок ТАТААТ,
который называется блок Прибнова. В этом месте
ДНК плотно не упаковывается. Промотор определяет
место, с которого начинается транскрипция

24. Понятие о гене

• Классификация генов
Функциональные гены :
• Энхансер – увеличивает скорость транскрипции
• Сайленсер – снижает скорость транскрипции
• Спейсер – неинформативный участок генома
• Псевдогены – НП, в которых полимераза
не работает, в связи с мутацией

25. Понятие о гене

• Классификация генов
Палиндром
Функциональные гены :
• Терминатор - ген, на
котором заканчивается
транскрипция.
Находится на 3’ конце.
Включает палиндром

26.

Генетический код и его свойства
• Код наследственности – способ зашифровки
• в молекуле ДНК наследственной информации
• о структуре и функции белков
Свойства кода (М.Ниренберг, 1963 г.)
• Колинеарность - параллелизм. Нуклеотидная
последовательность ДНК соответствует
аминокислотной последовательности белка
• Триплетность –каждая аминокислота кодируется
тройкой нуклеотидов – триплетом. Из четырех
нуклеотидов путем различных сочетаний можно
получить 64 триплета - кодона.

27. Генетический код и его свойства

• Неперекрываемость – перекрываемость –
при неперекрываемости один и тот же
нуклеотид не может одновременно
принадлежать двум кодонам:
• Перекрываемость – заключается в том, что
с одного и того же участка ДНК может считываться
информация для образования двух и более белков
в зависимости от начальной точки считывания
АУГУУЦГУЦЦУГ- аминокислоты:
1. метионин – фенилаланин – валин – лейцин
2. цистеин – серин - серин

28. Генетический код и его свойства

• Вырожденность – экспериментально установлено,
что при триплетности все 64 кодона имеют
значение в экспрессии генов. Из них 61 кодон
кодирует аминокислоты, а
• 3 кодона являются стоп – кодонами: УГА,УАГ,УАА.
• Универсальность – кодирование
аминокислот происходит одинаково на всех
уровнях организации живой системы
• Квазиуниверсальность – некоторые кодоны в
разных генетических системах кодируют различные
аминокислоты

29. Второй генетический код

• 1.Редкие аминокислоты (селеноцистеин) могут
включаться в первичную структуру
полипептида, кодируясь тройкой УГА(стоп),
если за этим кодоном находится особая
стимулирующая последовательность
нуклеотидов
2. Инициативный кодон АУГ, отвечает за
включение метионина. Иногда инициация
метионина может быть обеспечена кодонами
АЦА, АУУ (изолейцин),УУГ (лейцин). Это
происходит в том случае, если эти кодоны
находятся в контексте: ГЦЦГЦЦАГЦЦАУГ

30. Экспрессия генов

• Это реализация наследственной
информации
• от гена к признаку
Признак – это результат биохимических
реакций, при которых продукт
предыдущих реакций служит субстратом
для последующих.

31. Экспрессия генов

• У прокариот
Этапы
У эукариот
Этапы
Транскрипция
Транскрипция
Процессинг
Транспорт аминокислот Транспорт аминокислот
Трансляция
Трансляция

32. Экспрессия генов

• Транскриптон – единица транскрипции
У эукариот– моноцистроновый - содержит один ген
У прокариот– полицистроновый – содержит несколько генов
Транскриптоны бактерий – ОПЕРОНЫ- кодируют несколько
белков

33. Экспрессия генов

Транскрипция
• Транскрипция происходит на
матричной цепи ДНК
Вторая цепь – комплементарная или
смысловая

34. Экспрессия генов

• Стадии транскрипции у прокариот
Инициация
Осуществляется:
• ДНК – зависимыми РНК – полимеразами
• Оператором
•Промотором, содержащим блок Прибнова
5' - ТАТААТ - 3', который является стартом
транскрипции
• Белковыми факторами инициации

35. Экспрессия генов

Элонгация транскрипции у прокариот
• Фермент РНК - полимераза считывает
информацию с ДНК - матрицы в
направлении 3'
5'
• Синтез м - РНК идет в направлении 5'
• Регуляторы скорости транскрипции:
• ЭНХАНСЕРЫ – (ускоряют) и
(замедляют)
САЙЛЕНСЕРЫ
3'

36. Экспрессия генов

Элонгация – сам процесс считывания
информации

37. Экспрессия генов

• Терминация транскрипции
осуществляется палиндромом,
который образует шпилечную
структуру или фигуру “креста “
Шпилька
Крест

38. Регуляция транскрипции

• Регуляция транскрипции у бактерий
Осуществляется на уровне транскрипции
Модель регуляции транскрипции у
прокариот разработана Жакобом и Моно в
1961 году на кишечной палочке
Регуляция транскрипции у бактерий обычно
охватывает кластер генов, кодирующих
функционально родственные белки. Такими
белками обычно являются ферменты

39. Регуляция транскрипции

• Регуляция транскрипции у прокариот
происходит преимущественно на стадии
инициации и связана с деятельностью
регуляторных белков – активаторов и
репрессоров транскрипции
• Различают негативную и позитивную
регуляцию транскрпции оперонов , которые
включают не только действие регуляторных
белков, но и ряда внутриклеточных
метаболитов небелковой природы.

40. Регуляция транскрипции

Регуляция транскрипции у прокариот

41. Регуляция транскрипции

• Регуляция экспрессии у прокариот
Группа согласованно регулируемых генов,
кодирующих ферменты, называется опероном
К наиболее изученным оперонам относятся:
лактозный(lac) –оперон, галактозный (gal) –
оперон и триптофановый (trp) – оперон E. coli.
Жакоб и Моно изучали механизмы экспрессии lac
– оперона.

42. Регуляция транскрипции у прокариот

• Позитивная регуляция оперона
состоит в индукции транскрипции путем
присоединения к промотору
регуляторного комплекса. Репрессия
этого оперона осуществляется с
помощью белка – репрессора, который
блокирует область оператора, когда нет
необходимости в экспрессии

43. Регуляция транскрипции у эукариот

• Модель регуляции транскрипции у эукариот
предложили Бриттен и Дэвидсон
Они показали позитивную регуляцию
активности структурного гена, которую
обеспечивает прилегающий к нему
рецепторный сайт. Его строение
соответствует строению молекулы
активатора, который в данной модели
представляет РНК, но может быть и белком.
Активатор синтезируется в результате работы
гена – интегратора, который является
аналогом гена-регулятора у прокариот.

44. Регуляция транскрипции у эукариот

Полимеразы эукариот не способны связаться с
промоторами самостоятельно
• Для этого у эукариот имеются специальные
белковые факторы транскрипции (TFфакторы)TF1, TF-2 , TF3
Кроме белковых факторов транскрипции у
эукариот имеются различные регуляторные
последовательности: ТАТА-боксы (блок
Хогнесса), энхансеры, сайленсеры, а также
адаптерные элементы, которые проявляют
избирательную чувствительность к различным
факторам

45. Регуляция транскрипции у эукариот ( по Бриттену и Девидсону )

• Регуляция транскрипции
К основным компонентам системы регуляции генов
у эукариот относятся:
• Ген – интегратор с сенсорным сайтом
• Структурный ген с рецепторным сайтом,
находящимся под контролем продукта генаинтегратора
РНК- активатор
Сенсорный сайт Интегратор
м РНК
Рецептор
Структурный ген

46. Регуляция транскрипции

• Результат транскрипции у эукариот –
первичный транскрипт, или
гетерогенная ядерная РНК. (гяРНК).
• Содержит как информативные
участки, так и неинформативные,
которые в дальнейшем подвергаются
преобразованию
Результат транскрипции у прокариот матричная РНК
содержит только информативные участки

47. Экспрессия генов

• Процессинг
• У прокариот процессингу подвергаются
предшественники т- РНК и р- РНК. В
матричных РНК процессингу подвергаются 5'
конец – происходит кэпирование, и 3' конец –
происходит полиаденилирование.
• У эукариот процессинг - это превращение
первичного транскрипта г. я РНК в матричную
РНК

48. Регуляция процессинга

Процессинг у эукариот включает три момента
Сплайсинг – вырезание
неинформативных участков
и сшивание информативных.
В сплайсинге участвуют
органоиды ядрасплайсосомы, в состав
которых входит мя – РНК и
ферменты: рестриктазы –
вырезают неинформативные
участки и лигазы – сшивают
информативные.
Кэпирование и полиаденилирование

49. Регуляция процессинга

СН3
5' - Г- Р – Р – Р – АГГАГГУ АУГ ААГ
ЦАА ГЦЦ АГЦ УАА - 3' POLY (A)
У прокариот процессингу подвергаются
предшественники т- РНК и р- РНК. В
матричных РНК процессингу подвергаются 5'
конец – происходит кэпирование, и 3' конец –
происходит полиаденилирование.
В результате процессинга образуется зрелая
матричная РНК

50. Экспрессия генов

• Активация аминокислот и транспорт
Участвуют:
Т - РНК
Ферменты:
Аминоацил - т - РНК синтетазы
Они обеспечивают
посттранскрипционную
регуляцию

51. Экспрессия генов

• Активация аминокислот и транспорт
Связывание тРНК
с аминокислотой
Комплекс глутаминил-тРНКсинтетазы
с глутаминовой тРНК
и АТФ по данным
рентгеноструктурного
анализа

52. Трансляция

• Происходит на рибосомах и включает
три стадии:
• Инициация
• Элонгация
• Терминация
Каталитические центры
располагаются на рибосоме в
нескольких участках

53. Инициация трансляции

• Малая субчастица узнаёт матричную
РНК и её кодон - инициатор – АУГ;
• Инициаторная тРНК, узнаёт малую
субчастицу рибосомы с помощью
белковых факторов инициации;
• Образуется комплекс: малая
субчастица рибосомы + мРНК. +
тРНК .
• Белковые факторы инициации
уступают место большой субчастице.
• Происходит сборка рибосомы

54. Элонгация трансляции

Общая схема процесса
трансляции
Стадии
элонгации

55. Терминация трансляции

Стадии терминации

56. Регуляция трансляции

• Трансляция зависит от каталитических
центров рибосомы
Каталитические центры рибосомы
1-участок связывания с мРНК; 2 –Транслокационный
участок
3 – Уч-к связывания боковых петель тРНК;4 - Участок
образования пептидных связей;5Участок связ- я белка 5S

57.

Регуляция трансляции
Расположение функциональных участков на
мРНК

58. Регуляция трансляции

• Регуляция железом трансляции
• мРНК ферретина

59. Экспрессия генов ПОМК

Посттрансляционная регуляция
Экспрессия генов ПОМК
( проопиомеланокортин)
Транскрипция
Передняя доля
Промежуточная
доля
Процессинг
Сплайсинг
γ-МСГ
β-МСГ
N-концевой участок
Трансляция
β-липотропин
АКТГ
α-МСГ
β- Эндорфин

60. Перечислите все функциональные гены. СПАСИБО ЗА ВНИМАНИЕ!

English     Русский Правила