Похожие презентации:
Сейсмоизоляция
1.
Редакция газеты «Земля РОССИИ» №2Карта СБЕР : 2202 2006 4085 5233 Счет получателя:
40817810455030402987 [email protected]
[email protected] [email protected] стр 185
От 05.05.2021 (921) 962-67-78
197371, СПб, а/я газета «Земля РОССИИ»
[email protected] 12 стр
Свидетельство регистрации Северо –Западном региональном управлении государственного Комитет РФ по печати
(г.СПб) номер П 0931 от 16.05.94. Газета перерегистрирована 19.06.1998, в связи со сменой учредителей ,
добавлением иностранных языков . ИНН 2014000780 ОГРН : 1022000000824
Исх. № ЗР -2 от 05 мая 2021
Спецвыпуск № 2 от 05 .05.2021 редакции газеты «Земля РОССИИ»
Без уважения к ветерану нет любви к Родине
Ветераны боевых действий за обеспечение надежности нефтегазотрубопроводов
и высокую надежность фланцевых соединений со скошенными торцами на
фрикционно-подвижных болтовых соединений с длинными овальными
отверстиями , по линии нагрузки
Письменный запрос редакции газеты «Земля РОССИИ»
Президенту РФ, депутатам ГД РФ, сенаторам Совета
Федерации РФ, Правительству РФ от Ветеранов боевых
действий и военных изобретателей России за справедливость
Ветераны боевых действий, военные изобретатели предлагают:
обеспечить термическую надежность, вибростойкость,
взрывопожаростойкость сейсмостойкость, магистральных
нефтегазотрубопроводов, нефтегазовой отрасли оборудования АЭС и
шумозащиту и термическую надежность от перепада температур
надежность ядерных реакторов атомных подводных лодок России
2.
Эффективные решения повышения надежности болтовыхсоединения, по предотвращению ослабления резьбовых
соединений, за счет использования фрикционно –подвижных
болтовых соединений, установленные в длинные овальные
отверстия с контролируемым натяжением, увеличивающего
демпфирующею способность соединения , при термических,
импульсных, растягивающих и динамических нагрузках, при
многокаскадных демпфированиях для предотвращения аварий на
предприятиях нефтегазового комплекса
Косые компенсаторы со скошенными торцами с демпфирующими соединениями - надежное
резьбовое соединение для насосных систем, компрессоров, ветроэнергетики, авиастроении, что
приводит к уменьшению аварий и угрозе жизни обслуживающего персонала по обеспечение
терморстойкости, вибростойкости, взрывопожаростойкости, сейсмостойкости, магистральных
нефтегазотрубопроводов, нефтегазовой отрасли, мостов, зданий и сооружений, оборудования,
трубопроводов, железнодорожного пути, горонодобывающего оборудования, дробилок, атомных
электростанций, магистральных трубопроводов , благодаря изобретениям организации «Сейсмофонд»
ИНН 2014000780 ОГРН 1022000000824: № 2010136746, 165076, 154506,и изобретениям проф.дтн Уздина А
М № 1168755, 1174616, 1143895, с помощью фланцевых подвижных соединений (ФПС) и
энергопоглотителей пиковых ускорений (ЭПУ), с контролируемым натяжением ФПС, протяжных соединений,
расположенных в овальных отверстиях покрытых грунтовкой ПГУПС
Известно, какие финансовые потери несут предприятия нефтегазового
комплекса вследствие утечек продукта через уплотнения фланцевых
соединений трубопроводов и технологического оборудования. Также не
секрет, к каким порой катастрофическим последствиям может привести
авария на таком предприятии, в том числе авария, связанная с
повреждением уплотнения и выбросом в атмосферу
легковоспламеняющихся, взрывоопасных или токсичных веществ, а также
сколько будет стоить останов производства, связанный с заменой
простой детали. Можно только добавить, что чем тяжелее условия, в
которых работает уплотнение, тем больше будет вероятность его
повреждения и серьезнее будут последствия.
И в этом контексте особый интерес вызывают Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения –косые
которые обеспечивают надежную герметичность и
электрическую изоляцию фланцев при высоком давлении, высокой
температуре и агрессивной среде, сохраняя работоспособность даже в
условиях прямого воздействия пламени.
демпфирующие компенсаторы,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 2
3.
В основе технологии Фланцевогосоединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения , косых демпфирующих компенсаторов лежит
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755,
1174616 простые стандартные инженерные решения сухого трения
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 3
4.
Рис. 1. Фланцевое соединение растянутых элементов трубопровода соскошенными торцами с упругими демпферами сухого трения, косые демпфирующие компенсаторы
Более подробно об использовании для трубопроводов
Фланцевое соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого трения –
косые демпфирующие компенсаторы фрикционно-
демпфирующий косых
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 4
5.
компенсаторов на фрикционно-подвижных соединениях , сери ФПС2015- Сейсмофонд, для трубопроводов по изобретению Андреева БорисАлександровича № 165076 «Опора сейсмостойкая» и патента №
2010136746 «Способ защиты зданий и сооружений с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие
систему демпфирования фрикционности и сейсмоизоляцию для поглощения
сейсмической энергии» , № 154506 «Панель противовзрывная» для газо нефтяных магистральных трубопроводов, Японо-Американской фирмой
RUBBER BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/RUBBER-BEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBERBEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Наши партнеры :Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и
запроектирован амортизирующий демпфер, который совмещает преимущества вращательного
трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде вставной резины,
которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
На фотографии военный изобретатель СССР Андреев Борис Александрович,
автор конструктивного решения по использованию демпфирующих компенсаторов
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 5
6.
на фрикционно-подвижных болтовых соединениях, для восприятия усилий -за счеттрения, при термически растягивающих нагрузках в трубопроводах , с
зафиксированными запорными элементов в штоке, по линии ударной нагрузки
, согласно изобретения № 165076 «Опора сейсмостойкая» для обеспечения
надежности технологических трубопроводов , преимущественно при
растягивающих и динамических нагрузках и улучшения демпфирующих
свойств технологических трубопроводов , согласно изобретениям проф ПГУПС
дтн проф Уздина А М №№ 1168755, 1174616, 1143895 и внедренные в США
Автор офицер запаса проф А.М.Уздин, отечественной
фрикционо- кинематической, демпфирующей сейсмоизоляции и
системы поглощения и рассеивания сейсмической и взрывной
энергии проф дтн ПГУПC Уздин А М, на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при термических
растягивающих нагрузках в трубопроводах
Наши партнеры за рубежом успешно внедряют советские изобретения
Например, Японская фирма Shinkiсhi Suzuki -Президент фирмы Kawakin ,
внедрил в Японии фрикционо- кинематические, демпфирующие
системы, на фрикционно-подвижных
болтовых соединениях, для восприятия
усилий -за счет трения, при термически растягивающих нагрузках в трубопроводах
и конструктивные решения по применении виброгасящей сейсмоизоляции,
для сейсмозащиты железнодорожных мостов в Японии, с системой
поглощения и рассеивания сейсмической энергии проф дтн
ПГУПC Уздин А М в Японии, США , Тайване и Европе
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 6
7.
Авторы США, американской фрикционо- кинематическихвнедрившие в США изобретения проф дтн А.М.Уздина
№№1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»,
2010136746 «Способ защиты зданий и сооружений при взрыве…»
, демпфирующей и шарнирной сейсмоизоляци и системы
поглощения сейсмической энергии DAMPERS CAPACITIES
AND DIMENSIONS ученые США и Японии Peter Spoer, CEO Dr.
Imad Mualla, CTO https://www.damptech.com GET IN TOUCH
WITH US!
Руководитель и основатель Квакетека расположенного в Монреале, Канаде Джоаквим
Фразао https://www.quaketek.com/products-services/
Friction damper for impact absorption https://www.youtube.com/watch?v=kLaDjudU0zg
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
https://www.youtube.com/watch?v=aSZa-SaRBY&feature=youtu.be&fbclid=IwAR38bf6R_q1Pu2TVrudkGJvyPTh4dr4xpd1jFtB4CJK2HgfwmKYO
sYtiV2Q
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 7
8.
ТКП 45-5.04-274-2012 "Стальные конструкции. Правила расчета"https://dwg.ru/dnl/13468
Р Е Ф Е Р А Т на изобретение, на полезную модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения предназначена для сейсмозащиты , виброзащиты
трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических, взрывных,
вибрационных, неравномерных воздействий за счет использования спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры,
многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной оплетке
и протяжных фланцевых фрикционно- податливых соединений отличающаяся тем, что с
целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или
корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части
подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между
собой с помощью фрикционно-подвижных соединений и контактирующими
поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой
(гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы
верхнего и нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих
ножках) и крепятся фрикци-болтами с многослойным из склеенных пружинистых медных
пластин клином, расположенной в коротком овальном отверстии верха и низа корпуса
опоры. https://findpatent.ru/patent/241/2413820.html
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения , содержащая трубообразный спиралевидный
корпус-опору в виде перевернутого «стакан» заполненного тощим фиробетоно и
сопряженный с ним подвижный узел из контактирующих поверхностях между которыми
проложен демпфирующий трос в пластмассой оплетке с фланцевыми фрикционноподвижными соединениями с закрепленными запорными элементами в виде протяжного
соединения.
Кроме того в трубопроводе со скошенными торцами , параллельно центральной оси,
выполнено восемь симметричных или более открытых пазов с длинными овальными
отверстиями, расстояние от торца корпуса, больше расстояния до нижней точки паза
опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов трубопровода
со скошенными торцами, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной опоры и к
увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому
листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой
со свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной фланцевом
соединение растянутых элементов трубопровода со скошенными торцами, с упругими
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 8
9.
демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса ( массы)
оборудования, сооружения, здания, моста и расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения, выполнено
со скошенными торцами в виде , стаканчато-трубного вида на фланцевых, фрикционно –
подвижных соединениях с фрикци-болтами .
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
соединяется , на изготовлено из фрикци-болтах, с тросовой втулкой (гильзой) - это
вибропоглотитель пиковых ускорений (ВПУ) с помощью которого поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт
снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях и взрывной
нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность работы
вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные
трубопроводы за счет уменьшения пиковых ускорений, за счет протяжных фрикционных
соединений, работающих на растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 ,
Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , состоящая из стального
троса в пластмассовой оплетке или без пластмассовой оплетки, пружинит за счет
трения между тросами, поглощает при этом вибрационные, взрывной, сейсмической
нагрузки , что исключает разрушения сейсмоизолирующего основания , опор под агрегатов,
мостов , разрушении теплотрасс горячего водоснабжения от тяжелого автотранспорта
и вибрации от ж/д . Надежность friction-bolt на виброизолирующих опорах достигается
путем обеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание, сооружение,
оборудование,труопровоы, которое устанавливается на спиральных сейсмоизолирующих
опорах, с упругими демпферами сухого трения, на фланцевых фрикционно- подвижных
соединениях (ФФПС) по изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 ,
опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А.
Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности
металлоконструкций с высокопрочными болтами"
В основе фланцевое соединение растянутых элементов трубопровода со скошенными
торцами ,с упругими демпферами сухого трения, на фрикционных фланцевых
соединениях, на фрикци-болтах (поглотители энергии) лежит принцип который
называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для Фланцевое
соединение растянутых элементов трубопровода со скошенными торцами , с упругими
демпферами сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет
пару структурных элементов, соединяющих эти структурные элементы со скольжением,
разной шероховатостью поверхностей в виде демпфирующих тросов или упругой гофры (
обладающие значительными фрикционными характеристиками, с многокаскадным
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 9
10.
рассеиванием сейсмической, взрывной, вибрационной энергии. Совместное скольжениевключает зажимные средства на основе friktion-bolt ( аналог американского Hollo Bolt ),
заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение)
фрагментов фланцевых фрикционно-подвижных соединений ( ФФПС) фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, с упругими
демпферами сухого трения, скользящих и демпфирующих фрагментами спиральной ,
винтовой опоры , по продольным длинным овальным отверстиям . Происходит
поглощение энергии, за счет трения частей корпуса опоры при сейсмической, ветровой,
взрывной нагрузки, что позволяет перемещаться и раскачиваться спиральнодемпфирующей и пружинистого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на расчетное допустимое перемещение, до 1-2 см (
по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых элементов
трубопровода со скошенными торцами, рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на фланцевое
соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, необходимо заменить, смятые троса ,вынуть из
контактирующих поверхностей, вставить опять в новые втулки (гильзы) , забить в паз
латунной шпильки демпфирующего узла крепления, новые упругопластичный стопорные
обожженные медный многослойный клин (клинья), с помощью домкрата поднять и
выровнять фланцевое соединение растянутых элементов трубопровода со скошенными
торцами трубопровод и затянуть новые фланцевые фрикци- болтовые соединения, с
контрольным натяжением, на начальное положение конструкции с фрикционными
соединениями, восстановить протяжного соединения на фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , для дальнейшей
эксплуатации после взрыва, аварии, землетрясения для надежной сейсмозащиты,
виброизоляции от многокаскадного демпфирования фланцевого соединение растянутых
элементов трубопровода со скошенными торцами трубопровода с упругими демпферами
сухого трения и усилить основания под трубопровод, теплотрассу, агрегаты,
оборудования, задний и сооружений
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 10
11.
Фиг 1 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 11
12.
Фиг 3 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 4 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 12
13.
Фиг 6 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 8 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 13
14.
Фиг 9 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 12 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 14
15.
Фиг 13 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 15
16.
Фиг 1 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 16
17.
Фиг 3 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 4 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 17
18.
Фиг 6 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 8 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 18
19.
Фиг 9 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 12 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 19
20.
Фиг 13 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
F0416L
Предлагаемое техническое решение предназначено для защиты магистральных
трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет
использования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при при
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 20
21.
многокаскадном демпфировании и динамических нагрузках на протяжныхфрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое
соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских
деталей".
Известны фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент Фланцевое соединение растянутых элементов замкнутого профиля №
2413820, «Стыковое соедиение рястянутых элементов» № 887748 и RU №1174616,
F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения
трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения "
Изобретение относится к области строительства и может быть использовано
для фланцевых соединение растянутых элементов трубопровода со скошенными
торцами для технологических , магистральных трубопроводов. Система
содержит фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с разной жесткостью, демпфирующий элемент стального
листа свитого по спирали. Использование изобретения позволяет повысить
эффективность сейсмозащиты и виброизоляции в резонансном режиме
фланцевые соединения в растянутых элементов трубопровода со скошенными
торцами
Изобретение относится к строительству и машиностроению и может быть
использовано для виброизоляции магистральных трубопроводов, технологического
оборудования, агрегатов трубопроводов и со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является
фланцевое соединение растянутых элементов замкнутого профиля № 2413820 ,
Стыковое соединение растянутых элементов № 887748 система по патенту
РФ (прототип), содержащая и описание работы фланцевого соединение
растянутых элементов трубопровода со скошенными торцами
Недостатком известного устройства является недостаточная
эффективность на резонансе из-за отсутствия демпфирования колебаний.
Технический результат - повышение эффективности демпфирующей
сейсмоизоляции в резонансном режиме и упрощение конструкции и монтажа
сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующем фланцевом соединение растянутых
элементов трубопровода со скошенными торцами , содержащей по крайней мер,
за счет демпфирующего фланцевого соединение растянутых элементов
трубопровода со скошенными торцами трубопровод и сухого трения установлена
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 21
22.
с использованием фрикци-болта с забитым обожженным меднымупругопластичным клином, конце демпфирующий элемент, а демпфирующий
элемент выполнен в виде медного клина забитым в паз латунной шпильки с
медной втулкой, при этом нижняя часть штока соединена с основанием
спиральной опоры , жестко соединенным с демпирующей спиральной стальной
лентой на фрикционно –подвижных болтовых соединениях для обеспечения
демпфирования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами
На фиг. 1 представленk фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения с
пружинистыми демпферами сухого трения в овальных отверстиях
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, виброизолирующая система для
зданий и сооружений, содержит основание 3 и 2 –овальные отверстия , для
болтов по спирали и имеющих одинаковую жесткость и связанных с опорными
элементами верхней части пояса зданий или сооружения я.
Система дополнительно содержит фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, к которая крепится фрикци-болтом с
пропиленным пазов в латунной шпильки для забитого медного обожженного
стопорного клина ( не показан на фигуре 2 ) и которая опирается на нижний пояс
основания и демпфирующий элемент 1 в виде спиральновидной
сейсмоизолирующей опоры с упругими демпферами сухого трения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по
изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746
«Способ защиты зданий», 165076 «Опора сейсмостойкая» В спиралевидную
трубчатую опору , после сжатия расчетной нагрузкой , внутрь заливается тощий
по расчету фибробетон по нагрузкой , сжатой спиральной сейсмоизолирующей
опоры
Демпфирующий элемент фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, с упругими демпферами сухого трения за
счет фрикционно-подвижных соединениях (ФПС)
При колебаниях грунта сейсмоизолирующая и виброизолирующее фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, для
демпфирующей сейсмоизоляции трубопровода (на чертеже не показан) с
упругими демпферами сухого трения , для спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения , элементы 1 и 4 воспринимают как
вертикальные, так и горизонтальные нагрузки, ослабляя тем самым динамическое
воздействие на демпфирующею сейсмоизоляцию объект, т.е. обеспечивается
пространственную сейсмозащиту, виброзащиту и защита от ударной нагрузки
воздушной волны
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 22
23.
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, каквиброизолирующая система работает следующим образом.
При колебаниях виброизолируемого объекта , фланцеве соединение растянутых
элементов трубопровода со скошенными торцами на основе фрикционоподвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым
динамическое воздействие на здание, сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами 1,
и разрушение тощего фибробетона 4 расположенного внутри спиральной
демпфирующей опоры .
Предложенная виброизолирующая система является эффективной, а также
отличается простотой при монтаже и эксплуатации.
Упругодемпфирующая фланцевого соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения работает
следующим образом.
При колебаниях объекта фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем самым
динамическое воздействие на здание , сооружение . Горизонтальные колебания
гасятся за счет фрикци-болта расположенного в при креплении опоры к
основанию фрикци-болтом , что дает ему определенную степень свободы
колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых
элементов трубопровода со скошенными торцами и силы трения между листами
пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное
проскальзывание листов фланцевого соединение растянутых элементов
трубопровода со скошенными торцами или прокладок относительно накладок
контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных
отверстий для скольжения при многокаскадном демпфировании и после разрушения
при импульсных растягивающих нагрузках или при многокаскадном демпфировании
, уже не работают упруго. После того как все болты соединения дойдут до упора
края, в длинных овальных отверстий, соединение начинает работать упруго за счет
трения, а затем происходит разрушение соединения за счет смятия листов и среза
болтов, что нельзя допускать . Сдвиг по вертикали допускается 1 - 2 см или более
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 23
24.
Недостатками известного решения аналога являются: не возможностьиспользовать фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при
расчетах из-за разброса по трению. Известно также устройство для фрикционного
демпфирования антиветровых и антисейсмических воздействий, патент
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping
device, E04B1/98, F16F15/10, патент США Structural stel bulding frame having
resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" , RU № 2413820
"Фланцевое соединение растянутых элементов замкнутого профиля", Украина №
40190 А "Устройство для измерения сил трения по поверхностям болтового
соединения" , Украина патент № 2148805 РФ "Способ определения коэффициента
закручивания резьбового соединения"
Таким образом получаем фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения и
виброизолирующею конструкцию кинематической или маятниковой опоры, которая
выдерживает вибрационные и сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических
нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений отверстий фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, а также повышение точности расчета при
использования тросовой втулки (гильзы) на фрикци- болтовых демпфирующих
податливых креплений и прокладки между контактирующими поверхностями
упругую обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой оплетке или
без оплетки, скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение
растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с бронзовой
втулкой (гильзой) и свинцовой шайбой и верхней - шток сборный в виде, фланцевого
соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения, установленный с возможностью перемещения
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 24
25.
вдоль оси и с ограничением перемещения за счет деформации и виброизолирующегофланцевого соединение растянутых элементов трубопровода со скошенными
торцами, под действием запорного элемента в виде стопорного фрикци-болта с
тросовой виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной
шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов
трубопровода со скошенными торцами выполнены овальные длинные отверстия, и
поперечные отверстия (перпендикулярные к центральной оси), в которые
скрепляются фланцевыми соединениями в растянутых элементов трубопровода со
скошенными торцами с установлением запирающий элемент- стопорный фрикциболт с контролируемым натяжением, с медным клином, забитым в пропиленный паз
стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с тонкой свинцовой
шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со
скошенными торцами, параллельно центральной оси, выполнены восемь открытых
длинных пазов, которые обеспечивают корпусу возможность деформироваться за
счет протяжных соединений с фрикци- болтовыми демпфирующими,
виброизолирующими креплениями в радиальном направлении.
В теле фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами, вдоль центральной оси, выполнен длинный паз ширина которого
соответствует диаметру запирающего элемента (фрикци- болта), а длина
соответствует заданному перемещению трубчатой, квадратной или
крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении опоры корпуса, с продольными протяжными пазами с контролируемым натяжением
фрикци-болта с медным клином обмотанным тросовой виброизолирующей втулкой
(пружинистой гильзой) , забитым в пропиленный паз стальной шпильки и
обеспечивает возможность деформации корпуса и «переход» сопряжения из
состояния возможного перемещения в состояние «запирания» с возможностью
перемещения только под вибрационные, сейсмической нагрузкой, взрывные от
воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображено фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения на фрикционных
соединениях с контрольным натяжением ;
на фиг.2 изображен вид с боку фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения со
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 25
26.
стопорным (тормозным) фрикци –болт с забитым в пропиленный паз стальнойшпильки обожженным медным стопорным клином;
финн 3 изображен вид с верху , фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 4 изображен разрез фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения
виброизолирующею, сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой
втулкой)
фиг. 7 изображена вид с верху фланцевого соединение с овальными отверстиями
растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое соединение по замкнутому контуру
растянутых элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 10 изображена формула расчет фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с косым демпфирующим компенсатором
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 13 изображен способ определения коэффициента закручивания резьбового
соединения" по изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения
коэффициента закручивания резьбового соединения" и № 2413098 "Способ для
обеспечения несущей способности металлических конструкций с высокопрочными
болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по
подготовленным поверхностям для болтового соединения по Украинскому
изобретению № 40190 А, заявление на выдачу патента № 2000105588 от 02.10.2000,
опубликован 16.07.2001 Бюл 8 и в статье Рабера Л.М. Червинский А.Е "Пути
соевршенствоания технологии выполнения фрикционных соединений на
высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 15 изображен образец для испытания и Определение коэффициента трения в
ПК SCAD между контактными поверхностями соединяемых элементов СТП 006-97
Устройство соединений на высокопрочных болтах в стальных конструкциях мостов,
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научноисследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С.
Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 26
27.
Лобков, инж. М.М. Мещеряков) для испытаний на вибростойкость,сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно
подвижных соединений (ФПС) по изобретениям проф ПГУПС А .М Уздина №№
1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, состоит из двух фланцев
(нижний целевой), (верхний составной), в которых выполнены вертикальные
длинные овальные отверстия диаметром «D», шириной «Z» и длиной . Нижний
фланец охватывает верхний корпус трубы (трубопровода) .
При монтаже демпфирующего компенсатора, поднимается до верхнего предела,
фиксируется фрикци-болтами с контрольным натяжением, со стальной шпилькой
болта, с пропиленным в ней пазом и предварительно забитым в шпильке
обожженным медным клином. и тросовой пружинистой втулкой (гильзой)
В стенке корпусов виброизолирующей, сейсмоизолирующей кинематической опоры
перпендикулярно оси корпусов опоры выполнено восемь или более длинных овальных
отверстий, в которых установлен запирающий элемент-калиброванный фрикци –
болт с тросовой демпирующей втулкой, пружинистой гильзой, с забитым в паз
стальной шпильки болта стопорным ( пружинистым ) обожженным медным
многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой и
латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами , с упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход
болта –шпильки ) соответствующий по ширине диаметру калиброванного фрикци болта, проходящего через этот паз. В нижней части демпфирующего
компенсатора, выполнен фланец для фланцевого подвижного соединения с длинными
овальными отверстиями для крепления на фундаменте, а в верхней части корпуса
выполнен фланец для сопряжения с защищаемым объектом, сооружением,
мостом
Сборка фланцевого соединение растянутых элементов трубопровода со
скошенными торцами , заключается в том, что составной ( сборный) фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, в виде
основного компенсатора по подвижной посадке с фланцевыми фрикционноподвижными соединениям (ФФПС). Паз фланцевого соединение растянутых
элементов трубопровода со скошенными торцами,, совмещают с поперечными
отверстиями трубчатой спиралевидной опоры в трущихся спиралевидных стенок
опоры , скрепленных фрикци-болтом (высота опоры максимальна). После этого
гайку затягивают тарировочным ключом с контрольным натяжением до заданного
усилия в зависимости от массы трубопровода,агрегата. Увеличение усилия затяжки
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 27
28.
гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров от«Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие в
крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами, зависит от величины усилия затяжки гайки (болта) с контролируемым
натяжением и для каждой конкретной конструкции и фланцевого соединение
растянутых элементов трубопровода со скошенными торцами (компоновки,
габаритов, материалов, шероховатости и пружинистости стального тонкого
троса уложенного между контактирующими поверхностями деталей
поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов
трубопровода со скошенными торцами демпфирующего компенсатора , сверху и
снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во
время вибрационных нагрузок или взрыве за счет трения между верхним и нижним
фланцевым соединением растянутых элементов трубопровода со скошенными
торцами, происходит поглощение вибрационной, взрывной и сейсмической энергии.
Фрикционно- подвижные соединения состоят из скрученных пружинистых тросовдемпферов сухого трения и свинцовыми (возможен вариант использования латунной
втулки или свинцовых шайб) поглотителями вибрационной , сейсмической и взрывной
энергии за счет демпфирующих фланцевых соединений в растянутых элементов
трубопровода со скошенными торцами с тросовой втулки из скрученного тонкого
стального троса, пружинистых многослойных медных клиньев и сухого трения,
которые обеспечивают смещение опорных частей фрикционных соединений на
расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых
расчетом на основные сочетания расчетных нагрузок, сама кинематическая опора
при этом начет раскачиваться, за счет выхода обожженных медных клиньев,
которые предварительно забиты в пропиленный паз стальной шпильки при
креплении опоры к нижнему и верхнему виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, представляют собой двойную фрикционную пару, имеющую
стабильный коэффициент трения по упругой многослойной .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество
болтов определяется с учетом воздействия собственного веса трубопровода
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 28
29.
Сама составное фланцевое соединение растянутых элементов трубопровода соскошенными торцами с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см
Сжимающее усилие создается высокопрочными шпильками с обожженными
медными клиньями забитыми в пропиленный паз стальной шпильки, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие с
контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса
(массы) оборудования, сооружения, здания, моста, Расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для стыкового демпфирующего косого соединения , фланцевого
соединение растянутых элементов трубопровода со скошенными торцами,
является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого,
поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы трубопровода, за счет уменьшения пиковых
ускорений, за счет использования протяжных фрикционных соединений, работающих
на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п.
14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза)
фрикци-болта при виброизоляции нагревается за счет трения между верхней
составной и нижней целевой пластинами (фрагменты опоры) до температуры
плавления и плавится, при этом поглощаются пиковые ускорения взрывной,
сейсмической энергии и исключается разрушение оборудования, ЛЭП, опор
электропередач, мостов, также исключается разрушение теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фланцевого соединение растянутых
элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения на фрикционных соединениях, на фрикци-болтах с тросовой втулкой,
лежит принцип который, на научном языке называется "рассеивание", "поглощение"
сейсмической, взрывной, вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на одну
сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной
или сейсмической нагрузки необходимо заменить смятые или сломанные
гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 29
30.
демпфирующего узла забить новые демпфирующий и пружинистый медные клинья, спомощью домкрата поднять, выровнять опору и затянуть болты на проектное
контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок
превышающих силы трения в сопряжении в фланцевом соединение растянутых
элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, трубчатого вида , происходит сдвиг трущихся элементов типа шток,
корпуса опоры, в пределах длины спиралевидных паза выполненного в составных
частях нижней и верхней трубчатой опоры, без разрушения оборудования, здания,
сооружения, моста.
О характеристиках виброизолирующего демпфирующего компенсатора фланцевого соединение растянутых элементов трубопровода со скошенными
торцами, сообщалось на научной XXVI Международной конференции
«Математическое и компьютерное моделирование в механике деформируемых сред
и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических моделей
установленных на сейсмоизолирующих фланцевых фрикционно-подвижных
соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со
скошенными торцами на фланцевых фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК) (без раскрывания новизны технического
решения) можно ознакомиться: см. изобретения №№ 1143895, 1174616,1168755 SU,
№ 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Bro
schueren_TechnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями демпфирующего косого компенсатора на основе
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на основе фланцевых фрикционно –подвижных соединений для
виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул Афонская дом 2
можно ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 30
31.
Сопоставление с аналогами демпфирующего косого компенсатора длятрубопроводов на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения,
показаны следующие существенные отличия:
1.Косое фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения выдерживает термические
нагрузки от перепада температуры при транспортировке по трубопроводу газа,
кислорода в больницах
2. Упругая податливость демпфирующего фланцевого соединение растянутых
элементов трубопровода со скошенными торцами регулируется прочностью
втулки тросовой
4. В отличие от резиновых неметаллических прокладок, свойства которой
ухудшаются со временем, из-за старения резины, свойства фланцевое косое
демпфирующее соединение растянутых элементов трубопровода со скошенными
торцами, остаются неизменными во времени, а долговечность их такая же, как у
магистрального трубопровода.
Экономический эффект достигнут из-за повышения долговечности демпфирующей
упругого фланцевого соединение растянутых элементов трубопровода со
скошенными торцами , так как прокладки на фланцах быстро изнашивающаяся и
стареющая резина , пружинные сложны при расчет и монтаже. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации
фланцевого косого компенсатора соединение растянутых элементов трубопровода
со скошенными торцами
Литература которая использовалась для составления заявки на изобретение:
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка
методов расчетной оценки долговечности подкрановых путей производственных
зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00,
18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU
№2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая транспортная
конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ
И
ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ
ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 31
32.
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл
№ 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на
пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное
устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция
малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 2425 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре
года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии
возведения фундаментов без заглубления – дом на грунте. Строительство на
пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность
городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по
графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 32
33.
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25«Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные
научные издания и
журналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого
строительства горцами Северного
Кавказа сторожевых башен» с.79 г.
Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Формула изобретения косого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого
трения
1. Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения,
демпфирующего косого компенсатора для магиастрального
трубопровода , содержащая: фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого
трения на фрикционно-подвижных болтовых соединениях, с
одинаковой жесткостью с демпфирующий элементов при
многокаскадном демпфировании, для сейсмоизоляции трубопровода и
поглощение сейсмической энергии, в горизонтальнойи вертикальной
плоскости по лини нагрузки, при этом упругие демпфирующие косые
компенсаторы , выполнено в виде фланцевого соединение растянутых
элементов трубопровода со скошенными торцами
2. Фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения , повышенной
надежности с улучшенными демпфирующими свойствами, содержащая ,
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными
соединениями и упругой втулкой (гильзой), закрепленные запорными
элементами в виде протяжного соединения контактирующих поверхности
детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем,
что с целью повышения надежности демпфирующее сейсмоизоляции, с
демпфирующим эффектом с сухим трением, соединенные между собой с
помощью фрикционно-подвижных соединений с контрольным натяжением
фрикци-болтов с тросовой пружинистой втулкой (гильзы) , расположенных
в длинных овальных отверстиях , с помощью фрикци-болтами с медным
упругоплатичном, пружинистым многослойным, склеенным клином или
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 33
34.
тросовым пружинистым зажимом , расположенной в коротком овальномотверстии верха и низа косого компенсатора для трубопроводов
3. Способ фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, для
обеспечения несущей способности трубопровода на фрикционно подвижного соединения с высокопрочными фрикци-болтами с тросовой
втулкой (гильзой), включающий, контактирующие поверхности которых
предварительно обработанные, соединенные на высокопрочным фрикциболтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент сейсмоизолирующей опоры ( демпфирующей),
для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в
зависимости от величины отклонения, осуществляют коррекцию
технологии монтажа сейсмоизолирующей опоры, отличающийся тем, что
в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного фрикци- болта с медным обожженным клином
забитым в пропиленный паз латунной шпильки с втулкой -гильзы из
стального тонкого троса , а определение усилия сдвига на образцесвидетеле осуществляют устройством, содержащим неподвижную и
сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между
выступом рычага и тестовой накладкой помещают
самоустанавливающийся сухарик, выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующего антивибрационного косого
демпфирующего компенсатора , не производят, при отношении в
диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно
проводят обработку контактирующих поверхностей фланцевого
соединение растянутых элементов трубопровода со скошенными торцами
с использованием цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 34
35.
Заявление в Государственный комитет по науке и технологиям РеспубликиБеларусь Национальный центр интеллектуальной собственности 220034 г
Минск ул Козлова 20 (017) 285-26-05 [email protected]
Ведущему специалисту центра экспертизы промышленной собственности Н.М.Бортнику 9 мая
2021
Фланцевого соединение растянутых элементов
трубопровода со скошенными торцами ветеран боевых действий
Авторы изобретения
Коваленко Александр Иванович
Дата
поступления заявки на
выдачу патента на
изобретение*:
Дата подачи
заявки на выдачу
патента на
изобретение*:
09.05.2021
ЗАЯВЛЕНИЕ
о выдаче патента Республики
Беларусь на изобретение
Регистрационный номер заявки на
выдачу патента на изобретение*:
В государственное учреждение «Национальный центр
интеллектуальной собственности»
Заявитель (заявители): физическое лицо Коваленко Александр Иванович – инвалид I группы по общим заболеваниям
Прошу
выдать
патент
Фамилия, собственное
имя,(просим)
отчество (если
таковое
имеется) физического лица (физических лиц) и (или) полное наименование
юридического
лица
(юридических
лиц)
согласно
документу: Коваленко Александр Иванович
Республики Беларусь на изобретение на учредительному
имя
заявителя (заявителей)
Код страны места жительства
(места пребывания) или места
197371, г.Санкт-Петербург , а/я газета «Земля РОССИИ» (921)
нахождения по стандарту
Всемирной организации
962-67-78
интеллектуальной собственности
Фонд поддержки и развития сейсмостойкого строительства "Защита и
(далее – ВОИС) SТ.3 (если он
установлен): СССР Ленинград
безопасность городов" "СЕЙСМОФОНД" Номер телефона (999) 53547-29 Номер факса (812) 694-78-10
Адрес
электронной
почты*
смотреть
продолжение
на дополнительном
листе (листах)
[email protected] [email protected]
Адрес места жительства (места пребывания) или места нахождения:
Общегосударственный
Учетный номер плательщика (далее –
классификатор предприятий и
УНП) ***
Наименование юридического лица, которому подчиняется или в состав (систему) которого входит юридическое лицо –
***
организаций
Республики
Беларусь
заявитель (заявители)
(при наличии)
: Общественная организация
"Фонд поддержки
и 2014000780
развития сейсмостойкого
ОО "Сейсмофонд"
ИНН
строительства
"Защита
безопасность
городов"
"СЕЙСМОФОЕНД"
КПП
201401001
ИНН
2014000780
(далее – ОКПО) ***
Название заявляемого изобретения (группы изобретений), которое должно совпадать с названием,
приводимым в описании изобретения:
Организ. "Сейсмофонд"
Фланцевое соединение растянутых элементов трубопровода со скошенными
ОГРН
1022000000824
торцами
F16L 23/00
изобретение создано при осуществлении научной и научно-технической деятельности в рамках:
государственной научно-технической программы;
Е04Н
9/02
региональной научно-технической программы;
отраслевой научно-технической программы, финансируемой за счет средств:
республиканского бюджета
полностью частично
местного бюджета
полностью частично
государственных целевых бюджетных фондов
полностью частично
государственных внебюджетных фондов
полностью частично
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 35
36.
заявитель (заявители) является:государственным заказчиком;
исполнителем;
лицом, которому право на получение патента на изобретение передано государственным заказчиком (исполнителем)
Заявка
на
Дата подачи первоначальной заявки на выдачу патента на
выдачу патента на изобретение:
изобретение подается
как выделенная
Номер первоначальной заявки на выдачу патента на
изобретение:
Прошу установить приоритет изобретения по дате****:
подачи первой заявки на выдачу патента на изобретение в государстве –
участнике Парижской конвенции по охране промышленной собственности от 20 марта
1883 года (далее – конвенционный приоритет);
поступления дополнительных материалов к ранее поданной заявке на выдачу
патента на изобретение;
подачи более ранней заявки на выдачу патента на изобретение в государственное
учреждение «Национальный центр интеллектуальной собственности».
Номер первой
заявки на выдачу патента
на изобретение или более
Код страны подачи по
ранней заявки на выдачу
стандарту ВОИС SТ.3 (при
патента на изобретение
испрашивании конвенционного
Дата
приоритета)
испрашиваемого
приоритета
________________________________________
Примечание. Бланк заявления оформляется на одном листе с двух сторон.
Адрес для переписки в соответствии с правилами адресования почтовых
отправлений с указанием фамилии, собственного имени, отчества (если таковое имеется)
или наименования адресата (заявителя (заявителей), патентного поверенного, общего
представителя): 197371, г.Санкт-Петербург, а/я газета «Земля РОССИИ» , Организация
«Сейсмофонд» при ПГУПС [email protected]
Номер тел ( 921)
Номер факc
Адр электр почты
[email protected]
Представитель (фамилия, собственное имя, отчество (если таковое имеется),
962-67-78
(812)
694-78-10 поверенного,
[email protected]
регистрационный
номер
патентного
если представителем назначен
патентный поверенный)
является:
патентным поверенным;
К
оличество
листов в
одном
экземпляре
общим представителем
К
оличество
экземпляров
Основание (основания) для
возникновения права на получение патента на
изобретение
Перечень прилагаемых
документов:
Номер тел (996) 798-26-54 Номер факса (812) 694-78-10 Адрес электронной почты:
[email protected]
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 36
37.
1.2.
описание изобретения
формула изобретения
(независимые пункты 4 )
3.
4.
чертежи
реферат
5. документ об уплате патентной
пошлины
6.
другой документ
(указывается конкретно его назначение):
описание прототипа патент RU 1832165 "
Виброизолирующая опора", RU № 184085
"Виброизолирующий компенсатор"
RU 165076 "Опора сейсмостойкая"
Изобретение № 1760020
"Сейсмостойкий фундамент"
07.09.1992
.
11. Заявки на изобретение № 20181229421/20(47400)
от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от
11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от
23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H
9/02.
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" №
2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
1
1
Заявитель (заявители) является:
4
1
1
1) автором (соавторами);
1
7
1
5
2) нанимателем автора;
1
3
О
3)
заказчиком
по
договору
на
И свобожд выполнение научно-исследовательских, опытнонвалид
ен
конструкторских
В
етеран
боевых
действий
или технологических работ в отношении
созданного при выполнении договора изобретения
4) физическим и (или) юридическим лицом
(лицами), которым право на получение патента
передано лицами, указанными в пунктах 1) – 3);
5) правопреемником (правопреемниками)
автора (соавторов);
6) правопреемником (правопреемниками)
нанимателя автора;
7) правопреемником
(правопреемниками)
заказчика по договору на выполнение научноисследовательских, опытно-конструкторских
или технологических работ в отношении созданного
при выполнении договора изобретения;
8) правопреемником (правопреемниками)
физического и (или) юридического лица (лиц), которым
право на получение патента передано лицами,
указанными в пунктах 1) – 3)
24.Прилагается справка об инвалидности Коваленко Александра Ивановича по общим
заболеваниям - 1 стр согласно НАЛОГОВого КОДЕКСа РЕСПУБЛИКИ БЕЛАРУСЬ
ОСОБЕННАЯ ЧАСТЬ от 29 декабря 2009 г. N 71-З
СТАТЬЯ 263 ЛЬГОТЫ ПО ПАТЕНТНЫМ ПОШЛИНАМ
1. Плательщики – физические лица, если иное не установлено частью
второй настоящего пункта, уплачивают 25 процентов от установленного
размера патентных пошлин (за исключением юридически значимых
действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 4, 15, 43 - 67, 71 - 75, 77 - 84 приложения 23 к
настоящему Кодексу).
Освобождаются от патентных пошлин (за исключением юридически
значимых действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 43 - 67, 71 - 75, 77 -84 приложения 23 к настоящему
Кодексу) плательщики – физические лица:
* инвалиды I группы.
* http://www.nalog.gov.by/ru/article263/
25. Прилагается свидетельство о рождении Коваленко
Александра Ивановича о его белорусской национальности
Фигура № __1____ чертежей (если фигур несколько), предлагаемая для публикации
с формулой изобретения в официальном бюллетене патентного органа
Автор (соавторы): Инвалид I группы по общим заболеваниям инвалид первой
группы Коваленко Александр Иванович
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 37
38.
Фамилия, собственное имя, отчество (еслитаковое имеется): Коваленко Александр
Иванович
Адрес места жительства (места пребывания), включая код страны по
стандарту ВОИС SТ.3 (если он установлен):
Адрес для переписки для журналистов: а/я газета
"Земля РОССИИ", 197371, г. Санкт-Петербург . (RU)
[email protected] (999) 535-47-29, (996)798-26-54
смотреть продолжение на дополнительном листе (листах)
Подпись (подписи) заявителя (заявителей) инвалида первой группы или его (их) патентного поверенного с указанием фамилии и
инициалов (от имени юридического лица (юридических лиц) заявление подписывается руководителем этого юридического лица
(юридических лиц) или иным лицом (лицами), уполномоченным на это, с указанием фамилии, инициалов и должности подписывающего
лица (лиц):
(подпись)
*
Дата
подписания:
09.05.2021
I группы
по общимсобственности».
заболеваниям , ветеран
государственным
учреждениемИнвалид
«Национальный
центр интеллектуальной
боевых**Заполняется
действий
Коваленко
Александр
Иванович
Если имеется.
***
Заполняется в случае, если заявителем (заявителями) является юридическое лицо (юридические лица) Республики Беларусь.
Заполняется только при испрашивании приоритета более раннего, чем дата поступления заявки на выдачу патента на
изобретение в государственное учреждение «Национальный центр интеллектуальной собственности». Отправлено 9 мая 2021
****
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 38
39.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 39
40.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 40
41.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 41
42.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 42
43.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 43
44.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 44
45.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 45
46.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 46
47.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 47
48.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 48
49.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 49
50.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 50
51.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 51
52.
РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU 2010136746
(11)
20
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
A
(51) МПК
E04C 2/00 (2006.01)
(12)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ
И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в
виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении
воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем
объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и
соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы
на высокоподатливых с высокой степенью подвижности фрикционных, скользящих
соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек
диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 52
53.
и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям вгоризонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и
обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на
сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду ко лебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и
поглощения сейсмической энергии может определить величину горизонтального и
вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение
до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL
3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне
прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций
(стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий,
перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов
перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита
и безопасность городов».
Изобретение полезная модель Опора сейсмостойкая Сейсмофонд Андреев Б А Коваленко А И
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром « D»,
которое охватывает цилиндрическую поверхность штока 2 по подвижной посадке, например Н9/f9. В стенке
корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен калиброванный болт
3.Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «z» и длиной «l». В штоке вдоль
оси выполнен продольный (глухой) паз длиной «h» (допустимый ход штока) соответствующий по ширине
диаметру калиброванного болта 3 , проходящего через паз штока.
В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части
штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что
шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными
отверстиями корпуса и соединяют калиброванным болтом 3 , с шайбами 4, на который с предварительным
усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя
поверхность паза штока контактирует с поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки
гайки (болта) приводит к уменьшению зазоров « z» корпуса и увеличению усилия сдвига в сопряжении
отверстие корпуса-цилиндр штока. Зависимость усилия трения в сопряжении корпус-шток от величины
усилия затяжки гайки(болта) определяется для каждой конкретной конструкции (компоновки, габаритов,
материалов, шероховатости поверхностей и др.) экспериментально
Е04Н9/02
Опора сейсмостойкая
Предлагаемое техническое решение предназначено для защиты
сооружений, объектов и оборудования от сейсмических воздействий за
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 53
54.
счет использования фрикционно податливых соединений. Известныфрикционные соединения для защиты объектов от динамических
воздействий. Известно, например Болтовое соединение плоских деталей
встык по Патенту RU 1174616 , F15B5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через
которые пропущены болты, объединяющие листы, прокладки и накладки в
пакет. При малых горизонтальных нагрузках силы трения между листами
пакета и болтами не преодолеваются. С увеличением нагрузки происходит
взаимное проскальзывание листов или прокладок относительно накладок
контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края овальных
отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий, соединение
начинает работать упруго, а затем происходит разрушение соединения за
счет смятия листов и среза болтов. Недостатками известного являются:
ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при
расчетах из-за разброса по трению.
Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction
damping device, E04B1/98, F16F15/10.
Устройство содержит базовое основание, поддерживающее защищаемый
объект, нескольких сегментов (крыльев) и несколько внешних пластин. В
сегментах выполнены продольные пазы.
Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности
сегментов, через пазы, проходят запирающие элементы-болты, которые
фиксируют сегменты и пластины друг относительно друга. Кроме того,
запирающие элементы проходят через блок поддержки, две пластины, через
паз сегмента и фиксируют конструкцию в заданном положении. Таким
образом получаем конструкцию опоры, которая выдерживает ветровые
нагрузки но, при возникновении сейсмических нагрузок, превышающих
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 54
55.
расчетные силы трения в сопряжениях, смещается от своего начальногоположения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых
трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
сопряжения отверстие корпуса-цилиндр штока, а также повышение
точности расчета.
Сущность предлагаемого решения заключается в том, что опора
сейсмостойкая выполнена из двух частей: нижней-корпуса, закрепленного
на фундаменте и верхней-штока, установленного с возможностью
перемещения вдоль общей оси и с возможностью ограничения
перемещения за счет деформации корпуса под действием запорного
элемента. В корпусе выполнено центральное отверстие, сопрягаемое с
цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают
запирающий элемент-болт. Кроме того в корпусе, параллельно
центральной оси, выполнены два открытых паза, которые обеспечивают
корпусу возможность деформироваться в радиальном направлении.
В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент
создает нагрузку в сопряжении шток-отверстие корпуса, а продольные
пазы обеспечивают возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической
нагрузкой.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображен разрез А-А (фиг.2); на фиг.2 изображен поперечный разрез
Б-Б (фиг.1); на фиг.3 изображен разрез В-В (фиг.1); на фиг.4 изображен
выносной элемент 1 (фиг.2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено
вертикальное отверстие диаметром «D», которое охватывает
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 55
56.
цилиндрическую поверхность штока 2 предварительно по подвижнойпосадке, например H7/f7.
В стенке корпуса перпендикулярно его оси, выполнено два отверстия в
которых установлен запирающий элемент-калиброванный болт 3. Кроме
того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и
длиной «l».
В теле штока вдоль оси выполнен продольный глухой паз длиной «h»
(допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. В нижней части
корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а
в верхней части штока 2 выполнен фланец для сопряжения с защищаемым
объектом. Сборка опоры заключается в том, что шток 2 сопрягается с
отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3,
с шайбами 4, на с предварительным усилием (вручную) навинчивают гайку
5, скрепляя шток и корпус в положении при котором нижняя поверхность
паза штока контактирует с поверхностью болта (высота опоры
максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации
корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия
трения) в сопряжении отверстие корпуса – цилиндр штока.
Величина усилия трения в сопряжении корпус-шток зависит от величины
усилия затяжки гайки (болта) и для каждой конкретной конструкции
(компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При
воздействии сейсмических нагрузок превышающих силы трения в
сопряжении корпус-шток, происходит сдвиг штока, в пределах длины паза
выполненного в теле штока, без разрушения конструкции.
Формула (черновик) Е04Н9
Опора сейсмостойкая, содержащая корпус и сопряженный с ним
подвижный узел (…) закрепленный запорным элементом
отличающийся тем, что в корпусе выполнено центральное
вертикальное отверстие, сопряженное с цилиндрической поверхностью
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 56
57.
штока, при этом шток зафиксирован запорным элементом,выполненным в виде калиброванного болта, проходящего через
поперечные отверстия корпуса и через вертикальный паз, выполненный
в теле штока и закрепленный гайкой с заданным усилием, кроме того в
корпусе, параллельно центральной оси, выполнено два открытых паза
длина которых, от торца корпуса, больше расстояния до нижней точки
паза штока.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 57
58.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 58
59.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 59
60.
F 16 L 23/02 F 16 L 51/00Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназнечено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 60
61.
шпильки с забитмы медным обожженным клином позволяет обеспечитьнадежный и быстрый погашение сейсмической нагрузки при
землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт,
состоит их латунной шпильки , с забитым в пропиленный паз медного
клина, которая жестко крепится на фланцевом фрикционно- подвижном
соединении (ФФПС) . Кроме того между энергопоглощаюим клином
вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька
вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой (
на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение
трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М.,
«Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых
кранов и трубопроводов от сейсмических воздействий за счет
использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С
увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно
подвижного соедиения (ФФПС), при импульсных растягивающих
нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение
демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах изза разброса по трению. Известно также устройство для фрикционного
демпфирования и антисейсмических воздействий, патент SU 1145204, F
16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин
и несколько внешних пластин. В сегментах выполнены продольные пазы.
Сжатие пружин создает демпфирование
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 61
62.
Таким образом получаем фрикционно -подвижное соединение напружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы трения
в сопряжениях, смещается от своего начального положения, при этом
сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции
и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
или нескольких сопряжений в виде фрикци -болта , а также повышение
точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с
ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с
пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого
трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения,
которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама
опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз
стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с
помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 62
63.
трубопровода, за счет уменьшения пиковых ускорений, за счетиспользования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные
отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям
трубчатых элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4,
кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом
куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци
-болта с пропиленныым пазом , кужа забиваенься стопорный
обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух
сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца:
расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если
антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в
продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми
шайбами , расположенными между цилиндрическими выступами . При
этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 63
64.
надежной виброизоляции и сейсмозащиты шарового кран струбопроводом в поперечном направлении, можно установить медный
втулки или гильзы ( на чертеже не показаны), которые служат
амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность
соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный
обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом
соединени , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность
виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с
одинаковым усилием , после чего производится стягивание соединения
гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный
обожженный клин на строго определенную величину, обеспечивающую
рабочее состояние медного обожженного клина . свинцовые шайбы
применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок
выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию
и герметичность фланцевого соединения трубопровода и шаровых
кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не
показаны) повышает герметичность соединения и надежность его
работы в тяжелых условиях вибронагрузок при моногкаскадном
демпфировании
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 64
65.
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци болта определяется исходя из, частоты вынужденных колебанийвибрирующего трубчатого элемента с учетом частоты собственных
колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если
коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ,
содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в
виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой ,
охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем,
что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с забитимы
с одинаковм усилеи м медым обожженм коллином расположенными во
фоанцемом фрикционно-подвижном соедиении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб ,
установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным
обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливает медная обожженная гильза или втулка .
Фиг 1
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 65
66.
Фиг 2Фиг 3
Фиг 4
Фиг 5
Фиг 6
Фиг 7
Фиг 8
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 66
67.
Фиг 9Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 67
68.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 68
69.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 69
70.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 70
71.
СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ ИМЕЖФЛАНЦЕВЫЙ КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2381407
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19)
RU
(11)
(13)
C1
(51) МПК
F16L 23/00 (2006.01)
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: действует (последнее изменение статуса: 27.07.2020)
Пошлина: учтена за 13 год с 02.07.2020 по 01.07.2021
(21)(22) Заявка: 2008126791/06, 01.07.2008
(24) Дата начала отсчета срока действия патента:
01.07.2008
(45) Опубликовано: 10.02.2010 Бюл. № 4
(72) Автор(ы):
Белоногов Алексей Владимирович
(73) Патентообладатель(и):
Общество с ограниченной ответств
(56) Список документов, цитированных в отчете о поиске: SU 813073 А,
15.03.1981. US 5244237 А, 14.09.1993. US 4662660 А, 05.05.1987. US 4550743
А, 05.11.1985.
Адрес для переписки:
614990, г.Пермь, ул. Ленина, 62, ООО "ЛУКОЙЛ-ПЕРМЬ", отдел
управления проектами, Г.И. Селезневой
(54) СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ И
МЕЖФЛАНЦЕВЫЙ КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретение относится к области машиностроения. Из общей системы трубопроводов
выделяют участки трубопроводов с подключенными к ним аппаратами и фланцевой арматурой,
подлежащей по правилам эксплуатации периодической замене. В пределах выделенных
участков фиксируют фланцевые соединения, которые обеспечивают отключение участков
трубопроводов с аппаратами и заменяемой арматурой, ввод и вывод их из технологического
процесса при профилактических ремонтно-технологических работах. При монтаже
трубопроводов и профилактических ремонтно-технологических работах в каждом
зафиксированном фланцевом соединении используют для установки между фланцами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 71
72.
межфланцевый компенсатор, который выполнен в виде кольца с уплотнительными прокладкамис обеих его сторон. Общая толщина межфланцевого компенсатора выполнена не менее
толщины комплекта регламентированной к установке правилами эксплуатации традиционной
заглушки с прокладками. Расстояние от фланцевого соединения с межфланцевым
компенсатором до первой опоры под трубой выдерживают в пределах от половины до двух
наружных диаметров указанных фланцев, а на вертикальных участках трубопроводов
устанавливают устройства, разгружающие трубопровод от собственного веса. Изобретение
упрощает ремонтно-технологические работы по обслуживанию трубопроводов. 2 н. и 3 з.п. флы, 1 ил.
Изобретение относится к области эксплуатации трубопроводов, имеющих фланцевые
соединения, и предназначается к использованию в первую очередь в нефтегазодобывающей
и нефтегазоперерабатывающей промышленности, конкретно - в нефтепромысловых
трубопроводных системах добычи, сбора и внутрипромыслового транспорта нефти, газа и
попутно добываемой пластовой воды.
Известно, например, изобретение со съемными фланцами по авторскому свидетельству
СССР №813073, М.Кл. (3) F16L 23/02 (заявлено 04.06.79; опубликовано 15 .03.81) под
названием «Разъемное соединение трубопроводов», согласно которому при монтаже
фланцевого соединения вначале свинчивают и отодвигают в сторону один фланец и в
образованный зазор между концами труб вводят линзу. При этом поверхности линзы и
концы труб выполняют концентричными между собой. После введения линзы производят
стягивание фланцев.
Однако способ монтажа и конструктивное выполнение элементов разъемного соединения
по указанному изобретению требует значительного осевого сдвига одного из съемн ых
фланцев и соединяемых труб, что в условиях ограниченного пространства
трудновыполнимо.
Среди имеющихся технических решений, характеризуемых совокупностью признаков,
сходных с совокупностью существенных признаков заявляемого изобретения, аналогичных
объектов техники нами не обнаружено.
Из практики работы, например, нефтегазодобывающих предприятий известен лишь
традиционный способ монтажа и ремонта трубопроводов в трубопроводных системах
добычи, сбора и внутрипромыслового транспорта нефти, газа и попутно д обываемой
пластовой воды, согласно которому вначале производят сборку фланцевых соединений. При
этом между фланцами перед их стягиванием устанавливают прокладки, например, из
паронита. Затем при собранном фланцевом соединении концы труб вваривают в обвязку
трубопроводов.
Смонтированная указанным способом обвязка трубопроводов имеет высокую жесткость и
очень малую податливость в осевом направлении, которая необходима при установке
заглушек при проведении профилактических ремонтно-технологических работ в процессе
эксплуатации таких трубопроводов.
Это увеличивает время подготовки оборудования к ремонту, увеличивает трудоемкость и
время проведения работ, увеличивает опасность травмирования персонала, требует
применять дополнительное оборудование, затрудняет выполнение требуемой технологии
выполнения ремонтных работ и правил безопасности.
Единым техническим результатом, достигаемым при осуществлении предлагаемой
группы изобретений, являются:
- упрощение и облегчение работ по установке и снятию заглушек и замене пр окладок во
фланцевых соединениях при проведении ремонтно-профилактических работ в процессе
эксплуатации трубопровода;
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 72
73.
- исключение необходимости использовать дополнительное оборудование иприспособления (специальные раздвижные приспособления, разъемные кли нья, разгонщики
фланцев, кувалды, ломы и т.п.);
- сокращение времени на проведение ремонтно-профилактических работ при замене и
установке прокладок и заглушек во фланцевых соединениях и замене арматуры и аппаратов;
- снижение физической трудоемкости работ обслуживающего персонала и снижение
опасности травмирования;
- облегчение выполнения требований правил техники безопасности и условий технологии
ремонта;
- снижение нагрузок на элементы трубопроводов и оборудования при проведении
ремонтно-профилактических работ за счет исключения необходимости принудительно
раздвигать в осевом направлении фланцы с трубами при замене и установке прокладок и
заглушек между фланцами.
Указанный технический результат достигается тем, что в заявляемом способе
эксплуатации трубопроводов с фланцевыми соединениями вначале из общей системы
трубопроводов выделяют участки трубопроводов с подключенными к ним аппаратами и
фланцевой арматурой, подлежащей по правилам эксплуатации периодической замене, затем
в пределах выделенных участков фиксируют фланцевые соединения, которые обеспечивают
отключение участков трубопроводов с аппаратами и заменяемой арматурой, ввод и вывод их
из технологического процесса при профилактических ремонтно -технологических работах
путем установки и снятия заглушек в зафиксированных фланцевых соединениях, а при
монтаже трубопроводов и профилактических ремонтно-технологических работах в каждом
зафиксированном фланцевом соединении используют для установки между фланцами
межфланцевый компенсатор, который выполнен в виде кольца с уплотнительными
прокладками с обеих его сторон, причем общая толщина межфланцевого компенсатора
выполнена не менее толщины комплекта регламентированной к установке правилами
эксплуатации традиционной заглушки с прокладками, при этом расстояние от фланцевого
соединения с межфланцевым компенсатором до первой опоры под трубой выдерживают в
пределах от половины до двух наружных диаметров указанных фланцев, а на вертикальных
участках трубопроводов устанавливают устройства, разгружающие трубопровод от
собственного веса.
Указанные выше признаки заявляемого способа эксплуатации трубопроводов с
фланцевыми соединениями являются существенными и новыми.
Указанный технический результат совокупно достигается еще и тем, что нами предложен
вновь межфланцевый компенсатор для осуществления заявляемого способа эксплуатации
трубопроводов с фланцевыми соединениями, включающий кольцо, по обе боковые
поверхности которого установлены уплотнительные элементы, выполненные в виде
кольцевых прокладок, при этом общая толщина межфланцевого компенсатора выполнена не
менее толщины комплекта регламентированной к установке правилами эксплуатации
традиционной заглушки с прокладками.
А также тем, что:
- кольцо компенсатора выполнено, например, металлическим;
- кольцо компенсатора снабжено хвостовиком, свободный конец которого выведен за
пределы наружного диаметра соединяемых фланцев;
- профиль боковых поверхностей кольца компенсатора выполнен адекватно профилю
сопрягаемых поверхностей фланцев.
Указанные выше конструктивные признаки предлагаемого межфланцевого компенсатора
для осуществления заявляемого способа эксплуатации трубопроводов с фланцевыми
соединениями являются существенными и новыми.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 73
74.
Приведенные выше новые существенные признаки способа и межфланцевогокомпенсатора обеспечивают заявляемой группе изобретений при осуществлении достижение
указанного выше нового технического результата.
На чертеже представлен продольный разрез узла фланцевого соединения концов труб с
предлагаемым межфланцевым компенсатором. Межфланцевый компенсатор вк лючает в себя
кольцо 1, с обеих боковых поверхностей которого установлены уплотнительные элементы 2,
выполненные в виде кольцевых прокладок. Общая толщина - S-межфланцевого
компенсатора выполнена не менее толщины комплекта традиционной заглушки с
прокладками, которая выбирается для установки исходя из требований правил эксплуатации.
Кольцо 1 может быть выполнено металлическим или из иного прочного материала. Кольцо 1
компенсатора снабжено хвостовиком 3, свободный конец которого выведен за пределы
наружных диаметров фланцев 4, стягиваемых между собой шпильками 5. Если сопрягаемые
поверхности фланцев выполнены не плоскими, а фигурными, например, типа «шип -паз», то
профиль боковых поверхностей кольца 1 компенсатора выполняют адекватным профилю
сопрягаемых поверхностей фланцев (на чертеже не показано).
Осуществляют предлагаемый способ следующим образом.
Вначале в общей системе трубопроводов выделяют те участки трубопроводов, в которые
подключены аппараты технологического назначения и фланцевая арматура, подлежаща я по
правилам эксплуатации периодической замене. Выделение таких участков можно провести
на стадиях проектирования и монтажа, а также при эксплуатации уже пущенных в работу
систем трубопроводов при проведении профилактических ремонтно -технологических работ.
Затем в пределах выделенных участков трубопроводов фиксируют (обозначают, ставят
метки) фланцевые соединения, которые обеспечивают отключение участков трубопроводов
с аппаратами и заменяемой фланцевой арматурой и обеспечивают их ввод и вывод из
технологического процесса во время проведения профилактических ремонтно технологических работ путем установки и снятия заглушек в таких фланцевых соединениях.
При монтаже трубопроводов (при строительстве вновь, при их замене) и
профилактических ремонтно-технологических работах на участках трубопроводов в каждое
зафиксированное фланцевое соединение между фланцами (до их стягивания) устанавливают
предлагаемый межфланцевый компенсатор.
При этом расстояние от фланцевого соединения с межфланцевым компенсатором до
первой опоры под трубой обеспечивают в пределах от половины до двух наружных
диаметров соединяемых фланцев. На вертикальных участках трубопроводов устанавливают
устройства, разгружающие трубопровод от собственного веса.
Благодаря установке между фланцами труб межфланцевых компенсаторов предлагаемых
параметров (его толщина не менее толщины традиционной заглушки) исключается
необходимость принудительно раздвигать в осевом направлении фланцы с трубами при
замене и установке прокладок и заглушек, что облегчает и упрощ ает такие работы,
сокращает время и их трудоемкость, не требует дополнительного оборудования.
А благодаря тому, что в предлагаемом способе предложено из общей системы
трубопроводов выделять те участки, которые подлежат периодической замене, и в пределах
выделенных участков фиксировать фланцевые соединения, обеспечивающие отключение,
ввод и вывод из технологического процесса таких участков путем установки и снятия
заглушек во фланцевые соединения, то совместно с установкой межфланцевых
компенсаторов в зафиксированные фланцевые соединения, при том, что расстояние от
фланцевого соединения с межфланцевым компенсатором до первой опоры под трубой
выдерживают в пределах от половины до двух наружных диаметров таких фланцев, а на
вертикальных участках трубопроводов устанавливают устройства разгрузки от их
собственного веса, то в совокупности это позволяет на протяжении всего времени
эксплуатации трубопроводов (от монтажа до его замены) наиболее полно обеспечить
выполнение требований правил техники безопасности и условий технологии ремонта,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 74
75.
снизить опасность травмирования и в целом продляет срок безопасной эксплуатациитрубопроводов при снижении материальных средств и трудовых затрат на проведение
профилактических ремонтно-технологических работ.
Формула изобретения
1. Способ эксплуатации трубопроводов с фланцевыми соединениями, характеризующийся
тем, что из общей системы трубопроводов выделяют участки трубопроводов с
подключенными к ним аппаратами и фланцевой арматурой, подлежащей по правилам
эксплуатации периодической замене, в пределах выделенных участков фиксируют
фланцевые соединения, которые обеспечивают отключение участков трубопроводов с
аппаратами и заменяемой арматурой, ввод и вывод их из технологического процесса при
профилактических ремонтно-технологических работах путем установки и снятия заглушек в
зафиксированных фланцевых соединениях, при монтаже трубопроводов и профилактических
ремонтно-технологических работах в каждом зафиксированном фланцевом соединении
используют для установки между фланцами межфланцевый компенсатор, который выполнен
в виде кольца с уплотнительными прокладками с обеих его сторон, причем общая толщина
межфланцевого компенсатора выполнена не менее толщины комплекта регламентированной
к установке правилами эксплуатации традиционной заглушки с прокладками, при этом
расстояние от фланцевого соединения с межфланцевым компенсатором до первой опоры под
трубой выдерживают в пределах от половины до двух наружных диаметров указанных
фланцев, а на вертикальных участках трубопроводов устанавливают устр ойства,
разгружающие трубопровод от собственного веса.
2. Межфланцевый компенсатор для эксплуатации трубопроводов с фланцевыми
соединениями, включающий кольцо, по обе боковые поверхности которого установлены
уплотнительные элементы, выполненные в виде кольцевых прокладок, при этом общая
толщина межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с
прокладками.
3. Межфланцевый компенсатор по п.2, отличающийся тем, что кол ьцо компенсатора
выполнено, например, металлическим.
4. Межфланцевый компенсатор по п.2, отличающийся тем, что кольцо компенсатора
снабжено хвостовиком, свободный конец которого выведен за пределы наружного диаметра
соединяемых фланцев.
5. Межфланцевый компенсатор по п.2, отличающийся тем, что профиль боковых
поверхностей кольца компенсатора выполнен адекватно профилю сопрягаемых
поверхностей фланцев.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 75
76.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 76
77.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 77
78.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 78
79.
ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯизобретение патент
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 79
80.
RU(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
2 413 820
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, (13)
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
C1
(51) МПК
E04B 1/58 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
Приоритет(ы):
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ
(73)
В.В. Металлические конструкции. В 3 т. - Стальные конструкции
Патентообладатель(и):
зданий и сооружений (Справочник проектировщика). - М.: АСВ, 1998,
Марутян Александр
т.2. с.157, рис.7.6. б). SU 68853 A1, 31.07.1947. SU 1534152 A1, 07.01.1990.
Суренович (RU)
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская,
90, кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых
элементов замкнутого профиля. Технический результат заключается в уменьшении массы
конструкционного материала. Фланцевое соединение растянутых элементов замкнутого профиля
включает концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами.
Фланцы установлены под углом 30° относительно продольных осей стержневых элементов.
Листовую прокладку составляют парные опорные столики. Столики жестко скреплены с фланцами и
в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям
растянутых элементов замкнутого профиля, и может быть использовано в монтажных стыках поясов
решетчатых конструкций.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 80
81.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концыстержневых элементов с фланцами, дополнительные ребра и стяжные болты, установленные по
периметру замкнутого профиля попарно симметрично относительно ребер (Металлические
конструкции. В 3 т. Т.1. Общая часть. (Справочник проектировщика) / Под общ. ред. В.В.Кузнецова.
- М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных
деталей, что увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего
(растянутого) пояса ферм из гнутосварных замкнутых профилей, включающее концы стержневых
элементов с фланцами, дополнительные ребра, стяжные болты и листовую прокладку между
фланцами для прикрепления стержней решетки фермы и связей между фермами (1. Металлические
конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. С.295, рис.9.27; 2. Металлические конструкции. В 3 т. Т.1. Элементы конструкций: Учебник для
вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости
монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов
замкнутого профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого
профиля, включающем концы стержней с фланцами, стяжные болты и листовую прокладку между
фланцами, фланцы установлены под углом 30° относительно продольных осей стержневых
элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с
фланцами и в собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так,
его можно применить в монтажных стыках решетчатых конструкций из труб круглых, овальных,
эллиптических, прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве
еще одного примера использования предлагаемого соединения можно привести аналогичные стыки
на монтаже элементов конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров,
Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано
предлагаемое фланцевое соединение растянутых элементов замкнутого профиля, вид сверху; на
фиг.2 - то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая прикрепления элемента
решетки, вид сбоку; на фиг.4 - фланцевое соединение растянутых элементов незамкнутого профиля,
вид сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных болтов в
наружных зонах незамкнутого профиля; на фиг.7 - расчетная схема растянутого элемента замкнутого
профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит
прикрепленные с помощью сварных швов цельнолистовые фланцы 2, установленные под углом 30°
относительно продольных осей растянутых элементов. С фланцами 2 посредством сварных швов
жестко скреплены опорные столики 3. В выступающих частях 4 фланцев 2 и опорных столиков 3
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 81
82.
размещены соосные отверстия 5, в которых после сборки соединения на монтаже установленыстяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные
столики 3 продолжены за пределы выступающих частей 4 фланцев 2 таким образом, что в них можно
разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов
незамкнутого профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные
болты 6 могут быть расположены не только за пределами сечения (поперечного или косого)
незамкнутого (открытого) профиля, но и в его внутренних зонах. При полном отсутствии стяжных
болтов 6 в наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое соединение
более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы
примыкания раскосов к поясу должны быть не менее 30° для обеспечения плотности участка
сварного шва со стороны острого угла (Металлические конструкции: Учебник для вузов / Под ред.
Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом
соединении растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные
столики 3 установлены под углом 30° относительно продольных осей. В таком случае продольная
сила F, вызывающая растяжение элемента замкнутого профиля 1, раскладывается на две
составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866
F, передающуюся на опорные столики 3. Уменьшение болтовых усилий в два раза во столько же раз
снижает моменты, изгибающие фланцы, а это позволяет применять для них более тонкие листы,
сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость
предлагаемого соединения позитивно влияют возможные уменьшение диаметров стяжных болтов 6,
снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового
объекта принято типовое монтажное соединение на фланцах ферм покрытий из гнутосварных
замкнутых профилей системы «Молодечно» (Стальные конструкции покрытий производственных
зданий пролетами 18, 24, 30 м с применением замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала
сравниваемых вариантов приведен в таблице, из которой видно, что в новом решении он уменьшился
в 47,1/26,8=1,76 раза.
Наименование Размеры, мм Кол-во, шт.
Масса, кг
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
Сварные швы (1,5%)
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
Сварные швы (1,5%)
47,1
Примеч.
5,2
26,8 Предлагаемое решение
0,4
*Учтена треугольная форма
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 82
83.
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном ипредлагаемом фланцевых соединениях количество стяжных болтов одинаково и составляет 8 шт.
Если в первом из них использованы болты М24, то во втором - M18 того же класса прочности. Тогда
очевидно, что в новом решении расход материала снижен пропорционально уменьшению площади
сечения болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами, отличающееся тем, что фланцы
установлены под углом 30° относительно продольных осей стержневых элементов, а листовую
прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в собранном
соединении взаимно упертые друг в друга.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 83
84.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 84
85.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 85
86.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 86
87.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 87
88.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 88
89.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 89
90.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 90
91.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 91
92.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 92
93.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 93
94.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 94
95.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 95
96.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 96
97.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 97
98.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 98
99.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 99
100.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 100
101.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 101
102.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
и
деталей,
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
7
Сборка ФПС
49
Список литературы
51
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 102
103.
1. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в
частности, сейсмическим нагрузкам исходит из целенаправленного проектирования предельных
состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования
сооружений с заданными параметрами предельных состояний. Возможны различные технические
реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в которых от
экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих
смещений нормальная эксплуатация сооружения, как правило, нарушается, однако исключается его
обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были
предложены фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций высокопрочными болтами, отличающиеся тем, что отверстия под болты в
соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок.
При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на величину до 34 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый ряд
особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях
оказывается возможным снизить затраты на усиление сооружения, подверженного сейсмическим и
другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа
проектирования мостовых конструкций с заданными параметрами предельных состояний. В 1985-86
г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и
нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных соединений на
высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты пропущены
через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить
взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться пиковое значение
усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в
упомянутых работах овальные отверстия устраивались с целью упрощения монтажных работ. Для
реализации принципа проектирования конструкций с заданными параметрами предельных состояний
необходимо фиксировать предельную силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс
натяжения N=20-50 кН, что не позволяет прогнозировать несущую способность такого соединения
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 103
104.
по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400Рис.1.1. Принципиальная схема фрикционно-подвижного
соединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
кН, что в принципе может позволить задание и регулирование несущей способности соединения.
Именно эту цель преследовали предложения [3,14-17].
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания
ФПС показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной
работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных
поверхностей соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта.
Отмеченные
исследования
позволили
выявить
способы
обработки
соединяемых
листов,
обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования
для ФПС пескоструйной обработки листов пакета, рекомендованы использование обжига листов,
нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 104
105.
что расчету и проектированию сооружений должны предшествовать детальные исследования самихсоединений. Однако, до настоящего времени в литературе нет еще систематического изложения
общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых
ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в
сейсмостойком строительстве, однако, для этого необходимо детально изложить, а в отдельных
случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и
сооружений с такими соединениями. Целью, предлагаемого пособия является систематическое
изложение теории работы ФПС и практических методов их расчета. В пособии приводится также и
технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что
надежные и долговечные машины, оборудование и приборы могут быть
созданы только при удачном решении теоретических и прикладных задач
сухого и вязкого трения, смазки и износа, т.е. задач трибологии и
триботехники.
Трибология – наука о трении и процессах, сопровождающих трение
(трибос – трение, логос – наука). Трибология охватывает экспериментальнотеоретические
результаты
исследований
физических
(механических,
электрических, магнитных, тепловых), химических, биологических и других
явлений, связанных с трением.
Триботехника
трибологии
при
–
это
система
знаний
проектировании,
о
практическом
изготовлении
и
применении
эксплуатации
трибологических систем.
С
трением
связан
износ
соприкасающихся
тел
–
разрушение
поверхностных слоев деталей подвижных соединений, в т.ч. при резьбовых
соединениях. Качество соединения определяется внешним трением в витках
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 105
106.
резьбы и в торце гайки и головки болта (винта) с соприкасающейся детальюили шайбой. Основная характеристика крепежного резьбового соединения –
усилие затяжки болта (гайки), - зависит от значения и стабильности моментов
сил
трения
сцепления,
возникающих
при
завинчивании.
Момент
сил
сопротивления затяжке содержит две составляющих: одна обусловлена
молекулярным воздействием в зоне фактического касания тел, вторая –
деформированием
тончайших
поверхностей
слоев
контактирующими
микронеровностями взаимодействующих деталей.
Расчет этих составляющих осуществляется по формулам, содержащим ряд
коэффициентов,
установленных
в
результате
экспериментальных
исследований. Сведения об этих формулах содержатся в Справочниках
«Трение, изнашивание и смазка» [22](в двух томах) и «Полимеры в узлах
трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и
научной обоснованности и в настоящее время. Полезный для практического
использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее
трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении
соприкасающихся газообразных, жидких и твердых тел и вызывающее
сопротивление движению тел или переходу из состояния покоя в движение
относительно конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде,
а также при наличии смазки в области механического контакта твердых тел.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 106
107.
При учете трения (сухого или вязкого) различают внешнее трение ивнутренне трение.
Внешнее трение возникает при относительном перемещении двух тел,
находящихся в соприкосновении, при этом сила сопротивления движению
зависит от взаимодействия внешних поверхностей тел и не зависит от
состояния внутренних частей каждого тела. При внешнем трении переход
части механической энергии во внутреннюю энергию тел происходит только
вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц
одного и того же тела (твердого, жидкого или газообразного). Например,
внутреннее трение возникает при изгибе металлической пластины или
проволоки, при движении жидкости в трубе (слой жидкости, соприкасающийся
со стенкой трубы, неподвижен, другие слои движутся с разными скоростями и
между ними возникает трение). При внутреннем трении часть механической
энергии переходит во внутреннюю энергию тела.
Внешнее
трение
соприкосновения
в
твердых
чистом
тел
без
виде
возникает
смазочной
только
прослойки
в
между
случае
ними
(идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не
отличается от механизма внутреннего трения в жидкости. Если толщина
смазки менее 0,1 мм, то трение называют пограничным (или граничным). В
этом случае учет трения ведется либо с позиций сухого трения, либо с точки
зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено
представление о внешнем трении. Понятие о внутреннем трении введено в
науку в 1867 г. английским физиком, механиком и математиком Уильямом
Томсоном (лордом Кельвиным).1)
1)
[Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения
в котором перешел в Кембриджский университет и закончил его в 21 год; в 22 года он стал
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 107
108.
Законы сухого тренияСухое трение впервые наиболее полно изучал Леонардо да Винчи (14521519). В 1519 г. он сформулировал закон трения: сила трения, возникающая
при контакте тела с поверхностью другого тела, пропорциональна нагрузке
(силе прижатия тел), при этом коэффициент пропорциональности – величина
постоянная и равна 0,25:
F
0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским
механиком и физиком Гийомом Амонтоном2), который ввел в науку понятие
коэффициента трения как французской константы и предложил формулу силы
трения скольжения:
F
f N.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной
плоскости) впервые предложил формулу:
f
tg
,
где f – коэффициент трения;
- угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения
Леонарда да Винчи – Амонтона:
F
f N,
впервые получил формулу для случая прямолинейного равноускоренного
движения тела по наклонной плоскости:
профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии
наук, а в 1851 г. (в 27 лет) он стал членом Лондонского королевского общества и 5 лет был его
президентом].
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 108
109.
f2S
tg
,
2
g t cos 2
где t – промежуток времени движения тела по плоскости на участке
длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль
Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами
работ ученых XIX и XX веков, которые более полно раскрыли понятия силы
трения покоя (силы сцепления) и силы трения скольжения, а также понятия о
трении качения и трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы
Кулона,
учитывая
все
новые
и
новые
результаты
физико-химических
исследований явления трения. Из этих исследований наиболее важными
являются исследования природы трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность
любого
твердого
тела
обладает
[шероховатость
поверхности
классов)
характеристикой
–
микронеровностями,
оценивается
«классом
качества
шероховатостью
шероховатости»
обработки
(14
поверхности:
среднеарифметическим отклонением профиля микронеровностей от средней
линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел –
источник трения. К этому добавляются силы молекулярного сцепления между
частицами,
принадлежащими
разным
телам,
вызывающим
прилипание
поверхностей (адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное сцепление и деформирующей микронеровности, определяет
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 109
110.
механическую энергию тела, которая затрачивается частично на деформацию(или даже разрушение) микронеровностей, частично на нагревание трущихся
тел (превращается в тепловую энергию), частично на звуковые эффекты –
скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и
электромагнитное поля молекул и атомов соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо
учесть сухое трение, достаточно использовать те законы сухого трения,
которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона)
даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по
поверхности тела В всегда направлена в сторону, противоположную скорости
тела А относительно тела В, а сила сцепления (трения покоя) направлена в
сторону, противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения
скольжения не совпадает с линией действия вектора скорости. (Изотропным
называется сухое трение, характеризующееся одинаковым сопротивлением
движению тела по поверхности другого тела в любом направлении, в
противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную
поверхность
(или
нормальной
реакции
этой
поверхности),
при
этом
коэффициент трения скольжения принимается постоянным и определяется
опытным путем для каждой пары соприкасающихся тел. Коэффициент трения
скольжения зависит от рода материала и его физических свойств, а также от
степени обработки поверхностей соприкасающихся тел:
FСК
f СК N
(рис. 2.1 в).
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 110
111.
YY
Fск
tg =fск
N
N
V
Fск
X
G
N
X
G
Fсц
а)
в)
б)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на
опорную поверхность (или нормальной реакции этой поверхности) и не может
быть
больше
максимального
значения,
определяемого
произведением
коэффициента сцепления на силу давления (или на нормальную реакцию
опорной поверхности):
FСЦ
fСЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в
момент перехода тела из состояния покоя в движение, всегда больше
коэффициента трения скольжения для одной и той же пары соприкасающихся
тел:
f СЦ
f СК .
Отсюда следует, что:
max
FСЦ
FСК
,
поэтому график изменения силы трения скольжения от времени движения
тела, к которому приложена эта сила, имеет вид (рис.2.2).
При переходе тела из состояния покоя в движение сила трения
скольжения за очень короткий промежуток времени
FСК (рис.2.2). Этим промежутком времени
max до
изменяется от FСЦ
часто пренебрегают.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 111
112.
В последние десятилетия экспериментально показано, что коэффициенттрения скольжения зависит от скорости (законы Кулона установлены при
равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
fсц
max
Fсц
Fск
fск
V
t
V0
Рис. 2.2
Vкр
Рис. 2. 3
(v)
Эту зависимость качественно можно проиллюстрировать графиком f СК
(рис.2.3).
v0
- значение скорости, соответствующее тому моменту времени, когда
сила FСК достигнет своего нормального значения FСК
vКР
f СК N ,
- критическое значение скорости, после которого происходит
незначительный рост (на 5-7 %) коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот
эффект впоследствии был подтвержден исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в
основном, справедливы, на основе адгезионной теории трения предложил
новую формулу для определения силы трения скольжения (модернизировав
предложенную Кулоном формулу):
FСК
fСК
N
S p0 .
[У Кулона: FСК
fСК N
А , где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел
(контактная площадь), р0 - удельная (на единицу площади) сила прилипания
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 112
113.
или сцепления, которое надо преодолеть для отрыва одной поверхности отдругой.
Дерягин также показал, что коэффициент трения скольжения зависит от
( N ) , причем при
нагрузки N (при соизмеримости сил N и S p0 ) - fСК
увеличении N он уменьшается (бугорки микронеровностей деформируются и
сглаживаются, поверхности тел становятся менее шероховатыми). Однако, эта
зависимость учитывается только в очень тонких экспериментах при решении
задач особого рода.
Во многих случаях S p0
N , поэтому в задачах классической механики, в
которых следует учесть силу сухого трения, пользуются, в основном, законом
Кулона, а значения коэффициента трения скольжения и коэффициента
сцепления определяют по таблице из справочников физики (эта таблица
содержит значения коэффициентов, установленных еще в 1830-х годах
французским ученым А.Мореном (для наиболее распространенных материалов)
и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии
наук, автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения
скольжения
составляет
с
прямой,
по
которой
направлена
скорость
материальной точки угол:
F
arctg n ,
Fτ
где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и
касательную к траектории материальной точки, при этом модуль вектора
FCK определяется формулой: FCK
Fn2 Fτ2 . (Значения Fn и Fτ определяются по
методике Минкина-Доронина).
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 113
114.
Трение каченияПри качении одного тела по другому участки поверхности одного тела
кратковременно соприкасаются с различными участками поверхности другого
тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были
проведены эксперименты по определению сопротивления качению колеса
вагона или локомотива по рельсу, а также сопротивления качению роликов
или шариков в подшипниках.
В результате экспериментального изучения этого явления установлено,
что сопротивление качению (на примере колеса и рельса) является следствием
трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя
соприкасающихся тел (деформация требует затрат энергии);
2)
зацепление
бугорков
неровностей
и
молекулярное
сцепление
(являющиеся в то же время причиной возникновения качения колеса по
рельсу);
3)
трение
скольжения
при
неравномерном
движении
колеса (при
ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное
влияние
всех
трех
факторов
учитывается
общим
коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу
абсолютно твердого тела надо отбросить и рассматривать деформацию
соприкасающихся тел в области контактной площадки.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 114
115.
Так как равнодействующая N реакций опорной поверхности в точках зоныконтакта смещена в сторону скорости центра колеса, непрерывно набегающего
на впереди лежащее микропрепятствие (распределение реакций в точках
контакта несимметричное – рис.2.4), то возникающая при этом пара сил N и G
( G - сила тяжести) оказывает сопротивление качению (возникновение качения
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
обязано силе сцепления FСЦ , которая образует вторую составляющую полной
реакции опорной поверхности).
Момент пары сил
N, G
называется моментом сопротивления качению.
Плечо
пары
сил
«к»
называется
коэффициентом трения качения. Он имеет
размерность длины.
Fсопр
Vс
C
Момент
сопротивления
качению
определяется формулой:
MC
N k,
Fсц
N
Рис. 2.5
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 115
116.
где N - реакция поверхности рельса, равная вертикальной нагрузке наколесо с учетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению,
которое можно отразить силой сопротивления Fсопр , приложенной к центру
колеса (рис.2.5), при этом: Fсопр R N k , где R – радиус колеса,
откуда
Fсопр
N
k
R
N h,
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h
k
во много раз
R
меньше коэффициента трения скольжения для тех же соприкасающихся тел, то
сила Fсопр на один-два порядка меньше силы трения скольжения. (Это было
известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел
роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N
показывают
без
смещения
в
сторону
скорости
(колесо
и
рельс
рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления
качению. Для колеса железнодорожного экипажа и рельса рост сопротивления
качению заметен после скорости колесной пары 100 км/час и происходит по
параболическому
закону.
Это
объясняется
деформациями
колес
гистерезисными потерями, что влияет на коэффициент трения качения.
Трение верчения
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 116
и
117.
Трение верчения возникает при вращении тела,опирающегося на некоторую поверхность. В этом
случае следует рассматривать зону контакта тел, в
Fск
Fск
r
О
точках которой возникают силы трения скольжения
FСК (если контакт происходит в одной точке, то
трение верчения отсутствует – идеальный случай)
Fск
(рис.2.6).
Рис. 2.6.
А – зона контакта вращающегося тела, ось
вращения которого перпендикулярна к плоскости
этой зоны. Силы трения скольжения, если их привести к центру круга (при
изотропном трении), приводятся к паре сил сопротивления верчению, момент
которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех
точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту
поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или
оси стрелки компаса острием и опорной плоскостью. Момент сопротивления
верчению стремятся уменьшить, используя для острия и опоры агат, рубин,
алмаз и другие хорошо отполированные очень прочные материалы, для
которых коэффициент трения скольжения менее 0,05, при этом радиус круга
опорной площадки достигает долей мм. (В наручных часах, например, М сопр
менее 5 10
5
мм).
Таблица коэффициентов трения скольжения и качения.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 117
118.
к (мм)f ск
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное
сцепление
приводит
к
образованию
связей
между
трущимися парами. При сдвиге они разрушаются. Из-за шероховатости
поверхностей трения контактирование пар происходит площадками. На
площадках с небольшим давлением имеет место упругая, а с большим
давлением - пластическая деформация. Фактическая площадь соприкасания
пар представляется суммой малых площадок. Размеры площадок контакта
достигают 30-50 мкм. При повышении нагрузки они растут и объединяются. В
процессе разрушения контактных площадок выделяется тепло, и могут
происходить химические реакции.
Различают три группы износа: механический - в форме абразивного
износа, молекулярно-механический - в форме пластической деформации или
хрупкого разрушения и коррозийно-механический - в форме коррозийного и
окислительного износа. Активным фактором износа служит газовая среда,
порождающая
окислительный
износ.
Образование
окисной
пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота
обусловливает физико-химические процессы в слое трения, переводящие
связующие в жидкие фракции, действующие как смазка. Металлокерамические
материалы на железной основе способствуют повышению коэффициента
трения и износостойкости.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 118
119.
Важна быстрая приработка трущихся пар. Это приводит к быстромулокальному износу и увеличению контурной площади соприкосновения тел.
При
медленной
приработке
локальные
температуры
приводят
к
нежелательным местным изменениям фрикционного материала. Попадание
пыли, песка и других инородных частиц из окружающей среды приводит к
абразивному разрушению не только контактируемого слоя, но и более
глубоких слоев. Чрезмерное давление, превышающее порог схватывания,
приводит к разрушению окисной пленки, местным вырывам материала с
последующим, абразивным разрушением поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий
эксплуатации:
давление
поверхностей
трения,
скорость
относительного
скольжения пар, длительность одного цикла нагружения, среднечасовое число
нагружений, температура контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают
стабильность коэффициента трения, высокую износостойкость пары трения,
малые модуль упругости и твердость материала, низкий коэффициент
теплового расширения, стабильность физико-химического состава и свойств
поверхностного слоя, хорошая прирабатываемость фрикционного материала,
достаточная механическая прочность, антикоррозийность, несхватываемость,
теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии
изготовления
деталей,
фрикционных
даже
в
элементов; отклонения
пределах
установленных
размеров отдельных
допусков;
несовершенство
конструктивного исполнения с большой чувствительностью к изменению
коэффициента трения.
Абразивный
износ
закономерностям. Износ
фрикционных
пар
подчиняется
следующим
пропорционален пути трения s,
=ks s,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(2.1)
Всего листов 185
Лист 119
120.
а интенсивность износа— скорости тренияkv
s
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу
пути трения пропорциональна удельной нагрузке р,
s
(2.3)
kp p
Мера
интенсивности
износа
рv
не
должна
превосходить
нормы,
определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется
интегральной функцией времени или пути трения
t
s
k p pds .
k p pvdt
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален
работе сил трения W
kw W
kp
f
s
Fds .
W; W
0
Здесь сила трения F=f N = f p
нормального давления;
(2.5)
; где f – коэффициент трения, N – сила
- контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар
E и
окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за
период колебаний Т == 2л/
определяется силой трения F и амплитудой
колебаний а
W= 4F а.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(2.6)
Всего листов 185
Лист 120
121.
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС3.1. Исходные посылки для разработки методики
расчета ФПС
Исходными посылками для разработки методики расчета ФПС
являются
экспериментальные
исследования
одноболтовых
нахлесточных соединений [13], позволяющие вскрыть основные
особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг.
были выполнены экспериментальные исследования деформирования
нахлесточных соединений такого типа. Анализ полученных диаграмм
деформирования позволил выделить для них 3 характерных стадии
работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности
соединения [Т], рассчитанной как для обычного соединения на
фрикционных высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил трения по
контактным плоскостям соединяемых элементов при сохраняющих
неподвижность шайбах высокопрочных болтов. При этом за счет
деформации болтов в них растет сила натяжения, и как следствие
растут силы трения по всем плоскостям контактов.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 121
122.
На третьей стадии происходитсрыв с места одной из шайб и
дальнейшее взаимное смещение
соединяемых
элементов.
процессе
В
подвижки
наблюдается интенсивный износ
во
всех
контактных
сопровождающийся
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
парах,
падением
натяжения
болтов
и,
следствие,
снижение
как
несущей
способности соединения.
В
процессе
испытаний
наблюдались следующие случаи
выхода из строя ФПС:
• значительные взаимные перемещения соединяемых деталей, в
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
• значительные пластические деформации болта, приводящие к
его
необратимому
удлинению
и
исключению
из
работы
при
“обратном ходе" элементов соединения;
• значительный износ контактных поверхностей, приводящий к
ослаблению болта и падению несущей способности ФПС.
Отмеченные
результаты
экспериментальных
исследований
представляют двоякий интерес для описания работы ФПС. С одной
стороны для расчета усилий и перемещений в элементах сооружений
с ФПС важно задать диаграмму деформирования соединения. С
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 122
123.
другой стороны необходимо определить возможность перехода ФПС впредельное состояние.
Для
описания
диаграммы
деформирования
наиболее
существенным представляется факт интенсивного износа трущихся
элементов соединения, приводящий к падению сил натяжения болта
и несущей способности соединения. Этот эффект должен определять
работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения
вследствие деформации болта.
Для оценки возможности перехода соединения в предельное
состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае
исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент
закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие,
что закрытие зазора приводит к недопустимому росту ускорений в
конструкции,
то
проверки
(б)
и
(в)
заменяются
проверкой,
ограничивающей перемещения ФПС и величиной фактического
зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и
подвижке в соединении должно базироваться на задании диаграммы
деформирования
соединения,
представляющей
зависимость
его
несущей способности Т от подвижки в соединении s. Поэтому
получение зависимости Т(s) является основным для разработки
методов
расчета
ФПС
и
сооружений
с
такими
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
соединениями.
Всего листов 185
Лист 123
124.
Отмеченные особенности учитываются далее при изложении теорииработы ФПС.
3.2. Общее уравнение для определения несущей
способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся к более сложному случаю нахлесточного соединения,
характеризующегося трехстадийной диаграммой деформирования. В
случае стыкового соединения второй участок на диаграмме Т(s) будет
отсутствовать.
Первая стадия работы ФПС не отличается от работы обычных
фрикционных соединений. На второй и третьей стадиях работы
несущая способность соединения поменяется вследствие изменения
натяжения болта. В свою очередь натяжение болта определяется его
деформацией (на второй стадии деформирования нахлесточных
соединений) и износом трущихся поверхностей листов пакета при их
взаимном
смещении.
При
этом
для
теоретического
описания
диаграммы деформирования воспользуемся классической теорией
износа
[5,
14,
23],
согласно
которой
скорость
износа
V
пропорциональна силе нормального давления (натяжения болта) N:
V
(3.1)
K N,
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в
виде:
N
N0
здесь
a
N0 -
N1
N2
(3.2)
начальное -натяжение болта, а - жесткость болта;
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 124
125.
EFl
a
N1
, где l - длина болта, ЕF - его погонная жесткость,
f(s)-
k
увеличение
натяжения
болта
вследствие
его
деформации;
( s ) - падение натяжения болта вследствие его пластических
N2
деформаций;
s - величина подвижки в соединении,
- износ в соединении.
Для стыковых соединений обе добавки N1
N2
0.
Если пренебречь изменением скорости подвижки, то скорость V
можно представить в виде:
V
d
dt
d ds
ds dt
V ср ,
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a
k
N0
к
f(s)
(3.4)
(s) ,
где k K / Vср .
Решение уравнения (3.4) можно представить в виде:
s
k N0 a
1
1 e
kas
e ka( s z ) k
k
f(z)
( z ) dz ,
0
или
s
k
N0 a
1
e
kas
k
k
f(z)
(z)
ekazdz
N0 a 1 .
(3.5)
0
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно
упрощается, так как в этом случае N1
функции
f(z)
и
( z ),
N2
0 , и обращаются в 0
входящие в (3.5). С учетом сказанного
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 125
126.
использование интеграла. (3.5) позволяет получить следующуюформулу для определения величины износа
1 e kas
:
(3.6)
k N0 a 1
Падение натяжения
N при этом составит:
1 e kas
N
а
(3.7)
k N0 ,
несущая
соединений
способность
определяется
по
формуле:
T
T0 f
T0
1
N
T0
1 e kas
f
1 e kas
k
k
a 1
N0
a 1 .
(3.8)
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм;
- l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
Как
видно
из
полученной
формулы относительная несущая
способность соединения КТ =Т/Т0
определяется
всего
двумя
параметрами - коэффициентом износа k и жесткостью болта на
растяжение а. Эти параметры могут быть заданы с достаточной
точностью и необходимые для этого данные имеются в справочной
литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24
мм и коэффициента износа k~5×10-8 H-1 при различных значениях
толщины пакета l, определяющей жесткость болта а. При этом для
наглядности
соединения
начальному
несущая
Т
способность
отнесена
значению
графические
к
T0,
своему
т.е.
зависимости
представлены в безразмерной форме.
Рис.3.3. Падение несущей способности ФПС в
Карта СБЕР
2202 2007
8669 7605
Счет получателя 40817810555031236845
зависимости
от величины
подвижки
для болта
-8 -1
24 мм при коэффициенте износа k=3 10 Н для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
Всего листов 185
Лист 126
127.
Как видно из рисунка, с ростом толщины пакета падает влияниеизноса листов на несущую способность соединений. В целом падение
несущей
способности
соединений
реальных величинах подвижки s
весьма
существенно
и
при
2 3см составляет для стыковых
соединений 80-94%. Весьма существенно на характер падений
несущей способности соединения сказывается коэффициент износа k.
На рис.3.3 приведены зависимости несущей способности соединения
от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения
должно приводить к существенному росту взаимных смещений
соединяемых деталей и это обстоятельство должно учитываться в
инженерных расчетах. Вместе с тем рассматриваемый эффект будет
приводить к снижению нагрузки, передаваемой соединением. Это
позволяет при использовании ФПС в качестве сейсмоизолирующего
элемента конструкции рассчитывать усилия в ней, моделируя ФПС
демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом
функций f(s) и
>(s).Функция f(s) зависит от удлинения болта
вследствие искривления его оси. Если принять для искривленной оси
аппроксимацию в виде:
u( x )
s sin
x
,
2l
(3.9)
где x — расстояние от середины болта до рассматриваемой точки
(рис. 3.3), то длина искривленной оси стержня составит:
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 127
128.
12
L
du
dx
1
1
1
2
cos 2
8l 2
1
2
dx
1
2
1 s
1
2
s2 2
1
1
2
4l
cos
2
x
dx 1
2l
2l
2
dx
1
1
s2 2
8l 2
cos
x
dx
2l
2
s2 2
.
8l
2
Удлинение болта при этом определится по формуле:
s2 2
.
8l
l L l
(3.10)
Учитывая,
что
приближенность
представления
(3.9)
компенсируется коэффициентом k, который может быть определен из
экспериментальных данных, получим следующее представление для
f(s):
f(s)
s2
l
.
Для дальнейшего необходимо учесть, что деформирование тела
болта будет иметь место лишь до момента срыва его головки, т.е. при
s < s0. Для записи этого факта воспользуемся единичной функцией
Хевисайда :
f(s)
s2
( s s0 ).
l
Перейдем теперь к заданию функции
(3.11)
(s). При этом необходимо
учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s
некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при
котором напряжения в стержне достигнут предела текучести,
т.е.:
lim ( N0
кf ( s )
( s )) 0 .
(3.12)
s
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 128
129.
Указанным условиям удовлетворяет функция(s) следующего
вида:
(s)
N пл ) ( 1 e q( s Sпл ) )
N пл ( NТ
1
( s s0 )
(3.13)
( s S пл).
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к
следующим зависимостям износа листов пакета
от перемещения s:
при s<Sпл
N0
( 1 e k1as )
a
s
k 2
s
al
2
s
k1a
2
k1a
2
(3.14)
1 e k1as ,
при Sпл< s<S0
I
(s)
N
( Sпл ) k1( T 1 ek1a( S пл s )
k1a
NT N пл
k1 a
(3.15)
e ( S пл s ) e k1a( S пл s ) ),
при s<S0
II ( S )
0
(s)
Несущая
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
способность
(3.16)
соединения
определяется
при
этом
выражением:
T
T0
fv a
(3.17)
.
Здесь fv— коэффициент трения, зависящий в общем случае от
скорости
подвижки
v.
Ниже
мы
используем
наиболее
распространенную зависимость коэффициента трения от скорости,
записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная
зависимость
содержит
9
неопределенных
параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны
определяться из данных эксперимента.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 129
130.
В отличие от стыковых соединений в формуле (3.17) введено двакоэффициента
износа
-
на
втором
участке
диаграммы
деформирования износ определяется трением между листами пакета
и характеризуется коэффициентом износа k1, на третьем участке
износ определяется трением между шайбой болта и наружным
листом пакета; для его описания введен коэффициент износа k2.
На
рис.
3.4
приведен
пример
теоретической
диаграммы
деформирования при реальных значениях параметров k1 = 0.00001;
k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН.
Как видно из рисунка, теоретическая диаграмма деформирования
соответствует описанным выше экспериментальным диаграммам.
Рис. 3.4
Теоретическая диаграмма деформирования ФПС
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 130
131.
264. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами
48 мм
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД.
Высокопрочные болты были изготовлены тензометрическими из стали 40Х "селект" в
соответствии с требованиями [6]. Контактные поверхности пластин были обработаны
протекторной цинкосодержащей грунтовкой ВЖС-41 после дробеструйной очистки. Болты
были предварительно протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с тарировочными
зависимостями ручным ключом на заданное усилие натяжения N0.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
4.
Лист 131
132.
АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями
необходимы
соединений.
фактические
данные
Экспериментальные
о
параметрах
исследования
исследуемых
работы
ФПС
достаточно трудоемки, однако в 1980-85 гг. такие исследования были
начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены
записи
Т(s)
для
нескольких
одноболтовых
и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с
болтами диаметром 22, 24, 27 и 48 мм. Принятые размеры образцов
обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее
Рис. 4.1 Общий вид образцов ПС с болтами 48
ммпри этом в соединении необходимо
распространенными. Однако
размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо
увеличение их диаметра. Поэтому было рассмотрено ФПС с болтами
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 132
133.
наибольшего диаметра 48 мм. Общий вид образцов показан на рис.4.1.
Пластины ФПС были выполнены из толстолистовой стали марки
10ХСНД.
Высокопрочные
тензометрическими
требованиями
из
[6].
стали
болты
40Х
Контактные
были
"селект"
в
поверхности
изготовлены
соответствии
пластин
с
были
обработаны протекторной цинкосодержащей грунтовкой ВЖС-41
после
дробеструйной
очистки.
Болты
были
предварительно
протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с
тарировочными зависимостями ручным ключом на заданное усилие
натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на
универсальном динамическом стенде УДС-100 экспериментальной
базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС
обеспечивалась путем удара движущейся массы М через резиновую
прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались
таким образом, чтобы при неподвижной рабочей тележке получился
импульс силы с участком, на котором сила сохраняет постоянное
значение, длительностью около 150 мс. Амплитудное значение
импульса силы подбиралось из условия некоторого превышения
несущей способности ФПС. Каждый образец доводился до реализации
полного смещения по овальному отверстию.
Во
время
испытаний
на
стенде
и
пресс-пульсаторах
контролировались следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 133
134.
• абсолютные скорости сдвига пластин ФПС;• ускорение движения пластин ФПС и ударные массы (для
испытаний на стенде).
После
каждого
нагружения
проводился
замер
напряжения
высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес
представляют для нас зависимости продольной силы, передаваемой
на соединение (несущей способности ФПС), от величины подвижки S.
Эти зависимости могут быть получены теоретически по формулам,
приведенным выше в разделе 3. На рисунках 4.2 - 4.3 приведено
графическое
Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования
ФПС для болтов 22 мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из
рисунков видно, что характер зависимостей Т(s) соответствует в
целом принятым гипотезам и результатам теоретических построений
предыдущего раздела. В частности, четко проявляются три участка
деформирования
соединения,
соединения:
после
до
проскальзывания
проскальзывания
листов
пакета
элементов
и
после
проскальзывания шайбы относительно наружного листа пакета.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 134
135.
Вместес
тем,
необходимо
отметить
существенный
разброс
полученных диаграмм. Это связано, по-видимому, с тем, что в
проведенных испытаниях принят наиболее простой приемлемый
способ обработки листов пакета. Несмотря на наличие существенного
разброса,
полученные
диаграммы
оказались
пригодными
для
дальнейшей обработки.
В результате предварительной обработки экспериментальных
данных построены диаграммы деформирования нахлесточных ФПС. В
соответствии с ранее изложенными теоретическими разработками
эти диаграммы должны описываться уравнениями вида (3.14). В
указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0
—
коэффициент,
определяющий
влияние
скорости
на
коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл
—
предельное
смещение,
при
котором
возникают
пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы
болта относительно листа пакета;
к — коэффициент, характеризующий увеличение натяжения
болта вследствие геометрической нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения
болта вследствие его пластической работы.
Обработка
экспериментальных
данных
заключалась
в
определении этих 9 параметров. При этом параметры варьировались
на сетке их возможных значений. Для каждой девятки значений
параметров по методу наименьших квадратов вычислялась величина
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 135
136.
невязкимежду
деформирования,
расчетной
причем
и
экспериментальной
невязка
диаграммами
суммировалась
по
точкам
цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром
24 мм последние варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с
шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом
1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
Н
а рис.
4.4 и
4.5
приве
дены
харак
терн
Рис. 4.5
Рис.4.4
ые
диаграммы деформирования ФПС, полученные экспериментально и
соответствующие
им
теоретические
диаграммы.
Сопоставление
расчетных и натурных данных указывают на то, что подбором
параметров ФПС удается добиться хорошего совпадения натурных и
расчетных диаграмм деформирования ФПС. Расхождение диаграмм
на конечном их участке обусловлено резким падением скорости
подвижки
перед
остановкой,
не
учитываемым
в
рамках
предложенной теории расчета ФПС. Для болтов диаметром 24 мм
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 136
137.
было обработано 8 экспериментальных диаграмм деформирования.Результаты определения параметров соединения для каждой из
подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
5
14
35
0.1
8 4.2 0.0006
0.3 370 310
1
6
6
11
0.2 12
9 0.0000 0.3 120 100
7
8
20
0.2 19 16 0.0000
0.3 106 130
2
8
8
15
0.3
9 2.5 0.0002
0.35
154 75
1
8
Приведенные в таблице 4.1 результаты вычислений параметров
соединения
были
статистически
обработаны
и
получены
математические ожидания и среднеквадратичные отклонения для
каждого из параметров. Их значения приведены в таблице 4.2. Как
видно
из
приведенной
таблицы,
значения
параметров
характеризуются значительным разбросом. Этот факт затрудняет
применение
одноболтовых
ФПС
с
поверхности (обжиг листов пакета).
одноболтовых
к
многоболтовым
рассмотренной
обработкой
Вместе с тем, переход от
соединениям
должен
снижать
разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое
я
ожидание
отклонение
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 137
138.
k1 106, КН-1k2 106, кН-1
kv с/мм
S0, мм
Sпл , мм
q, мм-1
f0
Nо,кН
9.25
21.13
0.269
11.89
8.86
0.00019
0.329
165.6
165.6
2.76
9.06
0.115
3.78
4.32
0.00022
0.036
87.7
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования
одноболтовых ФПС позволяют перейти к анализу многоболтовых
соединений. Для упрощения задачи примем широко используемое в
исследованиях фрикционных болтовых соединений предположение о
том, что болты в соединении работают независимо. В этом случае
математическое ожидание несущей способности T и дисперсию DT
(или среднеквадратическое отклонение
T( s )
T
) можно записать в виде:
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(5.1)
Всего листов 185
Лист 138
139.
T )2 p1 p2 ...pk d 1d 2 ...d k(T
DT
(5.2)
... T 2 p1 p2 ...pk d 1d 2 ...d k
T
T
2
(5.3)
DT
В приведенных формулах:
T ( s , 1 , 2 ,... k ) - найденная выше зависимость несущей способности
T от подвижки s и параметров соединения
качестве параметров
i;
в нашем случае в
выступают коэффициент износа k, смещение
при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по
имеющимся данным нам известны лишь среднее значение
и их
i
стандарт (дисперсия).
Для дальнейших исследований приняты два возможных закона
распределения
возможном
параметров
диапазоне
ФПС:
равномерное
в
параметров
min
изменения
некотором
i
max
и
нормальное. Если учесть, что в предыдущих исследованиях получены
величины
математических
ожиданий
i
и
стандарта
i,
то
соответствующие функции плотности распределения записываются в
виде:
а) для равномерного распределения
pi
1
при
2 i 3
3
3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
1
i 2
e
i ai
2 i2
2
.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(5.5)
Всего листов 185
Лист 139
140.
Результаты расчетного определения зависимостей T(s) и(s) при
двух законах распределения сопоставляются между собой, а также с
данными натурных испытаний двух, четырех, и восьми болтовых
ФПС.
5.2. Построение уравнений деформирования стыковых
многоболтовых ФПС
Для
вычисления
несущей
способности
соединения
сначала
рассматривается более простое соединение встык. Такое соединение
характеризуется всего двумя параметрами - начальной несущей
способностью Т0 и коэффициентом износа k. При этом несущая
способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание
несущей способности соединения из п болтов составит:
T0
T
T
3
n
k
T
3
T
3
e kas
T
T0
T
3
k
dk
dT
2 k 3
2 T 3
(5.7)
sh( sa k 3 )
nT0 e kas
.
sa k
При
нормальном
законе
распределения
математическое
ожидание несущей способности соединения из п болтов определится
следующим образом:
( k k )2
( T T )2
T
1
T e kas
n
T
2
e
2 T2
1
k
2
e
2 k2
( k k )2
( T T )2
1
n
T
2
Te
2 T2
dkdT
1
dT
k
2
e kase
2 k2
dk .
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 140
141.
Еслиучесть,
что
математическим
для
любой
ожиданием
случайной
функцией
x
величины
распределения
с
x
р(х}
выполняется соотношение:
x
x p( x ) dx ,
то первая скобка. в описанном выражении для вычисления
несущей
способности
Т
соединения
равна
математическому
ожиданию начальной несущей способности Т0. При этом:
T
kas
1
nT0
2 k2
e
2
k
( k k )2
dk .
Выделяя в показателе степени полученного выражения полный
квадрат, получим:
T
1
nT0
e
k 2
as k2
as k
1
nT0
k
2
k k as k2
2 k2
2
e
e
2
as k
as k2
2
dk
k k as k2
2 k2
2
dk .
Подынтегральный член в полученном выражении с учетом
1
множителя
k
2
представляет не что иное, как функцию плотности
нормального распределения с математическим ожиданием k as
среднеквадратичным отклонением
k
2
k
. По этой причине интеграл в
полученном выражении тождественно равен 1
и выражение для
несущей способности соединения принимает окончательный вид:
ask
T
nT0 e
a 2 s 2 k2
2
и
.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(5.8)
Всего листов 185
Лист 141
142.
Соответствующие принятым законам распределения дисперсиисоставляют:
для равномерного закона распределения
D
2
nT0 e 2 ask
1
2
T
2
T0
где F ( x ) shx ; x sa
x
F( 2 x )
k
(5.9)
F ( x )2 ,
3
для нормального закона распределения
D n T0
где A1
2
2
T
( A1 ) e A1
1
T0
2
1 A
e 1
2
2
( A)
(5.10)
,
2as( k2 as k ).
Представляет интерес сопоставить полученные зависимости с
аналогичными
зависимостями,
выведенными
выше
для
одноболтовых соединений.
Рассмотрим,
прежде
всего,
характер
изменения
несущей
способности ФПС по мере увеличения подвижки s и коэффициента
износа
k
для
случая
использования
равномерного
закона
распределения в соответствии с формулой (5.4). Для этого введем по
аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
1
kas
T
nT0
e
sh( x )
x .
(5.11)
коэффициент перехода от одноболтового к многоболтовому
соединению
T
1
nT0 e
kas
sh( x )
.
x
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
(5.12)
Всего листов 185
Лист 142
143.
Наконецотклонения
1
для
с
относительной
величины
среднеквадратичного
с использованием формулы (5.9) нетрудно получить
1
kas n
nT0 e
1
2
T
2
T0
sh 2 x
2x
shx
x
2
(5.13)
.
Аналогичные зависимости получаются и для случая нормального
распределения:
2
1 A
e 1
2
2
1
e
2
2
1
n
( A) ,
2 2
k s kas
2
1
1
2
T
2
T0
1
(5.14)
( A) ,
( A1 ) e A1
(5.15)
1 A
e 1
2
2
( A)
(5.16)
,
где
A
2 2
ks
2
2 s ka ,
A1
2 As( k2 sa
k ),
( A)
2
A
2
e z dz .
0
На рис. 5.1 - 5.2 приведены зависимости
i
и
i от
величины
подвижки s. Кривые построены при тех же значениях переменных,
что использовались нами ранее при построении зависимости T/T0 для
одноболтового соединения. Как видно из рисунков, зависимости
i
( k , s ) аналогичны
зависимостям,
полученным
для
одноболтовых
соединений, но характеризуются большей плавностью, что должно
благоприятно сказываться на работе соединения и конструкции в
целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода
i
( k , a , s ) . По своему смыслу математическое ожидание несущей способности многоболтового
соединения T получается из несущей способности одноболтового соединения Т1 умножением на ,
т.е.:
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 143
144.
T(5.17)
T1
Согласно (5.12) lim x
. В частности,
1
1
при неограниченном увеличении
математического ожидания коэффициента износа k или смещения s. Более того, при выполнении
условия
k
3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s,
k
что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения
условием (5.18).
Что касается нормального распределения, то возможность его применения определяется
пределом:
lim
s
2
1
lim e( kas
2s
A)
1
( A) .
Для анализа этого предела учтем известное в теории вероятности соотношение:
lim 1
x
x
1
lim
e
x
2
x2
2
1
.
x
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 144
145.
1=а)
2=Т/nT0
S, мм
Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины
подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 145
146.
1а)
S, мм
Коэффициент перехода
2
б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС
от величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 146
147.
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм;С учетом сказанного получим:
lim
s
2
1
lim e kas
s
2
A
1
e
2
A2
2
1
A
- l=80мм
0.
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при
любых соотношениях k и k.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что
разброс значений несущей способности ФПС для случая обработки поверхностей соединяемых
листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом
случае применение ФПС вполне приемлемо, если перейти от одноболтовых к многоболтовым
соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного отклонения
1
последнее убывает пропорционально корню из числа болтов.
На рисунке 5.3 приведена
зависимость относительной величины среднеквадратичного отклонения
1
от безразмерного
параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения
T
и
T0 приняты в соответствии с данными выполненных экспериментальных исследований. Как видно из
графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не
превосходит 25%, что следует считать вполне приемлемым.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 147
148.
Рис.5.3. Зависимость относительного разброса несущейспособности ФПС от величины подвижки при различном
числе болтов n
5.3. Построение уравнений деформирования
нахлесточных многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений
достаточно громоздко из-за большого количества случайных параметров, определяющих работу
соединения. Однако с практической точки зрения представляется важным учесть лишь
максимальную силу трения Тmax, смещение при срыве соединения S0 и коэффициент износа k. При
этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется
линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция
S , S0
1 при 0
S
0 при S
S0
:
S0
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k ,S0 ) 1
где T1( S ) T0
( Tmax
T0 )
S
,
S0
( S , S0 ) ,
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 148
149.
Математическое ожидание несущей способности нахлесточного соединения из n болтовопределяется следующим интегралом:
T
n
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax
n I1
I2
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22)
представления для Т1 согласно (5.20) интеграл I1 может быть представлен в виде суммы трех
интегралов:
I1
T0
( Tm ax T0 )
S0 T0 Tmax
dS 0 dT0 dTm ax
I 1,1
I 1,2
s
S0
s , S 0 p( S 0 ) p( T0 ) p( Tm ax )
I 1,3
(5.23)
где
I1,1
T0 p( T0 ) ( s , S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0
T0
s , S0 p( S0 )dS0
S0
Tmax p( Tmax )dTmax
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
xp( x )dx
p( x )dx
x,
и
1
то получим
I 1,1 T
( s ,S0 )p( S0 ) dS0 .
S0
Аналогично
I1,2
Tmax
S0 T0 Tmax
T max
S0
( s , S0 )
p( S0 ) dS0 .
S0
I1,3
T0
S0 T0 Tmax
T0
S0
s
( s , S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0
s
( s , S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0
( s , S0 )
p( S0 ) dS0 .
S0
Если ввести функции
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 149
150.
1( s )( s , S0 ) p( S0 ) dS0
(5.24)
и
( s , S0 )
p( S0 ) dS0 ,
S0
1( s )
(5.25)
то интеграл I1 можно представить в виде:
I1 T 1( s ) ( T max
(5.26)
T 0 )s 2 ( s ).
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся
и примут вид:
1( s )
p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция
функция
1
1 erf ( s ) , а
записывается в виде:
( S0 S 0 ) 2
2 s2
e
2
s
(5.29)
dS0 .
S0
Для равномерного распределения функции
1
и
2
могут быть
представлены аналитически:
1 при s
1
S0
S0
s при S 0
s 3
0 при s
1
2 s 3
1
2
ln
ln
s 3
S0
s 3
S0
s 3
2 s 3
0 при s
s 3
s
S0
S0
(5.30)
s 3
s 3.
S0
S0
s 3 s
при s
при S 0
S0
s 3
s 3 s
S0
s 3
(5.31)
s 3
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 150
151.
Аналитическоепредставление
для
интеграла
(5.23)
весьма
сложно. Для большинства видов распределений его целесообразно
табулировать; для равномерного распределения интегралы I1 и I2
представляются в замкнутой форме:
T0
I1
( T max
1
2 s 3
T0 )
T 0 S0
S
2 s 3
s
3
при
0 при
S
0 при S
I2
Tm
2 s 3
S0
S0
s
ln
S0
s
3
S0
s
3
S ln
S0
S0
s
при
3
s
3
s
S
S
S0
( T max
S0
s
T 0 )S ln
3
S0
s
s
причем F ( x ) Ei ax( k
(5.32)
3
s
3
s 3
F( S ) F( s 3 )
3
при S
k
3)
S0
(5.33)
s 3,
Ei ax( k
k
3 ) . В формулах (5.32, 5.33)
Ei - интегральная показательная функция.
Полученные
экспериментальных
формулы
исследований
подтверждены
многоболтовых
результатами
соединений
и
рекомендуются к использованию при проектировании сейсмостойких
конструкций с ФПС.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 151
152.
426. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ
ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
12
15
диаметр по сечения
телу по резьбе
по
болта
16
201
157
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78
42
1386
1120
26
34
65
72,1
8
45
90
48
1810
1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в
соответствии с данными табл.6.2.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
6.
Всего листов 185
Лист 152
153.
РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС ИСООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология
элементов
изготовления
соединения,
транспортировку
и
ФПС
включает
подготовку
хранение
выбор
контактных
деталей,
сборку
материала
поверхностей,
соединений.
Эти
вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС и
опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 55377, гайки по ГОСТ 22354-74, шайбы по ГОСТ 22355-75 с обработкой
опорной поверхности по указаниям раздела 6.4 настоящего пособия.
Основные размеры в мм болтов, гаек и шайб и расчетные площади
поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номина Расчетная
льный
диаметр
болта
Высота Высот Разме Диамет
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 153
154.
24453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 2235575 назначается в соответствии с данными табл.6.2.
Таблица 6.2.
Номинальна Длина резьбы 10 при номинальном диаметре
16 18 20 22 24 27 30 36 42 48
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50 *
65
38 42 46 50 54
70
38 42 46 50 54 60
75
38 42 46 50 54 60 66
80
38 42 46 50 54 60 66
85
38 42 46 50 54 60 66
90
38 42 46 50 54 60 66 78
95
38 42 46 50 54 60 66 78
100
38 42 46 50 54 60 66 78
105
38 42 46 50 54 60 66 78 90
110
38 42 46 50 54 60 66 78 90 102
115
38 42 46 50 54 60 66 78 90 102
120
38 42 46 50 54 60 66 78 90 102
125
38 42 46 50 54 60 66 78 90 102
130
38 42 46 50 54 60 66 78 90 102
140
38 42 46 50 54 60 66 78 90 102
150
38 42 46 50 54 60 66 78 90 102
160,
170,
190,
200, 44 48 52 56 60 66 72 84 96 108
180
240,260,280,
220
Примечание:
знаком * отмечены болты с резьбой по всей длине стержня.
300
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 154
155.
Для консервации контактных поверхностей стальных деталейследует применять фрикционный грунт ВЖС 83-02-87 по ТУ. Для
нанесения на опорные поверхности шайб методом плазменного
напыления антифрикционного покрытия следует применять в
качестве материала подложки интерметаллид ПН851015 по ТУ14-1-3282-81, для несущей структуры - оловянистую бронзу
БРОФ10-8 по ГОСТ, для рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке
хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В
конструкциях
соединений
должна
быть
обеспечена
возможность свободной постановки болтов, закручивания гаек и
плотного
стягивания
постановки
с
пакета
болтами
применением
во
всех
местах
динамометрических
их
ключей
и
гайковертов.
Номинальные
диаметры
круглых
и
ширина
овальных
отверстий в элементах для пропуска высокопрочных болтов
принимаются по табл.6.3.
Таблица 6.3.
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
Группа
х геометрию
Не
20
23
25
28
30
33
36
40
45
52
определяющи
Длины овальных
х геометрию
отверстий
в
элементах
для
пропуска
высокопрочных болтов назначают по результатам вычисления
максимальных абсолютных смещений соединяемых деталей для
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 155
156.
каждого ФПС по результатам предварительных расчетов приобеспечении
несоприкосновения
болтов
о
края
овальных
отверстий, и назначают на 5 мм больше для каждого возможного
направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не
сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС
устанавливают
с
учетом
назначения
ФПС
и
направления
смещений соединяемых элементов.
При необходимости в пределах одного овального отверстия
может быть размещено более одного болта.
Все
контактные
поверхности
деталей
ФПС,
являющиеся
внутренними для ФПС, должны быть обработаны грунтовкой
ВЖС 83-02-87 после дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей
деталей ФПС, которые являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от
толщины соединяемых пакета соединяемых деталей.
Во всех случаях несущая способность основных элементов
конструкции, включающей ФПС, должна быть не менее чем на
25%
больше
несущей
способности
ФПС
на
фрикционно-
неподвижной стадии работы ФПС.
Минимально
допустимое
расстояние
от
края
овального
отверстия до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 156
157.
В соединениях прокатных профилей с непараллельнымиповерхностями
полок
или
при
наличии
непараллельности
наружных плоскостей ФПС должны применяться клиновидные
шайбы, предотвращающие перекос гаек и деформацию резьбы.
Конструкции
ФПС
и
конструкции,
обеспечивающие
соединение ФПС с основными элементами сооружения, должны
допускать
возможность
ведения
последовательного
не
нарушающего связности сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов
и методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС
должны быть подготовлены посредством либо пескоструйной
очистки
в
соответствии
с
указаниями
ВСН
163-76,
либо
дробеструйной очистки в соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть
удалены заусенцы, а также другие дефекты, препятствующие
плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под
навесом,
или
на
открытой
площадке
при
отсутствии
атмосферных осадков.
Шероховатость поверхности очищенного металла должна
находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел,
воды и других загрязнений.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 157
158.
Очищенныеконтактные
соответствовать
первой
поверхности
степени
должны
удаления
окислов
и
обезжиривания по ГОСТ 9022-74.
Оценка
шероховатости
контактных
поверхностей
производится визуально сравнением с эталоном или другими
апробированными способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним
осмотром поверхности при помощи лупы с увеличением не менее
6-ти кратного. Окалина, ржавчина и другие загрязнения на
очищенной поверхности при этом не должны быть обнаружены.
Контроль
степени
обезжиривания
осуществляется
следующим образом: на очищенную поверхность наносят 2-3
капли бензина и выдерживают не менее 15 секунд. К этому
участку поверхности прижимают кусок чистой фильтровальной
бумаги и держат до полного впитывания бензина. На другой
кусок фильтровальной бумаги наносят 2-3 капли бензина. Оба
куска выдерживают до полного испарения бензина. При дневном
освещении
сравнивают
фильтровальной
внешний
бумаги.
Оценку
вид
степени
обоих
кусков
обезжиривания
определяют по наличию или отсутствию масляного пятна на
фильтровальной бумаге.
Длительность
перерыва
между
пескоструйной
очисткой
поверхности и ее консервацией не должна превышать 3 часов.
Загрязнения, обнаруженные на очищенных поверхностях, перед
нанесением консервирующей грунтовки ВЖС 83-02-87 должны
быть
удалены
жидким
калиевым
стеклом
или
повторной
очисткой. Результаты проверки качества очистки заносят в
журнал.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 158
159.
6.4. Приготовление и нанесение протекторнойгрунтовки ВЖС 83-02-87. Требования к
загрунтованной поверхности. Методы контроля
Протекторная грунтовка ВЖС 83-02-87 представляет собой
двуупаковочный
лакокрасочный
материал,
состоящий
из
алюмоцинкового сплава в виде пигментной пасты, взятой в
количестве 66,7% по весу, и связующего в виде жидкого
калиевого стекла плотностью 1,25, взятого в количестве 33,3%
по весу.
Каждая
партия
документации
поступившие
материалов
на
соответствие
без
должна
ТУ.
быть
проверена
Применять
документации
по
материалы,
завода-изготовителя,
запрещается.
Перед смешиванием составляющих протекторную грунтовку
ингредиентов
следует
довести
жидкое
калиевое
стекло
до
необходимой плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная
часть и связующее тщательно перемешиваются и доводятся до
рабочей вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ4 (ГОСТ 9070-59) по методике ГОСТ 17537-72.
Перед
и
во
время
нанесения
следует
перемешивать
приготовленную грунтовку до полного поднятия осадка.
Грунтовка
ВЖС
83-02-87
сохраняет
малярные
свойства
(жизнеспособность) в течение 48 часов.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 159
160.
Грунтовка ВЖС 83-02-87 наносится под навесом или впомещении. При отсутствии атмосферных осадков нанесение
грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению
грунтовки ВЖС 83-02-87 должна быть не ниже +5°С.
Грунтовка
ВЖС
83-02-87
может
наноситься
методами
пневматического распыления, окраски кистью, окраски терками.
Предпочтение следует отдавать пневматическому распылению.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно
перпендикулярным
направлениям
с
промежуточной
сушкой
между слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем,
добиваясь окончательной толщины нанесенного покрытия 90110 мкм. Время нанесения покрытия при естественной сушке при
температуре воздуха 18-20
С составляет 24 часа с момента
нанесения последнего слоя.
Сушка загрунтованных элементов и деталей во избежание
попадания
атмосферных
осадков
и
других
загрязнений
на
невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места
и другие дефекты не допускаются. Высохшая грунтовка должна
иметь серый матовый цвет, хорошее сцепление (адгезию) с
металлом и не должна давать отлипа.
Контроль
толщины
покрытия
осуществляется
магнитным
толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с
ГОСТ
15140-69
на
контрольных
образцах,
окрашенных
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
по
Всего листов 185
Лист 160
161.
принятой технологии одновременно с элементами и деталямиконструкций.
Результаты
проверки
качества
защитного
покрытия
заносятся в Журнал контроля качества подготовки контактных
поверхностей ФПС.
6.4.1 Основные требования по технике безопасности
при работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные
применением
правила
ручных
при
окрасочных
работах
распылителей"
с
(Министерство
здравоохранения СССР, № 991-72)
"Инструкцию по санитарному содержанию помещений и
оборудования производственных предприятий" (Министерство
здравоохранения СССР, 1967 г.).
При
пневматическом
увеличения
методе
туманообразования
распыления,
и
расхода
во
избежание
лакокрасочного
материала, должен строго соблюдаться режим окраски. Окраску
следует производить в респираторе и защитных очках. Во время
окрашивания
в
располагаться
таким
материала
имела
закрытых
образом,
направление
помещениях
чтобы
струя
маляр
должен
лакокрасочного
преимущественно
в
сторону
воздухозаборного отверстия вытяжного зонта. При работе на
открытых площадках маляр должен расположить окрашиваемые
изделия так, чтобы ветер не относил распыляемый материал в
его сторону и в сторону работающих вблизи людей.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 161
162.
Воздушная магистраль и окрасочная аппаратура должныбыть оборудованы редукторами давления и манометрами. Перед
началом
работы
маляр
должен
проверить
герметичность
шлангов, исправность окрасочной аппаратуры и инструмента, а
также
надежность
присоединения
краскораспределителю
воздушных
и
шлангов
воздушной
к
сети.
Краскораспределители, кисти и терки в конце рабочей смены
необходимо
тщательно
очищать
и
промывать
от
остатков
грунтовки.
На каждом бидоне, банке и другой таре с пигментной частью
и связующим должна быть наклейка или бирка с точным
названием и обозначением этих материалов. Тара должна быть
исправной с плотно закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87
нужно соблюдать осторожность и не допускать ее попадания на
слизистые оболочки глаз и дыхательных путей.
Рабочие
и
ИТР,
работающие
на
участке
консервации,
допускаются к работе только после ознакомления с настоящими
рекомендациями, проведения инструктажа и проверки знаний по
технике
безопасности.
На
участке
консервации
и
в
краскозаготовительном помещении не разрешается работать без
спецодежды.
Категорически запрещается прием пищи во время работы.
При попадании составных частей грунтовки или самой грунтовки
на слизистые оболочки глаз или дыхательных путей необходимо
обильно промыть загрязненные места.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 162
163.
6.4.2 Транспортировка и хранение элементов идеталей, законсервированных грунтовкой
ВЖС 83-02-87
Укладывать,
законсервированные
исключить
хранить
элементы
возможность
и
и
транспортировать
детали
нужно
механического
так, чтобы
повреждения
и
загрязнения законсервированных поверхностей.
Собирать можно только те элементы и детали, у которых
защитное
покрытие
высохло.
контактных
Высохшее
защитное
поверхностей
полностью
покрытие
контактных
поверхностей не должно иметь загрязнений, масляных пятен и
механических повреждений.
При наличии загрязнений и масляных пятен контактные
поверхности
должны
быть
обезжирены.
Обезжиривание
контактных поверхностей, законсервированных ВЖС 83-02-87,
можно
производить
водным
раствором
жидкого
калиевого
стекла с последующей промывкой водой и просушиванием.
Места механических повреждений после обезжиривания должны
быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного
покрытия на опорные поверхности шайб
Производится очистка только одной опорной поверхности
шайб в дробеструйной камере каленой дробью крупностью не
более 0,1 мм. На отдробеструенную поверхность шайб методом
плазменного напыления наносится подложка из интерметаллида
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 163
164.
ПН851015 толщиной . …..м. На подложку из интерметаллидаПН851015 методом плазменного напыления наносится несущий
слой
оловянистой
бронзы
БРОФ10-8.
На
несущий
слой
оловянистой бронзы БРОФ10-8 наносится способом лужения
припой ПОС-60 до полного покрытия несущего слоя бронзы.
6.6. Сборка ФПС
Сборка
ФПС
фрикционным
проводится
покрытием
с
использованием
одной
из
шайб
поверхностей,
с
при
постановке болтов следует располагать шайбы обработанными
поверхностями внутрь ФПС.
Запрещается
деталей
ФПС.
очищать
внешние
Рекомендуется
поверхности
использование
внешних
неочищенных
внешних поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой,
другую под гайкой). Болты и гайки должны быть очищены от
консервирующей смазки, грязи и ржавчины, например, промыты
керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания
гайки от руки на всю длину резьбы. Перед навинчиванием гайки
ее резьба должна быть покрыта легким слоем консистентной
смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное
положение;
устанавливают
гайковертами
на
болты
90%
от
и
осуществляют
проектного
их
усилия.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
натяжение
При
сборке
Всего листов 185
Лист 164
165.
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2018, ГОСТ 16962.2-90.ГОСТ 17516.1-90, ГОСТ 30546.1-98, ГОСТ 30546.3-98 (в части сейсмостойкости
до 9 баллов по шкале MSK-64), I категории по НП-031-01, требованиям C-GB.
многоболтового ФПС установку болтов рекомендуется начать с
болта находящегося в центре тяжести поля установки болтов, и
продолжать установку от центра к границам поля установки
болтов;
после
проверки
плотности
стягивания
ФПС
производят
герметизацию ФПС;
болты затягиваются до нормативных усилий натяжения
динамометрическим ключом.
Ссылки для просмотра, испытаний узлов крепления на фланцевых соединений трубопроводов
yadi.sk/i/-ODGqnZv3EU3MA yadi.sk/i/_aIPeyJZ3EU3Zt
youtube.com/watch?v=ZfhEKZ3Q4RE
youtube.com/watch?v=pN4Yab9Ye9c youtube.com/watch?v=AwgPS3Z_KUg
https://www.youtube.com/watch?v=3YAvegl0wCY youtube.com/watch?v=7QW_G1uCtT8
youtube.com/watch?v=3YAvegl0wCY&t=50s https://www.youtube.com/watch?v=pN4Yab9Ye9c&t=28s
youtube.com/watch?v=ZfhEKZ3Q4RE&t=915s
С тех. решениями фланцевых, фрикционно-подвижных соединений для нефтеперерабатывающего
оборудования выполненных в виде болтовых соединений, расположенных в во втулке или латунной
гильзе, с контролируемым натяжением или с фрикци-болтом, обеспечивающих многокаскадное
демпфирование при импульсной динамической растягивающей нагрузке можно ознакомиться: см.
изобретения №№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488, 2076985№
4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU, СП
16.13330.2011 (СНиП II-23-81*), ТКП 45-5.04-274-2012 (02250)
Требование нормативных документов: СП 14.13330-2011, п. 4.6, СП 16.13330.2011(СНиП II-23-81*), п.14.3, «Руководство
по креплению технологического оборудования фундаментными болтами», ЦНИПИПРОМЗДАНИЙ, НП-031-01 в части
категории сейсмостойкости II, ГОСТ 17516.1-90 п.5, ГОСТ 30546.1-98, ГОСТ 30546.3-98 (при условии использования
фрикционно-подвижных соединений (ФПС) или демпфирующих узлов крепления в виде болтовых соединений с
изолирующими трубами и амортизирующими элементами согласно альбома «Анкерные болты», вып. 5, сер. 4.402 -9
«Ленгипронефтехим», ГОСТ Р 57364, ГОСТ Р 57354, РД 31.31.39-86, Шифр ТР-НГПИ -13 9 ), вып.2
С испытанием методом математического моделирования взаимодействия
трубопроводов с геологической средой в ПК SCAD можно ознакомится по ссылке
https://yadi.sk/d/6lNXCB4lw-HgpA https://yadi.sk/i/CnFN36oKLYPpzQ
https://yadi.sk/i/MaKtKmd5GP9ecw
https://yadi.sk/d/MDvdSPojHUpe3w
https://yadi.sk/i/uLbA_SwO5GHO2w https://yadi.sk/i/sMuk8V-J0Ui_lw
https://yadi.sk/i/Vf_86hLPmeYIsw
https://yadi.sk/i/c1D-6wvsIeJW
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 165
166.
Косой компенсатор СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2018, ГОСТ 16962.2-90. ГОСТ 17516.190, ГОСТ 30546.1-98, ГОСТ 30546.3-98 (в части сейсмостойкости до 9 баллов по шкале MSK-64), I категориипо НП-031-01, требованиям C-GB.ПБ004.В.01312 группе мех.испол. М13, серии 4.402-9 «Анкерные болты»,
вып 5
«Ленгипронефтехим»,ТКП 45-5.04-274-2012 ВСН 144-76, СТП 006-97, МЭК 60068-3-3 (1991), ПМ
04-2014, РД 26.07.23-99 и РД 25818-87 (синусоидальная вибрация - 5,0-100 Гц с ускорением до 2g)
Ссылки для просмотра испытаний узлов крепления трубопроводов косого компенсатора
yadi.sk/i/-ODGqnZv3EU3MA yadi.sk/i/_aIPeyJZ3EU3Zt
youtube.com/watch?v=ZfhEKZ3Q4RE
youtube.com/watch?v=pN4Yab9Ye9c youtube.com/watch?v=AwgPS3Z_KUg
https://www.youtube.com/watch?v=3YAvegl0wCY youtube.com/watch?v=7QW_G1uCtT8
youtube.com/watch?v=3YAvegl0wCY&t=50s https://www.youtube.com/watch?v=pN4Yab9Ye9c&t=28s
youtube.com/watch?v=ZfhEKZ3Q4RE&t=915s
С описаниями изобретений используемые при испытаниях взаимодействия математических
моделей с геологической средой, в том числе нелинейным методом расчета в ПК SCAD по
обеспечению косого компенсатора для трубопроводов с демпфирующей сейсмоизоляцией , можно
ознакомится по ссылкам : «Сейсмостойкая фрикционно –демпфирющая опора»
https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для
трубопроводов» https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка»
https://yadi.sk/i/JOuUB_oy2sPfog Опора сейсмоизолирующая «маятниковая»
https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
С испытанием косого компесатор для трубопроводов методом математического моделирования
взаимодействия трубопроводов с геологической средой в ПК SCAD можно ознакомится по ссылке
https://yadi.sk/d/6lNXCB4lw-HgpA https://yadi.sk/i/CnFN36oKLYPpzQ
https://yadi.sk/i/MaKtKmd5GP9ecw
https://yadi.sk/d/MDvdSPojHUpe3w
https://yadi.sk/i/uLbA_SwO5GHO2w https://yadi.sk/i/sMuk8V-J0Ui_lw
https://yadi.sk/i/Vf_86hLPmeYIsw
https://yadi.sk/i/c1D-6wvsIeJW
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
Редактор газеты «Земля РОССИИ" Кадашов Петр Павлович Брянская обл.,
Новозыбковский р-н, с. Малый Вышков Спецвыпуск от 02 мая 2021
[email protected] [email protected] [email protected]
(921) 962-67-78, (996) 798-26-54, (999) 535-47-29 ИНН 201400780 ОРГН 1022000000824
https://pamyat-naroda.su/awards/anniversaries/1522841656 https://ppt-online.org/877060
https://ru.scribd.com/document/497852064/VOV-Yubileynaya-Nagrada-Petra-Pavlovich-IzSela-Stariy-Vichkov-Novozibkovskiy-Rayon-Bryanskoy-Oblasti-8-Str
https://disk.yandex.ru/i/8SpyORMtAXqH2A
Адр: 197371, СПб, а/я газета «Земля РОССИИ» /
Кадашов Петр Павлович /
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 166
167.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 167
168.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 168
169.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 169
170.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 170
171.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 171
172.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 172
173.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 173
174.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 174
175.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 175
176.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 176
177.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 177
178.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 178
179.
Выписка отзыв из НТС Госстроя РОССИИ МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙФЕДЕРАЦИИ НАУЧНО ТЕХНИЧЕСКИЙ СОВЕТ ВЫПИСКА ИЗ ПРОТОКОЛА заседания Секции
научно-исследовательских и проектно изыскательских работ, стандартизации и технического
нормирования Научно-технического совета Минстроя России
г. Москва 4 • .1 N 23-13/3 15 ноября ■1994 т.
ЦНИСК им. Кучеренко от ЦНИИпромзданий
Присутствовали: от Минстроя России от
Вострокнутоз КХ Г. , Абарыкоз Е. П. , Гофман Г. Н. , Сергеев Д. А. , Гринберг И. Е. , Денисов Б. И.
, Ширя-ез Б. А. , Бобров Ф. В. , Казарян Ю. А. Задарено к А. Б. , Барсуков В. П. , Родина И. В. ,
Головакцев Е. М. , Сорокин А. Ы. , Се кика В. С. Айзенберг Я. М / Адексеенков Д. А. , Кулыгин Ю. С. ,
Смирнов В. И. , Чиг-ркн С. И. , Ойзерман В. И. , Дорофеев В. М. , Сухов Ю. П. , Дашезский М. А.
Гиндоян А. П. , Иванова В. И. , Болтухов А. А. , Нейман А. И. , Ма лин И. С.
от ПКИИИС
от КФХ"Крестьянская усадьба" Севоетьянов 3. В, Коваленко А.И.
от ШШОСП им. Герсезанова от АО. ЩИИС
от КБ по железобетону им. Якушева
от Объединенного института физики земли РАН
от ПромтрансНИИпроекта
от Научно-инженерного и координационного сейсмо¬логического центра РАН
от ЦНИИпроектстальконструкция ИМЦ "Стройизыскания" Ассоциация "Югстройпроект"
от УКС Минобороны России (г. Санкт-Петербург) Ставницер М -Р. Шестоперов Г. С.
Афанасьев П. Г. Уломов В. И. , Штейнберг В. В. Федотов Б. Г. Фролова Е И. Бородин Л. С.
Баулин Ю. И. Малик А. Н. Беляев В. С.
2. О сейсмоизоляции существующих жилых домов, как способ повышения сейсмостойкости
малоэтажных жилых зданий. Рабочие чертежи серии • 1.010.-2с-94с. Фундаменты
сейсмостойкие с использованием сейсмоизолирущего скользящего пояса для строительства
малоэтажных зданий в районах сейсмичностью 7,8,9 баллов
1. Заслушав сообщение А. И. Коваленко, отметить, что по договору N 4.2-09-133/94 с
Минстроем России КФК "Крестьянская усадьба" выполняет за работу "Фундаменты
сейсмостойкие с использованием сейсмоизолируюшего пояса для строительства малоэтажных
зданий в районах сейсмичностью 7, з и 9 баллов". В основу работы положен принцип создания в
цокольной части здания сейсмоизолируюшего пояса, поглощающего энергию как горизонтальных,
так и-вертикальных нагрузок от сейсмических воздействий при помощи резино -щебеночных
амортизаторов и ограничителей перемещений.
К настоящему времени завершен первый этап работы - подготовлены материалы для
проектирования фундаментов для вновь строящихся зданий. Второй этап работы, направленный
на повышение сейсмостойкости существующих зданий, не завершен. Материалы работы по
второму этапу предложены к промежуточному рассмотрению на заседании Секции.
Представленные материалы рассмотрены НТС ЦНИИСК им. Кучеренко ( Головной научноисследовательской организацией министерства по проблеме сейсмостойкости зданий и
сооружений) и не содержат принципиально Д технических решений и методов производства
работ.
Решили:
1. Принять к сведению сообщение А.И.Коваленко по указанному вопросу .
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 179
180.
2. Рекомендовать Главпроекту при принятии законченной разработки "проектно-сметнойдокументации сейсмостойкого Фундамента с использованием скользящего пояса (Типовые
проектные решения) учесть сообщение А. И. Коваленко и заключение НТС ЦНИИСК,
на котором были рассмотрены предложения сейсмоустойчивости инженерных систем
жизнеобеспечения ( водоснабжения, теплоснабжения, канализации и газораспределения) .
Зам. председателя Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормировав ' Ю. Г. Вострокнутов
В. С. Сенина
Ученый секретарь Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормирование
МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНСТРОЙ РОССИИ
117937 ГСП 1 Москва ул. Строителей 3 корп. 2 П. М ■ 7 У № 3-3-1
На № О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства "Крестьянская усадьба" А.И
КОВАЛЕНКО
197371, Санкт-Петербург пр.Королева, 30-1-135 Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную
документацию шифр 1010-2с.94 "Фундаменты сейсмостойкие с использованием
сейсмоизолирующего скользящего пояса для строительства малоэтажных зданий а районах
сейсмичностью 7, 8 и 9 баллов. Выпуск 0-1. Фундаменты для существующих зданий. Материалы
для проектирования", выполненную КФХ "Крестьянская усадьба" по договору с Минстроем России
от 26 апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка конструкторской документации
сейсмостойкого фундамента с. использованием сейсмоизолирующего скользящего пояса для
существующих зданий").
Разработанная документация была направлена на экспертизу в Центр проектной продукции
массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский Научнотехнический Центр по сейсмостойкому строительству и инженерной защите от стихийных
бедствий (КамЦентр; экспертное заключение N 10-57/94), работа рассмотрена на заседании
секции "Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на НТС
Минстроя России. Результаты экспертиз и рассмотрений показали, что без проведения
разработчиком документации экспериментальной проверки предлагаемых решений и последующего
рассмотрения результатов этой проверки в установленном порядке использование работы в
массовом строительстве нецелесообразно.
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с
целью осуществления авторами контроля за распространением документации, во изменение
письма от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Крестьянская
усадьба" кальки чертежей шифр 1010-2с.94, выпуск 0-2. Главпроект обращает внимание'
руководства КФХ "Крестьянская усадьба" и разработчиков документации на ответственность за
результаты применения в практике проектирования и строительства сейсмоизолирующего
скользящего пояса по чертежам шифр 1010-2с.94, выпуски 0-1 и 0-2. Приложение: экспертное
заключение КамЦентра на 6 л.
Зам.начальника Главпроекта Барсуков 930 54 87 .А.Сергеев
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 180
181.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 181
182.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 182
183.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 183
184.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 184
185.
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845Всего листов 185
Лист 185
186.
Материалы лабораторных испытаний фрагментов , узлов . чертежей насдвиг трубопровода в программном комплексе SCAD Office, со
скощенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующих компенсаторов на фрикционно-подвижных болтовых
соединениях, для восприятия усилий -за счет трения, при термически
растягивающих нагрузках , на сдвиг трубопровода в программном
комплексе SCAD Office, со скощенными торцами, согласно изобретения
№№ 2423820, 887743, демпфирующих компенсаторов на фрикционноподвижных болтовых соединениях, для восприятия усилий -за счет
трения, при термически растягивающих нагрузках в трубопроводах и
предназначенного для сейсмоопасных районов с сейсмичностью до 9
баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и
выше для трубопроводов необходимо использование сейсмостойких
телескопических опор, а для соединения трубопроводов - фланцевых
фрикционно- подвижных соединений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с
пропиленным в ней пазом и с забитым в паз шпильки медным
обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ
37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintantiwindandanti-seismic-friction-damping-device и согласно изобретения
«Опора сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28,
от 10.10.2016, в местах подключения трубопроводов к оборудованию,
трубопроводы должны быть уложены в виде "змейки" или "зиг-зага
"), хранятся на кафедре теоретическая механика по адресу: ПГУПС
190031, СПб, Московский пр 9 ,
На кафедре теоретическая механика ПГУПС у проф дтн А.М.Уздин
[email protected] [email protected]
[email protected] [email protected]
[email protected]
(931) 280-11-94, (921) 962-67-78, (999) 535-47-29, (996) 798-26-54,
Карта СБЕР 2202 2007 8669 7605 Счет получателя 40817810555031236845
Всего листов 185
Лист 186