Похожие презентации:
Дифракция света. Принцип Гюйгенса-Френеля
1. Д И Ф Р А К Ц И Я С В Е Т А
ДИФРАКЦИЯ СВЕТАДифракцией света называется явление отклонения света от
прямолинейного распространения в оптически неоднородной
среде с размерами неоднородностей, соизмеримыми с длиной
волны
2. Принцип Гюйгенса-Френеля для плоской и сферической волн
Принцип Гюйгенса. Каждую точкуволнового фронта можно рассматривать
как новый источник “вторичных “
сферических волн, распространяющихся
вперед по всем направлениям, в том числе
и в область геометрической тени
препятствия
Предположение Френеля. Вторичные волны
когерентны и интерферируют друг с другом
3. Виды дифракции
дифракция Френелядифракция Фраунгофера
(в сходящихся лучах)
(в параллельных лучах)
на препятствие падает
сферическая или плоская
волна, а дифракционная
картина наблюдается на
экране, который находится
позади препятствия
на конечном расстоянии
от него
на препятствие падает
плоская волна, а
дифракционная картина
наблюдается на экране,
который находится в
фокальной плоскости
собирающей линзы, (то есть,
в бесконечности)
4. Дифракция Френеля Дифракция плоской волны на экране с круглым отверстием
5. Границы зон Френеля в плоскости отверстия
6.
Радиусы ρm зон Френеляm
2
rm
L m L m
2
Так, как λ<<L, то
m m L
2
Количество зон Френеля
R
m
L
2
2
4
7.
- критерий наблюдения дифракции- граница применимости геометрической оптики
8. Зоны Френеля на сферическом фронте волны
abm m
a b
R ( a b)
m
ab
2
9.
Площадь зонS m (
2
m
2
m 1
) L S1
Амплитуда колебаний, возбуждаемых m - ой зоной
A1>A2>A3> . . . .>Am
Am 1 Am 1
Аm
2
A = A1 – A2 + A3 – A4 + . . .< А1
А
А A
1
2
2
1
A
2
A
A
2 2
3
3
А
4
А
A
5
2
Аm
2
2
1
10.
Число зон m:а) малое нечетное
(интерференционный максимум)
А1 Аm
А
А1
2
2
m=1
б) малое четное
(интерференционный минимум)
A = A1
А1 Аm
А
0
2
2
в) большое и полностью открытый волновой фронт
А1
А0
2
Амплитуда, создаваемая в некоторой точке Р всей полностью
открытой волновой поверхностью , равна половине амплитуды,
создаваемой одной лишь центральной зоной
11. Дифракционная картина от круглого отверстия
12. Зонная пластинка, перекрывающая четные зоны
m = 1; A = A1 = 2A0; I = 4I0m=2
A=0
I=0
Зонная пластинка, перекрывающая четные зоны
Открыты 1, 3 и 5 зоны
A = 3A1 = 6A0; I = 36I0
13. Дифракция Френеля на круглом диске
A = Am + 1/214.
Дифракция Фраунгофера на щели15.
Число зон Френеля на ширине щелиBC
n
2
Оптическая разность хода крайних лучей
ВС b sin
.
Если на ширине щели укладывается
четное
число зон Френеля, n=2m ,то наблюдается
дифракционный минимум
ВС= 2m( /2)
b sin m (m = ±1, ± 2, …)
16.
Если же число зон Френеля нечетное, n=2m+1,то наблюдается дифракционный максимум
= (2m+1) /2 или bsin =(2m+1) /2
(m = 0, ±1, ± 2, …) – порядок дифракционного
максимума
В прямом направлении = 0 щель действует
как одна зона Френеля, поэтому в центре
наблюдается центральный дифракционный
максимум нулевого порядка, обладающий
наибольшей интенсивностью
17.
18.
Распределение интенсивностиI0 : I1 : I2 = 1 : 0,045 : 0,016
19.
20. Дифракция света от многих щелей. Дифракционная решетка
21.
22.
23.
В тех направлениях, в которых ни одна из щелей нераспространяет свет, будут наблюдаться минимумы
с нулевыми значениями интенсивности
b sin 2m( 2) - условие главных минимумов
m = ±1, ± 2, . . .- порядок главного минимума
Действие одной щели будет усиливаться
остальными щелями, если
=DК= BDsin =dsin
= m
d sin m
- условие главных максимумов
где m = 0, ± 1, ± 2, . . . - порядок главного максимума
24.
Вследствие взаимной интерференции световых лучейот N щелей максимумы будут наблюдаться не во всех
тех направлениях, в которых они наблюдались в случае
одной щели. В некоторых направлениях они будут
взаимно уничтожаться, т.е. между соседними главными
максимумами возникает N -1 добавочных минимумов.
Минимум будет наблюдаться в том случае, если
колебания, идущие от первой и последней щелей
будут отличаться по фазе на 2 , т.е. Nδ = 2
25.
2N
2
- разность хода двух лучей от
N соответствующих участков
соседних щелей
= dsin
d sin p
N
- условие дополнительных минимумов
(p=±1,±2,...±(N-1)m,±(N+1)m
26.
Амплитуда колебаний светового вектораAmax= NA0
где A0 - амплитуда колебаний, посылаемых одной
щелью под углом
Интенсивность главных максимумов
Imax = N2 I0
С увеличением числа щелей помимо роста
интенсивности происходит резкое сужение главных
максимумов
27.
28. Разложение белого света в спектр с помощью дифракционной решетки
29. Дифракция на пространственной решетке
Δ=ED+DF=2dsin2dsin = m - формула Вульфа – Брэгга
30. Разрешающая способность оптических приборов
Разрешающая способность это способностьдавать раздельные изображения двух близких
друг к другу точек объекта
31. По критерию Релея две близлежащие спектральные линии с равными интенсивностями можно видеть раздельно, если центральный максимум дифракц
По критерию Релея две близлежащие спектральныелинии с равными интенсивностями можно видеть
раздельно, если центральный максимум
дифракционной картины одной длины волны 1
совпадает с первым минимумом другой 2
32.
33.
1. Угловая дисперсияd
D
d
dφ – угловое расстояние между спектральными
линиями 1 и 2, отличающимися на d
34.
d sin md cos d md
d
m
sin
D
d d cos cos
Угловая дисперсия не зависит от параметров решетки
2.Разрешающая способность
R
d
d - наименьшая разность длин волн двух спектральных
линий, при которой они видны как раздельные
35.
По РэлеюR mN
Дифракционная решетка будет разрешать две
спектральные линии, если
mN
d