Похожие презентации:
Общество с ограниченной ответственностью "Промтех-защита"
1.
RA.RU.21СТ39 Н005942172594
Общество с ограниченной ответственностью "ПРОМТЕХ-ЗАЩИТА" Адрес : Кемеровская область - Кузбасс, г.
Кемерово, пер. Коксовый, д. 16А, помещение 3, офис 209, ОГРН 1194205003046, ИНН 4205377037
Общество с ограниченной ответственностью "ПРОМТЕХ-ЗАЩИТА" Адрес : Кемеровская область - Кузбасс, г.
Кемерово, пер. Коксовый, д. 16А, помещение 3, офис 209, ОГРН 1194205003046, ИНН 4205377037 e-mail:
[email protected] тел. (915) 034-72-73
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д
4, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от 27.05.2014, 190031, СПб, Московский пр.9, ИЦ «ПКТИ - Строй-ТЕСТ», ОО «Сейсмофонд»
при СПб ГАСУ ОГРН: 1022000000824 Аттестат per. № РОСС RA.RU.21СТ39 5 выдан 27.05.2015 Федеральным агентством по
техническому регулированию и метрологии. Лицензия ФГБОУ ВО ПГУПС № 2280 от 21 июля 2016. [email protected]
[email protected] т/ф (812) 694-78-10, т. (911) 175-84-65, (996) 798-26-54, (921) 962-67-78
Атмосферостойкий огнезащитный состав «PROTEX-A», изготавливаемый в
соответствии ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») предназначен для сейсмоопасных районов с сейсмичностью до 9
баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо использование демпфирующих соединения
с упругопластическим шарниром на фрикционно-подвижных соединениях, с фланцевыми соединениями и компенсаторами,
расположенными в длинных овальных отверстиях, с целью обеспечения многокаскадного демпфирования, при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777 «СЕЙСМОСТОЙКИЙ МОСТ»,
154506 "Панель противовзрывная"См. протокол: https://disk.yandex.ru/d/uYbekYi-JfUHeA https://ppt-online.org/10
СП 14.13330-2011, п. 4.6, СП 16.13330.2011(СНиП II-23-81*), п.14.3, «Руководство по креплению технологического оборудования фундаментными
болтами», ЦНИПИПРОМЗДАНИЙ, НП-031-01 в части категории сейсмостойкости II, ГОСТ 17516.1-90 п.5, ГОСТ 30546.1-98, ГОСТ 30546.3-98 (в
районах с сейсмичностью свыше 8 баллов необходимо использование фланцевые фрикционно-подвижных соединений (ФПС), закрепленные на
магистральном трубопроводе с помощью фланцевых фрикци-анкерных, протяжных соединений (ФФПС) с контролируемым натяжением (ударом),
выполненных в виде болтовых соединений (латунная шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным
энергопоглощающим клином, свинцовые шайбы), согласно изобретениям №№ 1143895, 1168755, 1174616, и изобретению № 165076 RU "Опора
сейсмостойкая", Е04Н 9/02, Бюл. №28 от 10.10.2016)
(ИЛ ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01. 406.045 от 27.05.2014,
действ. 27.05.2019, ИЛ ОО «Сейсмофонд» и протокола № 1516-2/3 от 20.02.2017 (ИЦ "ПКТИ-СтройТЕСТ", адрес:197341, СПб, Афонская ул.,
д. 2, свид. об аккред № ИЛ/ЛРИ-00804 от 25.03.2016 ОАО «НТЦ «Промышленная безопасность», т/ф.(812) 694-78-10, т (921) 962-67-78,
[email protected] . Лицензия ФГБОУ ВО ПГУПС № 2280 от 21 июля 2016. Аттестат per. № РОСС RA.RU.21СТ39 5 выдан 27.05.2015
Федеральным агентством по техническому регулированию и метрологии. Почтовый адрес ОО "Сейсмофонд" при СПб ГАСУ : 190005, СПб,
2-я Красноармейская ул д 4 СПб ГАСУ [email protected] [email protected] [email protected]
Протокола № 568 от 03.01.2022
СП 14.13330-2011п. 4.6 «Обеспечение демпфированности (ФПС)» в соответствии с ASTM C1513; ASTM E488-96,
ГОСТ 17516.1-90 (сейсмические воздействие 9 баллов по шкале MSK-64) п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012
(02250), п.10.7, 10.8., СП 502-77, ГОСТ Р 53295-2009, СНиП II-2-80, СТП 006-97, альбом серии 2.440-2 , НП 031-01, ОСТ 37.001.05073, СН 502-77, RU 2010136746, RU 165076, бюл. № 28, опубликовано 10.10.2016
03.01.2022
03.01.2025
Х.Н.Мажиев
Ю.М.Тихонов
ЗАО «ОПЦИОН». Москва 2019, "B" лицензия № 05-05-09/003 ФНС РФ.ТЗ № 887. Тел.: (495) 726- 4742. www.opcion.ru
2.
Пластический шарнир ( № 154509 «Панель противовзрывная») являющийся гасителем динамических колебаний( №165076 «Опора сейсмостойкая», № 2010136746, 1143895, 1168755,1174646) и повышающий
сейсмоустойчивость, конструкций с огнезащитным составом «PROTEX-A» (OOO «ПРОМТЕХ-ЗАЩИТА»
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39,
выд. 27.05.2015), организация "Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул.,д. 4, ИЦ «ПКТИ - СтройТЕСТ», «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected] (996)798-2654, (921) 962-67-78, 694-7810
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ООО «ПРОМТЕХ-ЗАЩИТА»
Общество с ограниченной ответственностью "ПРОМТЕХ-ЗАЩИТА"ИНН 4205377037 КПП 420501001 г. Кемерово,
Коксовый пер., д. 16А, пом 3, ОФИС 209 [email protected] тел 9150347273 стр 111
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район –
VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98
(сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ» Президент «Сейсмофонд» при СПб ГАСУ / Мажиев Х.Н. 03.01.2022
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021 для МК и трубопровода испытаний системы лкм на устойчивость при сейсмическом воздействии более 9
балов по шкале MSK-64 включительно при уровне установки 70 метров над нулевой отметкой для сейсмостойкого
огнезащитного состава покрытия ( ГОСТ Р 53259-2009), атмосферостойким и огнезащитным составом «PROTEXA», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
ПРОТОКОЛ № 568 от 03.01.2022 оценка сейсмостойкости в ПК SCAD испытаний системы лкм на устойчивость при
сейсмическом воздействии до 9 балов по шкале MSK-64 включительно при уровне установки 70 метров над
нулевой отметкой для системы покрытий с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 532592009), атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), который представляет из себя грунт ГФ-021 из огнезащитного состава, для покрытия
стальных конструкций , изготовленные согласно ТУ 20.30.12-001- 35635096-2021 и изобретениям №№ 165076
("Опора сейсмостойкая"), 2010136746, 1143895, 1168755, 1174616, 2550777, предназначенных для сейсмоопасных
районов с сейсмичностью более 8 баллов (в районах с сейсмичностью более 8 баллов необходимо использование
демпфирующих соединения и опор на фрикционно-подвижных соединениях и для соединения
металлоконструкций (МК) и стальных трубопроводов с демпфирующими компенсаторами с болтовыми
соединениями, расположенными в длинных овальных отверстиях с целью обеспечения многокаскадного
демпфирования при динамических нагрузках).
3.
Испытание системы лкм на устойчивость при сейсмическом воздействии 9 балов по шкале MSK-64 включительнопри уровне установки 70 метров над нулевой отметкой и системы покрытий представляющая из себя грунт ГФ021 и огнезащитный состав проводились в СПб ГАСУ
Испытания проводились на соответствие группам механической прочности на вибрационные ударные
воздействия: М5-М7, М38-М39 методом численного моделирования на взаимодействие опор скользящих и
трубопровода с геологической средой в ПК SСАD. Фрикционно-подвижные демпфирующие соединения
выполнены в виде болтовых соединений с контролируемым натяжением, расположенных в длинных овальных
отверстиях согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9.2)
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021 для МК и трубопровода испытаний системы лкм на устойчивость при сейсмическом воздействии более 9
балов по шкале MSK-64 включительно при уровне установки 70 метров над нулевой отметкой для
сейсмостойкого огнезащитного состава покрытия ( ГОСТ Р 53259-2009), атмосферостойким и огнезащитным
составом «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и
сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021
ОГРН 1194205003046, ИНН 4205377037, КПП 420501001, ОКПО 35635096
4.
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A»ТЕХНИЧЕСКИЕ УСЛОВИЯ
ТУ 20.30.12-001- 35635096-2021
Настоящие Технические условия распространяются на атмосферостойкий огнезащитный состав «PROTEX-A», в
дальнейшем Состав, представляющий собой однокомпонентную композицию, представляющую собой
однородную смесь антипиренов, пигментов и наполнителей в растворе сополимера на основе метилметакрилата
и сополимера поливинилхлорида и винил изобутилового эфира.
Состав предназначен для повышения огнестойкости металлических, деревянных и железобетонных конструкций,
воздуховодов, загрунтованных эпоксидными, алкидными, акриловыми грунтовками поверхностей,
подвергающихся воздействию атмосферы. Состав применяется без финишного покрытия.
Огнезащитные свойства покрытия на основе состава соответствуют ГОСТ Р 53295-2009.
Состав после отверждения образует атмосферостойкий прочный полимерный материал с высокими
эксплуатационными характеристиками.
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
Состав по требованиям безопасности должен соответствовать ГОСТ Р 51691 (раздел 6) с дополнениями,
указанными ниже.
Состав является взрывопожароопасным и токсичным материалом, что обусловлено свойствами компонентов,
входящих в её состав.
5.
Для производства и применения состава допускаются лица, не моложе 18 лет, прошедшие обучениебезопасным приемам работы, сдавшие экзамены на право самостоятельной работы и не имеющие медицинских
противопоказаний.
Состав может вызвать раздражение у людей с чувствительной кожей. Перед работой нанести защитный крем
на открытые участки кожи. Использовать защитную одежду, перчатки, очки и респиратор. При попадании в глаза
необходимо промыть их большим количеством чистой воды и обратиться к врачу.
При работе в закрытых помещениях обеспечить вентиляцию на время нанесения и полимеризации покрытия.
Все работы должны проводится в помещениях, снабженных приточно-вытяжной вентиляцией, отвечающей
требованиям ГОСТ 12.4.021.
Помещения для работы с составом должны соответствовать требованиям пожарной безопасности по ГОСТ
12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
При возникновении пожара следует применять следующие средства пожаротушения:
воздушно-механическая пена;
углекислотные огнетушители;
порошковые огнетушители;
песок; распыленная вода.
Содержание вредных веществ в воздухе рабочих помещений не должно превышать допустимых значений по
ГОСТ 12.1.005-88;
При работе с Составом необходимо использовать индивидуальные средства защиты органов дыхания по ГОСТ
12.4.034, защиты кожи рук по ГОСТ 12.4.068, защиты глаз по ГОСТ Р 12.4.013, специальную одежду по ГОСТ
12.4.011 и ГОСТ 12.4.103.
В рабочих помещениях должны быть умывальники с горячей и холодной водой.
Характеристика пожароопасности компонентов Состава приведена в таблице 3:
6.
-1. Введение
1
2. Место проведения испытаний СПб ГАСУ 190005, СПб, 2-я Красноармейская ул, д. 4
[email protected]
3.Испытательное оборудование и измерительные приборы. Условия проведения испытания
узлов системы покрытий представляющая из себя грунт ГФ-021 и огнезащитный состав для
покрытия стальных конструкций , изготовленные согласно ТУ 20.30.12-001- 35635096-2021
3
4. Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей системы
покрытий представляет из себя грунт ГФ-021 и огнезащитный состав для покрытия
стальных конструкций , изготовленные согласно ТУ 20.30.12-001- 35635096-2021,
фрагментов антисейсмических фрикционно- демпфирующего соединения с
контролируемым натяжением трубопровода, предназначенных для сейсмоопас-ных
районов с сейсмичностью более 9 баллов, серийный выпуск.
5
5.Применение численного метода моделирования при испытании в ПК SCAD системы
покрытий представляет из себя грунт ГФ-021 и огнезащитный состав для покрытия
стальных конструкций , изготовленные согласно ТУ 20.30.12-001- 35635096-2021, с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК),
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
Испытание фрагментов ФДПК.
5
6. Изобретения, используемые при испытаниях системы покрытий представляет из себя
грунт ГФ-021 и огнезащитный состав для покрытия стальных конструкций , изготовленные
согласно ТУ 20.30.12-001- 35635096-2021, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов металлическими конструкциями ( МК) и трубопроводами,
с креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК).
7. Результаты и выводы по испытаниям математических моделей системы покрытий
представляющая из себя грунт ГФ-021 и огнезащитный состав для покрытия стальных
конструкций , изготовленные согласно ТУ 20.30.12-001- 35635096-2021с помощью
22
4
59
7.
демпфирующих антисейсмических компенсаторов, предназначенных для сейсмоопасныхрайонов с сейсмичностью более 9 баллов с трубопроводами.
8.Литература, использованная при испытаниях на сейсмостойкость математической модели 60
опоры скользящей для систе-мы противопожарной защиты с сейсмостойким огнезащитным
составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата
и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), при испытаниях в ПК SCAD и при испытаниях узлов крепления опоры
скользящей к трубопроводу, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов.
1.Введение
При испытаниях в ПК SCAD математических моделей узлов и фрагментов системы покрытий представляет
из себя грунт ГФ-021 из огнезащитного состава, для покрытия стальных конструкций , изготовленные согласно
ТУ 20.30.12-001- 35635096-2021 на фрикционно-демпфирующих компенсаторов для металлических конструкций
с креплением с помощью фрикционно - протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях было использо-вано численное моделирование в
ПК SCAD Office (метод аналитического решения задач строительной механики с помощью физического,
математического и компьютерного моделирования взаимодействия оборудования и трубопроводов с
геологической средой, метод оптимизации и идентификации динамических и статических задач теории
устойчивости, в том числе нелинейным методом расчета с целью определения возможности их использования в
районах с сейсмичностью более 9 баллов (в районах с сейсмичностью более 8 баллов необходимо
использование для соединения трубопровода косых компенсаторов с применением фрикционно-под-вижных
болтовых соединений с длинными овальными отверстиями согласно изобретениям №№ 1143895,
1174616,1168755, с использованием сейсмостойких маятниковых опор на фрикционно- демпфирующих
соединениях (для трубопроводов) согласно изобретения, патент № 165076 ( «Опора сейсмостойкая»), согласно
СП 14.13330.2014 «Строительство в сейсмических районах» п. 9. Фрикционно- подвижные соединения,
работающие на сдвиг выполнены с использованием фрикци -болта, состоящего из латунной шпильки с
пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно рекомендациям
ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73,альбома 1-4871997.00.00 и изобрет. №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device
Мкл E04H 9/02, в местах подключения трубопроводов к сооружениям, изготавливаемых в соответствии с
техническими условиями и ГОСТ, трубопроводы должны быть уложены в виде "змейки" или "зиг-зага "согласно
ГОСТ 15150, ГОСТ 5264-80-У1- 8 , ГОСТ Р 55989-2014, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)).
[email protected] (921) 962-67-78, (996) 798-26-54.
Узлы и фрагменты антисейсмического компенсатора для трубопровода (дугообразный зажим с анкерной
шпилькой) прошли испытания на осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ" (протокол №1516-2 от
25.11.2019). Настоящий протокол не может быть полностью или частично воспроизведен без письменного
согласия «Сейсмофонд», [email protected] т/ф. (812) 694-78-10 (996) 798-26-54
Испытание узлов крепления металлоконструкций с сейсмостойким огнезащитным материалом атмосферостойкой
из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
проводилось с использованием математического моделирования в программном комплексе SCAD, ANSYS
(современные численные и аналитические методы оптимизации и идентификации пожарной нагрузки в
механике деформируемых сред по испытанию огнезащитного , сейсмостойкого материала с сейсмостойким
огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEXA», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ
И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ
Федеральное государственное учреждение "Всероссийский ордена "Знак Почета" научно-исследовательский
институт противопожарной обороны"
ПРИМЕНЕНИЕ ПОЛЕВОГО МЕТОДА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЖАРОВ В ПОМЕЩЕНИЯХ
8.
Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824 190005, СПб, 2-я Красноармейская ул. дом 4Целью лабораторных испытаний является анализ распределения температурных полей по сечению
элемента и определение предела огнестойкости. При испытаниях рассматривается моделирование прогрева
металлической конструкции в условиях воздействия температурного нагружения. По результатам исследования
получены данные о сходимости результатов численного моделирования c натурными огневыми испытаниями и
определены дальнейшие направления деятельности.
Применение современных программных комплексов позволяет изучать работу сложных по форме и сечению
конструкций в различных условиях их работы, в том числе и в условиях пожарного воздействия .
Одними из наиболее распространенных программных комплексов, в которых реализованы модели термо- и
аэродинамики потока и теплопередачи, являются программные комплексы SKAD и AutoCad CFD.
В качестве испытуемой конструкции рассмотрим металлическую двутавровую балку 25Б1 длиной 3,0 м, сталь
С245, являющейся частью перекрытия здания IV степени огнестойкости с огнезащитным покрытием.
Граничные условия: температура окружающей среды принимается равной 20°С, нагрев балки будет
производиться согласно стандартной температурной кривой газовой среды в условиях пожара. Пожарная
нагрузка будет моделиро-ваться препроцессоре Transient Thermal посредством приложения к обогреваемым
поверхностям температурного нагружения, изменяющегося по времени. Были выбраны значения температуры
газовой среды для каждой минуты от начала испытания.
Рисунок 2. Стандартная температурная кривая газовой среды в условиях пожара с сейсмостойким огнезащитным
9.
составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A»,выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
Таблица 1 - Выборка данных температуры газовой среды по времени испытания согласно стандартной кривой
(для испытания металлоконструкций с сейсмостойким с сейсмостойким огнезащитным составом покрытия ( ГОСТ
Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА»), серийный выпуск).
Шаг
T, °С
нагружения
Время от начала
Шаг
эксперимента, мин нагружения
T, °С
Время от начала
эксперимента, мин
0
20,0
0
540
594,8
9
1
20,0
0
600
617,2
10
60
138,0
1
660
621,0
11
120
254,6
2
720
641,7
12
180
338,0
3
780
660,5
13
240
417,9
4
840
678,1
14
300
465,2
5
900
694,4
15
360
504,5
6
960
709,7
16
420
538,0
7
1020
724,5
17
480
567,1
8
1080
737,4
18
Моделирование балки с сейсмостойким огнезащитным материал из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
, серийный выпуск производилось в препроцессоре в ПК SCAD ANSYS, последующее разбиение на сетку
конечных элементов производилось в препроцессоре Mechanical.
Рисунок. Расчетная схема металлоконструкций покрытых сейсмостойким огнезащитным материалом из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
серийный выпуск.
Согласно пособию по определению пределов огнестойкости конструкций, предел огнестойкости зависит от
приве-денной толщины металла tred, которая вычисляется по формуле:
A =А/u (1)
где А - площадь поперечного сечения, см2. А = 32,68 см2; u - обогреваемая часть периметра сечения, см. u = 83,74
см.
(1)
График прогрева балки с сейсмостойким огнезащитным материалом ОГРАКС-МСК выпускаемый по ТУ 5728068-13267785-10, на основе полимера и минеральных наполнителей в органическом растворителе(АО НПО
«УНИХИМТЕК»), серийный выпуск.
Рисунок. Температурная кривая прогрева балки 25Б1 с сейсмостойким огнезащитным материалом «PROTEX-A»,
10.
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлоридаи винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
A: Transient Thermal
Temperature Type: Temperature Unit: °C Time: 240 07.04.2016 22:53
A: Transient Thermal
Temperature Type: Temperature Unit: DC Time: 60 07.04.2016 22:50
418,69 Max
418,25 417,81 417,37 416,93 416,49 416,05 415,62 415,18 414,74 Min
.
Полученное при моделировании время прогрева конструкции при использовании моделировании пожарной
нагрузки и применения до критического значение несколько меньше.
11.
Настоящий технический отчет о лабораторных испытаниях составлен по результатам экспериментальныхиспытаний и исследований на сейсмостойкость фрагментов фрикционно-подвижных соединений, демпфирующих
узлов крепления и математического моделирования взаимодействия металлоконструкций и трубопровода
покрытых сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») с геологической средой (предназначена для сейсмоопасных
районов с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01 (при условии
использования в районах с сейсмичностью 8 баллов и выше фрикционно-подвижных соединений (ФПС),
расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с
зазором не менее 50 мм для крепления металлоконструкций). Испытания проводились нелинейным методом
расчета в ПК SCAD согласно СП 16.13330.2011 (СНиП II-23-81*), п.14,3 -15. 2.4, ТКТ 45-5.04-274-2012 (02250),
п.10.3.2 -10.10.3, ГОСТ Р 58868 -2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п. 4.7, согласно
инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений»,
НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.), согласно изобретениям №№ 1143895, 1174616, 1168755 SU,
4094111US, TW201400676 (договор № 227 от 05 октября 2016 г.).
12.
13.
Рис.Варианты технических решений фрикционно-подвижных соединений ( ФПС), выполненных в виде болтовыхсоединений, расположенных в длинных овальных отверстиях с контролируемым натяжением, с зазором не менее
50 мм, обеспечивающих многокаскадное демпфирование при импульсной растягивающей нагрузке, можно
ознакомиться: изобретения №№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488, 2076985№
4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU. Прокладка
технологических трубопроводов, производится на сейсмостойких опорах (изобретение № 165076 «Опора
сейсмостойкая» Мкл E04H9/02, Бюл.28, от 10.10.2016), покрытых атмосферостойкой огнезащитной краской.
Вариант №1 сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по
ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
, серийный выпуск климатического исполнения ХЛ, УХЛ, категории 1, предназначенный для сейс-моопасных
районов с сейсмичностью до 9 баллов включительно по шкале MSK-64, (Iкат. НП 031-01) в условиях открытой
промышленной атмосферы умеренного и холодного климата (при условии использования в районах с
сейсмичносью 8 баллов для крепления металлоконструкций фрикционно-подвижных соединений (ФПС),
расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с
зазором не менее 50 мм) согласно СП 14.13330.2014 «Строительство в сейсмических районах», как огнезащита
несущих металлоконструкций и оборудования соответствует:ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, в
части сейсмостойкости и требо-ваниям в части стойкости к механическим воздействиям интенсивностью МРЗ 9
баллов по шкале MSK-64 высотная отметка 70,0 м, виброустойчивости группы М39, СП 14.13330.2014 п. 9.2, п.4.7,
14.
ГОСТ 53295-2009, СНиПII-2-80.15.
Испытания сейсмостойкого огнезащитного материала из огнезащитного состава «PROTEX-A», выпускаемый поТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
, серийный выпуск проводились с учетом использования фрикционно-подвижных соединений (ФПС)
(изобретение «Опора сейсмостойкая», патент № 165076,.Мкл.Е04H 9/02 (Бюл № 28 от 10.10.2016 г.),
изобретение«СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГ-КОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙС-МОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ», патент №
2010136746RU, Мкл.Е04 С2/00).
После проведения комплекса сейсмостойких, вибрационных испытаний выявлено, что надежность сцепления
огнезащитного покрытия с металлом экспериментальных образцов на всех этапах испытаний не была нарушена,
трещин и повреждений покрытия не установлено.
Испытание математических моделей и фрагментов фрикционных соединений (узлов крепления) с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), проводились расчетным способом в ПК SCAD, ANSYS c загружением РСУ (расчет сочетаний
усилий) AzDTN 2.3-1 в соответствии c НП-031-01 в части категории cейсмостойкости I, ГОСТ «Шкалы
землетрясений» 6249-52, ГОСТ 17516.1-90, ГОСТ 30546.1,2,3-98, согласно инструкции «Элементы теории трения,
16.
расчет и технология примене-ния фрикционно-подвижных соединений (авторы: д.т.н.УздинА.М. и др., НИИмостов, ЛИИЖТ). С техническими решениями фланцевых, фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК) можно ознакомиться: см. изобретения №№ 1143895, 1174616,1168755 SU,
№ 4,094,111 USStructuralsteelbuildingframehavingresilientconnectors, TW201400676 Restraintanti-windandantiseismic-friction-damping-device, 2010136746 RU, 165076 RU.
Статические испытания фрагментов фрикционно-подвижных соединений покрытых огнезащитным материалом
проводились в «ПКТИ-СтройТЕСТ», адрес:197341, СПб, ул. Афонская, д.2, (акт испытания на осевое статическое
усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 от 25.11.2013).
Сейсмостойкий огнезащитный материал, из огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), серийный выпуск для огнезащиты металлических
конструкций, трубопроводов , может быть использован для конструкций со сварочными соединениями в
сейсмоопасных районах с сейсмичностью до 8 баллов по шкале MSK-64, в районах с сейсмичностью более 8
баллов может быть использована для металлических конструкций и оборудования, закрепленных с помощью
протяжных, фрикционно-подвижных соединений, работающих на растяжение, выполненных в виде болтовых
соединений с контролируемым натяжением, установленных в длинных овальных отверстиях согласно СП
16.13330.2011( СНиП II-23-81*).
-
Рис. При исптывании фрагментов сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEXA», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
использовалась ванна для кипячения медных (стальных латунных) шайб, втулок, гильз и клиньев для фрикциболтов фрикционно-подвижных соединений.
Рис. В конструкции моста использованы сейсмостойкие, маятниковые опоры, фрикционно-подвижные
соединения.
Рис. Фрикционно-подвижные соединения для металлоконструкций с сейсмостойким огнезащитным материалом
из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
серийный выпуск (синим и красным цветом обозначены медные обожженные втулки, в верхней части 1-ого
рисунка расположен фрице-болт с пропиленным пазом в шпильке (в болте) и забитым медным обожженным
клином).
17.
Рис. Фрикционно-подвижные соединения для металлоконструкций с сейсмостойким огнезащитным материаломиз огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
(на болтах с контролируемым натяжением) работающие на растяжение с зазором в овальных отверстиях не
менее 50 мм (протяжные соединения).
1.Объект испытания: Испытания на сейсмостойкость фрагментов фрикционно–подвижных соединений и математических моделей металлоконструкций с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
, предназначенных для работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале
MSK-64, I кат.НП 031-01 (при условии использования фрикционно-повижных соединений (ФПС), расположенных в
длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с зазором не менее
50 мм для районов с сейс-мичностью более 8 баллов).
2. Акционерное общество научно-производственное объединение «УНИХИМТЕК» (АО НПО «УНИХИМТЕК»),
адрес:142181, Московская обл., г. Подольск, мкр. Климовск, ул. Заводская, д. 2, корп. 121 ИНН/КПП
5021013793/502101001, тел. 8 (495) 580-38-90, [email protected],
3. Дата проведения испытаний: 09.09.2018 - 16.08.2018г.
18.
4. Место проведения испытаний на сейсмостойкость, на осевое статическое усилие сдвига фрикци -болта(анкера), фрагмента фрикционно-подвижного соединения металлоконструкций (ФПС) и разработка
рекомендаций по повышению сейсмостойкости путем увеличения демпфирующей способности соединения,
преимущественно при импульсных растягивающих нагрузках, выполненных в виде фрикционных болтовых
соединений, установленных в коротких овальных отверстиях с контролируемым натяжением, предназначенных
для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64: ИСПЫТАТЕЛЬНЫЙ
ЦЕНТР«ПКТИ-СтройТЕСТ» Обособленное подразделения «ПКТИ», адрес: 197341,Санкт-Петербург, ул.Афонская, д.
2, ОО «Сейсмофонд», почтовый адрес:190005, СПб, 2-я Красноармейская ул. д 4 .
Узлы фрикционно-подвижных соединений (ФПС) для крепления металлоконструкций с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), предназначенны для работы в сейсмоопасных районах с сейсмичностью до 9 баллов
включительно по шкале MSK-64, I кат.НП 031-01 (при условии использования в районах с сейсмичностью 8 баллов
для крепления металлоконструкций фрикционно-повижных соединений (ФПС), расположенных в длинных
овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с зазором не менее 50 мм).
2. Испытание в ПК SCAD математических моделей и фрикционно –подвижных соединений (ФПС) покрытых с
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), , для крепления металлоконструкций и трубопроводов проводились с учетом
возможности их работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I
кат.НП 031-01.
Испытания проходили фрагменты фрикционно -подвижных соединений покрытых сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), серийный выпуск, предназначенные для работы в сейсмоопасных районах с
сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01 в ПК SCAD.
19.
Составы принимались при испытании согласно изобретения № 2372314.20.
Применение болтов с контролируемым натяжением и срезом торцевого элемента значительно увеличитпроизводи-тельность работ по сборке фрикционных соединений.Устойчивая связь между прочностью стали на
срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого способа натяжения
высокопрочных болтов. Такая технология натяжения болтов может исключить трудоёмкую и
непроизводительную операцию тарировки динамометрических ключей, необходимость в которой вообще
исчезает. Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не
создаёт внешнего крутящего момента в процессе натяжения. В результате ключи не требуют упоров и имеют
небольшие размеры. Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза
концевого элемента, соответствующего достижению проектного усилия натяжения болта. При этом сборку
фрикционных соединений можно производить с одной стороны конструкции. Головку болта можно делать не
шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе изготовления болтов и
устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных
соединений, сделает её технологичной и высокопроизводительной.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 согласно СП 14.1330-2011 «Строительство в сейсмических районах» п. 9.2 , соответствует ГОСТ
30546.1-98, ГОСТ 30546.3-98, СП 14.13330.2011, п.4.6 и требованиям С-GB.ПБ004.В.01311 и С-GB.ПБ 004.В.01312
от 14.01.2013 и выполнена по Технологической инструкции: соответствует СП 14.13330-2011 «Строительство в
21.
сейсмоопасных районах» п .9.2. «Обеспечение огнестойкости объектов защиты» и к атмосферным иогнестойким воздействиям согласно « Рекомендациям по применению огнестойких покрытий для
металлических конструкций», Стройиздат. 1984 на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям
9 и более баллов по шкале MSK-64) на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004,
МДС 53-1.2001, РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие,
катковые, шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом ОГРАКС-МСК выпускаемый
по ТУ 5728-068-13267785-10, на основе полимера и минеральных наполнителей в органическом растворителе(АО
НПО «УНИХИМТЕК»), выполненного в виде болтового соединения с амортизирующими элементами в виде
тросового зажима со свинцовыми шайбами, расположенными с двух сторон болтового крепления
изготовленными согласно «Руководства по креплению технологического оборудования фундаментными
болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 на основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72, альбом серии 4.903, вып. 5
«Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ
25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
22.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограммдемпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
1,0
1,0
1,0
1,0
1,0
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с выполненного в виде болтового соединения с амортизирующими
элементами в виде тросового зажима со свинцовыми шайбами, расположенными с двух сторон болтового
крепления изготовленными согласно «Руководства по креплению технологического оборудования
фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 на основе
рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72, альбом
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83.
23.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограммдемпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
0,04
0,04
-0,03
-0,02
0,02
-0,02
-0,02
0,02
-0,01
-0,06
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
-1,0
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с выполненного в виде болтового соединения с амортизирующими
элементами в виде тросового зажима со свинцовыми шайбами, расположенными с двух сторон болтового
крепления изготовленными согласно «Руководства по креплению технологического оборудования
фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 на основе
рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72, альбом
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
24.
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
0
-0,01
-0,01 0 0
00
00
0 0 0
44
-0,0
0,0
22
,0,0
0-0
0
-14,09
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
0,05 0 0
-5,06
00
00
0,03
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
1
11
11
5,0
1
1
1
1
Рис. Испытание в ПК SKAD фрагмента динамической модели на основе синтезированных акселерограмм
демпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83.
25.
Испытанный в ПК SKAD фрагмент динамической модели на основе синтезированных акселерограммдемпфирующего фланцевого крепления с сейсмостойким огнезащитным материалом выполненный в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбом серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83 соответствует СП 14.13330-2011 «Строи-тельство в
сейсмоопасных районах» п .9.2. «Обеспечение огнестойкости объектов защиты» и к атмосферным и
огнестойким воздействиям согласно « Рекомендациям по применению огнестойких покрытий для
металлических конструкций», Стройиздат. 1984,
С техническими решениями фрикционно-подвижных соединений (ФПС), покрытых сейсмостойким
огнезащитным материалом выполненных в виде болтовых соединений с амортизирующими элементами
(расположены в длинных овальных отверстиях), работающих на растяжение с контролируемым натяжением, с
зазором не менее 50 мм, обеспечивающих многокаскадное демпфирование при импульсной растягивающей
нагрузке, можно ознакомиться: dwg.ru rutracker.org fips.ru dissercat.com doc2all.ru , изобретения №№ 1143895,
1174616,1168755 SU, № 4,094,111 US, TW201400676 Restraint anti-wind and anti-seismic friction damping device.
Сейсмостойкий огнезащитный материал из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), согласно проведенным испытаниям предназначена для работы в
сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01 (при
условии использования в районах с сейсмичностью 8 баллов для крепления металлоконструкций фрикционноповижных соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с
контролируемым натяжением, с зазором не менее 50 мм) согласно требованиям СП 14.13330. 2014, п.4.7
(демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.2011( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(
02250), п.10.3.2 -10.10.3.
Испытания фрагментов и деталей протяжных узлов крепления проводились в испытательной лаборатории
«ПКТИ –СтройТЕСТ»,197341, СПб, ул. Афонская, д. 2 и в ИЛ ОО «Сейсмофонд» согласно СП 14.1330-2014, п. 4.7,
ГОСТ 30546.1-98, ГОСТ 30546.3-98 на соответствие требованиям для оборудования катег. 1 в части сейсм. по НП031-01, ГОСТ 17516.1-90, ГОСТ 30546.1-98, ГОСТ 30546.2-98, высотная отметка 0,00- 70.0 м, виброустойчивость по
группе М 39, ГОСТ 15.000-82.
Проводились испытания математических моделей металлоконструкций покрытых сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), предназначенные для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по
шкале MSK-64, I кат.НП 031-01 (при условии использования в районах с сейсмичностью 8 баллов для крепления
26.
металлоконструкций фрикционно-повижных соединений (ФПС), расположенных в длинных овальных отверстиях,работающих на растяжение, с контролируемым натяжением, с зазором не менее 50 мм), выполненных согласно
требованиям ГОСТ 17516.1-90, ГОСТ 30546.2-98, ОСТ 36-146-88, ОСТ 108.275.63-80 в ПК SKAD.
Испытания фрагментов узлов крепления и фланцевых, фрикционно-подвижных соединений покрытых
сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), для металлических конструкций, предназначенных для работы в
сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01 (при
условии использования в районах с сейсмичностью 8 баллов для крепления металлоконструкций фрикционноповижных соединений (ФПС), расположенных в длинных овальных от-верстиях, работающих на растяжение, с
контролируемым натяжением, с зазором не менее 50 мм) проводились согласно: НП 031-01 «Нормы
проектирования атомных станций»; СП 16.13330.2011( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250),
п.10.3.2 -10.10.3.
27.
При испытаниях использовалось изобретение «Опора сейсмостойкая» (положит.решение № 2016102130/03(003016) , Мкл. Е04Н 9/02,смотри seismofond.ru).Техническое решение (изобретение) "Опора
сейсмоизолирующая"№ 2016102130 /03 (003016) испытана в Японии и использована при испытаниях фрагментов
узлов крепления и фланцевых, фрикцион-но-подвижных соединений для системы металлических конструкций
покрытых сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для работы в сейсмоопасных районах с
сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01 (при условии использования в
районах с сейсмичностью 8 баллов для крепления металлоконструкций фрикционно-повижных соединений
(ФПС), расположенных в длинных овальных от-верстиях, работающих на растяжение, с контролируемым
натяжением, с зазором не менее 50 мм), выполненных согласно требованиям ГОСТ 17516.1-90, ГОСТ 30546.2-98,
ОСТ 36-146-88, ОСТ 108.275.63-80, согласно изобретениям № 1143895, 1174616, 1168755
youtube.com/watch?v=v6gjyWFolek youtube.com/watch?v=9X-js9gXSME
С научным сообщением «Испытание математических моделей и их программная реализация в ПК SCAD
Office» на XXVI Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций» (28.09-30.09.2015 г.,СПб ГАСУ), можно ознакомиться:
youtube.com/watch?v=MwaYDUaFNOk youtube.com/watch?v=846q_badQzk
youtube.com/watch?v=EM9zQmHdBSU youtube.com/watch?v=3Xz--TFGSYY
Испытания фрагменты фрикционно –подвижных соединений с сейсмостойким огнезащитным материалом из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
, согласно СП 16.13330.2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, ГОСТ Р
28.
58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7, согласно инструкции «Элементы теориитрения, расчет и технология применения фрикционно-под-вижных соединений», НИИ мостов, ПГУПС (д.т.н.Уздин
А.М.и др. ), согласно изобретениям №№ 1143895, 1174616, 1168755 SU, 4094111US, TW201400676. При
испытаниях использовалось изобретение «Опора сейсмостойкая», Мкл. Е04Н 9/02, смотри seismofond.ru
НОРМАТИВНЫЕ ССЫЛКИ
1. СНиП 11-02-96. Инженерные изыскания для строительства. Общие положения.
2. СНиП 1.02.07-87. Инженерные изыскания для строительства.
3. СНиП 2.02.01-83*. Основания зданий и сооружений.
4. СНиП 2.01.07-85. Нагрузки и воздействия БСТ: № 5...90, №№ 11,12...93.
5. СНиП 3.02.01-87. Земляные сооружения. Основания и фундаменты.
6. СНиП 23-01-99. Строительная климатология.
7. СНиП 3.03.01-87. Несущие и ограждающие конструкции.
8. СНиП 2.03.01-84* Бетонные и железобетонные конструкции.
9. СНиП II-22-81. Каменные и армокаменные конструкции. Нормы проектирования.
10. СНиП 2.03.11-85. Защита строительных конструкций от коррозии.
11. ГОСТ 25100-95. Грунты. Классификация.
12. ГОСТ 28622-90. Грунты. Метод лабораторного определения степени пучинистости.
13. Руководство по проектированию и устройству фундаментов в вытрамбованных котлованах, Стройиздат, М.,
1981.
СТП 006-97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ
НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА
1998
Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов, канд.
техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября 1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами «Мостострой», «Транспроект» Корпорации «Трансстрой»,
Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163-69 «Инструкция по технологии устройства
соединений на высокопрочных болтах в стальных конструкциях мостов»
Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное
повышенной надежности) с сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), работающего на растяжение согласно СП
4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8 Стальные конструкции, Технический
кодекс, СП 16.13330.2011 (СНиП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3, 14.4, 15, 15.2, в
соответствии сизобретением № TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК)
E04B1/98; F16F15/10 (демпфирующая опора с фланцевыми, фрикционно–подвижными соеди-нениями), Тайвань,
согласно изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United
States Patent 4,094,111 [45] June 13, 1978, согласно изобретению «Опора сейсмостойкая
.http://www.youtube.com/watchv=76EkkDHTvgM
Поз.
1
2
3
4
5
6
Обозначение
Болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обозженная - плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин в пропиленный
паз стальной шпильки (болта)
Кол
4
4
4
4
4
4
После испытаний фрагментов фрикционно-подвижных соединений и демпфирующих узлов крепления с
сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)на осевое статическое усилие в ПКТИ-СтройТЕСТ", адрес: 197341, СПб,
29.
Афонская, д. 2 (протокол испытаний на осевое статическое усилие сдвига дугообраз-ного зажима с анкернойшпильки № 1516-2 от 25.11.2013) проводились испытания математических моделей в ПК SCAD (сделано научное
сообщение на ХXVI Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций» (28.09-30.09.2015, СПб ГАСУ) по теме «Испытание математических моделей
на фланцевых фрикционно-подвижных соединениях (ФФПС) и их программная реализация в ПК SCAD» (инж. А.И.
Коваленко), ссылка:vk.com/ooseismofond vk.com/ooseismofondrus
youtube.com/watch?v=MwaYDUaFNOk/www.youtube.com/watch?v=TKBbeFiFhHw
/www.youtube.com/watch?v=GemYe2Pt2UU.
Рис. Испытание узлов, фрагментов фрикционно-подвижных соединений с сейсмостойким огнезащитным
материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
на осевое статическое усилие сдвига (протокол испытаний № 1516-2 от 25.11.2017 г., в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341,СПб, ул. Афонская, д.2.
Рис. Узлы, фрагменты фрикционно-подвижных соединений с сейсмостойким огнезащитным материалом из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»),предназначенные для работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно
по шкале MSK-64, I кат.НП 031-01.
3. Цель и условия лабораторных испытаний. Методика испытаний с сейсмостойким огнезащитным материалом
ОГРАКС-МСК выпускаемый по ТУ 5728-068-13267785-10, на основе полимера и минеральных наполнителей в
органическом растворителе(АО НПО «УНИХИМТЕК»)
3.Цель испытаний - оценка пригодности и эксплуатационной надежности демпфирующих узлов крепления и
фрик-ционно-подвижных соединений с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
для работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-
30.
01.1. Два образца жестко крепились на испытательной машине ZD -10/90 (сертификат о калибровке № 13-1371 от
28.08.2013) поочередно в одном направлении.
2. Испытания проводились в нормальных климатических условиях по ГОСТ 15150-69: температура воздуха +25°С;
относительная влажность воздуха - 80%; атмосферное давление - 84 кПа (730 мм ртутного столба).
Рис. При испытаниях на огнестойкость металлоконструкций с сейсмостойким огнезащитным материалом из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
и на пожарную нагрузку использовались фрагменты фрикционно-подвижных соединений, предназначенные для
работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01.
Болты, гайки и шайбы фрикционно-подвижных соединений ослаблены («гибкие») за счет обжига в муфельных
печах согласно ГОСТ Р 58868-2007.
С испытаниями огнестойоксти и моделированием пожарной нагрузки на протяжных фрикционных узлах
крепления с контролируемым натяжением, установленных в длинных овальных отверстиях в «ПКТИ-СтройТЕСТ»,
адрес: 197341,СПб, ул. Афонская, д.2, (акт испытания на осевое статическое усилие сдвига дугообразного зажима
анкерной шпильки № 1516-2 от 25.11.2013) можно ознакомиться: youtube.com/watch?v=846q_badQzk
youtube.com/watch?v=EM9zQmHdBSU youtube.com/watch?v=3Xz--TFGSYY
Моделирование огнестойксти и пожарной нагрузки металлоконструкций с сейсмостойким огнезащитным
материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
при использовании демпфирующих узлов крепления и фрикционно-подвижных соединений (шпильки, гайки,
31.
болты, шайбы, прокладки, латунная шпилька с подпиленным в ней пазом, с изолирующей трубой, свинцоваяшайба, медный стопорный клин) и статические испытания производились на основании спектров ответов по НП031-01, на основе синтезированных акселерограмм в программе SCAD, ANSYS.
При лабораторных испытаниях фрагментов узлов крепления системы металлических констркуций с
сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), использовались математические модели, построенные в ПК SCAD с ЭПУ
(ЭПУ -энергопоглотитель пиковых ускорений), с помощью которого можно поглощать сейсмическую, взрывную
энергию при: землетрясении, цунами, урагане, шторме. «Поглотитель энергии пиковых ускорений- ПЭ-ПУ»
пригодится для значительного снижения разрушения при взрыве, землетрясении. В основе прогрессивного
поглотителя ЭПУ лежит принцип «рассеивания и поглощения энергии -РПЭ".
При взрывных и динамических нагрузках происходят перемещение моста, каркаса здания с энергопоглощением
сейсмической энергии за счет использования фрикционно - подвижных соединений (ФПС) и демпфирующих
узлов крепления (ДУК), обладающих значительными фрикционными характеристиками при многокаскадном
рассеивании сейсмической, взрывной энергии. Более подробно смотри: ГОСТ 6249-52 "Шкала по определению
силы землетрясений по МСК-64 и на сайтах seismofond.ru seismofond.hut.ru seismofond.jimdo.com k-аivanovich.narod.ru fond-rosfer. narod.ru [email protected]
Ознакомиться с инструкцией по применению ФПС можно по ссылке: https://vimeo.com/123258523
youtube.com/watch?v=76EkkDHTvgM&feature=youtu.be my.mail.ru/mail/197371/video/_myvideo/42.html
vimeo.com/123258523. См. изобретение № 2010136746 E04C 2/00 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ
ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» и изобретение "Панель противо-взрывная" № 154506 МПК Е04В
32.
Испытания математических моделей металлоконструкций ( МК ) с сейсмостойким огнезащитнымматериалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
проводились с учетом возможности работы металлоконструкций в сейсмоопасных районах с сейсмичностью до
9 баллов включительно по шкале MSK-64, I кат.НП 031-01 (при условии использования фрикционно-повижных
соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с зазором не менее 50 мм и с протяжными растяжками для маятниковых опор, при этом в
центральной части растяжек установлено энергопоглощающее кольцо (маятниковый стальной каркас с
демпфирующими энергопоглотителями) для районов с сейсмичностью более 8 баллов включительно) согласно:
- ГОСТ 17516.1-90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним
воздействующим факторам;
- ГОСТ 16962.2-90 Изделия электротехнические. Методы испытаний на стойкость к механическим внешним
воздействующим факторам;
- ГОСТ 30546.1-98 Общие требования к машинам, приборам в части сейсмостойкости.
- ГОСТ 30546.2-98 Испытания на сейсмостойкость машин, приборов.
- ГОСТ 30546.3-98 Методы определения сейсмостойкости машин, приборов;
- НП 031-01 «Нормы проектирования атомных станций»;
- МЭК 68-3-3 (1991) «Испытания на воздействие внешних факторов. Часть 3. Рук. Методы сейсмических испытаний
для оборудования»; ANSI/IEEEStd. 344-1987 (RevisionofANSI/IEEEStdI 344-1975). Практика, рекомендации IEEE для
аттестации на сейсмостойкость оборудования класса 1Е для атомных станций; -МЭК 60980 Международный
стандарт 60980. Рекомендации и порядок проведения сейсмической квалификации электрического оборудования
для систем безопасных атомных электростанций. Испытания воздействия ГОСТ 30546.1-98 и ГОСТ 17516.1-90 для
землетрясения интенсивностью 9 баллов по шкале MSK-64 и высотной установке изделия от 0.00м до+70 м и
виброустойчивости согласно группе механического исполнения М7,
- ГОСТ Р 51317.6.4-2009 «Электромагнитные помехи от технических средств применяемых в пром зонах».
- СТО 70238424.27.140.034-2009 - «Гидроэлектростанции, оценка сейсмостойкости оборудования номы и
требования».
- Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок ПНАЭ Г-7-00286».
33.
34.
Рис. Моделирование пожарной нагрузки для металлоконструкций с сейсмостойким огнезащитным материаломиз огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
и варианты демпфирующих узлов крепления и фрикционно-подвижных соединений, предназначенных для
работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01.
Сводная таблица значений параметров сейсмического движения грунта при различных интенсивностях для
испытания в программе SCAD, ANSYS фрагментов узлов крепления металлоконструкций с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»)
I,
PGA,
PGV,
PGD,
PGA*PG PGA*d0
баллы см/с2
см/с
см
V
.5
1
0.448
0.0167
0.0003 0.007
0.60
1.5
0.704
0.0289
0.0006
0.020
1.0
2
1.12
0.0501
0.0013
0.056
1.62
2.5
1.76
0.0867
0.0028
0.152
2.63
3
2.8
0.15
0.0062
0.42
4.27
3.5
4.4
0.25
0.014
1.1
7.08
4
7.0
0.44
0.030
3.08
11.7
4.5
11.0
0.75
0.063
8.25
19.5
5
17.5
1.3
0.14
22.75
32.4
5.5
28
2.2
0.30
61.6
53.7
6
44
3.8
0.66
167.2
89.1
35.
6.570
6.5
1.4
455
151
7
110
11
3.2
1210
251
7.5
175
19
7.0
3325
416
8
280
33
15
9240
691
8.5
440
57
33
25080
1150
9
700
98
72
68600
1900
9.5
1100
170
160
187000
3160
Примечание: Приведённые значения параметров
предназначены для
оценки сейсмической интенсивности. Для проектирования
зданий
используются понижающие коэффициенты.
Испытания проводятся согласно требованиям ГОСТ 14.13330.2011 п.4.7 (обеспечение демпфированности узла
крепления оборудования) согласно ГОСТ Р 54257-2001 для районов с сейсмичностью 9 баллов с использованием
при креплении металлоконструкций фрикционно-повижных соединений (ФПС), расположенных в длинных
овальных отверстиях, работающих на растяжение, с контролируемым натяжением, с зазором не менее 50 мм,
согласно изо-бретениям № 1143895, 1174616, 1168755, согласно рекомендациям «Руководство по креплению
технологического оборудования фундаментными болтами», альбома серия 4.402-9 «Анкерные болты», вып.5,
«Инструкция по выбору рамных податливых крепей горных выработок», «Инструкции по применению
высокопрочных болтов в эксплуа-тируемых мостах» согласно изобретениям № 2221112, 2455440, 2062653,
2062653, 2477353, 2428550, 2256747, 2196211, 2836951, 2066362.
36.
37.
38.
Рис.При испытании фрагментов фрикционно-подвижных соединений с сейсмостойким огнезащитнымматериалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
39.
использовался гайковерт ИП-3128 (допускает настройку величины крутящих моментов от 80 до 150 кгс х м)согласно рекомендациям «ЦНИИПроектстальконструкция им. Н.П.Мельникова».
Результаты статических испытаний крепежных изделий на испытательную нагрузку.
Заказчик: ОО «СейсмоФОНД» при СПб ГАСУ Основание: Заявка от 03.014.2022 г.
Описание испытуемых узлов крепления:
1. Гайка полиамидная М16 (DIN934) запрессована в гайку латунную М20 высотой 15 мм и установлена на болт
цинк. 8.8 Ml0*100 (DIN933) - 3 образца.
2. Две гайки полиамидных М16 (DIN934) запрессованы в гайку латунную М20 высотой 15 мм и установлены на
болт цинк. 8.8М10*100 (DIN933) - 3 образца.
3. Гайка полиамидная М16 (DIN934) запрессована в гайку 8 ZN М22 высотой 17 мм и установлена на болт цинк. 8.8
М12*220 (DIN933) - 3 образца.
4. Две гайка полиамидных Ml6 (DIN934) запрессованы в гайку 8 ZN М22 высотой 17 мм и установлены на болт
цинк. 8.8 М12*220 (DIN933) - 3 образца.
5. Гайка латунная Ml6 высотой 10 мм с прорезью установлена на болт цинк. 8,8 М12* 120 - 2 образца.
6. Гайка 8 ZN М16 высотой 10 мм с прорезью мм установлена на болт цинк 8,8 М12*120 - 1 образец.
Дата и условия проведения испытаний: Испытания проведены с 25.11.2017 года по 30.11.2017 года в помещении
испытательной лаборатории строительных материалов и конструкций. Температура воздуха +21°С.
Определяемые показатели: Осевое статическое усилие срыва или сдвига гайки (зажим, скоба - амортизирующие
элементы) с анкерного болта. Методика испытаний: ГОСТ 1759.5-87 Гайки. Механические свойства и методы
испытаний.
Испытательное оборудование: Для создания осевого усилия использовалась испытательная машина ZD-10/90 зав.
№ 66/79 (сертификат о калибровке № 11 14277 от 23.08.2011 г.). Регистрация усилия выдергивания
производилась по шкалам до 400; 1000; 4000 и 10000 кгс.
Организация, выполняющая испытания: Обособленное подразделение ООО «РОССТРО» - «ПКТИ». Испытательный
центр «ПКТИ-СтройТЕСТ». ИЛ Строительных материалов. Аттестат аккредитации федерального агентства по
техническому регулированию и метрологии РОСС RU0001.22.CJI33 от 24.12.2010 года.
Испытания фрагментов и деталей узлов крепления оборудования, предназначенных для работы в районах с
сейсмичностью 7-9 баллов проводились согласно требованиям СП 14.13330.2011 п.4.7, ГОСТ Р 54257-2001
(демпфирующие узлы крепления в виде фундаментных болтов с изолирующей трубой и амортизирующими или
демпфирующими элементами выполнены на основе рекомендаций «Руководство по креплению технологического оборудования фундаментными болтами», альбома «Анкерные болты», серия 4.402-9, вып. 5,
Инструкция по выбору рамных податливых крепей горных выработок», «Инструкции по применению
высокопрочных болтов в эксплуатируемых мостах», согласно изобретениям № 20081246, 1701875).
Испытывались демпфирующие крепления в виде фундаментных болтов с изолирующей медной или полимерной
трубой: фундаментный болт (анкер) диаметром 12 мм - 16 мм, с податливым зажимом и стопором, при этом
якорем анкера служат два зажима для тросов согласно СН 471-75, альбома «Анкерные болты», серия 4.402-9
выпуск 5, ГОСТ 50073-92. Испытание проводилось на соответствие требованиям СП 14.13330.2011, п.4.7
(обеспечение демпфированности узла крепления оборудования), ГОСТ Р 54257-2010 «Надежность строительных
конструкций и оснований», ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9
баллов».
40.
При испытаниях затяжки для податливых анкеров узлов крепления оборудования необходимо исполь-зоватьсвинцовые шайбы согласно ТР 51748-2001 «Крепи металлические податливые рамные», ГОСТ Р 50910-96 «Крепи
металлические податливые рамные. Методы испытания - в методических указаниях «Определение
податливости узлов соединений крепей горных выработок», ГУ КУЗГТУ, Прокопьевск, 2008 г., с учетом
требований ВСН 362-87, ОСТ 108.275.51-80, ОСТ 36-146-88.
Руководитель ИЦ «ПКТИ-СтройТЕСТ» _____ Тамара Валентиновна Суворова
Испытатель _________________________ Александр Петрович Суворов
Испытания проводились в присутствии представителя «Заказчика», президента ОО «СейсмоФОНД» при СПб ГАСУ
Мажиев Х Н .
При испытаниях фрагментов фпс с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для работы в
сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01
учитывались Параметры колебаний грунта по шкаеле msk 64 при землетрясениях при проектировании ОБЪЕКТА.
Приведенные в таблицах Б.1 - Б.3 значения параметров колебаний грунта для целочисленных значений силы
землетрясения соответствуют действующим нормам строительства в сейсмических районах, шкалам MSK-64.
Параметры колебаний среднего по сейсмическим свойствам грунта для дробных значений силы землетрясения
получены с использованием показательных зависимостей между параметрами колебаний грунта (U, V, W) и
силой землетрясения I в виде
,
,
, где
,
Проведение испытаний на осевое статическое усилие сдвига фрагментов фрикционно-подвижных соединений
(ФПС) и демпфирующих узлов крепления с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
в виде болтовых соединений с изолирующими трубами и амортизирующими элементами в виде дугообразного
зажима с анкерной шпилькой осуществлялось на испытательной машине ZD -10/90 (сертификат о калибровке №
13-1371 от 28.08.2013) в ИЦ "ПКТИ–СтройТЕСТ" (протокол испытаний на осевое статическое усилие сдвига
дугообразного зажима с анкерной шпилькой №1516-2 от 25.11.2003) и в ПК SCAD на основании спектров ответов
для сооружений UBS и UBN по НП-031-01 для сейсмоопасных районов.
Образцы испытывались с условием их использования для работы в сейсмоопасных районах с сейсмичностью до 9
бал-лов включительно по шкале MSK-64, I кат.НП 031-01.
После проведения комплекса испытаний по прогрессивной теории активной сейсмозащиты зданий (АССЗ) на
осевое статическое усилие сдвига и податливость фрагментов фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления проводились дополнительно испытания математических моделей
металлических узлов с сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») по синтезированным акселерограммам в ПК SCAD
согласно СП 14.1330-2011, п. 4.7, ГОСТ 30546.1-98, ГОСТ 30546.3-98 в соответствии с требованиями для оборудования категории 2 в части сейсмостойкости по НП-031-01, ГОСТ 17516.1-90, ГОСТ 30546.1-98, ГОСТ 30546.2-98
в части сейсмостойкости и требований в части устойчивости к сейсмостойким и взрывным воздействиям, к
механическим воздействиям интенсивностью МРЗ 9 баллов (шкала MSK-64) для высотной отметки 0,00- 70.0м и
виброустойчивости по группе М 39.
Испытание математических моделей крепления системы МК с сейсмостойким огнезащитным материалом из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
проводилось в соответствии со Шкалой интенсивности землетрясений.
41.
Демпфирующие узлы крепления выполнены в виде болтовых соединений с амортизирующими элементами.Между зажимом и стопором расстояние 10 мм-30 мм (в зависимости от бальности).
Осевое усилие на тросовом зажиме должно составлять не выше 3 тс, согласно СНиП III -18-75, а на тросовом
стопоре натяжение высокопрочного болта должно составлять 27.1 тс (М24),(М27-35,3 тс), что дает возможность
тросовому зажиму, расположенному на высокопрочном болте работать на сдвиг и позволит демпфирующему
фланцевому соединению во время землетрясения перемещаться на 20 мм-30 мм, что обеспечивает
сейсмостойкость конструкции (допускается крепление клеммами согласно ГОСТ 24741-81 «Крепление крановых
рельсов к стальным подкрановым бакам» с расчет-ной сейсмостойкостью до 9 баллов).
Анализ результатов расчета.
Осуществлялся расчет собственных частот колебаний фрикционно –подвижных соединений (ФПС) системы
МК с сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), расположенных в длинных овальных отверстиях, работающих
на растяжение, с контролируемым натяжением, с зазором не менее 50 мм для районов с сейсмичностью более 8
баллов включительно. При расчете собствен-ных частот колебаний нелинейные элементы (контактные элементы)
были «выключены», т.е. рассматривалось монолитное соединение элементов. Результаты расчета собственных
частот колебаний фрикционно–подвиж-ных соединений (ФПС) с учетом грунта позволили выявить диапазон
таких колебаний. Его граничным зна-чениям соответствуют частоты от 2.9 Гц до 18 Гц. Анализ результатов
модального расчета показал следую-щее:
- низшая частота собственных колебаний конструкций с грунтом составляет 2.82 Гц и практически находится на
границе сопоставимости спектра расчетного воздействия и нормативного спектра, что обеспечивает корректность
использования принятых акселерограмм для расчета сейсмостойкости;
- частоты колебаний фрагмента ФПС совместно с конструкциями попадают в диапазон частот достаточно
интенсивного сейсмического воздействия 20 – 30 Гц, что приводит к появлению в плите деформаций
противоположного знака (наличие растяжения в верхней и нижней части плиты).
0 0 0
0,05 0 0
-5,06
0
5,0
1
1
11
0
11
-14,09
44
-0,0
0,0
22
,0,0
0-0
00
00
-0,01 0 0
00
00
0,03
-0,01
1
1
1
Рис. Форма колебаний узлов ФПС с сейсмостойким огнезащитным материалом из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
Изгиб обожженного болта демпфирующего узла крепления с контрольным натяжением (показали испытания:
нагрузка гидравлическим домкратом усилием 5т) составил более 16 мм. При испытаниях прово-дилась
видеосъемка, проводилось измерение изгиба болта при статической нагрузке домкратом усилим 5 т.
Испытания на податливость демпфирующих обожженных болтов показали, что происходит премещение болта
на 1-2 см во время аварийного взрыва или землетрясения.
При испытаниях моделей и фрагментов фрикционно-подвижных соединениях и демпфирующих узлов
крепления определена надежность соединений путем увеличения демпфирующей способности соединений при
импульсных растягивающих нагрузках и повышения надежности соединения путем обеспечения многокаскадного
демпфирования при сейсмических и динамических нагрузках согласно изобретениям №№№ 1143895, 1174616,
1168755 (авторы: проф.А.М.Уздин и др.) и протокола испытаний на осевое статическое усилие сдвига
дугообразного зажима с анкерной шпилькой №1516-2 от 25.11.2013 г.(ИЦ "ПКТИ-СтройТЕСТ") с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»)
42.
Рис.Варианты фрикционно-подвижных соединений (ФПС) для системы МК с огнезащитным сейсмостойкимматериалом , с контролируемым натяжением для районов с сейсмичностью более 8 баллов включительно.
43.
FFmax
Fy
k2
F0
k1
W
dy
K eff
D
d db
Рис. Варианты демпфирующих узлов крепления и фрикционно-подвижных соединений для системы
металлических конструкций с сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), для работы в сейсмоопасных районах с
сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 031-01.
При испытаниях в испытательной лаборатории ОО "Сейсмофонд" резьба на шпильке с двух сторон стачивалась
до 4.0 мм, 3.5 мм, 3.0 мм для соскальзывания латунной гайки со шпильки во время землетрясения или
аварийного взрыва (протокол №1506-1 от 18.11.2017). На шпильке пропиливался паз для забивки в него медного
стопорного клина. На креплении стопорный клин (из красной обож-женной меди), забитый в паз шпильки, не
даст слететь латунной гайке и будет поглощать сейсмическую или взрывную энергию.
- Первый этап. Испытания проводились на податливость фрагментов фрикционно-подвижных соединений,
демпфиру-ющего узла крепления (шпильки, гайки, болты, шайбы и прокладки) с сейсмостойким огнезащитным
материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»).
Второй этап. Испытания проводились на фрагментах демпфирующих монтажных соединениях. Вариант
«Растяжение» с сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый
по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
Представлены фотографии зажимов и чертежи демпфирующего узла крепления, который состоит из медного
кольца с прорезями (один из вариантов). Прорези необходимы для ослабления кольца. При землетрясении или
взрыве произойдет смятие свинцовой дроби находящейся внутри ослабленного демпфирующего медного кольца
и соответственно частичное гашение сейсмической или взрывной энергии (см. изобретения DE 20 2008 013 975 U1
2009.01.29 и другие). Расчетная нагрузка, при которой должно поплыть демпфирующее кольцо, должна быть
рассчитана согласно СП 14.13330.2011 (S=gmAKbkn= 1 х 9 х 1,5 х 1 = 13, 5 тонн (разделить на 4 анкера). То есть, при
усилии лебедки более 12 тонн демпфирующие кольца должны смяться, сдвинуться на допустимое перемещение,
наклониться на 2-4 градуса и устоять. После испытания кольца надо заменить на новые и подписать второй акт
на месте испытания.
S=gmAKbkn
где, m - масса установки
g - ускорение силы тяжести = 9
А – коэффициент принимаем 0,4 для расчетной сейсмичности 9 баллов
К – 0,4
b- коэффициент динамичности = 1,5 - 1,8
n - коэффициент зависимости =1
соответственно
44.
Заказчиком представлены демпфирующие фрикционно-подвижные соединения, сертификаты, подтверждающиеупругую податливость и демпфирование шпилек, клемм, гаек, тросов и др. крепежных соединений.
Демпфирующий сдвигоустойчивый узел крепления выполнен в виде болтового соединения: болты диаметром 20
мм (ГОСТ 24379.0-80 «Бoлты фундaмeнтныe» и ГОСТ 7798-70, длина болта определяется по проекту), подпиленная
шестигранная низкая гайка (ГОСТ 5915-70, длина паза подпилки не менее 5 мм) и шайба 20 мм (ГОСТ 6402-70).
Количество и диаметр болтов определяется по ГОСТ 6249-52 «Шкала для определения силы землетрясения в
пределах от 6 до 9 баллов» согласно требованиям ГОСТ 1759.4 -87.
Рис. Детали фрикционно-подвижных соединений и демпфирующих узлов крепления с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»)
Испытание математических моделей системы металлоконструкций с сейсмостойким огнезащитным материалом
для работы в сейсмоопасных районах с сейсмичностью до 9 баллов включительно по шкале MSK-64, I кат.НП 03101 (при условии использования в районах с сейсмичностью 8 баллов для крепления металлоконструкций
фрикционно-повижных соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на
растяжение, с контролируемым натяжением, с зазором не менее 50 мм) проводил ОО"Сейсмофонд",(аттестат
рег. НП «СРО «ЦЕНТРСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 и СРО «ИНЖГЕОТЕХ» № 2812010-2014000780-П-29 от 22.04.2010) в ПК SCAD, ANSYS.
.
При испытаниях производилось отключение системы с помощью комплекса автономных регистраторов
сейсмических сигналов высокого разрешения АРСС «БАЙКАЛ-АС». Комплекс АРСС «БАЙКАЛ-АС» предназначен
для проведения исследовательских и прикладных работ в геофизике и сейсмологии.
ОО «СейсмоФОНД» при СПб ГАСУ провела статические испытания и патентные исследования с целью
определения расчетных сейсмичес-ких воздействий, получения набора сейсмических записей или их спектров,
моделирующих расчетные сейсмические воздей-ствия на сдвиговое соединение в виде латунной шпильки с
амортизирующим элементом; выполнен комплекс расчетов и модельных испытаний по определению
напряженности деформированного состояния, по оценке прочности и устойчивости демпфирующих узлов с
сейсмостойким огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
45.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов крепления в виде болтовыхсоеди-нений с изолирующими трубами и амортизирующими элементами с огнезащитной краской проходили
испытания в ИЦ «ПКТИ-СтройТЕСТ», протокол испытания на осевое статистическое усилие сдвига дугообразного
зажима с анкерной шпилькой № 1516-2 от 25.11.2017г. для системы МК с сейсмостойким огнезащитным
материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
по шкале MSK-64, I кат.НП 031-01.
Наименование
изделия
Шпилька
Нормативная документация
Применение
ГОСТ 9066-75
Фланцевое соединение по ГОСТ 12815-80
Шпилька
полнорезьбовая
Гайка
Шайба
Шайба
Болт
Заклёпка вытяжная
Саморезы
DIN 976-1
Хомут
БОЛТЫ
АТК-25.000.000
Для крепления транспортировочных
брусков
Фланцевое соединение по ГОСТ 12815-80
Фланцевое соединение по ГОСТ 12815-80
Фланцевое соединение по ГОСТ 12815-80
Фланцевое соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металоосайдинга/сэндвича и
дополнительного оборудования кблок –
боксу
Фиксация трубопровода
ГОСТ 9064-75
ГОСТ 9065-75
ГОСТ 6402-70
ГОСТ 7798-70
Методика испытаний фрагментов фрикционно-подвижных соединений и демпфирующих узлов крепления в
виде болтовых соединений с изолирующими трубами и амортизирующими элементами (проходили испытания в
ИЦ «ПКТИ-СтройТЕСТ», протокол испытаний на осевое статистическое усилие сдвига дугообразного зажима с
анкерной шпилькой № 1516-2 от 25.11.2017г) с сейсмостойким огнезащитным материалом из огнезащитного
состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и
сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
по шкале MSK-64, I кат.НП 031-01в ПК SCAD.
Статические испытания фрагментов фрикционно-подвижных соединений и демпфирующих узлов крепления в
виде болтовых соединений с изолирующими трубами и амортизирующими элементами с сейсмостойким
огнезащитным материалом из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА») проводились в соответствии с новыми РСУ для пространственных моделей с учетом
графика динамичности норм Азербайджана AzDTN 2.3-1, ГОСТ Р 54257-2010, ГОСТ Р 54157-2010, Eurocade-3,
А500СП, СП 53-102-2004 согласно синтезированных акселерограмм с учетом НП-31-01, ГОСТ 6249-52 «Шкала для
определения силы землетрясения в пределах от 6 до 9 баллов», ГОСТ 17516.1-90, ГОСТ 30546.1, 2, 3-98, ГОСТ
16962.2-90, ГОСТ 30631-99 на основе рекомендаций: ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24.
038.12-72, ВСН 382-87, ОСТ 108.275.51-80 для взрывоопасных и пожароопасных объектов категории А и Б.
4. Испытательное оборудование и измерительные приборы.
Перечень испытательного оборудования и измерительных приборов для проведения испытаний фрагментов
демпфирующих узлов крепления и фрикционно-подвижных соединений с сейсмостойким огнезащитным
материалом ОГРАКС-МСК выпускаемый по ТУ 5728-068-13267785-10, на основе полимера и минеральных
наполнителей в органическом растворителе(АО НПО «УНИХИМТЕК»), приведен в таблице 1.
Таблица 1 Приборы и оборудование для испытания фрагментов демпфирующих узлов крепления и фрикционноподвижных соединений с сейсмостойким огнезащитным материалом ОГРАКС-МСК выпускаемый по ТУ 5728-06813267785-10, на основе полимера и минеральных наполнителей в органическом растворителе(АО НПО
«УНИХИМТЕК») , предназначенных для работы в сейсмоопасных районах с сейсмичностью до 9 баллов
включительно по шкале MSK-64, I кат.НП 031-01.
46.
Испытания на сейсмостойкость математических моделей системы покрытий представляет из себя грунт ГФ-021и огнезащитный состав для покрытия стальных конструкций , изготовленные согласно ТУ 20.30.12-00135635096-2021, с креплением МК и трубопроводов с помощью фрикционных протяжных демпфи-рующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СниП II-23-81*), п.14,3 15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546. 3-98, СП
14.13330-2014, п.4.7, согласно инструкции «Элементы теории трения, расчет и технология применения
фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.) проводились в соответствии с
ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001,
ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизо-лированные»,
Правила проектирования.2013, Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных соединений на
высо-копрочных болтах», НПЦ мостов СПб, согласно мониторингу землетрясений и согласно шкалы
землетрясений, с учетом требований НП-31-01, в части категории сейсмостойкости II «Нормы проектирования
сейсмостойких атомных станций» и с учетом требований предъявляемых к оборудованию (группа механического
исполнения М39; I и II категории по НП 031-01; сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при
уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика здания АЭС, согласно
научного отчета: Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики.
Обеспечение высокой надежности из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА»), осуществляется за счет увеличения демпфирующей способности опоры при
импульсных растягивающих нагрузках путем использования фрикционно-подвижных соединений для скользящих
опор( изобретение, патент № 165076 "Опора сейсмостойкая") и согласно изобретениям патенты №№ 1143895,
1168755, 1174616, автор проф.д.т.н. ПГУПС А.М.Уздин, и использования АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ
СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 35635096-2021 для МК и трубопровода с
демпфирующих компенсаторов (заявка № а 20210217 от 15.07.21 "Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами" Минск ).
47.
48.
Рис.К протоколу лабораторных испытаний прилагаются чертежи, фигуры, описание изобретения, формулаизобретения, реферат к направленной заявке на полезную модель от 19 ноября 2021–«Фрикционно –
демпфирующий компенсатор для трубопроводов», (МПК F0416L)для и использования АТМОСФЕРОСТОЙКИЙ
ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 35635096-2021 для МК и
трубопровода испытаний системы лкм на устойчивость при сейсмическом воздействии 9 балов по шкале MSK-64
включительно при уровне установки 70 метров над нулевой отметкой.Система покрытий представляет из себя
грунт ГФ-021 и огнезащитный состав при крепления трубопровода на демпфирующих опорах Адрес отправления
заявки на изобретение: Федеральная служба по интеллектуальной собственности, Бережковская наб., 30, корп.1,
Москва, Г-59, ГСП-3, 125993 Российская Федерация
2. Место проведения испытаний.
Испытания на сейсмостойкость математических моделей опоры скользящей с трубопроводом для системы
с использованием АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ
20.30.12-001- 35635096-2021 для МК, огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА») для трубопроводов , огнезащитная защита металлических испытуемых системы ,
лкм на устойчивость при сейсмическом воздействии 9 балов по шкале MSK-64 включительно при уровне
установки 70 метров над нулевой отметкой.
Система покрытий представляет из себя грунт ГФ-021 которая наносится на демпфирующие фрикционных
протяжных МК, трубопроводы на фрикционно -подвижных демпфирующих конструкция (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях производились нелинейным
методом расчета в ПК SCAD в соответствии с ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р
54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП
«Здания сейсмо-стойкие и сейсмоизолированные», Правила проектирования.2013, Москва. Д.т.н. Кабанов Е.Б.
«Направления развития фрикционных соединений на высокопрочных болтах», НПЦ мостов СПб, согласно
49.
мониторингу землетрясений и согласно шкалы землетрясений, с учетом требований НП-31-01, в частикатегории сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и с учетом требований
предъявляемых к оборудованию (группа механического исполнения М39; I и II категории по НП 031-01;
сейсмостойкость при воздействии МП3 7 баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м
включительно, с учетом спектров отклика здания АЭС.
Испытания фрагментов антисейсмического фрикционно- демпфирующего соединения трубопроводов,
выполненного в виде болтового соединения (латунная шпилька с пропиленным пазом, с забитым в паз шпильки
медным обожженным энергопогло-щающим клином, свинцовые шайбы), расположенного в длинных овальных
отверстиях, с контролируемым натяжением для обес-печения многокаскадного демпфирования при
динамических нагрузках, преимущественно при импульсных растягивающих нагруз-ках, предназначенного для
трубопроводов опоры скользящей с покрытием АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A»
ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 35635096-2021 для МК и трубопровода испытаний системы лкм на
устойчивость при сейсмическом воздействии 9 балов по шкале MSK-64 включительно при уровне установки 70
метров над нулевой отметкой.
Система покрытий представляет из себя грунт ГФ-021 и огнезащитный состав, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов производились в ИЦ «ПКТИ-СтройТЕСТ».
В качестве объекта исследования были выбраны фрагменты антисейсмического фрикционно- демпфирующего
компенсатора трубопроводов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов .
Испытания производились на вибростойкость (на осевое статическое усилие сдвига по линии нагрузки
соединений) фрикционно-подвижного соединения для трубопроводов с косым антисейсмическим
компенсатором, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов). Дата
проведения испытаний: 03 января 2022 г.
Основание для проведения испытаний договор № 568 от 03.01.2022 : Оценка сейсмостойкости в ПК SCAD
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021 для МК и трубопровода с системой покрытий, представляющей из себя грунт ГФ-021 (огнезащитный
состав)
с испытанием на сейсмостойкость фрагментов антисейсмического фрикционно- демпфирующего компенсатора
для соединения трубопроводов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
по шкале MSK-64.
Испытание фрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым
натяжением на сдвиг и скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол
испытаний№ 1516-2 от 26.01.2021, № 1506-1 от 23.12.20). Аттестат аккредитации федерального агентства по
техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»),
выдано ОАО «НТЦ» Промышленная безопасность», 25.03.2018 г.и в СПбГАСУ, аттестат аккредитации №RA.RU.21
CT39 от 27.05.2015.
Наименование продукции: АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ
ТУ 20.30.12-001- 35635096-2021 , грунт ГФ-021 (огнезащитный состав)
Фрагменты антисейсмического фрикционно- демпфирующиего компенсатора при испытания покрыты были
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021 и
Грунтовкой ГФ-021 , огнезащитным составом при испытаний в ПК SCAD
3. Испытательное оборудование и измерительные приборы. Условия проведения испытания c использованием
АТМОСФЕРОСТОЙКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-001- 356350962021 для МК и трубопровода испытаний системы лкм на устойчивость при сейсмическом воздействии 9 балов по
шкале MSK-64 включительно при уровне установки 70 метров над нулевой отметкой.
Система покрытий представляет из себя грунт ГФ-021 и огнезащитный состав и определение податливости и
сдвига
Перечень (приведен в таблице 1) испытательного оборудования и измерительных приборов для проведения
испытаний фрагментов фрикционно-подвижных соединений для крепления опоры скользящей для испытания
50.
АТМОСФЕРОСТОЙКого ОГНЕЗАЩИТНого СОСТАВа «PROTEX-A» ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 20.30.12-00135635096-2021 для МК и трубопровода испытаний системы лкм на устойчивость при сейсмическом воздействии9 балов по шкале MSK-64 включительно при уровне установки 70 метров над нулевой отметкой с система
покрытий , которая представляет из себя грунт ГФ-021 ( огнезащитный состав ), предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях.
Таблица 1
№ Испытания на перемещение
Тип прибора,
Диапазон
Примечание
п/ демпфирующих узлов с
оснастки,
измерения
п
амортизирующими элементами
оборудование
1
2
Определение статических усилий для
сдвига подат-ливого анкера,
установленного в изолирующей трубе
с амортизирующими податливыми
элемен-тами в виде тросового «или»
дугообразного зажима с анкерной
шпилькой производилось в ИЦ «ПКТИСтрой-ТЕСТ» («Протокол испытания на
осевое статическое усилие сдвигу
дугообразного зажима с анкерной
шпилькой»)
Индикатор с манометром до 10 тонн,
для измерения перемещения
податливого анкера по дугообразному
зажиму с анкерной шпилькой
(тросовому зажиму).
3
Домкрат до 10 тонн для отрыва
демпфирующего крепления
4
Лебедка рычажная (усилие 5 тонн) для
опре-деления смятия при
выдергивании анкера со свинцовым
«тормозным» клином, забитым в
прорезанный паз в резьбовой части
анкера М16
Кувалда, вес 4 кг. (для определения
перемещения демпфирующего анкера
с тормозным клином во время
испытания на монтажной
строительной площадке)
Лабораторный механический
манометр для измерения
перемещения анкера М16 ГОСТ
24376.1 на податливость
5
6
Рулетка,
штангенциркул
ь
Нивелир
Протокол испытания
на осевое статическое
усилие сдвига
дугообразного зажима
с анкерной шпилькой
соглас-но патента на
полезную мо-дель №
102228 «Анкерная
крепь для горных
выработок» и № 44350
«Анкерная крепь».
1%
См. Протокол
испытания на осевое
статическое усилие
сдвига дугообразного
зажима с анкерной
шпилькой
+- (2- 5) см См. Протокол
испытания на осевое
статическое усилие
сдвигу дугообразного
зажима с анкерной
шпилькой со-гласно
патента на полезную
модель № 102228
«Анкерная крепь для
горных выработок» и
№ 44350 «Анкерная
крепь»
1%
См. Протокол
испытания на осевое
статическое усилие
сдвигу дугообразного
зажима с анкерной
шпилькой
+/- 0,0 T/c2 Годен до 12.2025 г.
Штатив с
манометром
0,01 мм –
1000 мм
Индикатор
измерений
перемещений
с ценой
деления в
динах 2 мм
Рулетка,
штангенциркул
ь
Теодолит
+- (2- 5) см
Свид. №1 до 12.2023
г.
51.
7Аналогично вибростенду ES -180-590
использовалась испытательная
машина ZD-10/90 на сдвиг,
скольжение и податливость согласно
ГОСТ 53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
8
Ключ динамометрический
Нивелир
9
Нивелир
10
Домкрат 5 т
Штатив с
манометром
Усилия
выдергивания
шкала 5 тонн
11
Лебедка 5 тонная
12
Болгарка для простукивания пазов в
анкерных болтах для забивки
стопорного свинцового клина
Гайковерт ИП-3128 исползовался при
испыта-ниях на фрагментах, деталях
сдвигоустойчи-вых скользящих
сейсмостойких и взрывостой-ких
узлах крепления.
13
Заводской Годен до 12.2022 г.
№ 66/79
(сертифика
то
калибровк
е № 1431371 от
28.08.2013г
.)
+/- 0,0 T/c2 Годен до 12.2022 г.
0,01 мм. –
1000 мм.
Заводской
№1
(сертифика
т № 14 от
18.09.2013г
.)
5%
Для
определения
сдвига или
скольжение
анкера в
изолированной
трубе
Болгарка
Паз
дисковая пила пропила 2
мм
При
Заводской
испытаниях на № 1 № 19
демпфирован- от 18.09.
ность и
2013г.)
сдвигоустойчивость, допускает
настройку
величины
крутя-щих
моментов от
80до 150 кгс
Свид. № 1 до 12.2023
г.
Годен до 12.2022 г.
Годен до 12.2023 г.
Свидетельство № 3 до
01.12.2023 г.
Годен до 12.2023
Условия проведения испытания узлов крепления опоры скользящей для системы противопожарной защиты
ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100 и трубопровода на скольжение и податливость -согласно нормативным
документам, действующим на 09.11 2021 г., действующим ГОСТ Р и специальным техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») и фрагментов антисейсмического фрикционнодемпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск.
Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей опоры скользящей с
трубопроводом для системы из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-356350962021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмич-ностью более 9 баллов,
52.
серийный выпуск и возможность эксплуатации опоры скользящей с трубопроводом в районах с сейсмич-ностьюболее 9 баллов.
Цель лабораторных испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения с
контролируемым натяжением трубопроводов для опоры скользящей для системы огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов - определение возможности их использования в
районах с сейсмичностью более 9 баллов по шкале MSK-64.
5.Применение численного метода моделирования при испытании в ПК SCAD системы из огнезащитного состава
«PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
проводилось с креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов. Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*),
п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98,
СП 14.13330-2014, п.4.7, согласно инструкции «Элементы теории трения, расчет и технология применения
фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
РАСЧЕТНАЯ СХЕМА испытания СКАД опоры скользящей с трубопроводом для системы противопожарной защиты
из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
с креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов.
Геометрические характеристики схемы испытания математических моделей опоры скользящей с
трубопроводом для системы противопожарной защиты из огнезащитного состава «PROTEX-A», выпускаемый по
ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
, с креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов в ПК SCAD.
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
53.
Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА»)
Нагрузки приложенные на схему из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА»)
Результата расчета
Эпюры усилий для огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы (Опора скользящая для системы противопожарной защиты из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
54.
Нагрузки приложенные на схемуРезультата расчета
Эпюры усилий
«N»
«Му»
«Qz»
«Qy»
Деформации
55.
Коэффициент использования профилей для системы противопожарной защиты из огнезащитногосостава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и
сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»)
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов
конструкции и контрольная сборка производилась в организации «Сейсмофонд». Инструкция по креплению
фланцев к трубам предусматривала такую последовательность производства работ:
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикциболтами с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости ,в плане и по высоте-.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов
по ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов соединены с помощью фрикцианкерных, протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых
соединений (латунная шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным
энергопоглощающим клином, свинцовые шайбы), расположенных в длинных овальных отверстиях.
Для испытания на сейсмостойкость опоры скользящей для системы противопожарной защиты из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
использовались узлы крепления опоры к трубопроводу в виде фланцевых фрикционно –демпфирующих
соединений (ФПС) с контролируемым натяжением, расположенных в длинных овальных отверстиях,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
№
п/
п
1
Наименование проверок и
испытаний
Испытательное
оборудование
Величина контролируемого
параметра
Результаты
испытаний
Проверка крепления
скольжения и податливости
сдвигоустойчивого анкера
Проверка крепления
скольжения и податливости
сдвигоустойчивого анкера
Величина усилия 580 кгс при
котором происходит
скольжение или
перемещение стального
тросового зажима по
стальному анкеру
Величина усилия 1420 кгс
при котором происходит
скольжение или
перемещение стального
тросового зажима по
800 кгс
2
Создание
осевого усилия
испытательной
машиной ZD 10/90 зав №
66/79
(сертификат о
калибровке №
13-1371 от
28.08.2018
340 кгс
56.
3Величина усилия, кгс при
котором происходит, вырыв
болтового крепления из
стального листа (Ст3)
4
Величина усилия, кгс при
котором происходит, вырыв
болтового крепления из
стального листа (Ст3)
5
Величина усилия, кгс при
котором происходит, вырыв
болтового крепления из
стального листа (Ст3)
6
Результаты статических
испытаний крепежных
изделий на испытательную
нагрузку
Результаты статических
испытаний крепежных
изделий на испытательную
нагрузку
Результаты статических
испытаний крепежных
изделий на испытательную
нагрузку
Результаты статических
испытаний крепежных
изделий на испытательную
нагрузку
7
8
9
При испытаниях
податливых
сдвигоустойчивы
х и скользящих
узлов крепления
стальному анкеру
Величина усилий кгс 2420
Характер
разрушения
Срыв резьбы на стальном
срыв резьбы
листе
на стальном
листе
Величина усилий кгс 4000
Характер
Регистрация
разрушения
усилий
Срыв резьбы на стальном
срыв резьбы
производилось
листе
на стальном
по шкале до 1000
листе
кгс
Величина усилий кгс 730
Характер
сдвигоустойчиво
разрушения
го податливого
Срыв резьбы на стальном
срыв резьбы
крепления
листе
на стальном
подогревателя
листе
топливного газа
Величина усилий 30 кгс
Срыв гайки
Смятие граней
М10 на
полимидальной гайки М12на резьбе гайки
резьбе гайки М22
Величина усилий 40 кгс
Срыв гайки
Смятие граней
М12, М22
полимодальной гайки М12на
резьбе гайки М22
Величина усилий 50 кгс
Срыв гайки
Смятие граней
М14, М22
полимидальной гайки М12на
резьбе гайки М22
Величина усилий 150 кгс
Срыв гайки
Смятие граней
М16, М22
полимидальной гайки М12
на резьбе гайки М22
Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное
повышенной надежности), работающего на растяжение согласно СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-2742012(02250), Минск, 2013, 10.3.2, 10.8 Стальные конструкции, Технический кодекс, СП 16.13330.2011 (СниП II -2381*) Стальные конструкции, Москва, 2011г., п.п. 14.3, 14.4, 15, 15.2, в соответствии с изобретением №
TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК) E04B1/98; F16F15/10
(демпфирующая опора с фланцевыми, фрикционно–подвижными соединениями), Тайвань, согласно
изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United States
Patent 4,094,111 [45] June 13, 1978, согласно изобретения «Опора сейсмостойкая, патент № 165076 (авторы:
Андреев Б.А, Коваленко А.И) (проходили испытания).
Поз.
1
2
3
4
5
6
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением
М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в
пропиленный паз латунной или обожженной стальной шпильки
(болта)
Наименование
изделия
Нормативная документация
Применение
Кол
4
4
4
4
4
4
57.
ШпилькаГОСТ 9066-75
Шпилька
полнорезьбовая
Гайка
DIN 976-1
Шайба
ГОСТ 9065-75
Шайба
ГОСТ 6402-70
Болт
ГОСТ 7798-70
Фрикционно-подвижное соединение по
ГОСТ 12815-80
Для крепления транспортировочных
брусков
Фрикционно-подвижное соединение по
ГОСТ 12815-80
Фрикционно-подвижное соединение по
ГОСТ 12815-80
Фрикционно-подвижное соединение по
ГОСТ 12815-80
Фрикционно-подвижное соединение по
ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и
дополнительного оборудования
Фиксация кабельтрасс
ГОСТ 9064-75
Заклёпка вытяжная
Шпилька
Хомут
БОЛТЫ
№
1
АТК-25.000.000
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на
соответствие ГОСТ 17516.-90
п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK64) на основе рекомендаций:
ОСТ -34-10-757-97, ОСТ 36-7282, СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопро-водов
подвижные» (скользящие,
катко-вые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
Наименование и тип Диа
лабораторного
паз
измерительного
он
оборудования
изм
ере
ний
кон
тро
лир
уем
ых
вел
ичи
н
Испытание в ПК
SCAD узлов
крепления спектральным методом
на ос-нове
синтезированных
акселерограмм на
Испытание фрагментов
демпфирующих узлов
крепления согласно
«Руководства по креплению
технологического оборудования фунд. Болтами»,
ЦНИИПРОМЗДАНИЙ, М.,
Стройиздат, 1979 г. И альбома
«Анкерные болты», сер. 4.4029, в.5.
Класс
точности
или
предел
допускае
мой
погрешн
ости
Заводс
кой №
Примечание
Согласно программному
комплексу «Интегрированная
система анализа конструкции
SCADOffice» № 0896002 от
28.12.2013.
http://www.youtube.com/watch?v=p
He-
58.
соот-ветствие ГОСТ17516.-90 п.5 (к
сейсмическим
воздействиям 9
баллов по шкале
MSK-64) на основе
рекомендаций: ОСТ
-34-10-757-97, ОСТ
36-72-82, СТО 00412004, МДС 531.2001, РТМ 24.
038.12-72, альбома
серии 4.903, вып. 5
«Опоры
трубопроводов
подвижные»
(скользящие,
катковые,
шариковые) ВСН
382-87, ОСТ
108.275.51-80, ГОСТ
25756-83.
Наименование и тип
лабораторного
измерительного
оборудования
1
Испытание в ПК SCAD
спектраль-ным методом на
основе синтезиро-ванных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейс-мическим
воздействиям 9 баллов по
шкале MSK-64) на основе
рекомен-даций: ОСТ -34-10757-97, ОСТ 36-72-82, СТО
0041-2004, МДС 53-1.2001,
РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры
трубо-проводов
подвижные» (сколь-зящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83.
lYxRUhttp://www.youtube.com/watc
h?v=siCT9DhdhjAhttp://smotri.com/v
ideo/view/?id=v22755810d79
Испытание в ПК SKAD на основе
синте-зированных акселерограмм
фрагментов демпфирующего узла
крепления выпол-ненного в виде
болтового соединения с амортизирующими элементами в виде
тросового зажи-ма со свинцовыми
шайбами, расположенными с двух
сторон болтового крепления,
изготов-ленного согласно «Руководства по креплению
технологического оборудования
фундамент-ными болтами»,
ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979,
предназначенного для работы в
сейсмоопасных районах с сейсмичностью 8 баллов по шкале MSK64.
Диа
паз
он
изм
ере
ний
кон
тро
лир
уем
ых
вел
ичи
н
Класс
Заво Примечание
точности дско
или
й№
предел
допуска
емой
погрешн
ости
В программе SCAD и программмах SCADOffice реализованы и
сертифицированы положения
следующих нормативных
документов:
1) СниП 2.01.07-85* – Нагрузки и
воздействия;
2) СниП II-23-81* – Стальные
конструкции;
3) СниП 2.03.01-84* – Бетонные и
железобетонные конструкции;
4) СниП II-22-81 – Каменные и
армокаменные конструкции;
5) СниП II-7-81* Строительство в
сейсмических районах;
6) СниП 2.02.01-83* – Основания
зданий и сооружений;
7) СниП 2.02.03-85 – Свайные
фундаменты;
59.
8) СниП II-25-80 – Деревянныеконструкции;
9) СниП 52-01-2003 – Бетонные и
железобетонные конструкции.
Основные положения.
9) СП 52-101-2003 – Бетонные и
железобетонные конструкции без
предварительного напряжения
арматуры;
10) СП 53-101-96 – Общие правила
проектирования элементов
стальных конструкций и
соединений;
11) СП 50-101-2004 –
Проектирование и устройство
оснований и фундаментов зданий
и сооружений;
12) СП 50-102-2003 –
Проектирование и устройство
свайных фундаментов
№
Наименование и тип
лабораторного
измерительного
оборудования
1
Испытание в ПК SCAD
спектральным
методом на основе
синтезированных
акселерограмм на
соответ-ствие ГОСТ
17516.-90 п.5 (к
сейсмическим
воздействиям 9
баллов по шкале MSK64) на основе
рекомендаций: ОСТ 34-10-757-97, ОСТ 3672-82, СТО 00412004, МДС 53-1.2001,
РТМ 24. 038.12-72,
альбома серии 4.903,
вып. 5 «Опоры
трубопроводов
подвижные»
(скользящие,
катковые, шариковые)
ВСН 382-87, ОСТ
Диапазон
измерений
контролиру
емых
величин
Клас
с
точн
ости
или
пред
ел
допу
скае
мой
погр
ешн
ости
Завод
ской
№
Примечание
ДБН В.1.2-2:2006 – Нагрузки
и воздействия (Украина);
2) СП 31-114-2004 –
Строительство в
сейсмических районах
(Россия);
3) СниП В1.2-1-98 –
Строительство в
сейсмических районах
(Казахстан);
4) СниП РК 2.03-30-2006 –
Строительство в
сейсмических районах.
Нормы проектирования
(Казахстан);
5) СНРА ІІ-2.02-94 –
Сейсмостойкое
строительство. Нормы
проектирования (Армения);
6) МГСН 4-19-2005 –
Временные нормы и
правила проектирования
многофунк-циональных
60.
108.275.51-80, ГОСТ25756-83
высотных зданий и зданийкомплексов в городе
Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ
СЕЙСМОСТОЙКИХ АТОМНЫХ
СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие
с 1 января 2002
г. Утверждены
постановлением
Госатомнадзора России от
19 октября 2001 г. № 9
Результаты испытаний фрагментов демпфирующих узлов крепления (работают на растяжение) и фрикционноподвижных соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с
контролируемым натяжением согласно изобретениям № 1143895, 1174616, 1168755 для крепления опоры
скользящей для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100, предназначенных
для сейсмоопасных районов с сейсмичностью более 9 баллов с тру-бопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (Ф ПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых
соединений (латун-ная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие
элементы в виде свинцовой шайбы и медного клина)
Наименование
№
Величина контролируемого
Результаты испытаний
№ проверок и испытаний пункта
параметра
п/
по ПМ
п
1
Проверка скольжения , п.6
Величина усилий в кгс
Уточняется опытным
податливости
согласно протокола ПКТИ –
путем
Строй-ТЕСТ
2
Проверка скольжения
При величине усилий 800
Соответствует при
гайки в ИЦ «ПКТИкгс происходит перемещение монтаже зданий для
Строй-ТЕСТ», адрес:
скобы зажима по шпильке
сейсмоопасных
197341, СПб, Афонская
при испытании
районов 8 баллов (по
ул.2 .
шкале MSK-64),
необходимо испытание
на перемещение узла
крепления
3
Проверка смятия
Смотри протокол ПКТИ –
Определяется при
свинцо-вой шайбы.
Строй-ТЕСТ от 18.11.2020
установке зданий
[email protected]
4
Проверка свинцовой
Соответствуют требованиям
соответствует
прокладки
5
Проверка фланцевого
Функционирует при
соответствует
соединения
податливых характеристиках и
перемещениях до 2-4 см
6
Проверка фрагментов
Фрикционно-подвижное
Проверяются
фрикционносоединение (происходит
перемещения
подвижных
многокаскадное демпдомкратом или
соединений
фирование при импульсных
лебедкой
растя-гивающих нагрузках)
61.
78
9
Проверка срыва
резьбы на шпильке
согласно прото-кола
№ 1506-1 от 18.11. 2020
Проверка соединения
ла-тунной гайки и
полиами-дальной
гайки
Осевое статическое усилие
отрыва в кгс(Ст3) 1500-600
кгс ПКТИ –Строй-ТЕСТ
Маркировка, таблички,
надписи соответствуют
требованиям КД Величина
усилия кгс (при котором
происходит перемещение
гайки в узле крепления)
После испытаний фрагменты
демп-фирующих узлов
крепления и фрикционноподвижных соединений для
объектов проходят проверку
на соответствие Инструкции
"Элемен-ты теории трения,
расчет и техно-логия
применения фрикционноподвижных соединений".
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и
фрикционноподвижных соединений для объ-ектов
для сейсмо-опасных
районов 8 баллов по
шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых
соединений (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие
элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина) для опоры скользящей с
трубопроводами для системы противопожарной защиты из огнезащитного состава «PROTEX-A», выпускаемый по
ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных
отверстиях. При осмотре не обнаружено механических повреждений и ослабления демпфирующего фрикцианкерного крепления.
1
Проверка гайки М12 с
пазом
Регистрационные
усилия выдергивания
производи-лись по
шкале до 4000 кгс
Происходит перемещение гайки при 30150 кгс, уточняется при
монтаже
Проверка податливости
латунной шпильки .
п.6
2
Необходимо обернуть
свинцовым или медным листом
шпильку
Наблюдается перемещение
шпильки
Энергию поглощает стопорный
(тор-мозной) клин на шпильке
соответствует
Происходит смятие свинцовой
шайбы
Клин забивается в паз
шпильки с помощью кувалды (4
соответствует
Проверка подпиленной
соответствует
латунной гайки
3
Проверка латунной
соответствует
шпильки с
пропиленным пазом
для стопорного клина
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления,
фрикционно-подвижных соединений работающих на сдвиг и выполненных в виде болтового соединения
(латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в
виде свинцовой шайбы и медного стопорного «тормозного» клина) для крепления опоры скользящей для
системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100.
При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения
трубопроводов для опоры скользящей для системы противопожарной защиты с сейсмостойким огнезащитным
составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида
и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов
1
2
Проверка смятия
п.6
свинцовой шайбы
Проверка смятия
забитого в паз латунной
соответствует
62.
34
5
6
7
8
9
шпильки обожженного
медного стопорного
клина
Проверка
изолирующей трубки в
виде обертки шпильки
медным листом
Проверка гайки со
спилен-ным пазом
Проверка свинцовой
рубашки при
обвертывании шпильки
Проверка свинцовой
прокладки
Проверка шпильки, у
кото-рой две
противоположные
стороны сточены 4.0,
3,5 и 3.0 мм
Проверка фланцевого
соединения со
стальной шпилькой со
сточенными зубьями
Проверка
компенсаторов Z –
образных для
трубопровода
Проверка
компенсаторов
«змейка» для
трубопровода
кг)
Латунная шпилька
соответствует
(расположена в изолирующей
трубе или обернута тонким
слоем медного листа)перемещается на 1 градус при ударе
кувалдой
Гайка с подпиленным пазом
соответствует
сдвигается
Свинцовая рубашка, нанесенная соответствует
на шпилька демпфирует
Многослойная медносоответствует
свинцовая прокладка при ударе
сминается
Согласно протокола ПКТИ от
соответствует
18.11.2013 № 1506 -1 при
нагрузке 1500- 610 кгс ( Ст3)
отрыв шпильки происходит со
срывом резьбы.
Происходит срыв резьбы и
соответствует
сдвиг на 0,5-0,9см
Крепление комплектующих
элементов не ослаблено.
Крепеж не ослаблен.
соответствует
Необходимо дополнительные
испытания при укладке
кабельтрасс (до
контролируемых
неразрушающих перемещений
2-6 см) .
соответствует
Результаты испытания болтового соединения на сдвиг для опоры скользящей для системы противопожарной
защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами и с креплением трубопроводов с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
№ п.п. Наименование узла крепления
Величина усилия, кгс, Характеристики
Опора скользящая для системы
при котором
скольжения,
противопожарной защиты с
происходит
податливости.
сейсмостойким огнезащитным
скольжение или
составом покрытия ( ГОСТ Р 53259- перемещение
2009), атмосферостойким , из
стального зажима для
огнезащитного состава «PROTEX-A», троса по стальному
выпускаемый по ТУ 20.30.12-001- анкеру
35635096-2021, на основе
метилметакрилата и сополимера
63.
поливинилхлорида и винилизобутилового эфира (ООО
«ПРОМТЕХ -ЗАЩИТА»)
1
1.
2.
2
3
Фрикционно-подвижное
соединение (ФПС) с болтовыми
Было ранее (50)
зажимами с четырьмя
Стало
шестигранными гайками Ml0,
затянутыми с помощью гаечного
ключа на половина усилия или
динамометрического ключа с
усилием 40 Н*м. с ( между
контактирующими поверхностями
проложен стальной трос в
пластмассой оплетке диаметром 4
мм)
Фрикционно –подвижное
соединение с четырьмя гайками с Было 90-150
двух сторон затянуты гаечным
ключом на максимальную нагрузку
двумя шестигранными гайками
Стало
М10, затянутыми с помощью
гаечного ключа или
_______
динамометрического ключа с
усилием 20 Н*м.
( между контактирующими
поверхностями проложен стальной
трос впластмассой оплетке
диаметром 4 мм)
4
Перемещение шайбы с
гайкой 2,5 см по овальному
отверстию при постоянной
нагрузке
Перемещение шайбы с
гайком 3,5-4.0 см по
условному овальному
отверстию при постоянной
нагрузке
Рис. Общий вид образцов и узлов при лабораторных испытаниях опоры скользящей для системы
противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»),согласно изобретения № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения № 2010136746 от
64.
20.01.201 «Способ защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легкосбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для
поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018
«Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в оплетке и без оплетки со стальным тросом М 2
мм. Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Рис. Варианты конструктивного решения сейсмозащиты демпфирующих связей , компенсаторов ,для системы
противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»).
Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым
натяжением на сдвиг и скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол
испытаний№ 1516-2 от 22.12.2020). Аттестат аккредитации федерального агентства по техническому
регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО
«НТЦ» Промышленная безопасность»
Типовые альбомы, используемые при испытаниях фрагментов антисейсмического компенсатора для опор
скользящих для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100.
65.
При испытаниях математических моделей демпфирующих опор, компенсаторов, для системыпротивопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»),, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск с
трубопроводами, металлических конструкций с использованием для соединения трубопровода косых
компенсаторов, работающих на сдвиг расчетным способом определялась расчетная несущая способность узлов
податливых креплений, стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных
стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с
контролируемым натяжением, в соответствии со ссылочными стандартами группы 7 (см. 1.2.7), усилие
предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Описание испытание антисейсмического компенсатора работающего на сдвиг 1-2 смс
использованием овальных отверстий
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при
передаче усилия перпендикулярно продольной оси отверстия
0,8
5
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно
продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно
продольной оси отверстия
0,7
6
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно
продольной оси отверстия
0,6
3
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффицие
нт трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных
стандартах группы 7 (см. 1.2.7). Примечание 2 — Классификация поверхностей трения
при любом другом способе обработки должна быть основана на результатах испытаний
образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7
66.
(см. 1.2.7). Примечание 3 — Определения классов поверхностей трения приведены вссылочных стандартах группы 7 (см. 1.2.7). Примечание 4 — При наличии окрашенной
поверхности с течением времени может произойти потеря предварительного
натяжения.
Моделирование систем сейсмоизоляции для трубопроводов для опоры скользящей для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100
Струнные и маятниковые опоры
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
сейсмоизоляции при сейсмических воздействиях, представлены в таблице Б.1.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания
поведения систем сейсмоизоляции для трубопроводов
Типы
Идеализированная
сейсмоизолирующих
Схемы сейсмоизолирующих элементов зависимость F«нагрузкаэлементов
перемещение»F (F-D)
с низкой
способностью к
диссипации
энергии
с высокой
способностью к
диссипации
энергии
F
D
D
D
F
F
D
DD
D
F
FF F
D
F
D
F
С
демпфирующими
способностями
Маятниковые с
демпфирующими
способностями за
счет сухого трения
скользящих
поверхностей
Струнная опора с
ограни-чителями
перемещений за
счет
демпфирующих
упру-гих стальных
пластин со
скольжением
верха опоры за
счет фрикционнопод-вижного
соединения поверхностями
скольжения при
R1=R2 и μ1≈μ2
D
F
FF
F
с плоскими
горизонтальными
поверхностями
скольжения
Фрикционно-подвижные опоры
F
D
D
DD
D
F
F
FF F
D D
D
D
DD
F F
F
F
FF
D D
D
DD
D
F F
D D
FF
F
F
F F
D D
F F
FF
D
D
D
D
F
F
D D
D
D
D
D
F
F
F
D
D
D
67.
Струнная опора струщимися
D
поверхностями
F
согласно
изобретения по
F
D
Уздина А.М №
2550777
D
«Сейсмостойкий
F
мост»
Тарельчатая
F
сейсмоизолиD
рующая опора по
D
изобре-тению. №
2285835 «Тарельчатый
F
виброизолятор
кочетовых», Бюл
D
№ 29 20.10.2006
с демпфирующим
сердечником по
изобретению №
165076 «Опора
сейсмостойкая»
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для
энергопоглощения взрывной энергии, для обеспечения многокаскадного демпфирования при динамических
нагрузках, преимущественно при импульс-ных растягивающих нагрузках для опор скользящих
сейсмоизолирующих для системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия
( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового
эфира (ООО «ПРОМТЕХ -ЗАЩИТА»). Дата проведения испытаний:03 января 2022 г.
Типы фрикционнодемпфи-рующих
Схемы энергопоглощающих
Идеализированная зависимость
энергопоглощаю-щих сдвиговых фрикционнофрикционно-демпфирующей
крестовидных,
демпфирующих энергопоглотителей
«нагрузки для перемещения» (F-D)
трубча-тых,
Косой
компенсатор
энергопоглотител
F
ь ( для
трубопроводов)
D
из шести уголков
с высокой
F
способностью к
поглощению
D
пиковых
ускорений
Энергопоглотитель
квадратный трубчатый
F
D
F
D
F
D
F
F
D
D
F
D
F
F
D
D
F
F
D
D
F
68.
Энергопоглощающие демпфирующиеВинтообразный
,упругопластическ
ие
демпфирующий
компенсатор для
трубопроводов на
фланцевых,
фрикционо –
подвижных
соединениях
(ФФПС ) из шести
уголков
Зиг-заго образный
компенсатор для
трубопроводов
повышенной
способности к
энергопоглощени
ю взрывной и
сейсмической
энергии ( из 3-х
уголков)
Демпфирующий
GTNKTJ,HFPYSQ
компенсатор ( из
шести уголков) на
скользящих
опорах
раскачивается при
смятии медного
обож-женного
клина, забитого в
пропиленный паз
шпильки
Тросовая опора
демпфирующая
перемещающая
по линии нагрузки
(ограничитель
перемещений
одноразовый)
Тросовая
трубпровдная
опора с упруго
пластичный
шарнир –
ограничитель
переме-щений по
линии наг-рузки
(многоразовая)
F
D
D
F
F
D
D
F
F
D
D
F
F
F
F
F
F
F
F
F
F
D
D
D
D
D
D
D
D
F
F
DD
D
D
F
F
F
F
DD
D
D
FF
F
F
D
D
D
D
F
F
D
D
F
F
D
D
F
F
D
D
69.
Демпфирующаяопора (с
короткими
овальными
отверстиями ) и
пластическим
шарниром –
скольжения,
перемещения по
длинным
овальным
отверстиям по
линии нагрузки
(многоразовый)
нагрузки
F
D
F
D
Моменты затяжки для крепления трубопровода Опора скользящая для системы противопожарной защиты с
сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного
состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и
сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») с фланцевыми
фрикционно-подвижными соединениями.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью
фрикционных протяжных демпфирующих компенсаторов с контролируемым натяжением, для применения в
районах с сейсмичностью 9 балловпо шкале MSK-64,обеспечивающих многокаскадное демпфирование при
импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, *H∙м+ для резьбового или болтового
соединения
70.
с шлицевой головкой (винты)с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для
М6 – (8,0±1,0) H∙м, для М8 – (20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить
согласно технической документации завода-изготовителя комплектующих изделий.
Результаты определения параметров ФПС
параметры N
k1106, k2
k ,
подвижки
кН-1
106,кН-1 с/мм
S0, SПЛ q,
f0
м мм
мм-1
м
1
11
32
0.25
11 9
0.00001
0.34
2
8
15
0,24
8 7
0.00044
0.36
3
12
27
0.44
13. 11.2 0.00012
0.39
4
7
14
0.42
14.
12
0.00011
0.29
5
5
14
35
0.1
8
0.0006
0.3
6 4.2
6
6
11
0.2
12 9
0.00002
0.3
7
8
20
0.2
19 16
0.00001
0.3
8
8
15
0.3
9 2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическое
среднеквадратичное
соединения
ожидание
отклонение
k1 106, КН-1
9.25
2.76
k2 106, кН-1
kv с/мм
21.13
0.269
9.06
0.115
S0, мм
Sпл , мм
11.89
8.86
3.78
4.32
q,мм-1
f0
Nо,кН
0.00019
0.329
165.6
165.6
0.00022
0.036
87.7
88.38
N0,
кН
к
105
152
125
193
370
120
106
154
260
90
230
130
310
100
130
75
71.
Результаты определения параметров ФПСпараметры N
k1106, k2
k ,
подвижки
кН-1
106,кН-1 с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0,
кН
к
1
11
32
0.25
11
9
0.00001
0.34 105 260
2
8
15
0,24
8
7
0.00044
0.36 152 90
3
12
27
0.44
13.5 11.2 0.00012
0.39 125 230
4
7
14
0.42
14.6 12
0.00011
0.29 193 130
5
14
35
0.1
8
4.2
0.0006
0.3
370 310
6
6
11
0.2
12
9
0.00002
0.3
120 100
7
8
20
0.2
19
16
0.00001
0.3
106 130
8
8
15
0.3
9
2.5
0.00028
0.35 154 75
Таблица коэффициентов трения скольжения и качения.
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс.
6. Изобретения, используемые при испытаниях демпфирующих опор, компенсаторов для трубопровода, для
системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с
креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК).
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи
используемые при испытаниях на сейсмостойкость в ПК SCAD демпфирующей опоры, компенсатора для
трубопровода, для системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия (
ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-00135635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира
(ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с
креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях (используются в США, Канаде,
Японии, Китае (фирма STARSEIMIC) 1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н.
ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(19)
RU
(11)
165 076
(13)
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 26.09.2019)
72.
(21)(22) Заявка: 2016102130/03,(72) Автор(ы):
22.01.2016
Андреев Борис Александрович (RU),
(24) Дата начала отсчета срока действия
КоваленкоАлександр Иванович (RU)
патента:
(73) Патентообладатель(и):
22.01.2016
Андреев Борис Александрович (RU),
Приоритет(ы):
Коваленко Александр Иванович (RU)
(22) Дата подачи заявки: 22.01.2016
(45) Опубликовано: 10.10.2016 Бюл.
№ 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования
фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие
охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены
отверстия в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза
шириной <Z> и длиной <I> которая превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с
отверстием корпуса при этом паз штока совмещают с поперечными отверстиями корпуса и соединяют болтом,
после чего одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки приводит к уменьшению
зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия сдвига при внешнем
воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от
сейсмических воздействий за счет использования фрикционно податливых соединений. Известны фрикционные
соединения для защиты объектов от динамических воздействий. Известно, например Болтовое соединение
плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит
металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены овальные отверстия
через которые пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением
нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок контакта листов с
меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края овальных отверстий
после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края овальных
отверстий, соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия
листов и среза болтов. Недостатками известного являются: ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за
разброса по трению. Известно также Устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic
friction damping device, E04B 1/98, F16F 15/10.Устройство содержит базовое основание, поддерживающее
защищаемый объект, нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнены
продольные пазы. Трение демпфирования создается между пластинами и наружными поверхностями сегментов.
Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементы - болты,
которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят
через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия
большого количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей:
нижней - корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью
перемещения вдоль общей оси и с возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие, сопрягаемое с цилиндрической
73.
поверхностью штока, и поперечные отверстия (перпендикулярные к центральной оси) в которые устанавливаютзапирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два открытых паза,
которые обеспечивают корпусу возможность деформироваться в радиальном направлении. В теле штока, вдоль
центральной оси, выполнен паз ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает нагрузку в сопряжении штокотверстие корпуса, а продольные пазы обеспечивают возможность деформации корпуса и «переход» сопряжения
из состояния возможного перемещения в состояние «запирания» с возможностью перемещения только под
сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от торца корпуса до нижней точки паза в
штоке. Сущность предлагаемой конструкции поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2);
на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4 изображен
выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D»,
которое охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке
корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I».
В теле штока вдоль оси выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по
ширине диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше
расстояния от торца корпуса до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с
отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с
защищаемым объектом. Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по
подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса и соединяют калиброванным
болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в
положении при котором нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия
затяжки гайки (болта) приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в
свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия
затяжки гайки (болта) и для каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости
поверхностей, направления нагрузок и др.) определяется экспериментально. При воздействии сейсмических
нагрузок превышающих силы трения в сопряжении корпус-шток, происходит сдвиг штока, в пределах длины паза
выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным
элементом, отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с
цилиндрической поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через вертикальный паз,
выполненный в теле штока и закрепленный гайкой с заданным усилием, кроме того вкорпусе, параллельно
центральной оси, выполнено два открытых паза, длина которых, от торца корпуса, больше расстояния до нижней
точки паза штока.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
74.
RU 2010136746(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:
2010 136 746
(13)
A
(51) МПК
E04C 2/00 (2006.01)
Экспертиза завершена (последнее изменение статуса:
02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение
проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления,
возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся тем, что в
объеме каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных
эластичным огнестойким материалом и установленных на легкосбрасываемых фрикционных соединениях при
избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во
всем объеме проема, а в момент взрыва и землетрясения под действием взрывного давления обеспечивают
изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового
соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых
с высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в
работу фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых
натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и
«сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению
конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь
гаек и способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения
на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального
каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической
энергии может определить величину горизонтального и вертикального перемещения «сэндвич»-панели и
определить ее несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив
«сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и
перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем
75.
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве
и при землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО
«Сейсмофонд» - «Защита и безопасность городов».
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(1 RU
(1 2367917
9)
1)
(51) МПК
G01L5/24 (2006.01)
(1 C1
3)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28,
07.04.2008
(24) Дата начала отсчета срока действия
патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(56) Список документов, цитированных в
отчете о
поиске: RU 2296964 C1 10.04.2007. SU
1580188 A1 23.07.1990. RU 2066265 C1
10.09.1996. RU 2025270 C1 30.12.1994. SU
1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово,
ул. Чапаева, 43, корп.3, ЗАО "ИнгерсоллРэнд СиАйЭс"
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭс" (
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И
ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретение относится к измерительной технике и может быть использовано для контроля
крутящего момента затяжки резьбовых соединений. Способ заключается в приложении к затянутому
резьбовому соединению крутящего момента, перевода резьбового соединения из состояния покоя в
состояние движения, повороте на заданный угол, не превышающий 2-4°, и измерении крутящего
момента при достижении углом поворота заданного значения. При этом производится
дополнительный поворот на такой же угол с измерением крутящего момента при достижении углом
поворота заданного значения, а крутящий момент затяжки определяют как разность удвоенного
значения крутящего момента при первоначальном повороте на заданный угол и значения крутящего
момента при дополнительном повороте на заданный угол. Устройство содержит датчик момента,
подключенный ко входу усилителя, выходом соединенного со входом аналого-цифрового
преобразователя, первый и второй регистр памяти, счетчик импульсов, дешифратор, блок
вычислений, цифровой индикатор и элемент ИЛИ. Технический результат заключается в повышении
точности контроля крутящего момента затяжки. 2 н.п. ф-лы, 3 ил
76.
.2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
не действует (последнее изменение статуса:
Статус:
19.09.2011)
Пошлина:
учтена за 3 год с 27.11.1999 по 26.11.2000
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
(21)(22) Заявка: 97120444/28, 26.11.1997
Владимирович (RU),
(24) Дата начала отсчета срока действия патента:
Хусид Раиса Григорьевна
26.11.1997
(RU),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Миролюбов Юрий
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Павлович (RU)
Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - (72) Автор(ы):
М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A,
Рабер Лев Матвеевич (UA),
30.01.83. EP 0170068 A'', 05.02.86.
Кондратов В.В.(RU),
Адрес для переписки:
Хусид Р.Г.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
77.
Владимирович (RU),Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения. Предварительно ослабляют
ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по
рассчетной формуле. Коэффициент закручивания резьбового соединения определяют как отношение
приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации
соединений для повышения точности результатов испытаний.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(72) Автор(ы):
(22) Дата подачи заявки: 19.11.2009
Кунин Симон Соломонович (RU),
(45) Опубликовано: 27.02.2011 Бюл. № 6
Хусид Раиса Григорьевна (RU)
(56) Список документов, цитированных в отчете (73) Патентообладатель(и):
о поиске: SU 1753341 A1, 07.08.1992. SU 1735631 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
2006028177 A1, 16.03.2006.
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2,
кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ
БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля, содержащего
элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно
обработанные по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении
усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия
сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
78.
сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклоненияосуществляют коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего
отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают
самоустанавливающийся сухарик, выполненный из закаленного материала. В результате повышается надежность
соединения. 1 з.п. ф-лы, 1 ил.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного
фланца и своим торцом упирается в кромку отверстия во фланце так, что смежные упоры друг с другом не
взаимодействуют, а только со смежными фланцами, при этом, на упор приходится только половина усилия,
действующего на стык в плоскости фланцев, а другая половина усилия передается непосредственно на фланец
упором смежного фланца.
На фиг.1 приведен общий вид стыка сверху ,применительно к стропильной ферме-, на фиг.2 показано
горизонтальное сечение стыка по оси соединяемых элементов, на фиг.3 показаны разомкнутый стык и расчетная
79.
схема стыка, на фиг.4 приведен вид фланца в разрезе 1-1 на фиг.3.Стык состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси, фланцев 2,
приваренных к скошенным концам соединяемых элементов 1, упоров 3, приваренных к фланцам 2, стяжных
болтов 4, скрепляющих фланцы 2 друг с другом. Оси стыка 5 и 6 расположены в плоскости фланцев и нормально
фланцам соответственно.
Стык растянутых элементовдляна косых фланцах ФПС устраивается следующим образом.
Отправочные марки конструкции ,стропильной фермы- изготавливаются известными приемами, характерными
для решетчатых конструкций. Фланец 2 в сборе с упором 3 изготавливается отдельно из стального листа на
сварке. Из центральной части фланца вырезается участок для образования отверстия, в котором размещается
упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный
материал. Благодаря этому экономится до 25% стали на стык. Контактные поверхности упора и кромки отверстия
во фланце выравниваются стружкой, фрезерованием или другими способами. Фланец изготавливается с
использованием шаблонов и кондукторов. Возможно изготовление фланца способом стального литья, что более
предпочтительно. Фланцы крепятся к скошенным концам соединяемых элементов с помощью кондукторов.
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это
позволяет принять для них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме
того, на материалоемкость предлагаемого соединения позитивно влияют возможные уменьшения диаметров
стяжных болтов 4, снижение их количества или комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории
упругости весьма затрудни-тельно. Это вызвано разнообразием конструкций узлов, особенностями внешнего
нагружения, а также крайне сложным взаимо-действием элементов узла. В связи с этим, расчет напряженнодеформированного состояния модели узла стыка растянутых поясов ферм на косых фланцах выполняется МКЭ.
Для исследования напряженно деформированного состояния в образце был проведен расчет в программном
комплексе SCAD Комета 2, и построена математическая модель. Расчет в Комете 2 основан на СНиП II-23-81,
результат расчета представлен на рисунке 2. Как видно из результатов при расчетной нагрузке стенка колонны
испытывает напряжения в 2,4 раза выше нормативного, также как и прочность сварки и фланца нарушена. Как
можно заметить, в СНиПе заложены слишком высокие коэффициенты запаса прочности. Если же верить SCAD
Комета 2, максимальная нагрузка на узел составляет 15 т/м, что меньше в два раза рассчитанного по британским
нормам
Как можно заметить, результаты, полученные из разных источников, отличаются. Однако решение, полученное
в программном комплексе SCAD наиболее точно описывает напряженное состояние в узле, ввиду того, что
имеется возможность детально описать контактное взаимодействие и построить более структурированную сетку.
Необходимо провести серию испытаний фланцев различной толщины, проанализировав тенденцию разрушения.
Также следует доработать математическую модель на основе натурных испытаний. После чего можно создать
пособие по проектированию фланцевых соединений.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания
проектного усилия натяжения высокопрочного болта Р, кН, необходимо приложить крутящий момент, величина
которого в Нм пропорциональна диаметру болта d, мм, и определяется согласно СТП 006-97 *4+ по эмпирической
формуле М = kPd.
Коэффициент k, называемый коэффициентом закручивания, отражает влияние многочисленных технологических
факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Во-первых,
шероховатость резьбовых поверхностей гайки и болта, определяющая величину сил трения в резьбе при
закручивании. Во-вторых, геометрические параметры резьбы, её шаг и угол профиля. В-третьих, чистота
соприкасающихся поверхностей шайбы и головки болта или гайки в зависимости от того, какой элемент
вращается при натяжении соединения.
80.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены болты,гайки и шайбы, наличие антикоррозионного покрытия, а также на коэффициент закручивания влияет и то,
вращением какого элемента натягивается болтоконтакт. СТП 006-97 установлено, что при закручивании
соединения вращением болта значение крутящего момента должно приниматься на 5 % больше, чем при
натяжении вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной
характеристикой их влияния является устанавливаемый экспериментально коэффициент закручивания.
Для высокопрочных болтов, выпускаемыхВоронежским, Улан-Удэнским и Курганским мостовыми заводами по
ГОСТ Р 52643... 52646-2006 значения Р и М для болтов различного диаметра приведены в табл. 2 СТП 006-97. При
этом коэффициент закручивания k принят равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на
разных заводах, по разным технологиям и стандартам. Допущены к использованию высокопрочные метизы с
антикоррозионным покрытием: кадмиро-ванием, цинкованием, омеднением и другим. В этих условиях
фактическое значение коэффициента закручивания может существенно отличаться от нормативных значений, и
его необходимо контролировать для каждой партии комплектуемых высокопрочных метизов при входном
контроле на строительной площадке по методике, приведённой в приложении Е ГОСТ Р 52643 и в приложении А
СТП 006-97. Допустимые значения коэффициента закручивания в соответствии с требованиями п. 3.11 ГОСТ Р
52643 должны быть в пределах 0,14-0,2 для метизов без защитного покрытия и 0,11-0,2 - для метизов с
покрытием. Погрешность оценки коэффициента закручивания не должна превышать 0,01.Для определения
коэффициента закручивания используют испытательное оборудование, позволяющее одновременно измерять
приложенный к гайке крутящий момент и возникающее в теле болта усилие натяжения с погрешностью, не
превышающей 1 %. При этом применяются измерительные приборы, основанные на различных принципах
регистрации контролируемых характеристик. В качестве такого оборудования в настоящее время используют
динамометрические установки типа ДКП-1, УТБ-40, GVK-14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические
динамометрические ключи типа КЛЦ, автоматически обеспечивающие требуемый крутящий момент с
погрешностью, не превышающей 4 %, посредством цепной передачи, приводимой в движение гидроцилиндром.
Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения
высокопрочных болтов, как правило, применяют ручные динамометрические ключи рычажного типа КТР
Курганского завода ММК с индикатором часового типа ИЧ 10.Их использование приводит к значительным
трудозатратам и физическим перегрузкам рабочих в связи с необходимостью приложения силы от 500 до 800 Н к
рукоятке ключа при создании проектной величины крутящего момента в процессе сборки фрикционных
соединений на болтах диаметром 16-27 мм.
Кроме того, процесс установки высокопрочных болтов ключами КТР значительно удлиняется из-за необходимости
постоянно каждые 4 ч беспрерывной работы и не менее двух раз за смену контролировать исправность ключей их
тарировкой способом подвески контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения
1000 и 2000 болтов и затем каждый раз после натяжения 5000 болтов либо в случае замены таких составных
элементов ключа, как гидроцилиндр или цепной барабан.
При использовании гидравлических ключей упрощается контроль величины крутящего момента, который
осуществляется по манометрам, а специальный механизм в конструкции ключа предотвращает чрезмерное
натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно
обеспечить, используя ручные динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов
при сборке металлоконструкций в стеснённых условиях. Гидравлические ключи типа КЛЦ обеспечивают плавную
затяжку высокопрочных болтов в ограниченном пространстве благодаря меньшим размерам и
противомоментным упорам.
В настоящее время организация в мире разработаны различные модификации гидравлических
динамометрических ключей: серии SDW (2 SDW), SDU (05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и
других SDW.
81.
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах сограниченным доступом и обеспечивают снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования.
Тарировку силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют
на разрывной испытательной машине с построением тарировочного графика в координатах: усилие натяжения
болта в кН (тс) - показание динамометра.
Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР-150 производят с помощью грузов,
подвешиваемых на свободном конце рукоятки горизонтально закреплённого ключа. По результатам тарировки
строится тарировочный график в коорди-натах: крутящий момент в Нм - показания регистрирующего
измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с использованием
тарировочного устройства типа УТ-1, конструкция и принцип работы которого описаны в СТП 006-97, приложение
К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек,
особенно обостряющаяся при применении высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании
их динамометричес-кими ключами до расчётного усилия прокручиваются в 50 % случаев. Причина прокручивания
заключается в недостаточной шерохо-ватости контактных поверхностей головки болта и шайбы, подкладываемой
под неё.
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия
натяжения болтоконтакта является новая конструкция высокопрочного болта с торцевым срезаемым элементом.
Геометрическая форма таких болтов отличается наличием полукруглой головки и торцевогоэлемента с зубчатой
поверхностью, сопряжённого со стержнем болта кольцевой выточкой, глубина которой калибрует площадь среза.
Диаметр дна выточки составляет 70 % номинального диаметра резьбы.
Высокопрочные болты с контролируемым напряжением Tension Control Bolts (TCB) широко применяются в мире.
Их производят в соответствии с техническими требованиями EN 14399-1, с полем допуска резьбы для болтов 6g и
для гаек 6 Н по стандартам ISO 261, ISO 965-2, с классом прочности 10.9 и механическими свойствами по стандарту
EN ISO 898-1и с предельными отклонениями размеров по стандарту EN 14399-10.
В ЦНИИПСК им. Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не
производятся и не применяются.
Конструкция болта с гарантированным моментом затяжки резьбовых соединений основана на связи
механических свойств стали при растяжении и срезе. Расчётное сопротивление стали при срезе составляет 58 % от
расчётного сопротивления при растяжении, определённого по пределу текучести.
При вращении болта за торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки,
удерживаемой муфтой наружного захвата ключа. В момент достижения необходимого усилия натяжения болта
торцевой элемент срезается по сечению, имеющему строго определённый расчётом диаметр.
Для сборки фрикционных соединений на высокопрочных метизах с контролем натяжения по срезу торцевого
элемента применяют ключи специальной конструкции.
Применение болтов с контролируемым натяжением срезом торцевого элемента увеличит производительность
работ по сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о
надёжности такого способа натяжения высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки
динамометрических ключей, необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт
внешнего крутящего момента в процессе натяжения. В результате ключи не требуют упоров и имеют небольшие
размеры.
82.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента,соответствующего достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений
можно производить с одной стороны конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в
процессе изготовления болтов и устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных
соединений, сделает её технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются
вследствие сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть максимально большим, что достигается
упрочнением стали, из которой они изготовляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных
соедине-ний. Замена сварных монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает надежность конструкций и обеспечивает снижение
трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими
типами болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость,
чем обычные болты. Эти два фактора накладывают ограничения на область применения фрикционных
соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых
наиболее полно реализуются их положительные свойства — высокая надежность при восприятии различного
рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в настоящее время, проблема
повышения эффективности использования несущей способности высокопрочных болтов, поиска новых
конструктивных и технологических решений выполнения фрикционных соединений является очень актуальной в
сейсмоопасных районах.
С техническими решениями фрикционно-подвижных соединений (ФПС) обеспечивающих многокаскадное
демпфирование (латунная шпилька, с пропиленным пазом, в который забит медный обожженный клин,
свинцовые шайбы, проходили лабораторные испытания) можно ознакомиться: см.изобретения №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076
RU «Опора сейсмостойкая» Мкл E04H 9/02, Бюл.28, от 10.10. 2016 , СП 16.13330.2011 ( СНиП II-23-81*), п.14,3 15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3 ,СН 471-75, ОСТ 36-72-82, Руководство по проектированию,
изготовлению и сборке монтажа фланцевых соединений стропильных ферм с поясом из широкополочных
двутавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений
стальных строительных конструкций, ЦНИПИ Проектстальконструкция, ОСТ 37. 001.050-73 «Затяжка резьбовых
соединений», Руководство по креплению технологического оборудования фундаментными болтами,
ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты», вып.5, ЛЕНГИПРОНЕФТЕХИМ, Инструкция по
применению высокопрочных болтов в эксплуатируемых мостах, ОСТ108. 275.80, ОСТ37.001. 050-73, ВСН 144-76,
СТП 006-97, Инструкция по проектированию соединений на высокопрочных болтах в стальных конструкциях
мостов», Рабер Л.М. (к.т.н.), Червинский А.Е. «Пути совершенствования технологии выполнения и диагностики
фрикционных соединений на высокопрочных болтах» НМетАУ (Национальная металлургическая академия
Украины, Днепропетровск), ШИФР 2.130-6с.95 , вып. 0-1, 0-2, 0-3. (Строительный Каталог ), «Направление развития
фрикционных соединений. на высокопроч-ных болтах» (НПЦ мостов г . СПб), д.т.н. Кабанов Е.Б, к.т.н. Агеев В.С,
инж. Дернов А.Н., Паушева Л.Ю, Шурыгин М.Н.
При испытаниях фрагментов антисейсмического фрикционно- демпфирующего компенсатора для соединения
трубопроводов и уложенной на опоры скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-65, ОС-80, ОС-100
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из
полиэтилена использовалась заявка на изобретение : «Антисейсмические виброизоляторы» (выполнены в виде
латунного фрикци -болта с пропиленным пазом , куда забивается стопорный обожженный медный клин).
Медный обожженный клин может быть также установлен с двух сторон опоры сейсмостойкой.
Болты снабжены амортизирующими шайбами из свинца, расположенными в отверстиях фланцев.
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении,
осуществляется за счет сминания медного обожженного клина, забитого в пропиленный паз шпильки.
83.
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами, расположенными междуцилиндрическими выступами. При этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты трубопроводов в поперечном направлении, можно установить медные втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующими дополнительными упругими элементами.
Упругие элементы одновременно повышают герметичность соединения (может служить стальной трос ( на
чертеже не показан)). .
Устройство работает следующим образом.
В пропиленный паз латунной шпильки плотно забивается с одинаковым усилием медный обожженный клин,
который является амортизирующим элементом при многокаскадном демпфировании,после чего производится
стягивание соединения гайками с контролируемым натяжением
Латунная шпилька с пропиленным пазом, располагается во фланцевом соединении. Одновременно с
уплотнением соединения онавыполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие свинцовые шайбы ,
повышающие надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и
сейсмонагрузки и давления рабочей среды.
84.
85.
Патент ОПОРА СЕЙСМОСТОЙКАЯ № 165 076 МПК E04H 9/02 (2006.01) Опубликовано: 10.10.2016 Бюл. № 28В результате статических испытаний в ПКТИ (вырыв, сдвиг тросового зажима) фрикци-болтов с сейсмостойким
огнезащитным материалом для системы противопожарной защиты с сейсмостойким огнезащитным составом
покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ
20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и винил
изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для сейсмоопасных районов с
86.
сейсмичностью более 9 баллов, для сейсмоопасных районов РФ с сейсмичностью до 9 баллов включительно пошкале MSK-64 ,для сооружений с трубопроводами установлено следующее: при натяжении высоко-прочных
болтов можно использовать комбинированное соединение на болтах и фрикци-болтах (латунная шпилька с
пропиленным пазом и забитым в паз шпильки медным обожженным клином, свинцовые шайбы).
Рекомендовано применять два способа контроля натяжения:
- закручивание гайки с обеспечением требуемого крутящего момента (натяжение по крутящему моменту) и
поворот гайки на заданный угол от фиксированного начального положения гайки (натяжение по углу поворота).
Второй способ обладает очень низкой точностью и в настоящее время не применяется. Контроль по первому
способу предполагает использование динамометрических ключей, требующих регулярной тарировки и работы
специально обученного персонала, а использование динамометрических ключей типа ММК, КТР и КМШ с
индикатором часового типа ИЧ10 весьма трудоёмко, при этом оценка результата применения субъективна.
Трудоемкость работ по устройству фрикционных соединений в значительной мере снижается при
использовании гидравлических динамометрических ключей. Однако при их использовании сохраняется
проблема прокручивания болтов при вращении гайки. Результаты: недостатки применяемых в настоящее время
технологий устройства фрикционных соединений полностью устраняются при использовании высокопрочных
болтов с контролем натяжения по срезу торцевого элемента. Практическая значимость: применение таких болтов
стабилизирует усилия в болтовых соединениях, упрощает монтажные операции, делает их более
производительными и сокращает сроки монтажа.
Фрикционное соединение, высокопрочный метиз, шероховатость контактной поверхности, усилие натяжения
высокопрочного болта, динамометрический ключ, динамометрическая установка, коэффициент закручивания,
высокопрочный болт с контролируемым напряжением.
Фрикционные соединения на высокопрочных болтах в настоящее время применяются во многих отраслях
промышленности, тяжёлого машиностроения, энергетики, строительства зданий и сооружений. Такие
соединения надёжны в самых сложных условиях работы конструкции под воздействием различного рода
знакопеременных нагрузок: вибрационных, динамических, сейсмических.
Высокопрочные болты устанавливаются в конструкциях подъёмных кранов, реакторов, сосудов высокого
давления, высокотемпе-ратурных резервуаров, насосов, компрессоров, трубопроводов, высотных зданий и
мостовых сооружений. Они незаменимы в креп-лениях подшипников гребных валов судов, корпусов двигателей,
ветряных турбин, на подвижном составе железнодорожного тран-спорта, поэтому в настоящее время интенсивно
ведётся поиск новых конструктивных и технологических решений выполнения фрикционных соединений на
высокопрочных болтах.
Теоретические основы устройства фрикционных соединений на высокопрочных болтах.
Важнейшим достоинством соединений на высокопрочных болтах является их эффективное сопротивление сдвигу
соприкасающихся поверхностей соединяемых конструкций. За счёт этого значительно уменьшаются остаточные
перемещения конструкций и увели-чивается их несущая способность.
Во фрикционных соединениях, согласно СП 35.13330.2011 *3+, расчётное усилие - Qbh, которое может быть
воспринято каждой поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом, т. е.
несущая способность одного болтокон-такта зависит от усилия натяжения высокопрочного болта P и
коэффициента трения между контактными поверхностями ц:где Ybh - коэффициент надежности, принимаемый
по табл. 8.12 СП 35.13330.2011 или по табл. 42 СП 16.13330.2011 в зависимости от величины М и количества
болтов в соединении.
В соответствии с выражением основными параметрами, обеспечивающими надёжность работы соединений на
высокопрочных болтах, являются усилие сжатия контактных поверхностей, создаваемое высокопрочным болтом,
и качество подготовки фрикционных поверхностей соединяемых элементов, характеризующееся
шероховатостью и коэффициентом трения. Чем больше шероховатость контактных поверхностей, тем больше
коэффициент трения и выше несущая способность фрикционного соединения.
Требуемая шероховатость поверхностей не менее Rz40 обеспечивается пескоструйным, дробеструйным и
87.
другими способами обработки при изготовлении конструкций. Шероховатость контролируется механическими,оптическими или цифровыми портативными профилометрами и профилемерами моделей Elcometer 224, TR100,
TR200, Surftest SJ-210, TIME 3220, PosiTector SPG, TQC SP1562, Surtronic 25 и др.
Важнейшей технологической задачей при устройстве фрикционных соединений является обеспечение
требуемого усилия сжатия между контактными поверхностями соединяемых элементов конструкции
натяжением высокопрочного болта на усилие Р, величина которого определяется согласно п. 8.100 СП
35.13330.2011:
Расчётное сопротивление высокопрочного болта растяжению Rbh зависит от механических свойств,
химического состава и способа термообработки стали, используемой для изготовления метизов. Предельно
допустимая величина R,, в соответствии с п. 6.7 СП 16.13330.2011 и п. 8.14 СП 35.13330.2011 принимается не
более 70 % от минимального временного сопротивления высокопрочных болтов разрыву Rbun по ГОСТ Р 526272006. Такой уровень предварительного напряжения болтов обеспечивает их надёжную работу на динамические
нагрузки, предотвращая возможную потерю выносливости и усталостное разрушение соединений.Номинальная
площадь поперечного сечения болта зависит от геометрических параметров его резьбовой поверхности и
принимается по ГОСТ Р ИСО 898-1-2011. Коэффициент надёжности связан со способом контроля натяжения
высокопрочных болтов, принимается равным 0,95 при используемом в настоящее время способе контроля по
крутящему моменту.
Значения нормативных усилий натяжения высокопрочных болтов приведены в табл. Е.1 ГОСТ Р 52643-2006. Их
необходимо точно соблюдать при сборке фрикционных соединений.
Контроль усилия натяжения высокопрочных болтов при монтаже вышек пожарных и трубопровода на ФПС.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания
проектного усилия натяжения высокопрочного болта Р, кН, необходимо приложить крутящий момент, величина
которого в Нм пропорциональна диаметру болта d, мм, и определяется согласно СТП 006-97 по эмпирической
формуле М = kPd. Коэффициент k, называемый коэффициентом закручивания, отражает влияние
многочисленных технологических факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Вопервых, шероховатость резьбовых поверхностей гайки и болта, определяющая величину сил трения в резьбе при
закручивании. Во-вторых, геометрические параметры резьбы, её шаг и угол профиля. В-третьих, чистота
соприкасающихся поверхностей шайбы и головки болта или гайки в зависимости от того, какой элемент
вращается при натяжении соединения.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены
болты, гайки и шайбы, наличие антикоррозионного покрытия.
На коэффициент закручивания влияет и то, вращением какого элемента натягивается болтоконтакт. СТП 006-97
установлено, что при закручивании соединения вращением болта значение крутящего момента должно
приниматься на 5 % больше, чем при натяжении вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной
характеристикой их вли-яния является устанавливаемый экспериментально коэффициент закручивания. Для
высокопрочных болтов, выпускаемых Воронеж-ским, Улан-Удэнским и Курганским мостовыми заводами по ГОСТ
Р 52643... 52646-2006 значения Р и М для болтов различного диаметра приведены в табл. 2 СТП 006-97. При этом
коэффициент закручивания k принят равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на
разных заводах, по разным технологиям и стандартам. Допущены к использованию высокопрочные метизы с
антикоррозионным покрытием: кадмированием, цинкованием, омеднением и другим. В этих условиях
фактическое значение коэффициента закручивания может существенно отличаться от нормативных значений, и
его необходимо контролировать для каждой партии комплектуемых высокопрочных метизов при входном
контроле на строительной площадке по методике, приведённой в приложении Е ГОСТ Р 52643 и в приложении А
СТП 006-97.
88.
Допустимые значения коэффициента закручивания в соответствии с требованиями п. 3.11 ГОСТ Р 52643должны быть в пределах 0,14-0,2 для метизов без защитного покрытия и 0,11-0,2 - для метизов с покрытием.
Погрешность оценки коэффициента закручивания не должна превышать 0,01. Для определения коэффициента
закручивания используют испытательное оборудование, позволяющее одновременно измерять приложенный к
гайке крутящий момент и возникающее в теле болта усилие натяжения с погрешностью, не превышающей 1 %.
При этом применяются измерительные приборы, основанные на различных принципах регистрации
контролируемых характеристик. В качестве такого оборудования в настоящее время используют
динамометрические установки типа ДКП-1, УТБ-40, GVK-14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические
динамометрические ключи типа КЛЦ, автоматически обеспечивающие требуемый крутящий момент с
погрешностью, не превышающей 4 %, посредством цепной передачи, приводимой в движение гидроцилиндром.
Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения
высокопрочных болтов, как правило, применяют ручные динамометрические ключи рычажного типа КТР
Курганского завода ММК с индикатором часового типа ИЧ 10. Их использование приводит к значительным
трудозатратам и физическим перегрузкам рабочих в связи с необходимостью приложения силы от 500 до 800 Н к
рукоятке ключа при создании проектной величины крутящего момента в процессе сборки фрикционных
соединений на болтах диаметром 16-27 мм. Кроме того, процесс установки высокопрочных болтов ключами КТР
значительно удлиняется из-за необходимости постоянно каждые 4 ч беспрерывной работы и не менее двух раз
за смену контролировать исправность ключей их тарировкой способом подвески контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения
1000 и 2000 болтов и затем каждый раз после натяжения 5000 болтов либо в случае замены таких составных
элементов ключа, как гидроцилиндр или цепной барабан. При использовании гидравлических ключей
упрощается контроль величины крутящего момента, который осуществляется по манометрам, а специальный
механизм в конструкции ключа или насосной станции предотвращает чрезмерное натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно
обеспечить, используя ручные динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов
при сборке металлоконструкций в стеснённых условиях. Гидравлические ключи типа КЛЦ обеспечивают плавную
затяжку высокопрочных болтов в ограниченном пространстве благодаря меньшим размерам и
противомоментным упорам.
В настоящее время в мире разработаны различные модификации гидравлических динамометрических ключей:
серии SDW (2 SDW), SDU (05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и других SDW
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах с
ограниченным доступом и обеспечивают снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования. Тарировку
силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют на
разрывной испытательной машине с построением тарировочного графика в координатах: усилие натяжения болта
в кН (тс) - показание динамометра.Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР150 производят с помощью грузов, подвешиваемых на свободном конце рукоятки горизонтально закреплённого
ключа. По результатам тарировки строится тарировочный график в координатах: крутящий момент в Нм показания регистрирующего измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с
использованием тарировочного устройства типа УТ-1, конструкция и принцип работы которого описаны в СТП
006-97, приложение К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек,
особенно обостряю-щаяся при применении высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании
их динамометри-ческими ключами до расчётного усилия прокручиваются в 50 % случаев. Причина
прокручивания заключается в недостаточной шероховатости контактных поверхностей головки болта и шайбы,
подкладываемой под неё.
89.
С новой технологией контроля натяжения высокопрочных болтов при устройстве фрикционных соединенийможно ознакомиться на сайте seismofond.ru
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия
натяжения болтоконтакта является новая конструкция высокопрочного болта с торцевым срезаемым элементом.
Геометрическая форма таких болтов отличается наличием полукруглой головки и торцевого элемента с зубчатой
поверхностью, сопряжённого со стержнем болта кольцевой выточкой, глубина которой калибрует площадь
среза. Диаметр дна выточки составляет 70 % номинального диаметра резьбы.
Высокопрочные болты с контролируемым напряжением Tension Control Bolts (TCB) широко применяются в
мире. Их производят в соответствии с техническими требованиями EN 14399-1, с полем допуска резьбы для
болтов 6g и для гаек 6 Н по стандартам ISO 261, ISO 965-2, с классом прочности 10.9 и механическими свойствами
по стандарту EN ISO 898-1 и с предельными отклонениями размеров по стандарту EN 14399-10. В ЦНИИПСК им.
Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не производятся и
не применяются. Конструкция болта с гарантированным моментом затяжки резьбовых соеди-нений основана на
связи механических свойств стали при растяжении и срезе. Расчётное сопротивление стали при срезе составляет
58 % от расчётного сопротивления при растяжении, определённого по пределу текучести. При вращении болта за
торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки, удерживаемой муфтой
наружного захвата ключа. В момент до-стижения необходимого усилия натяжения болта торцевой элемент
срезается по сечению, имеющему строго определённый расчётом диаметр. Для сборки фрикционных
соединений на высокопрочных метизах с контролем натяжения по срезу торцевого элемента применяют ключи
специальной конструкции
Комплекс АРСС «БАЙКАЛ-АС» предназначен для проведения
исследовательских и прикладных работ в геофизике и сейсмологии.
Включает в себя :
восемь 3-канальных автономных регистраторов сейсмических сигналов
(АРСС);
многофункциональный центральный блок (ЦБ) АНГАРА-03;
персональный компьютер с программным обеспечением.
Комплекс применяется для:
научных исследований;
сейсмического мониторинга;
неразрушающего контроля инженерных сооружений;
регистрации и хранения информации о сейсмических процессах в режиме «черный ящик».
Преимущества:
низкое энергопотребление;
автономная работа от встроенных элементов питания или внешнего аккумулятора;
высокостабильный внутренний генератор с возможностью синхронизации времени во всех
АРСС;
прочный герметизированный корпус;
большой динамический диапазон аналого-цифрового преобразователя для регистрации
сейсмических сигналов;
широкий диапазон рабочих температур.
Контактная информацияРоссия,
630090, Новосибирск,
просп. Акад. Лаврентьева 13/3,
Институт лазерной физики СО РАН,
Тел.: (383) 333-24-89
(383) 333-24-89
Факс: (383) 333-20-67
90.
академик РАН Багаев СергейНиколаевич
E-mail:
[email protected]
Заключение. Выводы и рекомендации. Применение болтов с контролируемым натяжением срезом торцевого
элемента для сооружений с трубопроводами, закрепленных на основании с помощью протяжных фрикционноподвижных соединений (ФПС) с сейсмостойким огнезащитным материалом для системы противопожарной
защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»),
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, для сейсмоопасных районов РФ
с сейсмичностью до 9 баллов включительно по шкале MSK-64 ,значительно увеличит производительность работ
по сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о
надёжности такого способа натяжения высокопрочных болтов для опор кабельных трасс.Такая технология
натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки
динамометрических ключей, необходимость в которой вообще исчезает. Конструкция ключей для установки
болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего момента в процессе
натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента,
соответствующего достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений
можно производить с одной стороны конструкции. Головку болта можно делать не шестигранной, а округлой,
что упростит форму штампов для ее формирования в процессе изготовления болтов и устранит различие во
внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных
соединений, сделает её технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются
вследствие сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть максимально большим, что достигается
упрочнением стали, из которой они изготовляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных
соеди-нений. Замена сварных монтажных соединений промышленных зданий, мостов, кранов и других
решетчатых конструкций болтовыми соединениями повышает надежность конструкций и обеспечивает снижение
трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими
типами болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость,
чем обычные болты. Эти два фактора накладывают ограничения на область применения фрикционных
соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых
наиболее полно реализуются их положительные свойства — высокая надежность при восприятии различного
рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в настоящее время, проблема
повышения эффективности использования несущей способности высокопрочных болтов, поиска новых
конструктивных и технологических решений выполнения фрикционных соединений является очень актуальной в
сейсмоопасных районах.
За счет использования friction-bolt и фрикци-анкеровки с сейсмостойким огнезащитным материалом для
системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
для сейсмоопасных районов РФ с сейсмичностью до 9 баллов включительно по шкале MSK-64 ,для сооружений с
трубопроводами повышается надежность конструкции (достигается путем обеспечения многокаскадного
демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках на
сооружение, оборудование, которые устанавливаются на маятниковых сейсмоизолирующих опорах, на
фрикционно- подвижных соединениях (ФПС)), согласно изобретения "Опора сейсмостойкая" патент №165076.
Обозначение
Кол по ТУ
91.
Поз.1
2
Латунный фрикци- болт с контролируемым
натяжением ТУ
Шайбагровер согласно ТУ
3
Шайба медная обожженная – плоская С.12
4
5
6
Шайба свинцовая плоскаяС.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной
энергопоглощающий клин в пропиленный
паз латунной или стальной шпильки (болта),
для обеспечения многокаскадного
демпфирования при импульсных
растягивающих нагрузках
По изобретению № 1143895,
1168755, 1174616, 165076
По изобретению № 1143895,
1168755, 1174616, 165076
По изобретению № 1143895,
1168755, 1174616, 165076
Толщиной 2 мм
Толщиной 2 мм
Согласно изобретения ( заявка
2016119967/20(031416) от 23.05.
2016 "Опора сейсмоизолирующая
маятниковая"
92.
93.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостовОпределение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву
хсрезны х одн оболтовы х образцов.
94.
Отбор образцов выполняется в соответствии с пунктом 8.12.Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь
зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в
плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на строительстве
при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии
пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на
одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины
должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых
одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех
образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика,
проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для
защиты шаровых кранов и трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным
клином позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении,
вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве .Конструкция фрикци болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на
фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином
вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным
ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
95.
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов отсейсмических воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные
соединения для защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое
соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное
демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при
импульсных растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только
по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению.
Известно также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU
1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В
сегментах выполнены продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает
сейсмические нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности
расчета при использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и
трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет
деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным
пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки
или свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые
обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 ,
Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный
клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа
забиваенься стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный
обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
96.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим являетсямедный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении,
осуществляется смянанием с энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки
или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на
чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной
шпильки с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность
соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится
стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную
величину, обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с
одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы
их жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и
герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность
соединения и надежность его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты
вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего
соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта
будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы,
подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного
фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой
или гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный
элемент, фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м медым
обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими
выступами фланцев, а крепежные элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином
установлены тонкие свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная
обожженная гильза или втулка .
Фиг 1
97.
Фиг 2Фиг 3
Фиг 4
Фиг.5
Фиг 6
Фиг 7
Фиг 8
Фиг 9
(19) SU (11) 1760020 (13) A1
(51) 5 E02D27/34
ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО
ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР
Статус: по данным на 20.11.2007 - прекратил действие
В связи с автоматической обработкой патентных документов в цифровой формат в представленной
библиографической информации возможны ошибки
(21) Заявка: 4824694
(22) Дата подачи заявки: 1990.05.14
(45) Опубликовано: 1992.09.07
(71) Заявитель(и): ТБИЛИССКИЙ ЗОНАЛЬНЫЙ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И
ПРОЕКТНЫЙ ИНСТИТУТ ТИПОВОГО И
ЭКСПЕРИМЕНТАЛЬНОГО ПРОЕКТИРОВАНИЯ
ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ
(72) Автор(ы): КОВАЛЕНКО АЛЕКСАНДР
ИВАНОВИЧ; АЛЕКСЕЕВ ВИКТОР
НИКОЛАЕВИЧ; АКИМОВ ЕВГЕНИЙ
АЛЕКСЕЕВИЧ
(54) Сейсмостойкий фундамент автор Коваленко А И
98.
Характеристики тросовой сейсмостойкой опоры (один из вариантов).Жёсткость удобнее брать как среднециклическую. Жёсткость математически точно описывает поведение системы
в динамике. В ADAMS мы применяем зависимость среднециклической жёсткости от амплитуды деформации,
взятой из эксперимента.
При амплитуде колебаний 0,4 мм:
Жёсткость: 139/0,4=348 Н/мм
99.
Коэф. рассеяния энергии: 2,06Коэф. демпфирования: 0,328
При амплитуде колебаний 1 мм:
Жёсткость: 246/1=246 Н/мм
Коэф. рассеяния энергии: 2,79
Коэф. демпфирования: 0,444
При амплитуде колебаний 2 мм:
Жёсткость: 332/2=166 Н/мм
Коэф. рассеяния энергии: 2,44
Коэф. демпфирования: 0,39
Основные размеры
Основные характеристики
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для системы
противопожарной защиты ОС-25, ОС-32, ОС-50,ОС-65, ОС-80, ОС-100 и узлов крепления опоры скользящей к
трубопроводу с помощью демпфирующих и косых антисейсмических компенсаторов, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами
100.
ВЫВОДЫ по испытанию математических моделей опоры скользящей для системы противопожарной защиты ссейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного
101.
состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимераполивинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Испытания математических моделей системы противопожарной защиты с сейсмостойким огнезащитным
составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEX-A»,
выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера поливинилхлорида и
винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), серийный выпуск, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно программной реализации в
SCAD Office проводились по прогрессивному методу испытания зданий и сооружений как более новому. Для
практического применения фрикционно-подвижных соединений (ФПС) после введения количественной
характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических
моделей в программе SCAD. Процедура оценок эффекта и обработки полученных данных существенно улучшена и
представляет собой стройный алгоритм, обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение
интенсивности земле-трясений по значительно расширенному кругу объектов при различной обеспеченности
данными). Шкала также создает основу для оценки и уменьшения возможного уровня воздействий будущих
землетрясений заданной балльности.
При испытании моделей узлов и фрагментов демпфирующей опора и петлеобразного компенсатора для
системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами с антисейсмическими косых компенсаторов ( изобретение № 887748 « Стыковое соединение
растянутых элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях, оценено влияние
продолжительности колебаний на сейсмическую интенсивность. За полвека количество записей и перемещения
грунта резко увеличилось, что позволило существенно повысить точность испытания математических моделей в
ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция
инструментальных данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих
опор с использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в
местах крепления трубопровода , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
(с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого использования
сейсмоизоляции для трубопроводов и использования ФФПС и демпфирующей сейсмоизоляции для
трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения
трубопро-вода, соединенного с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях, предназначенного для
сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет
происходить перемещение зажима по условному длинному овальному отверстию в зависимости от усилия
затяжки гаек, испытаны два образца узла крепления демпфирующей опоры , демпфирующего компенсатора для
системы противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с
креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного
соединения (ФПС) на станине испытательной машины и приложения усилия к дугообразному зажиму в
направлении оси шпильки, фрагмента узла протяжного фрикционно-подвижного соединения на двух болтах М10
102.
с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр 34 мм), установленных в длинныховальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные здания.
Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.133302011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9
«Анкерные болты», вып. 5 «Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-2742012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2
(моделей), СП 16.13330. 2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП
006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям
№№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW
201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе
прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для определения силы
землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее
составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки №
1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления,
фрикционно-подвижных соединений работающих на сдвиг и выполненных в виде болтового соединения
(латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в
виде свинцовой шайбы и медного стопорного «тормозного» клина), при осмотре не обнаружено механических
повреждений и ослабления демпфирующего соединения для опоры скользящей для системы противопожарной
защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из
огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе
метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА») с
компенсатора для трубопроводов , предназначенными для сейсмоопасных районов с сейсмичностью более 9
баллов.
На основании проведенного испытания математических моделей демпфирующих опоры и связей для системы
противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с
трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры скользящей и
трубопровода делается вывод
Демпфирующие сейсмоизолирующие опоры для системы противопожарной защиты с сейсмостойким
огнезащитным составом покрытия ( ГОСТ Р 53259-2009), атмосферостойким , из огнезащитного состава «PROTEXA», выпускаемый по ТУ 20.30.12-001-35635096-2021, на основе метилметакрилата и сополимера
поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ -ЗАЩИТА»), предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами, соединенными между собой
с помощью демпфирующих компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с
контролируемым натяжением, расположенных в длинных овальных отверстиях для обеспечения
многокаскадного демпфирования при динамических нагрузках (преимуществен-но при импульсных
растягивающих нагрузках в узлах соединения), выполненных согласно изобретениям, патенты №№ 1143895,
1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова, согласно
альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfriction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150,
ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов
по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 042014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ
36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели демпфирующей
сейсмоизолирующей опоры, демпфирующего петлеобразного компенсатора для трубопроводов, для системы
противопожарной защиты с сейсмостойким огнезащитным составом покрытия ( ГОСТ Р 53259-2009),
атмосферостойким , из огнезащитного состава «PROTEX-A», выпускаемый по ТУ 20.30.12-001-35635096-2021, на
основе метилметакрилата и сополимера поливинилхлорида и винил изобутилового эфира (ООО «ПРОМТЕХ ЗАЩИТА»), при испытаниях в ПК SCAD и при испытаниях узлов крепления сейсмоизолирующих демпфирующих
103.
опор, с демпфирующими компенсаторами для трубопроводов , предназначенных для сейсмоопасных районов ссейсмичностью более 9 баллов
Библиография
Градостроительный кодекс Российской Федерации от 29.12.2004 №190-ФЗ
Федеральный закон от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных
объектов»
Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»
Федеральный закон от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании»
Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности сооружений»
BS EN 1998-1:2004. English version. Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules,
seismic actions and rules for buildings. European Committee for Standartization. This British Standard was published
under the authority of the Standards Policy and Strategy Committee on 8 April 2005. 233 p.
International Building Code. IBC 2012. Standard published 05/01/2011 by International Code Council. p. 690.
Проектирование сейсмостойких зданий. Часть: Сейсмоизолирующие фундаменты. Общие положения. НТП РК Х.ХХХХ-ХХ-ХХХХ (Проект). Казахстан, Астана. 2013. 83 с.
Перечень типовых альбомов переданных заказчиком для разработки типовых деталей, узлов и изделий ФПС для
альбома антивибрационных фланцевых фрикционно- подвижных соединений для сооружений с трубопроводами
5.903-13_1 = Изделия и детали трубопроводов для тепловых сетей - Детали (часть 1) @!.djvu
?
3.015-1,82_3 = Униф. отд. стоящ, опоры под тех. трубопроводы - Ст. конструкции - KM #.djvu
?
7.903.9-2_1 = Тепловая изоляция трубопроводов с положительными температурами #!!.djvu
?
3.900-9_0 = Опорные конст. и креп. ст. трубопроводов вн. сантех. систем - Тех. хар-ки #!.djvu
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок...._Дация^уи
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок...._Дация^уи
3.015-16.94 в.З = Эстакады одноярусные под технологические трубо про воды .djvu
?
3.015-16.94 в.З = Эстакады одноярусные под технологические трубо про воды .djvu
3.901.2-16 Конструкции напорных трубопроводов водоснабжения и канализации из чугунных..._Документация^уи
?
3.901.2-16 Конструкции напорных трубопроводов водоснабжения и канализации из чугунных..._Документация^уи
?
4.903-1 Овып.6=Опоры скользящие (Т14.00) предназначены для крепл. ст. технолог, трубопроводов разл. назнач. с
на
?
4.903-1 Овып.6=Опоры скользящие (Т14.00) предназначены для крепл. ст. технолог, трубопроводов разл. назнач. с
на
?
3.015-1.92 вып.З = Унифицированные отдельно стоящие опоры под технологические трубо про воды .djvu
?
3.015-1.92 вып.З = Унифицированные отдельно стоящие опоры под технологические трубо про воды .djvu
?
3.015-1.92 униф отдельно стоие опоры под технологические трубопроводы.djvu
?
3.015-1.92 униф отдельно стоие опоры под технологические трубопроводы.djvu
?
7.904.9-2.v2 = Тепловая изоляция трубопроводов с положительными температурами.djvu
?
3.016.1-11 вып.0-2 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
3.016.1-11 вып.0-2 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
104.
5.900-7.v1 = Опорные конст. и средства крепления стальн. трубопроводов внутренних санитарно-техническихсистем
?4.900-9 Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и..._Документация^уи
?
4.900-9 Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и..._Документация^уи
?
4.900-9 Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и..._Документация^уи
?
313.ТС-008.000 = Типовые решения прокладки трубопроводов тепловых сетей в изоляции из пенополиуритана диг
?
313.ТС-008.000 = Типовые решения прокладки трубопроводов тепловых сетей в изоляции из пенополиуритана диг
?
3.015-3 в. I = униф двухъярусные эстакады под технологические Tpy60np0B0flbi.djvu
?
3.015-3 в. I = униф двухъярусные эстакады под технологические Tpy60np0B0flbi.djvu
?
3.015-3 в. I = униф двухъярусные эстакады под технологические Tpy60np0B0flbi.djvu
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докуция^у
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докуция^у
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докуция^у
?
4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск 1..._Документация^уи
?
4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск 1..._Документация^уи
?
4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск 1..._Документация^уи
?
5.904-52 вып.О Трубопроводная обвязка воздухонагревателей центральных кондиционеров.djvu
?
3.016.1-11 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.сууи
?
3.016.1-11 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.сууи
?
3.016.1-11 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.сууи
?
3.900-9 Вып. 0 Крепление трубопроводов коммуникаций.сууи
?
3.900-9 Вып. 0 Крепление трубопроводов коммуникаций.сууи
?
3.900-9 Вып. 0 Крепление трубопроводов коммуникаций.сууи
?
4.903-10 вып.5 = Опоры трубопроводов неподвижные.сууи
4.903-10 вып.5 = Опоры трубопроводов неподвижные.сууи
?
4.903-10 вып.5 = Опоры трубопроводов неподвижные.сууи
?
4.402-9_4 = Нефтезаводы - Молниезащита и стат. эл-во тех. аппаратов и трубопроводов #.djvu
?
4.402-9_4 = Нефтезаводы - Молниезащита и стат. эл-во тех. аппаратов и трубопроводов #.djvu
?
105.
4.402-9_4 = Нефтезаводы - Молниезащита и стат. эл-во тех. аппаратов и трубопроводов #.djvu?
7.903.9-3.v1-1 = Конструкция тепловой изоляции трубопроводов надземной и подземной канальной прокладки во,
?
5.908-1 Типовые узлы крепления трубопроводов установок автоматического пожаротушения _Докумеия^уи
?
5.908-1 Типовые узлы крепления трубопроводов установок автоматического пожаротушения _Докумеия^уи
?
5.908-1 Типовые узлы крепления трубопроводов установок автоматического пожаротушения _Докумеия^уи
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Документа
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Документа
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Документа
?
3.015-16.94 вО = Эстакады одноярусные под технологические трубо про воды .djvu
?
3.015-16.94 вО = Эстакады одноярусные под технологические трубо про воды .djvu
?
3.015-16.94 вО = Эстакады одноярусные под технологические трубо про воды .djvu
?
3.015-1 b.II-3 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1 B.II-3 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1 B.II-3 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1 B.I = униф отдельно стоящие опоры под технологические трубопроводы.djvu
?
3.015-1 B.I = униф отдельно стоящие опоры под технологические трубопроводы.djvu
?
3.015-1 B.I = униф отдельно стоящие опоры под технологические трубопроводы.djvu
?
7.906.9-2.v1-2 = Тепловая изоляция трубопроводов с положительными температурами.djvu
?
4.904-69 = Детали крепления сантех. приборов и трубопроводов #.djvu
?
4.904-69 = Детали крепления сантех. приборов и трубопроводов #.djvu
?
4.904-69 = Детали крепления сантех. приборов и трубопроводов #.djvu
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докумен5'
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докумен5'
?
3.900.9-13 Опоры и переходы надземной прокладки трубопроводов для водоснабжения и
канализации..._Докумен5'
?
4.903-1 Овып.4=Опоры скользящие (Т14.00) предназначены для крепл. ст. технолог, трубопроводов разл. назнач. с
на
?
106.
4.903-1 Овып.4=Опоры скользящие (Т14.00) предназначены для крепл. ст. технолог, трубопроводов разл. назнач. сна
?
4.903-1 Овып.4=Опоры скользящие (Т14.00) предназначены для крепл. ст. технолог, трубопроводов разл. назнач. с
на
5.900-7.V2 = Опорные конст. и средства крепления стальн. трубопроводов внутренних санитарно-технических
систем
?
3.001.1-3 = Упоры для наружных напорных трубопроводов водопровода и канализации.djvu
?
3.001.1-3 = Упоры для наружных напорных трубопроводов водопровода и канализации.djvu
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных
установок...._Документация^уи
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных
установок...._Документация^уи
?
3.900-9_0 = Опорные конст. и креп. ст. трубопроводов вн. сантех. систем - Тех. хар-ки #!.djvu
?
3.900-9_0 = Опорные конст. и креп. ст. трубопроводов вн. сантех. систем - Тех. хар-ки #!.djvu
?
3.015.2-15 вып.1 Эстакады металлические комбинированные под технологические Tpy60np0B0flbi.djvu
?
3.015.2-15 вып.1 Эстакады металлические комбинированные под технологические Tpy60np0B0flbi.djvu
?
5.900-7.v4 = Опорные конст. и средства крепления стальн. трубопроводов внутренних санитарно-технических
систем
5.903-13.вып.8-95=Изделия и детали трубопроводов для тепловых ceTe^djvu
5.904-52 вып.2 Трубопроводная обвязка воздухонагревателей центральных кондиционеров.djvu
?
3.015-1 B.II-2 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1 B.II-2 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.003.1-187 вып.0 = Сборные железобетонные цельноформованные колодцы для подземных Tpy60np0B0fl0B.djvu
?
3.003.1-187 вып.0 = Сборные железобетонные цельноформованные колодцы для подземных Tpy60np0B0fl0B.djvu
?
3.015-3 в.11-1 = униф двухъярусные эстакады под технологические трубопроводы.djvu
?
3.015-3 в.11-1 = униф двухъярусные эстакады под технологические трубопроводы.djvu
?
3.015-2_92 в.Ill = униф одноярусные эстакады под технологические трубопроводы .djvu
?
3.015-2_92 в.Ill = униф одноярусные эстакады под технологические трубопроводы .djvu
?
3.015-3-92 вып.З = Унифицированные двухъярусные эстакады под технологические Tpy60np0B0flbi.djvu
?
3.015-3-92 вып.З = Унифицированные двухъярусные эстакады под технологические Tpy60np0B0flbi.djvu
?
3.015.1-18.95 вып.О = Опоры компенсаторов технологических трубопроводов.djvu
?
3.015.1-18.95 вып.О = Опоры компенсаторов технологических трубопроводов.djvu
107.
?3.015.1-18.95 вып.О = Опоры компенсаторов технологических трубопроводов.djvu
?
5.903-13 вып.2 Изделия и детали трубопроводов для тепловых сетей.djvu
?
3.903-11 = Тепловая изоляция криволин. и фасон, уч. трубопроводов и узлов o6opya.djvu
?
3.903-11 = Тепловая изоляция криволин. и фасон, уч. трубопроводов и узлов o6opya.djvu
?
3.903-11 = Тепловая изоляция криволин. и фасон, уч. трубопроводов и узлов o6opya.djvu
?
4.900-9 вып.1 = Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и канализации^уи
?
4.900-9 вып.1 = Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и канализации^уи
4.900-9 вып.1 = Узлы и детали трубопроводов из пластмассовых труб для систем водоснабжения и канализации^уи
?
7.903.9-3.v0 = Конструкция тепловой изоляции трубопроводов надземной и подземной канальной прокладки водя
?
3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы.
Выпуск.._Документация.с
?
3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы.
Выпуск.._Документация.с
?
3.016.1-11 вып.1 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
3.016.1-11 вып.1 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
3.015-16.94 в2 = Эстакады одноярусные под технологические трубо про воды .djvu
?
3.015-16.94 в2 = Эстакады одноярусные под технологические трубо про воды .djvu
?
5.903-21 вып.1 = Узлы обвязки регулирующих клапанов на трубопроводах тепло- и холодоснабжения
воздухонагре!
?
3.015-1 ;82_3 = Униф. отд. стоящ, опоры под тех. трубопроводы - Ст. конст. - KM #.djvu
3.015-1 ;82_3 = Униф. отд. стоящ, опоры под тех. трубопроводы - Ст. конст. - KM #.djvu
?4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск
2..._Докумен2тация^уи
4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск
2..._Докумен2тация^уи
?
Б5.000-2.1_крепление_трубопроводов^уи
?
3.901.2-16_0 = Констр. напор, трубопроводов водосн. и канал, из чугунных труб - МП #!.djvu
?
3.901.2-16_0 = Констр. напор, трубопроводов водосн. и канал, из чугунных труб - МП #!.djvu
?
7.904.9-2.v1 = Тепловая изоляция трубопроводов с положительными температурами.djvu
?
3.015-3.92 вО = = униф двухъярусные эстакады под технологические трубо про воды .djvu
?
3.015-3.92 вО = = униф двухъярусные эстакады под технологические трубо про воды .djvu
?
108.
3.015-16.94 вЗ = Эстакады одноярусные под технологические трубо про воды .djvu?
3.015-16.94 вЗ = Эстакады одноярусные под технологические трубо про воды .djvu
?
5.900-7.v3 = Опорные конст. и средства крепления стальн. трубопроводов внутренних санитарно-технических
систем
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок..._Докуция.сууи
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок..._Докуция.сууи
?
3.015.2-15 вып.4 Эстакады металлические комбинированные под технологические трубопроводы и
кабели...._Докуме
?
3.015.2-15 вып.4 Эстакады металлические комбинированные под технологические трубопроводы и
кабели...._Докуме
?
5.903- 13
вып.1 = Изделия и детали трубопроводов для тепловых сетей - Детали (часть 1) @!.djvu
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок...._ция^уи
?
4.903-14 Типовые детали крепления технологических трубопроводов для котельных установок...._ция^уи
?
901-09-9.87 А1 = Переходы трубопроводами водопровода и канализации под железнодорожными путями на стан
?
5.903-13.вып.7-95=Изделия и детали трубопроводов для тепловых ceTe^djvu
5.900-7.v0 = Опорные конст. и средства крепления стальн. трубопроводов внутренних санитарно-технических
систем
5.904- 52
вып.З Трубопроводная обвязка воздухонагревателей центральных кондиционеров.djvu
?
7.402-5 Узлы и детали электрохимической защиты подземных трубопроводов от коррозии. Выпуск l.djvu
?
3.015-7 Стальные опоры для трубопроводов технологических ycraHOBOK.djvu
?
3.015-7 Стальные опоры для трубопроводов технологических ycraHOBOK.djvu
?
3.015-1_92 в.0= Унифицированные отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1_92 в.0= Унифицированные отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.008.9-6;86_0 = Подземные безнапорные трубопроводы - МП.djvu
?
3.008.9-6;86_0 = Подземные безнапорные трубопроводы - МП.djvu
5.904-52 вып.1 Трубопроводная обвязка воздухонагревателей центральных кондиционеров.djvu
3.015.2-15 вып.З Эстакады металлические комбинированные под технологические Tpy60np0B0flbi.djvu
?
3.015.2-15 вып.З Эстакады металлические комбинированные под технологические трубопроводы^уи
3.016.1-11 вып.2 = Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
3.016.1-11 вып.2 = Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
7.402-5 Узлы и детали электрохимической защиты подземных трубопроводов от коррозии. Выпуск 2.djvu
109.
?3.015-3.92 в2-1 = униф двухъярусные эстакады под технологические трубопроводы.djvu
?
3.015-3.92 в2-1 = униф двухъярусные эстакады под технологические трубопроводы.djvu
?
5.903-21 вып.0= Узлы обвязки регулирующих клапанов на трубопроводах тепло- и холодоснабжения воздухонагре!
?
7.906.9-2.V1-1 = Тепловая изоляция трубопроводов с положительными температурами.djvu
?
7.903.9-2_1 = Тепловая изоляция трубопроводов с положительными температурами #!!.djvu
?
3.015-2, в.И-50дноярусные эстакада под техн трубопроводы.djvu
?
3.015-2, в.И-50дноярусные эстакада под техн трубопроводы.djvu
?
3.015.2-15 вып.2 Эстакады металлические комбинированные под технологические Tpy60np0B0flbi.djvu
?
3.015.2-15 вып.2 Эстакады металлические комбинированные под технологические трубопроводы^уи
?
3.016.1-11 вып.0-1 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
3.016.1-11 вып.0-1 Эстакады железобетонные комбинированные под технологические трубопроводы и кабели.djvu
?
4.007-1 Соединительные детали чугунные для асбестоцементных трубопроводов ^Документация.djvu
?
4.007-1 Соединительные детали чугунные для асбестоцементных трубопроводов ^Документация.djvu
?
3.015-1_92 в.11-1 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-1_92 в.11-1 = униф отдельно стоящие опоры под технологические Tpy60np0B0flbi.djvu
?
3.015-3.92 вып.О = Унифицированные отдельно стоящие опоры под технологические трубопроводы .djvu
3.015-3.92 вып.О = Унифицированные отдельно стоящие опоры под технологические трубопроводы .djvu
?
3.015-3.92 в2-2 = униф двухъярусные эстакады под технологические трубопроводы.djvu
3.015-3.92 в2-2 = униф двухъярусные эстакады под технологические трубопроводы.djvu
Адреса американских и немецких фирм, организация занимающихся проектированием, изготовлением
монтажом сальниковых компенсаторов для магистральных трубопроводов в Израиле, США , Германии, Китае
и др старнах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1800-585-TAPS (8277) Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919 20th Avenue SE • Suite 100
Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map] Toll Free: 800.426.9341 Local:
425.951.6200 Fax: 425.951.620 Website address: www.romac.com
110.
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite 1019, Wayne,PA 19087 Telephone: (610) 971-4850
Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019 Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40 540093-47
[email protected] Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
7 – 9 13509 Berlin
Subsidiary Berlin Breitenbachstra?e
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk www.willbrandt.se
Gummiteknik A/S
Заключение Выводы и рекомендации. Применение болтов с контролируемым натяжением срезом торцевого
элемента для системы металлических конструкций с огнезащитным покрытием.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о
надёжности такого способа натяжения высокопрочных болтов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки
динамометрических ключей, необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт
внешнего крутящего момента в процессе натяжения. В результате ключи не требуют упоров и имеют небольшие
размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента,
соответствующего достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений
можно производить с одной стороны конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в
процессе изготовления болтов и устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных
соединений, сделает её технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются
вследствие сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть максимально большим, что достигается
упрочнением стали, из которой они изготов-ляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных
соединений. Замена сварных монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает надежность конструкций и обеспечивает снижение
трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими
типами болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость,
чем обычные болты. Эти два фактора накладывают ограни-чения на область применения фрикционных
соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых
наиболее полно реализуются их положительные свойства — высокая надежность при восприятии различного рода
вибрационных, циклических, знакопеременных нагрузок. Поэтому, в настоящее время, проблема повышения
эффективности использования несущей способности высоко-прочных болтов, поиска новых конструктивных и
технологических решений выполнения фрикци-онных соединений является очень актуальной в сейсмоопасных
районах.
111.
Ознакомиться с инструкцией по применению ФПС можно по ссылке:http://my.mail.ru/mail/197371/video/_myvideo/42.html https://vimeo.com/123258523
За счет использования friction-bolt повышается надежность конструкции (достигается путем обеспечения
многокас-кадного демпфирования при динамических нагрузках, преимущественно при импульсных
растягивающих нагрузках на здание, сооружение, оборудование, которое устанавливается на маятниковых
сейсмоизолирующих опорах, на фланцево-фрикционно- подвижных соединениях (ФФПС)), согласно изобретения
"Опора сейсмостойкая" авторы:. Андреев. Б.А. Коваленко А.И.
В основе фрикци-болта, поглотителя энергии лежит принцип, который называется "рассеивание", "поглощение"
сейсмической, взрывной, вибрационной энергии. Энергопоглощение происходит за счет использования
фланцевых фрикционно - подвижных соединений (ФФПС) с фрикци-болтом и с демпфирующими узлами
крепления (ДУК). Структурные элементы опоры с фрикци-болтом с раз-ными шероховатостями и узлами
соединения каркаса представляют фланцевую, фрикционную сис-тему, обладающую значительными
фрикционными характеристиками с многокаскадным рассеиванием сейсмической, взрывной, вибрационной
энергии.
Совместное скольжение включает зажимные средства на основе friktion-bolt ( аналог американ-ского Hollo
Bolt ), заставляющие указанные поверхности, проскальзывать, при применении силы, стремящейся вызвать такую
силу, чтобы движение большой величины поглотило ЭПУ, согласно ГОСТ Р 53 166-2008 "Воздействие природных
внешних воздействий" по МСК -64.
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по
срезу торцевого элемента / Л. И. Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им.
Мельникова. Промышленное и гражданское строительство. - 2008. - № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых
соединений для строительных стальных конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i
grazhdanskoye stroitelstvo - Proc. of the Melnikov Construction Metal Structures Institute. Industrial and Civil
Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength
Bolt Connections in Steel Constructions of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.:
Стройиздат, 1982. - С. 40 - 41.
Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК,
вып. 19. - М.: Стройиздат, 1977. - С. 93-110.
Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений
на высокопрочных болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер
Л.М. и др. - Заявл. 04.01.1990; опубл. 23.01.1992, Бюл. № 3.
Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних
поверхнях болтового зсувос- тшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник
Нацюнальна металургшна акадспя Украши. - № 2000105588; заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения /
Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов
В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл. 26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов //
Металлург, и горноруд. пром-сть. - 2006. -№ 5. - С. 96-98
112.
Библиографический списокХ. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные
сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания
для студентов всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей
Института дополнительного профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет»
Пятигорский государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая»
E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом
оптимизации и идентификации в механике деформируемых сред и конструкций физическим и математическим
моделирование в ПК SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами из полиэтилена .djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III Стальные конструкций
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под
давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных
трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
Одельский_ Гидравлический расчёт трубопроводов_1967.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu 3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3
113.
м гофр = PH.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубыводопропускн кругл гофр = P4.djvu 4.903-10_л1_Тепловые сети. Детали трубопроводов.djvu
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.90310_м6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети.
Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые
dnl5230.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых
сетей. Выпуск 4. Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей.
Выпуск 4. Компенсаторы сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и
автомобильных.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы
водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1
Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы
водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III Стальные конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы
для проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 Сборные железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 Сборные железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных
трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu
Одельский_ Гидравлический
расчёт трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под
давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
114.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр =
P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи
4.903-10_у.4_Тепловые сети. Опоры трубопроводов
неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр =
P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для магистральных
трубопроводов которые использовались при лабораторных испытаниях в ПК SCADОпора скользящая для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
115.
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие чертежи_Документация^и3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu
Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для
трубопроводов" (F16L23)
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения
предназ-начена для сейсмозащиты , виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий
от сейсмических, взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры, многослойной втулки
(гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной
демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части подвижной в вертикальном
направлении с демпфирующим эффектом, соединенные между собой с помощью фрикционно-подвижных
соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой
втулкой (гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего
корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном
отверстии верха и низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
116.
Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующий компенсатор длятрубопроводов" F16 L 23/00 организации "Сейсмофонд" при СПб ГАСУ ОГРН : 102000000824 ИНН : 2014000780
№ 2021134630 от 2511.2021 , входящий № 073171 ФИПС, отдел № 17 направленная в Федеральный институт
промышленной собственности (ФИПС) , автор Президент организации "Сейсмофон" Мажиев Х Н. ( В Минск,
направлено изобретение с названием "Сталинский компенсатор" См ссылки:
https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337
Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов , а старое название
Фрикционно- демпфирующий компенсатор для трубопроводов аналог компенсатора Сальникова для системы
противопожарной защиты или техническое решение предназначено для защиты магистральных трубопроводов,
агрегатов, оборудования, зданий, мостов, сооружений, линий электропередач, рекламных щитов от
сейсмических воздействий за счет использования фланцевого соединение растянутых элементов трубопровода,
с упругими демпферами сухого трения установленных на пружинистую гофру с ломающимися демпфирующими
ножками при многокаскадном демпфировании и динамических нагрузках на протяжных фрикционноеподатливых соединений проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей". Известны фрикционные соединения для защиты объектов от
117.
динамических воздействий. Известно, например, болтовое соединение плоских деталей встык, патентФланцевое соединение растянутых элементов замкнутого профиля № 2413820, «Стыковое соединение
растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения " направлено в г.Минск , Республика
Беларусь" : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337
Приложение № 1 Фигуры, чертежи: Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг6 Фрикционно демпфирующий компенсатор для трубопроводов
118.
Фиг7Фрикционно демпфирующий компенсатор для трубопроводовФиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг12Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг14 Фрикционно демпфирующий компенсатор для трубопроводов
119.
120.
121.
Более подробно о внедрении в сейсмоопасных районах демпфирующих опор ЛИСИ , для системыпротивопожарной защиты трубопроводов на Аляске, изобретенных в СССР №№ 1143895 US , 1168755 US, 1174616
US дтн ЛИИЖТ А.М.Уздиным внедренных в Армении
Introduction to Pipe Supports Types of Pipe Supports Pipe Supports for Critical Piping Systems. This video explains the
basics of pipe supports, pipe support types, functions, requirements, and supporting guidelines.Pipe Support Types of
Pipe Supports Primary and Secondary pipe Supports Piping Mantra https://ok.ru/video/3306247162582
https://www.youtube.com/watch?v=U4aUmrOeVbc
https://disk.yandex.ru/i/6fYbE0M9Z1_F8Q https://ok.ru/video/3306263022294
https://disk.yandex.ru/i/TttSRnFkHfIX9g Fire Sprinkler Installation - BCA- Singapore
https://ok.ru/video/3306312764118 https://disk.yandex.ru/i/PcwhOMxy4yD6cQ
Eaton-s TOLCO Seismic Bracing OSHPD Pre-approval(1)
https://ok.ru/video/editor/3306401696470
How to Install Cable Sway Bracing - 4-Way Brace https://ok.ru/video/3306431122134
SB 4 Seismic Bracing Value Proposition https://ok.ru/video/3306475031254
Seismic Cable Bracing Systems - Product Focus https://ok.ru/video/3306504981206
Understanding Pipe Supports Webinar https://ok.ru/video/3306548628182
https://www.youtube.com/watch?v=ygg1X5qI-0w
PIPING THERMAL EXPANSION PIPING FLEXIBILITY - ANCHOR LOCATION PIPING MANTRA WITH EXAMPLES
https://ok.ru/video/editor/3306596797142
How to select spring hanger - for piping engineers https://ok.ru/video/3306645424854
piping support typeisometric pipe drawing support symbolspipe fitter training in hindi
https://ok.ru/video/3306633235158 Организация «Сейсмофонд» при СПб ГАСУ ОГРН : 1022000000824 ИНН ;
2014000780 Президент организации Мажиев Х.Н [email protected] [email protected]
[email protected] (911) 175-84-65, (996) 798-26-54, (921) 962-67-78
Более подробно об использовании изобретений проф дтн ЛИИЖТа А.М.Уздина за рубежом https://pptonline.org/1045087 https://ppt-online.org/1045088
https://ppt-online.org/1045089 https://ppt-online.org/1014767
https://ppt-online.org/1045091 https://ppt-online.org/1045092
https://ppt-online.org/1045090
см. зарубежный опыт использования демпфирующего компенсатора для трубопроводов :
https://www.manualslib.com/manual/794138/Man-BAndw-S80me-C7.html?page=131
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions/tolco-seismic-update.html
http://itpny.net/products-seismic-attachments.html https www eaton.com/us/en-us/products/support-systems/fireprotection-solutions/tolco-seismic-update.html
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions.html
https://www.eaton.com/us/en-us/products/support-systems/bl-transition.html
https://www.eaton.com/us/en-us/products/support-systems.html
https://www.eaton.com/us/en-us/products/support-systems/seismic-bracing/seismic-bracing-and-fire-protectionresources.html
http://itpny.net/products.html http://www.swillistonsales.com/manufacturers/eaton-b-line-series
http://itpny.net/products-seismic-attachments.html https://www.eaton.com/us/en-us/products/supportsystems/seismic-bracing/fig--3000.html https://www.rilco.com/products/vibration-control-sway-braces
http itpny.net/products-seismic-attachments.html http www swillistonsales.com/manufacturers/eaton-b-line-series
Испытание на сейсмостойкость в ПК SCAD демпфирующего компенсатора для трубопроводов
https://piter.tv/video_clip/19686/
https://disk.yandex.ru/d/m-e--HxD_oNWqw https://ppt-online.org/1044577
122.
Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторныхиспытаниях узлов и фрагментов сейсмоизоляции для опоры скользящей для системы противопожарной защиты
ОС-25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100, предназначенные для сейсмоопасных районов с сейсмичностью более
9 баллов, серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –демпфирющая
опора» https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для
трубопроводов» https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка»
https://yadi.sk/i/JOuUB_oy2sPfog «Опора сейсмоизолирующая «маятниковая» https://yadi.sk/i/Ba6U0Txx-flcsg
Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
123.
124.
125.
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»при СПб ГАСУ ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (996) 798-26-54, (911) 175-84-65 ,
[email protected]
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от
27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано
28.04.2010 г. [email protected] эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО
«НИПИ[email protected]тел (921) 962-67-78 , ученый секретарь кафедры ТСМиМ ктн, доцент СПб ГАСУ
Аубакирова И У
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г.
http://nasgage.ru/[email protected] проф. д.т.н. СПб ГАСУ(996) 798-26-54, (911) 175-84-65 дтн
проф СПб ГАСУ кафедра технологии строительных материалов и метрологии СПб ГАСУ
[email protected]
Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (921) 962-67-78 [email protected] Копия аттестата
испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к
протоколу испытаний организацией СПб ГАСУ и организацией "Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС, кафедра «Механики и прочности материалов и конструкций»
[email protected] [email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС [email protected] (996) 798-26-54, (921) 962-677-78
[email protected] [email protected] [email protected]
Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра организации «Сейсмофон» при СПб
ГАСУ ОГРН 1022000000824 [email protected]
Мажиев Х Н
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я
Красноармейская ул. д 4 krestianinformburo8.narod.ru [email protected]
Руководитель ИЦ «ПКТИ-СтройТЕСТ» 197341, СПб, Афонская ул. д 2 ( 996) -798-26-54
[email protected]
[email protected] [email protected] Суворова Т.В
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры подтверждения
компетентности8590-гу (А-5824) т/ф (812) 694-78-10
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected] [email protected]
[email protected] тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
126.
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
ПАНЕЛЬ ПРОТИВОВЗРЫВНАЯ 154506
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(19)
RU
(11)
154 506
(13)
U1
(51) МПК
E04B 1/92 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
Возможность восстановления: нет.
(21)(22) Заявка: 2014131653/03,
30.07.2014
(24) Дата начала отсчета срока действия
патента:
30.07.2014
Приоритет(ы):
(22) Дата подачи заявки: 30.07.2014
(45) Опубликовано: 27.08.2015 Бюл.
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
127.
№ 24Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул. д 4 СПб ГАСУ
Коваленко Александр Иванович
(54) ПАНЕЛЬ ПРОТИВОВЗРЫВНАЯ
(57) Реферат:
Техническое решение относится к области строительства и предназначено для защиты помещений от возможных
взрывов. Конструкция позволяет обеспечить надежный и быстрый сброс легкосбрасываемой панели, сброс
давления при взрыве и зависание панели на опорной плите, Конструкция представляет собой опорную плиту с
расчетным проемом, которая жестко крепится на каркасе защищаемого сооружения. На опорной плите
крепежными элементами, имеющими ослабленное резьбовое поперечное сечение, закреплена панель
легкосбрасываемая. Ослабленное резьбовое соединение каждого крепежного элемента образовано лысками
выполненными с двух сторон резьбовой части. Кроме того опорная плита и легкосбрасываемая панель соединены
тросом один конец которого жестко закреплен на опорной плите, а другой конец соединен с крепежным
элементом через планку, с возможностью перемещения. 4 ил.
Техническое решение относится к области строительства и предназначено для защиты помещений содержащих
взрывоопасные среды.
Известна панель для легкосбрасываемой кровли взрывоопасных помещений по Авт.св. 617552, М.Кл. 2 E04B 1/98 с
пр. от 21.11.75. Панель включает ограждающий элемент с шарнирно закрепленными на нем поворотными
скобами, взаимодействующими через опоры своими наружными полками с несущими элементами. С целью
защиты от воздействия ветровой нагрузки, панель снабжена подвижной плитой, шарнирно соединенной с
помощью тяг с внутренними концами поворотных скоб, которые выполнены Т-образными. Недостатком
предлагаемой конструкции является низкая надежность шарнирных соединений при переменных внешних и
внутренних нагрузках. Известна также легкосбрасываемая ограждающая конструкция взрывоопасных помещений
по Патенту SU 1756523, МПК5 E06B 5/12 с пр. от 05.10.1990. Указанная конструкция содержит поворотную
стеновую панель, состоящую из нижней и верхней секций и соединенную с каркасом временной связью. Нижняя
секция в нижней части шарнирно связана с каркасом здания, а в верхней части - шарнирно соединена с верхней
секцией панели. Верхняя секция снабжена роликами, установленными в направляющих каркаса здания.
Недостатком указанной конструкции является низкая надежность вызванная большим количеством шарнирных
соединений, требующих высокой точности изготовления в условиях строительства. Известна также
противовзрывная панель по Патенту RU 2458212, E04B 1/92 с пр. от 13.04.2011, которую выбираем за прототип.
Изобретение относится к защитным устройствам применяемым во взрывоопасных объектах. Противопожарная
панель содержит металлический каркас с бронированной обшивкой и наполнителем-свинцом. Панель имеет
четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных
стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели. Наполнитель выполнен в
виде дисперсной системы воздух-свинец, а опорные стержни выполнены упругими. Недостатком вышеуказанной
панели является низкая надежность срабатывания телескопических сопряжений при воздействии переменных
внешних и внутренних нагрузок.
Задачей заявляемого устройства является обеспечение надежности открывания проема при взрыве (сбрасывания
легкосбрасываемой панели) за минимальное время и обеспечение зависания панели после сброса.
Сущность заявляемого решения состоит в том, что для защиты стен, оборудования и персонала от возможного
взрыва, помещение снабжено панелью противовзрывной, обеспечивающей надежное и быстрое открытие проема
при взрыве и сброс избыточного давления, а также зависание панели на плите опорной. Панель противовзрывная
содержит плиту опорную которая жестко закреплена на стене защищаемого помещения и имеет проем
соответствующий проему в стене, а с другой стороны плиты опорной винтами с резьбой, ослабленной по сечению,
закреплена панель легкосбрасываемая. Площадь проема плиты опорной и проема помещения определяется в
зависимости от объема помещения, от взрывоопасной среды, температуры горения, давления, скорости
распространения фронта пламени и др. параметров. Винты имеют резьбовую часть, ослабленную по сечению с
двух сторон лысками до размера <Z> и т. о. образуется ослабленное резьбовое сопряжение, разрушаемое под
воздействием взрывной волны.
Сущность предлагаемого решения поясняется чертежами где:
на фиг. 1 изображен разрез Б-Б (фиг. 2) панели противовзрывной;
на фиг. 2 изображен разрез Α-A (фиг. 1);
128.
на фиг. 3 изображен вид по стрелке В (фиг. 1) в увеличенном масштабе;на фиг. 4 изображен разрез Г-Г (фиг. 2), узел крепления троса в увеличенном масштабе.
Панель противовзрывная состоит из опорной плиты 1, которая жестко крепится к каркасу защищаемого
помещения (на чертеже не показано). В каркасе помещения и в опорной плите выполнен проем 2, имеющий
расчетную площадь S=b*h, которая зависит от объема защищаемого помещения, температуры горения, давления,
скорости распространения фронта пламени и др. параметров. На опорной плите 1, резьбовыми крепежными
элементами, например саморежущими шурупами 3, имеющими ослабленное поперечное резьбовое сечение,
закреплена легкосбрасываемая панель 4. Кроме того, легкосбрасываемая панель соединена с опорной плитой
гибким узлом, состоящим из планки 5, закрепленной с одной стороны на тросе 6, а с др. стороны сопряженной с
крепежным элементом 3. Ослабленное поперечное сечение резьбовой части образовано лысками,
выполненными с двух сторон по всей длине резьбы до размера <Z>. Ослабленная резьбовая часть в совокупности
с обычным резьбовым отверстием в опорной плите 1, образуют ослабленное резьбовое сопряжение,
разрушаемое под действием взрывной волны. Разрушение (вырыв) в ослабленном резьбовом соединении
возможно или за счет разрушения резьбы в опорной плите, или за счет среза резьбы крепежного элементасамореза 3, в зависимости от геометрии резьбы и от соотношения пределов прочности материалов самореза и
плиты опорной. Рассмотрим пример. На опорной плите 1 толщиной 5 мм, изготовленной из стали 3,
самосверлящими шурупами 3 размером 5,5/6,3×105, изготовленными из стали У7А, закреплена
легкосбрасываемая панель 4, изготовленная из
стали 20. Усилие вырыва при стандартной резьбе для одного шурупа составляет 1500 кгс. Опытным путем
установлено, что после доработки шурупа путем стачивания резьбы с двух сторон до размера Z=3 мм, величина
усилия вырыва составляет 700 кгс. Соответственно, при креплении плиты четырьмя шурупами, усилие вырыва
составит 2800 кгс. При условии, что площадь проема S=10000 см2, распределенная нагрузка для вырыва должна
быть не менее 0,28 кгс/см2. Таким образом, зная параметры взрывоопасной среды, объем и компоновку
защищаемого помещения, выбираем конструкцию крепежных элементов после чего, в зависимости от заданного
усилия вырыва, можно определить величину <Z> - толщину ослабленной части резьбы.
Панель противовзрывная работает следующим образом. При возникновении взрывной нагрузки, взрывная волна
через проем 2 в опорной плите 1 воздействует по площади легкосбрасываемой панели 4, закрепленной на
опорной плите 1 четырьмя саморежущими шурупами 3, имеющими ослабленное резьбовое сечение. При
превышении взрывным усилием предела прочности резьбового соединения, резьбовое соединение разрушается
по ослабленному сечению, легкосбрасываемая панель освобождается от механического крепления, после чего
сбрасывается, сечение проема открывается и давление сбрасывается до атмосферного. После сбрасывания панель
легкосбрасываемая зависает на тросе 6, один конец которого закреплен на опорной плите, а другой, через планку
5 сопряжен с крепежным элементом 3.
Формула полезной модели
1. Панель противовзрывная, содержащая опорную плиту, на которой резьбовыми крепежными элементами
закреплена панель легкосбрасываемая, отличающаяся тем, что в опорной плите выполнен проем, а панель
легкосбрасываемая выполнена сплошной, при этом крепежные элементы, скрепляющие панель
легкосбрасываемую с опорной плитой, имеют ослабленное поперечное сечение резьбовой части, образованное
лысками, выполненными с двух сторон по всей длине резьбы и, кроме того, панель легкосбрасываемая соединена
с опорной плитой тросом, один конец которого жестко закреплен в опорной плите, а другой конец соединен с
панелью легкосбрасываемой.
2. Панель противовзрывная по п.1, отличающаяся тем, что трос соединен с панелью легкосбрасываемой через
планку, сопряженную с крепежным элементом.
129.
130.
131.
Устройство типового гасителя колебаний для существующих пятиэтажек , описано в статье Митусова В.М (выше)и предлагаемые легко сбрасываемых панелей перекрытия пятого этажа сери 1-135 узлы и фрагменты легко
сбрасываемых узлов фасадных показаны в изобретение № 154506 «Панель противовзрывная» Поэтому было
предложено применять гасители динамических колебаний с использованием фрикционно-подвижные болтовые
соединения с длинными овальными отверстиями на пятом обрушающимся этаже и легко сбрасываемыми
панелями и кровли пятого этажа хрущевки, согласно изобретения № 154506 «Панель противовзрывная» с
132.
демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости существующих панельныхоставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г.
Нефтегорске, и их программная реализация расчета существующих пятиэтажек на прогрессирующее
лавинообразное обрушение в среде вычислительного комплекса SCAD Office
Панель состоит из опорной плиты1 , жестко соединенной с каркасом здания и имеющей проем 2 На опорной
плите размещается сбрасываемая панель 4, прикрепленная к плите крепежными элементами 3 (саморежущими
шурупами), имеющими ослабленное резьбовое сечение. Панель соединена с опорной плитой тросом 5.
Ослабленное поперечное сечение резьбовой части образовано лысками, выполненными с двух сторон по всей
длине резьбы. Ослабленная резьбовая часть в совокупности с обычным резьбовым отверстием в опорной плите,
образует ослабленное резьбовое соединение, разрушаемое при сильном землетрясении. Разрушение должно
происходить при вертикальных и горизонтальных сейсмических нагрузках. Панель целесообразно использовать
для устройства перекрытия и верхней части стен. После падения панель зависает на крепежном тросе 6.
Устройство типового гасителя колебаний для существующих пятиэтажек , описано в статье Митусова В.М (выше)
и предлагаемые легко сбрасываемых панелей перекрытия пятого этажа сери 1-135 узлы и фрагменты легко
сбрасываемых узлов фасадных показаны в изобретение № 154506 «Панель противовзрывная» Поэтому было
предложено применять гасители динамических колебаний с использованием фрикционно-подвижные болтовые
соединения с длинными овальными отверстиями на пятом обрушающимся этаже и легко сбрасываемыми
панелями и кровли пятого этажа хрущевки, согласно изобретения № 154506 «Панель противовзрывная» с
демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости существующих панельных
оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г.
Нефтегорске, и их программная реализация расчета существующих пятиэтажек на прогрессирующее
лавинообразное обрушение в среде вычислительного комплекса SCAD Office
133.
Панель состоит из опорной плиты1 , жестко соединенной с каркасом здания и имеющей проем 2 На опорнойплите размещается сбрасываемая панель 4, прикрепленная к плите крепежными элементами 3 (саморежущими
шурупами), имеющими ослабленное резьбовое сечение. Панель соединена с опорной плитой тросом 5.
Ослабленное поперечное сечение резьбовой части образовано лысками, выполненными с двух сторон по всей
длине резьбы. Ослабленная резьбовая часть в совокупности с обычным резьбовым отверстием в опорной плите,
образует ослабленное резьбовое соединение, разрушаемое при сильном землетрясении. Разрушение должно
происходить при вертикальных и горизонтальных сейсмических нагрузках. Панель целесообразно использовать
для устройства перекрытия и верхней части стен. После падения панель зависает на крепежном тросе 6.
Схема устройства сбрасываемой панели с использованием гасителей динамических колебаний с
использованием фрикционно-подвижные болтовые соединения с длинными овальными отверстиями на пятом
обрушающимся этаже и легко сбрасываемыми панелями и кровли пятого этажа хрущевки, согласно
изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на пятом этаже, для
повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не разрушенных
землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчета
существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде вычислительного
комплекса SCAD Office
На рис. 2 показаны фото ослабленных болтов и петли крепления сбрасываемой панели для гашения
динамических колебаний с использованием фрикционно-подвижные болтовые соединения с длинными
134.
овальными отверстиями на пятом обрушающимся этаже и легко сбрасываемыми панелями и кровли пятогоэтажа хрущевки, согласно изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных
креплений на пятом этаже, для повышения сейсмостойкости существующих панельных оставшихся двух
пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их
программная реализация расчета существующих пятиэтажек на прогрессирующее лавинообразное обрушение в
среде вычислительного комплекса SCAD Office
Для оценки работы пятиэтажек , панельных хрущевок сери 1-335 и К-7 с предлагаемыми панелями
проведены расчеты сейсмических колебаний сооружения. В качестве модели воздействия принят временной
процесс, предложенный в *3+, детально описанный в *4+ с применением гасителей динамических колебаний с
использованием фрикционно-подвижные болтовые соединения с длинными овальными отверстиями на пятом
обрушающимся этаже и легко сбрасываемыми панелями и кровли пятого этажа хрущевки, согласно
изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на пятом этаже, для
повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не разрушенных
землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчета
существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде вычислительного
комплекса SCAD Office
Рекомендациях *5+. Расчет выполнен в соответствии с общими принципами современного сейсмостойкого
строительства на действие относительно слабого с повторяемостью раз в 100 лет (проектное землетрясение, или
ПЗ) и сильного с повторяемостью раз в 500 лет (максимальное расчетное землетрясение или МРЗ) землетрясений
*6,7+. Большие повторяемости ПЗ и МРЗ связаны с малой ответственностью объекта. Расчет пиковых ускорений
МРЗ выполнен по методике *8+. В соответствии с *3-5+ велосиграмма V(t) включает три гармоники, согласно
изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на пятом этаже, для
повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не разрушенных
землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчета
существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде вычислительного
комплекса SCAD Office
Частота первой гармоники совпадает с собственной частотой сооружения при закрепленных панелях. Частота
второй гармоники настроена на частоту здания со сброшенными панелями. Числовые значения параметров
приведены в таблице 1. На рис.3 представлена сгенерированная велосиграмма V(t), а на рис.4 – соответствующая
ей акселерограмма W(t).
Таблица 1
Значения параметров сгенерированного воздействия, согласно изобретения № 154506 «Панель
противовзрывная» с демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости
существующих панельных оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у
памятника Ленина в г. Нефтегорске, и их программная реализация расчета существующих пятиэтажек на
прогрессирующее лавинообразное обрушение в среде вычислительного комплекса SCAD Office
Рис.3. Расчетная велосиграмма, построенная по Рекомендациям *5+. согласно изобретения № 154506 «Панель
противовзрывная» с демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости
существующих панельных оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у
135.
памятника Ленина в г. Нефтегорске, и их программная реализация расчета существующих пятиэтажек напрогрессирующее лавинообразное обрушение в среде вычислительного комплекса SCAD Office
Рис.4. Расчетная акселерограмма, построенная по Рекомендациям *5+, согласно изобретения № 154506 «Панель
противовзрывная» с демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости
существующих панельных оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у
памятника Ленина в г. Нефтегорске, и их программная реализация расчета существующих пятиэтажек на
прогрессирующее лавинообразное обрушение в среде вычислительного комплекса SCAD Office
На рис. 4 приведена сейсмограмма в уровне крыши здания при жестком креплении панелей. На рисунке ясно
видно, что здание «выбирает» из воздействия опасную частоту и совершает опасные резонансные колебания,
достигая амплитуды 16.1 см , согласно ИСПОЛЬЗОВАНИЯ изобретения № 154506 «Панель противовзрывная» с
демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости существующих панельных
оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г.
Нефтегорске, и их программная реализация расчета существующих пятиэтажек на прогрессирующее
лавинообразное обрушение в среде вычислительного комплекса SCAD Office
Рис.5. Сейсмограмма колебаний конструкции в уровне крыши при жестком закреплении панелей, согласно
ИСПОЛЬЗОВАНИЯ
изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на
пятом этаже, для повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не
разрушенных землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация
расчета существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде вычислительного
комплекса SCAD Office
136.
Опасным для здания в целом является смещение 6.5 см, а разрушающим – 11 см. В связи с этим креплениепанелей сделано так, что при достижении опасных перемещений происходит сброс панелей и изменение
собственной частоты объекта. Смещения сброса с некоторым запасом приняты равными 5 см. Точка сброса
отмечена на рис.5 зеленым кружком. Она имеет место при t=1.31 с.
Рис.6. Сейсмограмма колебаний конструкции в уровне крыши при сбросе панелей при t=1.31 c
Сейсмограмма в уровне крыши с учетом сброса панелей приведена на рис. 5. Как видно из приведенных
результатов расчета предлагаемое решение позволяет снизить смещения сооружение более, чем в 1.5 раза с 16.1
см до 10.5 см.
Выполненные исследования показывают, что принципы адаптации можно использовать, как понижая, так и
повышая жесткость системы в процессе колебаний с целью ее отстройки от резонанса.
Материалы: Применения гасителя динамических колебаний с использованием фрикционно-подвижные болтовые
соединения с длинными овальными отверстиями на пятом обрушающимся этаже и легко сбрасываемыми
панелями и кровли пятого этажа хрущевки ( согласно патента №154506 «Панель противовзрывная»), с
демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости существующих панельных
оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г.
Нефтегорске, и их программная реализация расчета существующих двух пятиэтажек на прогрессирующее
лавинообразное обрушение, взаимодействие здания с геологической средой, в среде вычислительного
комплекса SCAD Office, согласно изобретения № 2010136746, хранятся в СПб ГАСУ на кафедре строительных
конструкций [email protected] (921) 962-67-78
137.
138.
139.
140.
141.
142.
143.
Использования гасителе динамических колебаний с применением легкосбрасываемости последних двух этажей жилого здания, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего
здания, при импульсных растягивающих нагрузках, с использованием
протяжных фрикционно-подвижных соединений с контролируемым
натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине
резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений
проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
( При сбрасывании навесных панелей, масса здания уменьшается, частота собственных
колебаний увеличивается, а сейсмическая нагрузка падает) СТУ ЛСК Специальные
технические условия с использованием изобретений проф .дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
А.М.Уздин докт. техн. наук, проф. кафедры «Теоретическая механика» ПГУПС
[email protected]
Х.Н.Мажиев -. Президент ОО «СейсмоФонд», ИНН 2014000780 [email protected]
(921) 962-67-78
Б.А.Андреев - зам През орг. «Сейсмофонд» ОГРН 1022000000824 [email protected] (999) 535-47-29
144.
Е.И.Андреевазам Президента организации «СейсмоФонд» (996) 798-26-54 [email protected]
https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-Etaja-ObespecheniyaSeismostoykosti-351-Str
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
Расчет легко сбрасываемых конструкции Борис Андреев ручной СКАД155.
Рис Приннципиальная схема упруго - фрикционо-подвижных соедеинийдля легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616
156.
Рис 2 Приннципиальная схема упруго - фрикционо-подвижных соедеинийдля легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений на болтах с контролируемым натяжением,
расположенные в овальных отверстиях согласно СП 16.13330.2017 Стальные
конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь
157.
РисПриннципиальная схема упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616
158.
159.
160.
161.
162.
РисПриннципиальная схема упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
163.
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,1174616
164.
165.
Рис Нарисунке показан узел гасителе динамических колебаний для применения легко сбрасываемость
(ЛСК) из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко
сбрасываемости панелей с существующего здания , при импульсных растягивающих нагрузках с
использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением
из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с
образованными лысками, по всей длине резьбы латунного болта и их программная реализация
расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко
сбрасываемых панелей с применением фрикционно-подвижных болтовых соединений для
обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает
166.
Рис Приннципиальная схема упруго - фрикционо-подвижных соедеинийдля легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
167.
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616
168.
РисПриннципиальная схема упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616
169.
170.
171.
172.
173.
174.
175.
176.
Рис На рисунке показан узел гасителе динамических колебаний для применения легкосбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при
импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов,
в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей
длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для
обеспечения сейсмостойкости конструкций здания: масса здания уменьшается,
частота собственных колебаний увеличивается, а сейсмическая нагрузка падает , и
приннципиальная схема упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки ) фрикционно протяжных соединений с контрольным натяжением на бронзовых болтах со сточенным
зубьями с контролируемым натяжением, расположенные в овальных отверстиях
согласно СП 16.13330.2017 Стальные конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-2742012 Стальные конструкции. Правила расчета dnl13468 Минск , Республика Беларусь на
основе использования изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616
177.
178.
179.
180.
181.
182.
183.
184.
Рис Нарисунке показан узел гасителе динамических колебаний для применения легко
сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при
импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов,
в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей
длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для
обеспечения сейсмостойкости конструкций здания: масса здания уменьшается,
частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
185.
186.
187.
188.
СТУ для гасителя динамических колебаний с применением легко сбрасываемость(ЛСК) из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за
счет легко сбрасываемости панелей с существующего здания , при импульсных
растягивающих нагрузках с использованием протяжных фрикционно-подвижных
соединений с контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными лысками, по
всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн
189.
ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опорасейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании
навесных легко сбрасываемых панелей с применением фрикционно-подвижных
болтовых соединений для обеспечения сейсмостойкости конструкций здания:
масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает с разрушение последних двух этажей, со
сбрасыванием легко со скальзываемыми панелями, пятого последнего
этажа хрущевки, согласно изобретения № 154506 «Панель
противовзрывная», №2010136746, 1143895, 1168755, 1174616, 165076, с
демонтажем сварочных креплений на пятом этаже разработан организацией «Сейсмофонд» при СПб
ГАСУ ОГРН: 1022000000824 ИНН 2014000780 для использования в виде гасителе динамических колебаний,
с применением фрикционно-подвижные болтовые соединения и разрушение легко сбрасываемых панелей
пятого этажа хрущевки, согласно изобретения № 154506 «Панель противовзрывная» с демонтажем
сварочных креплений на пятом этаже, для повышения сейсмостойкости существующих панельных
оставшихся двух пятиэтажек не разрушенных землетрясением 27 мая 1995 у памятника Ленина в г.
Нефтегорске, и их программная реализация расчета существующих пятиэтажек на прогрессирующее
лавинообразное обрушение в среде вычислительного комплекса SCAD Office https://disk.yandex.ru/d/yyKliUZoKUkpw https://ppt-online.org/939831
https://ru.scribd.com/document/515008766/6947810-NEFTEGORSK-Razrabotka-Spetsialnix-Texnicheskix-Usloviy-DlyaIspolzovaniya-Plasticheskogo-272-Str
https://disk.yandex.ru/i/MoY-mWqngh6dkw https://ppt-online.org/939196
Выводы:
1. Предлагаемый метод создания гасителя динамических колебаний с
использованием гасителей динамических колебаний для применения легко
сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания ,
при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных
болтов, в поперечном сечении резьбовой части с двух сторон с образованными
лысками, по всей длине резьбы латунного болта и их программная реализация
расчета, в среде вычислительного комплекса SCAD Office c использованием
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При
сбрасывании навесных легко сбрасываемых панелей с применением фрикционноподвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных
колебаний увеличивается, а сейсмическая нагрузка падает в виде "пластических
шарниров» ЛСК+ ФПС с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости пятиэтажки" с
использованием ФПС+ЛСК", позволяет их использовать как
энергопоглотители при многокаскадного демпфирования , для
существующих пятиэтажек в г Магнитогорск . Поэтому организацией
«Сейсмофонд» предложено применять гасители динамических колебаний с использованием фрикционноподвижные болтовые соединения с длинными овальными отверстиями на пятом обрушающимся этаже и
легко сбрасываемыми панелями и кровли пятого этажа хрущевки, согласно изобретения № 154506 «Панель
противовзрывная» с демонтажем сварочных креплений на пятом этаже, для повышения
сейсмостойкости существующих панельных оставшихся двух пятиэтажек не разрушенных
190.
землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчетасуществующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде вычислительного
комплекса SCAD Office
Поэтому организацией «Сейсмофонд» предложено применять гасители динамических колебаний с
использованием фрикционно-подвижные болтовые соединения с длинными овальными отверстиями на
пятом обрушающимся этаже и легко сбрасываемыми панелями и кровли пятого этажа хрущевки,
согласно изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на пятом
этаже, для повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не
разрушенных землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная
реализация расчета существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде
вычислительного комплекса SCAD Office
2. Разработан общий подход
применении гасителей динамических колебаний с
использованием фрикционно-подвижные болтовые соединения с длинными овальными отверстиями на
пятом обрушающимся этаже и легко сбрасываемыми панелями и кровли пятого этажа хрущевки,
согласно изобретения № 154506 «Панель противовзрывная» с демонтажем сварочных креплений на пятом
этаже, для повышения сейсмостойкости существующих панельных оставшихся двух пятиэтажек не
разрушенных землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная
реализация расчета существующих пятиэтажек на прогрессирующее лавинообразное обрушение в среде
вычислительного комплекса SCAD Office
, и определено место на последнем пятом
этаже хрущевки, применения и фрикционо-подвижных болтовых
соединений ФПС + ЛСК ( легко сбрасываемее конструкции пятого
последнего этажа , оборудованного под кладовки, складские помещения без
людей при возможном пластическом –мягком обрушении пятого этажа
при многокаскадном демпфировании, при импульсных растягивающих
нагрузках , по изобретениям проф дтн ПГУПС А.М.Уздина №№ 1143895,
1168755, 1174616 ) , которые напрямую влияет на количество энергии
рассеиваемой на «пластическом шарнире».
3. Для повышения надѐжности зданий и сооружений полезно совместное
использование нескольких систем путѐм объединения их между собой,
например фланцевые –фрикционно –подвижные болтовые соединения и
легко –сбрасываемые конструкции ( № 154506 «Панель противовзрывная» и
создания расчетных пластических шарниров в среде вычислительного
комплекса SCAD Office , согласно патента № 2010136746
4. Разработаны специальные технических условий (СТУ) организацией «Сейсмофонд» при СПб
ГАСУ , для применения гасителей динамических колебаний с использованием фрикционно-подвижные
болтовые соединения с длинными овальными отверстиями на пятом обрушающимся этаже и легко
сбрасываемыми панелями и кровли пятого этажа хрущевки ( согласно патента №154506 «Панель
противовзрывная»), с демонтажем сварочных креплений на пятом этаже, для повышения
сейсмостойкости существующих панельных оставшихся двух пятиэтажек не разрушенных
землетрясением 27 мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчета
существующих двух пятиэтажек на прогрессирующее лавинообразное обрушение, взаимодействие здания с
геологической средой, в среде вычислительного комплекса SCAD Office, согласно изобретения № 2010136746
и впервые использовать ДИНАМИЧЕСКИе и упругоплатические гасители ( шарниры)
КОЛЕБАНИЙ ДЛЯ существующих двух уцелевших пятиэтажки . Рядом с памятником Ленина в
СЕЙСМИЧЕСКи АКТИВНОй зоне Сахалина в г Нефтегорск и установка фланцевых
фрикционно –подвижных болтовых соединений , для не разрушенных еще хрущевок согласно
изобретениям № 165076 «Опора сейсмостойкая», № 2010136746, № 154506 «Панель
противовзрывная», № 1143895, 1168755, 1174616, оперативно выполнит организация
«Сейсмофонд» при СПб ГАСУ
191.
Адрес организации :190005, СПб, 2-я Красноармейская ул д 4 ИНН 2014000780 КПП 201401001ОГРН 1022000000824 [email protected] [email protected] (921) 962-67-78, (996) 798-26-54
В Российской Федерации перспективные по добыче природного газа и нефти районы
отличаются высокой сейсмической активностью. В статье изучено воздействие
cейсмических волн на напряженно-деформированное и
упруго - фрикционо-подвижных соедеиний для легкосбрасываемых
соедиений пятого этажа пятиэтажки (хрущеки ) фрикционно - протяжных
соединений с контрольным натяжением на бронзовых болтах со сточенным зубьями
с контролируемым натяжением, расположенные в овальных отверстиях согласно
СП 16.13330.2017 Стальные конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012
Стальные конструкции, с использованием узлов гасителей динамических колебаний
для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого
дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием
протяжных фрикционно-подвижных соединений с контролируемым натяжением из
латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон
с образованными лысками, по всей длине резьбы латунного болта и их программная
реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895,
1168755, 1174616
При сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает
Более подробно см : Правила расчета dnl13468 Минск , Республика Беларусь на
основе использования изобретений проф .дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» ,
№ 2010136746, 1143895, 1168755, 1174616 Рис Приннципиальная схема
упруго - фрикционо-подвижных соедеиний для легкосбрасываемых
соедиений пятого этажа пятиэтажки (хрущеки ) фрикционно - протяжных
соединений с контрольным натяжением на бронзовых болтах со сточенным зубьями
с контролируемым натяжением, расположенные в овальных отверстиях согласно
СП 16.13330.2017 Стальные конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012
Стальные конструкции. Правила расчета dnl13468 Минск , Республика Беларусь на
основе использования изобретений проф .дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» ,
№ 2010136746, 1143895, 1168755, 1174616
Однако в расчетах , не всегда используется численное моделирование
на сдвиг для легкосбрасываемых соедиений пятого этажа пятиэтажки
(хрущеки ) фрикционно - протяжных соединений с контрольным натяжением на
бронзовых болтах со сточенным зубьями с контролируемым натяжением,
192.
расположенные в овальных отверстиях согласно СП 16.13330.2017 Стальныеконструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь на основе использования
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746,
1143895, 1168755, 1174616 трубопровода в программном комплексе
SCAD Office, со скошенными торцами, согласно изобретения №№
2423820, 887743, демпфирующих компенсаторов на фрикционноподвижных болтовых соединениях, для восприятия термических
усилий, за счет трения , при растягивающих нагрузках в крепежных
элементах с овальными отверстиями, по линии нагрузки (
изобретения №№ 1143895, 1168755, 1174616 ,165076, 2010136746,
особенного косые на фланцевых болтовых креплениях
Сейсмические движения земной коры способствуют появлению значительных
горизонтальных и вертикальных деформаций грунтов и могут привести к авариям
последствиям пятиэтажек (хрущевок ) фрикционно - протяжных соединений,
где необходимо использовать фрикционно-подвижные соединения с контрольным
натяжением на бронзовых болтах со сточенным зубьями с контролируемым
натяжением, расположенные в овальных отверстиях согласно СП 16.13330.2017
Стальные конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные
конструкции. Правила расчета dnl13468 Минск , Республика Беларусь на основе
использования изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616
Одними из наиболее перспективных являются применение демпфирующих
виброгасящих упруго
фрикционных антисейсмических компенсаторов, на фрикционно-подвижных болтовых соединениях для
технологических трубопроводов и гасителей динамических колебаний для применения легко сбрасываемость
(ЛСК) из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных
фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного
болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает, и обладающие гибкостью, имеющие небольшие размеры и
обеспечивающие более четкую работу технологического трубопроводной системы.
Демпфирующие маятниковые антисейсмические опоры ( патент 165076 «Опора
сейсмостойкая» имеет крестовидную, трубчатую и квадратную форму ,
устанавливают как на прямолинейных, так и на криволинейных участках
технологических трубопроводов, а также на участках трубопроводов,
пересекающих границу двух грунтовых толщ с резко отличающимися свойствами.
193.
Антисейсмические демпфирующие косые компенсаторы,виброгасящих с упругофрикционными, косыми антисейсмических компенсаторов, на фрикционно-подвижных болтовых соединениях
для технологических основе , так же патента № 165076 «Опора сейсмостойкая»
воспринимают перемещения, вызываемые растягивающими и сжимающими
усилиями, а также изгибающими моментами, возникающими в технологическом
трубопроводе.
Для активного гашения энергии сейсмических колебаний в продольном направлении
применяется схема упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616 Рис Приннципиальная схема упруго - фрикционо-подвижных
соедеиний для легкосбрасываемых соедиений пятого этажа пятиэтажки
(хрущеки ) фрикционно - протяжных соединений с контрольным натяжением на
бронзовых болтах со сточенным зубьями с контролируемым натяжением,
расположенные в овальных отверстиях согласно СП 16.13330.2017 Стальные
конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь на основе использования
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746,
1143895, 1168755, 1174616
упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
РАСЧЕТНАЯ СХЕМА
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616, который предназначен для работы в сейсмоопасных районах с сейсмичностью более
баллов по шкале MSK-64
9
194.
195.
В организации «Сейсмофонд» при ПГУПС , разработана и широко внедряетсявиброизолирующая упруго - фрикционо-подвижных соедеиний для
легкосбрасываемых соедиений последнийх двух этажей девятиэтажки с
узлами гасителей динамических колебаний для применения легко сбрасываемость (ЛСК) из последних двух
этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их
программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений
проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с
применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
Однако, фрикционно - протяжных соединений с контрольным натяжением на
бронзовых болтах со сточенным зубьями с контролируемым натяжением,
расположенные в овальных отверстиях согласно СП 16.13330.2017 Стальные
196.
конструкции dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.Правила расчета dnl13468 Минск , Республика Беларусь на основе использования
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746,
1143895, 1168755, 1174616, предназначенная для повышения надежности
пятиэтажек
Приннципиальной схемой упруго - фрикционо-подвижных соедеиний
для легкосбрасываемых соедиений пятого этажа пятиэтажки (хрущеки )
фрикционно - протяжных соединений с контрольным натяжением на бронзовых
болтах со сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета dnl13468
Минск , Республика Беларусь на основе использования изобретений проф
.дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», №
165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616 , можно ознакомится в ТКП 45-5.04-274-2021
ТКП 45-5.04-274-2012 "Стальные конструкции. Правила расчета"
https://dwg.ru/dnl/13468
Болты установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия
перпендикулярно продольной оси отверстия ТЕХНИЧЕСКИЙ КОДЕКС ТКП 45-5.04-274-2012 (02250)
установившейся практики СТАЛЬНЫЕ КОНСТРУКЦИИ Правила расчета
СТАЛЬНЫЯ КАНСТРУКЦЫ1 Правшы разлiку
Министерство архитектуры и строительства Республики Беларусь Минск 2013
УДК 624.014.2.04(083.74) МКС 91.080.10
КП 06
Ключевые слова: стальные конструкции, болтовые соединения, сварные соединения, узлы, прочность,
устойчивость, выносливость, сдвиг, примеры расчета
Предисловие
Цели, основные принципы, положения по государственному регулированию и управлению в об¬ласти
технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом
нормировании и стандартизации».
1
РАЗРАБОТАН научно-проектно-производственным республиканским унитарным предприятием
«Стройтехнорм» (РУП «Стройтехнорм»), техническим комитетом по стандартизации в области архи¬тектуры и
строительства «Металлические и деревянные конструкции» (ТКС 09).
Авторский коллектив: руководитель темы, разделы 1-6 — канд. техн. наук Жабинский А. Н.; пункт 6.4.1 — Рябов А.
В.; пункт 6.4.3 — Кеда А. Н.; разделы 7 и 8 — канд. техн. наук Мартынов Ю. С.; подразделы 7.3 и 8.4 — Лагун Ю. И.,
197.
Надольский В. В.; раздел 9 — канд. техн. наук Драган В. И., д-р техн. наук Давыдов Е. Ю.; раздел 10 — канд. техн.наук Шурин А. Б., д-р техн. наук Давыдов Е. Ю.; раздел 11 — канд. техн. наук Мартынов Ю. С.; подразделы 11.2,11.3
и 11.4 — канд. техн. наук Зинкевич И. В.; раздел 12 — канд. техн. наук Мухин А. В.; раздел 13 — канд. техн. наук
Драган В. И.; раздел 14, при¬ложение А — Лагун Ю. И.; подраздел 14.6 — Новиков В. Е.
ВНЕСЕН главным управлением архитектурной, научной и инновационной политики Министерст¬ва архитектуры и
строительства Республики Беларусь
2
УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом Министерства архитектуры и строительства Республики
Беларусь от 12 декабря 2012 г. № 395
В Национальном комплексе технических нормативных правовых актов в области архитектуры и строительства
настоящий технический кодекс установившейся практики входит в блок 5.04 «Метал¬лические конструкции и
изделия»
3
ВВЕДЕН ВПЕРВЫЕ https://tnpa.by/#!/DocumentCard/293603/391430
© Минстройархитектуры, 2013
Настоящий технический кодекс установившейся практики не может быть воспроизведен, тиражи¬рован и
распространен в качестве официального издания без разрешения Министерства архитектуры и строительства
Республики Беларусь
Издан на русском языке
Содержание
1
Область применения
1
2
Нормативные ссылки
1
3
Термины и определения 3
4
Обозначения 3
5
Общие положения 4
5.1
Классификация поперечных сечений
4
5.2
Материалы 4
5.3
Основные положения по расчету 4
5.4
Эффективное поперечное сечение
5
6
Изгибаемые элементы
7
6.1
Расчет на прочность 7
6.2
Учет поперечной силы в расчетах поперечных сечений на прочность
при действии изгибающего момента
10
6.3
Расчет на устойчивость
10
6.4
Примеры расчета 12
7
Центрально-сжатые и центрально-растянутые элементы
25
7.1
Расчет на прочность 25
7.2
Расчет на устойчивость
26
7.3
Примеры расчета 26
8
Сжато-изгибаемые (внецентренно-сжатые) элементы
постоянного поперечного сечения по длине
30
8.1
Расчет на прочность поперечного сечения элементов,
подверженных действию осевой силы и изгибающих моментов
30
8.2
Учет поперечной силы в расчетах поперечных сечений
на прочность сжато-изгибаемых (внецентренно-сжатых) элементов 31
8.3
Расчет на устойчивость элементов, подверженных действию осевой силы
и изгибающих моментов 32
8.4
Примеры расчета 33
9
Сварные соединения. Основные положения расчета и конструирования
56
9.1
Геометрические параметры сварных швов
56
9.2
Расчет несущей способности угловых сварных швов по упрощенному методу
60
9.3
Расчет угловых сварных швов по направленному методу
62
9.4
Расчет несущей способности стыковых сварных швов 63
9.5
Расчет несущей способности пробочных сварных швов 63
9.6
Требования по проектированию сварных соединений 64
9.7
Примеры расчета 66
10
Болтовые соединения
72
10.1 Болты, гайки и шайбы
72
10.2 Фундаментные болты
72
198.
10.3 Категории болтовых соединений 7310.4 Расположение отверстий для болтов
74
10.5 Расчетная несущая способность одиночных крепежных деталей
76
10.6 Группа крепежных деталей 79
10.7 Протяженные соединения 79
10.8 Фрикционные соединения на болтах классов прочности 8.8 и 10.9 80
10.9 Учет отверстий для крепежных деталей 81
10.10 Примеры расчета 82
11
Расчет узлов сопряжения 88
11.1 Общие положения 88
11.2 Проверка несущей способности узла сопряжения ригеля
с колонной на болтах с опорным фланцем
89
11.3 Стык ригеля на фланцевых соединениях 90
11.4 Проверки несущей способности баз колонн
90
11.5 Примеры расчета 92
12
Расчет и конструирование узлов стальных конструкций из прямоугольных труб
101
12.1 Общие положения 101
12.2 Область применения
102
12.3 Условия применения
102
12.4 Расчет 102
12.5 Сварные узлы сопряжения стержней решетки с поясами из прямоугольных труб 104
12.6 Примеры расчета 105
13
Основные положения по расчету элементов на выносливость 119
13.1 Общие положения 119
13.2 Упрощенная методика расчета на усталостную прочность элементов 122
13.3 Расчет на выносливость элементов конструкций
на основании линейной гипотезы накопления повреждений 122
13.4 Пример расчета усталостной прочности сварной подкрановой балки 123
14
Расчет стальных холодноформованных тонкостенных конструкций 127
14.1 Основные положения
127
14.2 Материалы 127
14.3 Эффективное поперечное сечение
128
14.4 Проверочные расчеты элементов 128
14.5 Проверочные расчеты соединений
132
14.6 Пример расчета. Определение несущей способности
тонкостенного поперечного С-образного сечения при изгибе 133
Приложение А (справочное)
А.1 Определение геометрических параметров
для двутавровых моносимметричных сечений *1+
143
А.2 Определение критической сжимающей силы *2+ 144
А.З Определение критического изгибающего момента *1+, *2+ 145
А.4 Определение расчетной длины колонн *5+ 154
Библиография
158
Протяженные соединения
10.8 Фрикционные соединения на болтах классов прочности 8.8 и 10.9 10.8.1 Расчетная несущая способность на
сдвиг поверхностей трения
10.8.1.1 Расчетную несущую способность на сдвиг поверхностей трения, стянутых одним болтом класса прочности
8.8 или 10.9 с предварительным натяжением, следует определять по формуле
(10.5) Ум 3
где ks —принимают по таблице 10.9;
п — количество поверхностей трения соединяемых элементов;
(х — коэффициент трения, принимаемый по результатам испытаний поверхностей, приве- денных в ТКП EN 1993-18 (1.2.7), или по таблице 10.10.
Таблица 10.9 — Значения ks
Описание соединения
ks
Болты, установленные в стандартные отверстия 1,0
199.
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилияперпендикулярно продольной оси отверстия 0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендику¬лярно продольной оси
отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси
отверстия
0,76
Болты, установленные в длинные овальные отверстия при передаче нагрузки параллельно продольной оси
отверстия
0,63
Установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси
отверстия , по линии нагрузки при многокаскадном демпфировании косого компенсатора , должны затянуты с
контрольным натяжением
Расчетную несущую способность на сдвиг поверхностей трения, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9, следует определять по формуле
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных
стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с
контролируемым натяжением, в соответствии со ссылочными стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица 3.6 — Значения ks
Описание
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче
усилия перпендикулярно продольной оси отверстия
0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной
оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси
отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси
отверстия
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
200.
C0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах
группы 7 (см. 1.2.7). Примечание 2 — Классификация поверхностей трения при любом другом
способе обработки должна быть основана на результатах испытаний образцов поверхностей по
процедуре, изложенной в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 3 —
Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может
произойти потеря предварительного натяжения.
5 6 Сборка и закрепление монтажных соединений конструкций на
высокопрочных болтах с контролируемым натяжением
МЕТОДИЧЕСКАЯ ДОКУМЕНТАЦИЯ В
СТРОИТЕЛЬСТВЕ
РЕКОМЕНДАЦИИ ПО МОНТАЖУ
СТАЛЬНЫХ СТРОИТЕЛЬНЫХ
КОНСТРУКЦИЙ
(к СНиП 3.03.01-87)
МДС 53-1.2001(к СНиП 3.03.01-87)
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и контрольная сборка
производилась в организации «Сейсмофонд» при СПб ГАСУ. Инструкция по креплению фланцев к поясу ферм предусматривала такую
последовательность производства работ:
1.
2.
3.
4.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами с пропиленным пазом,
куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости ,в плане и по высоте-.
Приварить фланцы на ФФПС;
Выполнить именную маркировку с ФФПС.
При лабораторных испытаниях в СПб ГАСУ , производились окончательная установка и затяжка всех высокопрочных болтов косого антисейсмических
фрикционно- демпфирующего соединения трубопроводов с надежным демпфирующим косым соединением трубопровода с
резервуаром из полиэтилена повышенно сейсмичности, путем применения демпфирующих фрикционно – протяжном косом
фланцевом соединении, с контролируемым натяжением, расположенных в длинных овальных отверстиях, для обеспечения
многокаскадного демпфирования при динамических нагрузках , преимущественно при импульсных растягивающих нагрузках
Известно стыковое соединение элементов из гнуто-сварных профилей прямоугольного или квадратного сечения, подверженных воздействию
центрального растяжения, которое выполняют со сплошными фланцами и ребрами жесткости, расположенными, как правило, вдоль углов профиля.
Ширина ребер определяется размерами фланца и профиля, длина – не менее 1,5 высоты меньшей стороны профиля.
Изобретение "Стыковое соединение растянутых элементов", патент № 887748.
С целью повышения надежности, косого антисейсмических фрикционно- демпфирующих соединение трубопроводов с надежным
демпфирующим косым соединением трубопровода с резервуаром из полиэтилена повышенно сейсмичности, путем применения
демпфирующих фрикционно – протяжном косом фланцевом соединении, с контролируемым натяжением, расположенных в длинных
овальных отверстиях, для обеспечения многокаскадного демпфирования при динамических нагрузках , преимущественно при
импульсных растягивающих нагрузках , предназначенные для работы в сейсмоопасных районах с
сейсмичностью более 9 баллов по шкале MSK-64 и упрощения стыка было разработано новое техническое решение монтажных
стыков растянутых элементов на косых фланцах, расположенных под углом 30 градусов относительно продольных осей стержневых элементов и
снабженных смежными упорами. Указанная цель достигается тем, что каждый упор входит в отверстие смежного фланца и взаимодействует с ним.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного фланца и своим торцом упирается в кромку
отверстия во фланце так, что смежные упоры друг с другом не взаимодействуют, а только со смежными фланцами, при этом, на упор приходится только
201.
половина усилия, действующего на стык в плоскости фланцев, а другая половина усилия передается непосредственно на фланец упором смежногофланца.
Стык косого антисейсмических фрикционно- демпфирующих соединение технологического трубопроводов из полиэтилена , с надежным
демпфирующим косым соединением трубопровода с резервуаром из полиэтилена повышенно сейсмичности, путем применения
демпфирующих фрикционно – протяжном косом фланцевом соединении, с контролируемым натяжением, расположенных в длинных
овальных отверстиях, для обеспечения многокаскадного демпфирования при динамических нагрузках , преимущественно при
импульсных растягивающих нагрузках , состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси, фланцев 2,
приваренных к скошенным концам соединяемых элементов 1, упоров 3, приваренных к фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с
другом. Оси стыка 5 и 6 расположены в плоскости фланцев и нормально фланцам соответственно.
Стык растянутых элементов для косого антисейсмических фрикционно- демпфирующих соединение трубопроводов с надежным
демпфирующим косым соединением трубопровода с резервуаром из полиэтилена повышенно сейсмичности, путем применения
демпфирующих фрикционно – протяжном косом фланцевом соединении, с контролируемым натяжением, расположенных в длинных
овальных отверстиях, для обеспечения многокаскадного демпфирования при динамических нагрузках , преимущественно при
импульсных растягивающих нагрузках предназначены для работы в сейсмоопасных районах с сейсмичностью
более 9 баллов по шкале MSK-64 на косых фланцах
ФПС устраивается следующим образом.
Отправочные марки конструкции ,стропильной фермы- изготавливаются известными приемами, характерными для решетчатых конструкций. Фланец 2 в
сборе с упором 3 изготавливается отдельно из стального листа на сварке. Из центральной части фланца вырезается участок для образования отверстия, в
котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный материал. Благодаря этому экономится до
25% стали на стык. Контактные поверхности упора и кромки отверстия во фланце выравниваются стружкой, фрезерованием или другими способами.
Фланец изготавливается с использованием шаблонов и кондукторов. Возможно изготовление фланца способом стального литья, что более
предпочтительно. Фланцы крепятся к скошенным концам соединяемых элементов с помощью кондукторов.
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это позволяет принять для них более
тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно
влияют возможные уменьшения диаметров стяжных болтов 4, снижение их количества или комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории упругости весьма затрудни-тельно. Это вызвано
разнообразием конструкций узлов, особенностями внешнего нагружения, а также крайне сложным взаимо-действием элементов узла. В связи с этим,
расчет напряженно-деформированного состояния модели узла стыка растянутых поясов ферм на косых фланцах выполняется МКЭ.
Для исследования напряженно деформированного состояния в образце был проведен расчет в программном комплексе SCAD Комета 2, и построена
математическая модель.
Расчет в Комете 2 основан на СНиП II-23-81, результат расчета представлен на рисунке 2. Как видно из результатов при расчетной нагрузке стенка
колонны испытывает напряжения в 2,4 раза выше нормативного, также как и прочность сварки и фланца нарушена. Как можно заметить, в СНиПе
заложены слишком высокие коэффициенты запаса прочности. Если же верить SCAD Комета 2, максимальная нагрузка на узел составляет 15 т/м, что
меньше в два раза рассчитанного по британским нормам
Как можно заметить, результаты, полученные из разных источников, отличаются. Однако решение, полученное в программном комплексе SCAD
наиболее точно описывает напряженное состояние в узле, ввиду того, что имеется возможность детально описать контактное взаимодействие и
построить более структурированную сетку. Необходимо провести серию испытаний фланцев различной толщины, проанализировав тенденцию
разрушения. Также следует доработать математическую модель на основе натурных испытаний. После чего можно создать пособие по проектированию
фланцевых соединений.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания проектного усилия натяжения высокопрочного
болта Р, кН, необходимо приложить крутящий момент, величина которого в Нм пропорциональна диаметру болта d, мм, и определяется согласно СТП
006-97 *4+ по эмпирической формуле М = kPd.
Коэффициент k, называемый коэффициентом закручивания, отражает влияние многочисленных технологических факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Во-первых, шероховатость резьбовых
поверхностей гайки и болта, определяющая величину сил трения в резьбе при закручивании. Во-вторых, геометрические параметры резьбы, её шаг и
угол профиля. В-третьих, чистота соприкасающихся поверхностей шайбы и головки болта или гайки в зависимости от того, какой элемент вращается при
натяжении соединения.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены болты, гайки и шайбы, наличие
антикоррозионного покрытия, а также на коэффициент закручивания влияет и то, вращением какого элемента натягивается болтоконтакт. СТП 006-97
установлено, что при закручивании соединения вращением болта значение крутящего момента должно приниматься на 5 % больше, чем при натяжении
вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной характеристикой их влияния является
устанавливаемый экспериментально коэффициент закручивания.
Для высокопрочных болтов, выпускаемых Воронежским, Улан-Удэнским и Курганским мостовыми заводами по ГОСТ Р 52643... 52646-2006 значения Р и
М для болтов различного диаметра приведены в табл. 2 СТП 006-97. При этом коэффициент закручивания k принят равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на разных заводах, по разным технологиям и
стандартам. Допущены к использованию высокопрочные метизы с антикоррозионным покрытием: кадмиро-ванием, цинкованием, омеднением и
другим. В этих условиях фактическое значение коэффициента закручивания может существенно отличаться от нормативных значений, и его необходимо
202.
контролировать для каждой партии комплектуемых высокопрочных метизов при входном контроле на строительной площадке по методике,приведённой в приложении Е ГОСТ Р 52643 и в приложении А СТП 006-97.
Допустимые значения коэффициента закручивания в соответствии с требованиями п. 3.11 ГОСТ Р 52643 должны быть в пределах 0,14-0,2 для метизов
без защитного покрытия и 0,11-0,2 - для метизов с покрытием. Погрешность оценки коэффициента закручивания не должна превышать 0,01.
Для определения коэффициента закручивания используют испытательное оборудование, позволяющее одновременно измерять приложенный к гайке
крутящий момент и возникающее в теле болта усилие натяжения с погрешностью, не превышающей 1 %.
При этом применяются измерительные приборы, основанные на различных принципах регистрации контролируемых характеристик. В качестве такого
оборудования в настоящее время используют динамометрические установки типа ДКП-1, УТБ-40, GVK-14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические динамометрические ключи типа КЛЦ, автоматически
обеспечивающие требуемый крутящий момент с погрешностью, не превышающей 4 %, посредством цепной передачи, приводимой в движение
гидроцилиндром.
Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения высокопрочных болтов, как правило, применяют
ручные динамометрические ключи рычажного типа КТР Курганского завода ММК с индикатором часового типа ИЧ 10. Их использование приводит к
значительным трудозатратам и физическим перегрузкам рабочих в связи с необходимостью приложения силы от 500 до 800 Н к рукоятке ключа при
создании проектной величины крутящего момента в процессе сборки фрикционных соединений на болтах диаметром 16-27 мм.
Кроме того, процесс установки высокопрочных болтов ключами КТР значительно удлиняется из-за необходимости постоянно каждые 4 ч беспрерывной
работы и не менее двух раз за смену контролировать исправность ключей их тарировкой способом подвески контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения 1000 и 2000 болтов и затем каждый раз
после натяжения 5000 болтов либо в случае замены таких составных элементов ключа, как гидроцилиндр или цепной барабан.
При использовании гидравлических ключей упрощается контроль величины крутящего момента, который осуществляется по манометрам, а
специальный механизм в конструкции ключа предотвращает чрезмерное натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно обеспечить, используя ручные
динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов при сборке металлоконструкций в стеснённых условиях. Гидравлические
ключи типа КЛЦ обеспечивают плавную затяжку высокопрочных болтов в ограниченном пространстве благодаря меньшим размерам и
противомоментным упорам.
В настоящее время организация в мире разработаны различные модификации гидравлических динамометрических ключей: серии SDW (2 SDW), SDU
(05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и других SDW.
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах с ограниченным доступом и обеспечивают
снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования.
Тарировку силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют на разрывной испытательной машине
с построением тарировочного графика в координатах: усилие натяжения болта в кН (тс) - показание динамометра.
Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР-150 производят с помощью грузов, подвешиваемых на свободном конце
рукоятки горизонтально закреплённого ключа. По результатам тарировки строится тарировочный график в коорди-натах: крутящий момент в Нм показания регистрирующего измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с использованием тарировочного устройства типа УТ-1,
конструкция и принцип работы которого описаны в СТП 006-97, приложение К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек, особенно обостряющаяся при
применении высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании их динамометричес-кими ключами до
расчётного усилия прокручиваются в 50 % случаев. Причина прокручивания заключается в недостаточной шерохо-ватости контактных поверхностей
головки болта и шайбы, подкладываемой под неё.
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия натяжения болтоконтакта является новая
конструкция высокопрочного болта с торцевым срезаемым элементом. Геометрическая форма таких болтов отличается наличием полукруглой головки
и торцевого элемента с зубчатой поверхностью, сопряжённого со стержнем болта кольцевой выточкой, глубина которой калибрует площадь среза.
Диаметр дна выточки составляет 70 % номинального диаметра резьбы.
Высокопрочные болты с контролируемым напряжением Tension Control Bolts (TCB) широко применяются в мире. Их производят в соответствии с
техническими требованиями EN 14399-1, с полем допуска резьбы для болтов 6g и для гаек 6 Н по стандартам ISO 261, ISO 965-2, с классом прочности 10.9
и механическими свойствами по стандарту EN ISO 898-1и с предельными отклонениями размеров по стандарту EN 14399-10.
В ЦНИИПСК им. Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не производятся и не применяются.
Конструкция болта с гарантированным моментом затяжки резьбовых соединений основана на связи механических свойств стали при растяжении и
срезе. Расчётное сопротивление стали при срезе составляет 58 % от расчётного сопротивления при растяжении, определённого по пределу текучести.
При вращении болта за торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки, удерживаемой муфтой наружного захвата
ключа. В момент достижения необходимого усилия натяжения болта торцевой элемент срезается по сечению, имеющему строго определённый
расчётом диаметр.
Для сборки фрикционных соединений на высокопрочных метизах с контролем натяжения по срезу торцевого элемента применяют ключи специальной
конструкции.
Заключение, выводы и рекомендации. Применение болтов с контролируемым натяжением срезом торцевого элемента увеличит
производительность работ по сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого способа натяжения
высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки динамометрических ключей,
необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего момента в процессе
натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента, соответствующего достижению
проектного усилия натяжения болта. При этом сборку фрикционных соединений можно производить с одной стороны конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе изготовления болтов и
устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных соединений, сделает её технологичной и
высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются вследствие сопротивления
сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть
максимально большим, что достигается упрочнением стали, из которой они изготовляются, путем термической обработки.
203.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных соедине-ний. Заменасварных монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает
надежность конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими типами болтовых соединений,
а также сами высокопрочные болты имеют значительно более высокую стоимость, чем обычные болты. Эти два фактора накладывают ограничения на
область применения фрикционных соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых наиболее полно реализуются их
положительные свойства — высокая надежность при восприятии различного рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в
настоящее время, проблема повышения эффективности использования несущей способности высокопрочных болтов, поиска новых конструктивных и
технологических решений выполнения фрикционных соединений является очень актуальной в сейсмоопасных районах.
С техническими решениями фрикционно-подвижных соединений (ФПС) обеспечивающих многокаскадное демпфирование (латунная шпилька, с
пропиленным пазом, в который забит медный обожженный клин, свинцовые шайбы, проходили лабораторные испытания) можно ознакомиться:
см.изобретения №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU
«Опора сейсмостойкая» Мкл E04H 9/02, Бюл.28, от 10.10. 2016 , СП 16.13330. 2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250),
п.10.3.2 -10.10.3 ,СН 471-75, ОСТ 36-72-82, Руководство по проектированию, изготовлению и сборке монтажа фланцевых соединений стропильных
ферм с поясом из широкополочных дву-тавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений
стальных строительных конструк-ций, ЦНИПИ Проектстальконструкция, ОСТ 37. 001.050-73 «Затяжка резьбовых соединений», Руководство по
креплению технологического оборудования фундаментными болтами, ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты», вып.5,
ЛЕНГИПРОНЕФТЕХИМ, Инструкция по применению высокопрочных болтов в эксплуатируемых мостах, ОСТ108. 275.80, ОСТ37. 001. 050-73, ВСН 144-76,
СТП 006-97, Инструкция по проектированию соединений на высокопрочных болтах в стальных конст-рукциях мостов», Рабер Л.М. (к.т.н.), Червинский
А.Е. «Пути совершенствования технологии выполнения и диагностики фрикци-онных соединений на высокопрочных болтах» НМетАУ (Национальная
металлургическая академия Украины, Днепропетровск), ШИФР 2.130-6с.95 , вып. 0-1, 0-2, 0-3. (Строительный Каталог ), «Направление развития
фрикционных соединений. на высокопроч-ных болтах» (НПЦ мостов г . СПб), д.т.н. Кабанов Е.Б, к.т.н. Агеев В.С, инж. Дернов А.Н., Паушева Л.Ю,
Шурыгин М.Н.
Рис На
рисунке показан узел гасителе динамических колебаний для применения легко сбрасываемость (ЛСК) из
последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их
программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений
проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с
204.
применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкостиконструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
205.
206.
Таблица № 1. Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем взаимодействияпромышленных трубопроводов, с упругими демпферами сухого трения с геологической средой и обеспечение
надежной сейсмостойкости промышленных трубопроводов с использованием в стыковых
соединений в растянутых зонах , косыми компенсаторами на фрикционно- болтовых
соединениях, для обеспечения многокаскадного демпфирования при импульсных растягивающих
нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895,
1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746 «Способ защиты зданий
сооружений при взрыве с использованием сдвигоустойсчивых и лего сбрасываемых соединений ,
использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии»,887747 «Стыковое соединение растянутых зон», 2382151,
2208098 , 2629514 и опыт применения программного комплекса SCAD Office для фрикционноподвижных соединениях - нелинейным методом расчета, методом оптимизации и идентификации статических
задач теории устойчивости трубопровода
Схемы сейсмоизолирующих и виброизолирующих опор для
сейсмоизоляции существующих зданий на основе
Типы
сейсмоизолирующих
элементов
демпфирующей сейсмоизоляции с использованием
изобретения номер 165076 «Опора сейсмостойкая» с
применением фрикционно –подвижных болтовых
соединений для обеспечение сейсмостойкости сооружений
из опыта Армении дтн Микаела Мелкумяна на резинометаллической сейсмоизоляции, предназначенных для
Идеализированная зависимость
«нагрузка-перемещение» (F-D)
сейсмоопасных районов с сейсмичностью до 9 баллов
ФПС проф Уздина А
М
Компенсатор
демпфирующий со
скошенными
косыми фланцами
опора с высокой
способностью к
диссипации
энергии
F
D
F
D
207.
DDС высокой
способностью к
диссипации
энергии
F
FF
FF
FF
D
D
D
DD
DD
F
Фланцевые
компенсаторы для
трубопроводов, с
медным обожженным стопорным
сминаемым
клином
F
F
FF
FF
А.М.Уздин
Одномаятниковые
со сферическими
поверхностями
скольжения
(трение)
Гармошка, в
которой имеется
упругопластический
шарнир по линии
нагрузки при R1=R2
и μ1≈μ2
D
F
F
Фланцевые
компенсаторы
скольжения и
медным клином
(крепления для
поглощения и
качение
D
F
F
FF
F
F
D
D
D
F
F
F
FF
F
F
F
F
F
F
FF
D
DD
D
D
D
DD
D
D
D
D
D
DD
D
DD
D
F
F
F
DD
DDD
D
D
FF
FF
F
DD
D
DD
D
F
Фланцы со
скошенными
торцами –
демпфирующий
компенсатор с
медным
обожженным
стопорным клином
F
F
FF
F
D
D
D
DD
D
F
D
208.
Рис На рисунке показан узел гасителе динамических колебаний для применения легко сбрасываемость (ЛСК)из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных
фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного
болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
209.
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, асейсмическая нагрузка падает
Рис Общий вид фрагментов в и узлов образцов для демпфирующих косых компенсаторов с упругими демпферами сухого трения для
обеспечения надежной сейсмостойкости промышленных трубопроводов с использованием в
стыковых соединений в растянутых зонах косые компенсаторы на фрикционно- болтовых
соединениях, для обеспечения многокаскадного демпфирования при импульсных растягивающих
нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895,
1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746 «Способ защиты зданий
сооружений при взрыве с использованием сдвигоустойсчивых и лего сбрасываемых соединений ,
использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии»,887747 «Стыковое соединение растянутых зон», 2382151,
2208098 , 2629514 и опыт применения программного комплекса SCAD Office для фрикционноподвижных соединениях - нелинейным методом расчета, методом оптимизации и идентификации статических
задач теории устойчивости трубопровода , согласно изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ
защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на
изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от
11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение №
2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10
с тросом в пластмассовой оплетке и без оплетки со стальным тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь
10 ХСНД
на сдвиг трубопровода в программном комплексе SCAD
Office, со скощенными торцами, согласно изобретения №№ 2423820, 887743, демпфирующих
компенсаторов на фрикционно-подвижных болтовых соединениях, для восприятия усилий -за
счет трения, при термически растягивающих нагрузках в трубопроводах , с упругими демпферами сухого
трения для обеспечения надежной сейсмостойкости промышленных трубопроводов с
использованием в стыковых соединений в растянутых зонах косые компенсаторы на
фрикционно- болтовых соединениях, для обеспечения многокаскадного демпфирования при
импульсных растягивающих нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746
«Способ защиты зданий сооружений при взрыве с использованием сдвигоустойсчивых и лего
Рис Общий вид фрагментов в и узлов образцов для испытание
210.
сбрасываемых соединений , использующие систему демпфирования фрикционности исейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747 «Стыковое соединение
растянутых зон», 2382151, 2208098 , 2629514 и опыт применения программного комплекса SCAD
Office для фрикционно- подвижных соединениях - нелинейным методом расчета, методом оптимизации и
идентификации статических задач теории устойчивости трубопровода , согласно изобретениям
№ 165076 RU E 04H 9/02 «Опора
сейсмостойкая», изобретения «Способ защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений,
использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от
20.01.2013, заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на изобр етение №
2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , заявка на
изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами (
шпилькой) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х
40 Х 3 мм Сталь 10 ХСНД
на сдвиг трубопровода в программном комплексе SCAD
Office, со скощенными торцами, согласно изобретения №№ 2423820, 887743, демпфирующих
компенсаторов на фрикционно-подвижных болтовых соединениях, для восприятия усилий -за
счет трения, при термически растягивающих нагрузках в трубопроводах для спиральной сейсмоиздирующей
опоры с упругими демпферами сухого трения для обеспечения надежной сейсмостойкости промышленных
трубопроводов с использованием в стыковых соединений в растянутых зонах косые
компенсаторы на фрикционно- болтовых соединениях, для обеспечения многокаскадного
демпфирования при импульсных растягивающих нагрузках на трубопровод согласно
изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075 «Опора
сейсмостойкая», 2010136746 «Способ защиты зданий сооружений при взрыве с использованием
сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747
«Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт применения
программного комплекса SCAD Office для фрикционно- подвижных соединениях - нелинейным методом
Рис Общий вид фрагментов в и узлов образцов для испытания
расчета, методом оптимизации и идентификации статических задач теории устойчивости трубопровода , согласно
изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным
тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
обеспечения надежной сейсмостойкости промышленных
трубопроводов с использованием в стыковых соединений в растянутых зонах косые
компенсаторы на фрикционно- болтовых соединениях, для обеспечения многокаскадного
Рис Общий вид фрагментов в и узлов образцов для
211.
демпфирования при импульсных растягивающих нагрузках на трубопровод согласноизобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075 «Опора
сейсмостойкая», 2010136746 «Способ защиты зданий сооружений при взрыве с использованием
сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747
«Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт применения
программного комплекса SCAD Office для фрикционно- подвижных соединениях - нелинейным методом
расчета, методом оптимизации и идентификации статических задач теории устойчивости трубопровода , согласно
изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным
тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
обеспечения надежной сейсмостойкости промышленных
трубопроводов с использованием в стыковых соединений в растянутых зонах косые
компенсаторы на фрикционно- болтовых соединениях, для обеспечения многокаскадного
демпфирования при импульсных растягивающих нагрузках на трубопровод согласно
изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075 «Опора
сейсмостойкая», 2010136746 «Способ защиты зданий сооружений при взрыве с использованием
сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747
«Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт применения
программного комплекса SCAD Office для фрикционно- подвижных соединениях - нелинейным методом
Рис Общий вид фрагментов в и узлов образцов для
расчета, методом оптимизации и идентификации статических задач теории устойчивости трубопровода , согласно
изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным
тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
212.
обеспечения надежнойсейсмостойкости промышленных трубопроводов с использованием в стыковых соединений в
растянутых зонах косые компенсаторы на фрикционно- болтовых соединениях, для обеспечения
многокаскадного демпфирования при импульсных растягивающих нагрузках на трубопровод
согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075
«Опора сейсмостойкая», 2010136746 «Способ защиты зданий сооружений при взрыве с
использованием сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической
энергии»,887747 «Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт
применения программного комплекса SCAD Office для фрикционно- подвижных соединениях Рис Общий вид фрагментов в и узлов образцов для с упругими демпферами сухого трения для
нелинейным методом расчета, методом оптимизации и идентификации статических задач теории устойчивости
213.
трубопровода , согласно изобретениям№ 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты зданий и сооружений при
взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от
10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без
оплетки со стальным тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Рис На рисунке
показан узел гасителе динамических колебаний для применения легко сбрасываемость (ЛСК) из последних двух
этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их
программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений
проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с
применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
214.
215.
216.
217.
218.
219.
220.
обеспечения надежнойсейсмостойкости промышленных трубопроводов с использованием в стыковых соединений в
растянутых зонах косые компенсаторы на фрикционно- болтовых соединениях, для обеспечения
многокаскадного демпфирования при импульсных растягивающих нагрузках на трубопровод
согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075
«Опора сейсмостойкая», 2010136746 «Способ защиты зданий сооружений при взрыве с
использованием сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической
энергии»,887747 «Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт
применения программного комплекса SCAD Office для фрикционно- подвижных соединениях Рис Общий вид фрагментов в и узлов образцов для с упругими демпферами сухого трения для
нелинейным методом расчета, методом оптимизации и идентификации статических задач теории устойчивости
трубопровода , согласно изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты зданий и сооружений при
взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от
10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02 ) испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без
оплетки со стальным тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Рис Общий вид фрагментов в и узлов образцов для для обеспечения надежной сейсмостойкости промышленных трубопроводов с использованием в стыковых
соединений в растянутых зонах косые компенсаторы на фрикционно- болтовых соединениях, для обеспечения многокаскадного демпфирования при импульсных
растягивающих нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165075 «Опора сейсмостойкая»,
2010136746 «Способ защиты зданий сооружений при взрыве с использованием сдвигоустойсчивых и лего сбрасываемых соединений , использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747 «Стыковое соединение растянутых зон», 2382151, 2208098 ,
2629514 и опыт применения программного комплекса SCAD Office для фрикционно- подвижных соединениях - нелинейным методом расчета, методом оптимизации и
идентификации статических задач теории устойчивости трубопровода , согласно изобретениям № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ
защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от 20.01.2013, заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02 ) испытываемых на
сдвиг с болтами ( шпилькой) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным тросом М 2 мм Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х
40 Х 3 мм Сталь 10 ХСНД
https://disk.yandex.ru/d/hswWXC5iCbOZ6w
5.Применение напряженно деформируемых фрикционно подвижных болтовых фланцевых соединений в
укрупненных стыках для антисейсмических косых демпфирующих компенсаторов для промышленных
трубопроводов и их программная реализация по взаимодействия трубопровода с геологической средой в SCAD
Office нелинейным методом, для обеспечения сейсмостойкой надежности и работоспособности промышленного
оборудований и агрегатов , с использованием изобретений проф дтн ПГУПС А.М.Уздина №№1143895, 1168755,
1174616, 165076 «Опора сейсмостойкая», 2010136746«Способ защиты зданий и сооружений при взрыве с
использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования
фрикционности, и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» при импульсных
растягивающих нагрузках
Рис На рисунке показан узел гасителе динамических колебаний для применения легко сбрасываемость (ЛСК)
из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных
фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного
221.
болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованиемизобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
ОБЩИЕ ВЫВОДЫ лабораторных испытаний узела
гасителя динамических колебаний
для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при импульсных
растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым
натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с
образованными лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При
сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает. Необходимо проводить испытания
в программном комплексе SCAD Office, со скощенными торцами, согласно изобретения №№
2423820, 887743, демпфирующих компенсаторов на фрикционно-подвижных болтовых
соединениях, для восприятия усилий -за счет трения, при термически растягивающих нагрузках
в трубопроводах и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости технологических
трубопроводов
1. На основе последовательных испытаний узлов и фрагментов получен
алгоритм численного исследования динамической задачи модели здания с
сухим трением. Получены результаты поведения модели, с сухим трением
со многими степенями свободы. Изучено влияние силы трения на
динамическое поведение исследуемого объекта, узлов гашения динамических колебаний
для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
222.
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при импульсныхрастягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым
натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с
образованными лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При
сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает
2. Исследован вопрос сходимости итерационного решения систем
уравнений, также исследована сходимость решения динамической задачи.
Показано, что способом итерации можно легко организовать процесс
решения систем уравнений на каждом временном шаге, по
конструированию узлов гашения динамических колебаний для применения легко сбрасываемость
(ЛСК) из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных
фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного
болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием
изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
3. Разработана методика численного моделирования и получены
результаты решения задач о колебаниях системы «виброплатформа модель со скошенными торцами, при различных воздействиях. Показано,
что максимальная амплитуда колебаний платформы и время еѐ вхождения
в резонанс зависит от вида динамической нагрузки. При действии
гармонической нагрузки в процессе резонансного возбуждения платформа
приобретает наибольшее отклонение для, для обеспечения сейсмостойкости, за счет легко
сбрасываемости панелей с существующего здания , при импульсных растягивающих нагрузках с использованием
протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных
болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы
латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076
«Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко
сбрасываемых панелей с применением фрикционно-подвижных болтовых соединений для обеспечения
сейсмостойкости конструкций здания: масса здания уменьшается, частота собственных колебаний
увеличивается, а сейсмическая нагрузка падает
4. Разработаны математическая модель и компьютерная программа с
целью исследования напряжѐнно-деформированного состояния модели
сейсмоизолированного при линейной и нелинейной работе с демпфирующими косыми
компенсаторами перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных
болтовых соединениях, для обеспечения сейсмостойкости установки технологических трубопроводав
Показано, что использование компенсаторов
со скощенными торцами, согласно
изобретения №№ 2423820, 887743, демпфирующих компенсаторов на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при термически растягивающих
нагрузках в трубопроводах ,приводит к значительному уменьшению ускорения и
относительного межэтажного сдвига, но при этом увеличивается
223.
абсолютное перемещение трубопровода по сравнению с жесткимкреплением без виброзащиты .
5. Получены решения задачи о колебаниях технологического
трубопровода с учѐтом продольных, поступательных, изгибных и
крутильных движений инерционных масс на основе метода
сосредоточенных деформаций. Полученные результаты показывают, что
учѐт крутильных колебаний основания приводит к горизонтальным
высокочастотным колебаниям.
17 Выводы по применению со скощенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующих компенсаторов на фрикционно-подвижных болтовых соединениях, для
восприятия усилий -за счет трения, при термически растягивающих нагрузках в трубопроводах (
по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для
обеспечения сейсмостойкости технологических трубопроводов
Прилагается пример математического моделирования на сдвиг трубопровода в программном комплексе
SCAD Office, со скощенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующих компенсаторов на фрикционно-подвижных болтовых соединениях, для
восприятия усилий -за счет трения, при термически растягивающих нагрузках в трубопроводах
и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых
фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости трубопровода в ПК SCAD Например РАСЧЕТНАЯ
СХЕМА УЗЛА ЛСК, последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко
сбрасываемости панелей с существующего здания , при импульсных растягивающих нагрузках с использованием
протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных
болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы
латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076
«Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко
сбрасываемых панелей с применением фрикционно-подвижных болтовых соединений для обеспечения
сейсмостойкости конструкций здания: масса здания уменьшается, частота собственных колебаний
увеличивается, а сейсмическая нагрузка падает
224.
Рис. Общий вид образцов виброизолирующей опоры ( для применении шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( поизобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны с ригелем )
демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых
фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости с технологическими трубопроводами из
полиэтилена, согласно изобретения № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения № 2010136746 от 20.01.2013 «Способ защиты
и
зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования
фрикцион-ности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018
«Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейс-мическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02) испытываемых на сдвиг (болты- шпильки) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным тросом М 2
мм. Образец № 1 (ГОСТ 22353- 77) с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
225.
Рис.Общий вид образцов виброизолирующей опоры ( для виброизолирующих опор -оснований применении шарнирной виброгасящейсейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное
соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости технологических
трубопроводов, согласно изобретения № 2010136746 от 20.01.2013 «Способ защиты зданий и сооружений при взрыве с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикцион-ности и сейсмоизоляцию для поглощения
взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки
на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейс-мическое фланцевое фрикционно-подвижное соединение для трубопроводов» F
16L 23/02 , заявка на изобретение № 2016119967/20( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02) испытываемых на
сдвиг (болты- шпильки) М 10 с тросом в пластмассовой оплетке и без оплетки со стальным тросом М 2 мм. Образец № 1 (ГОСТ 22353- 77) с платиной
260 мм Х 40 Х 3 мм Сталь 10 ХСНД.
ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(19)
RU
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(11)
2 413 820
226.
(13)C1
(51) МПК
E04B 1/58 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
Приоритет(ы):
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ В.В.
(73)
Металлические конструкции. В 3 т. - Стальные конструкции зданий и сооружений
Патентообладатель(и):
(Справочник проектировщика). - М.: АСВ, 1998, т.2. с.157, рис.7.6. б). SU 68853 A1,
Марутян Александр
31.07.1947. SU 1534152 A1, 07.01.1990.
Суренович (RU)
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская, 90, кв.4,
Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых элементов
замкнутого профиля. Технический результат заключается в уменьшении массы конструкционного материала.
Фланцевое соединение растянутых элементов замкнутого профиля включает концы стержней с фланцами,
стяжные болты и листовую прокладку между фланцами. Фланцы установлены под углом 30° относительно
продольных осей стержневых элементов. Листовую прокладку составляют парные опорные столики. Столики
жестко скреплены с фланцами и в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям растянутых
элементов замкнутого профиля, и может быть использовано в монтажных стыках поясов решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы стержневых
элементов с фланцами, дополнительные ребра и стяжные болты, установленные по периметру замкнутого профиля
попарно симметрично относительно ребер (Металлические конструкции. В 3 т. Т.1. Общая часть. (Справочник
проектировщика) / Под общ. ред. В.В.Кузнецова. - М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных деталей, что
увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего (растянутого)
пояса ферм из гнутосварных замкнутых профилей, включающее концы стержневых элементов с фланцами,
227.
дополнительные ребра, стяжные болты и листовую прокладку между фланцами для прикрепления стержнейрешетки фермы и связей между фермами (1. Металлические конструкции: Учебник для вузов / Под ред.
Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.295, рис.9.27; 2. Металлические конструкции. В 3 т. Т.1.
Элементы конструкций: Учебник для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости монтажного
стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов замкнутого
профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого профиля,
включающем концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами, фланцы
установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку
составляют парные опорные столики, жестко скрепленные с фланцами и в собранном соединении взаимно упертые
друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так, его можно
применить в монтажных стыках решетчатых конструкций из труб круглых, овальных, эллиптических,
прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве еще одного примера
использования предлагаемого соединения можно привести аналогичные стыки на монтаже элементов конструкций
из парных и одиночных уголков, швеллеров, двутавров, тавров, Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано предлагаемое фланцевое
соединение растянутых элементов замкнутого профиля, вид сверху; на фиг.2 - то же, вид сбоку; на фиг.3 предлагаемое соединение для случая прикрепления элемента решетки, вид сбоку; на фиг.4 - фланцевое соединение
растянутых элементов незамкнутого профиля, вид сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном
отсутствии стяжных болтов в наружных зонах незамкнутого профиля; на фиг.7 - расчетная схема растянутого
элемента замкнутого профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит прикрепленные с
помощью сварных швов цельнолистовые фланцы 2, установленные под углом 30° относительно продольных осей
растянутых элементов. С фланцами 2 посредством сварных швов жестко скреплены опорные столики 3. В
выступающих частях 4 фланцев 2 и опорных столиков 3 размещены соосные отверстия 5, в которых после сборки
соединения на монтаже установлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные столики 3
продолжены за пределы выступающих частей 4 фланцев 2 таким образом, что в них можно разместить
дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов незамкнутого профиля
9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные болты 6 могут быть расположены не
только за пределами сечения (поперечного или косого) незамкнутого (открытого) профиля, но и в его внутренних
зонах. При полном отсутствии стяжных болтов 6 в наружных (внешних) зонах открытого профиля 9 предлагаемое
фланцевое соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы примыкания
раскосов к поясу должны быть не менее 30° для обеспечения плотности участка сварного шва со стороны острого
угла (Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия»,
2007. - С.296). Поэтому в предлагаемом фланцевом соединении растянутых элементов замкнутого профиля 1
фланцы 2 и скрепленные с ними опорные столики 3 установлены под углом 30° относительно продольных осей. В
таком случае продольная сила F, вызывающая растяжение элемента замкнутого профиля 1, раскладывается на две
составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866 F,
передающуюся на опорные столики 3. Уменьшение болтовых усилий в два раза во столько же раз снижает
моменты, изгибающие фланцы, а это позволяет применять для них более тонкие листы, сокращая тем самым
расход конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно
влияют возможные уменьшение диаметров стяжных болтов 6, снижение их количества или комбинация первого и
второго.
228.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового объекта принятотиповое монтажное соединение на фланцах ферм покрытий из гнутосварных замкнутых профилей системы
«Молодечно» (Стальные конструкции покрытий производственных зданий пролетами 18, 24, 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ.
Лист 44). Расход материала сравниваемых вариантов приведен в таблице, из которой видно, что в новом решении
он уменьшился в 47,1/26,8=1,76 раза.
Наименование Размеры, мм Кол-во, шт.
Масса, кг
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
Сварные швы (1,5%)
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
Сварные швы (1,5%)
47,1
Примеч.
5,2
26,8 Предлагаемое решение
0,4
*Учтена треугольная форма
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и предлагаемом
фланцевых соединениях количество стяжных болтов одинаково и составляет 8 шт. Если в первом из них
использованы болты М24, то во втором - M18 того же класса прочности. Тогда очевидно, что в новом решении
расход материала снижен пропорционально уменьшению площади сечения болта нетто, то есть в 3,52/1,92=1,83
раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с фланцами,
стяжные болты и листовую прокладку между фланцами, отличающееся тем, что фланцы установлены под углом
30° относительно продольных осей стержневых элементов, а листовую прокладку составляют парные опорные
столики, жестко скрепленные с фланцами и в собранном соединении взаимно упертые друг в друга.
229.
230.
231.
232.
233.
234.
Одним из самых разрушительных явлений природы является землетрясение. Всоответствии с картами общего сейсмического районирования, около 40%
территории России являются сейсмически опасными. На Земле ежегодно
происходят более 15 разрушительных катастрофических землетрясений, и около 150
землетрясений средней интенсивности. К мерам предупреждения разрушительных
последствий землетрясений можно отнести: создание достоверных карт
сейсмического районирования, применение адекватных норм сейсмостойкого
строительства и новых методик расчета зданий и сооружений на сейсмические
воздействия, учитывающих нелинейный характер деформирования зданий и
сооружений и совместную работу сооружения с нелинейно деформируемым
грунтовым основанием, применение методов теории надежности строительных
конструкций и теории вероятностей.
применении шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению
УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение
колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению
изобретение № 165076 «Опора сейсмостойкая» на фланцевых фрикционо-подвижных болтовых
соединениях, для обеспечения при численном моделирование на сдвиг в
При
программном комплексе SCAD Offise демпфирующих,
антивибрационных косых компенсаторов на фрикционно-подвижных
болтовых соединениях для пятиэтажек пятого последнего этажа для
формирования прогрессирующего обрушения пятого этажа от
многокаскадного демпфирования а и обеспечение надежности четырех
оставшихся этажей с использованием в стыковых соединений труб в
растянутых зонах, косых компенсаторов на фрикционно-подвижных
болтовых соединениях для обеспечения взрвостойкости трубопроводов ,
предназначенных для сейсмоопасных районов с сейсмич-ностью до 9 баллов с технологическими трубопроводами из полиэтилена использовались
рекомендации по расчету проектированию изготовлению и монтажу фланцевых соединений стальных строительных конструкций:
http://files.stroyinf.ru/Data2/1/4293833/4293833817.pdf https://dwg.ru/dnl/1679
Таблица № 1. Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции.
235.
Телескопические на ФПС проф Уздина А МТипы сейсмоизолирующих
элементов
Трубчатая
телескопическая
опора с высокой
способностью к
диссипации энергии
Схемы сейсмоизолирующих и виброизолирующих
опор для технологических трубопроводов из
полиэтилена, изготавливаемых в соответствии с ТУ
4859-022-69211495-2015, предназначенных для
ейсмоопасных районов с сейсмичностью до 9 баллов
Идеализированная зависимость
«нагрузка-перемещение» (F-D)
F
FF
FF
F
D
D
DD
D
FF
С высокой
способностью к
диссипации энергии
F
F
FF
F
F
F
DD
D
D
F
Трубчатая телескопическая опора с
медным обожженным стопорным
сминаемым клином
F
F
F
FF
F
D
DD
D
DD
D
F
F
F
Телескопические на фрикционно-подвижны соединениях опоры маятниковые на ФПС проф. дтн А.М.Уздин
D
С плоскими
горизонтальными
поверхностями
скольжения и
медным клином
(крепления для
раскачивания) на
качение
FF
FF
FF
F
F
F
F
F
F
F
F
Маятниковая
крестовидная
опора, в которой
имеется
упругопластический
шарнир по линии
нагрузки при R1=R2
и μ1≈μ2
Маятниковая опра с
крестовиной
(трущимися
поверхностями )
скольжения при
R1=R2 и μ1≠μ2
Маятниковые
крестовидные
опоры с медным
обожженным
стопорным клином
F
F
F
F
F
D
D
D
DD
DD
D
D
D
D
DD
DDD
D
F
F
FF
F
F
F
D
D
DD
D
D
F
F
FF
Одномаятниковые
со сферическими
поверхностями
скольжения
(трение)
D
D
D
D
DD
D
D
D
D
D
D
F
DD
D
D
F
F
FF
F
F
D
D
D
D
D
D
D
F
D
236.
применении шарнирной виброгасящейсейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ №
2382151 поворачивающее шарнирное соединение колонны с ригелем ) и
демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая» на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения
вибростойкости, темостойкости трубопроводов предназначенных для сейсмоопасных районов с сейсмичностью до 9
При испытаниях математических моделей пятиэтажки -хрущеви
баллов с трубопровода-ми из полиэтилена на сдвиг расчетным способом определялась расчетная несущая способность узлов податливых креплений,
стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7 (см. 1.2.7), или в
таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым натяжением, в соответствии
со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Описание
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно продольной оси
отверстия
0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 2 —
Классификация поверхностей трения при любом другом способе обработки должна быть основана на результатах испытаний образцов
поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 3 — Определения классов
поверхностей трения приведены в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 4 — При наличии окрашенной поверхности с
течением времени может произойти потеря предварительного натяжения.
1. Результаты численного моделирования шарнирной виброгасящей сейсмоизоляции типа
«гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны
с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая» на
фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости
скользящим поясом на основе модели сухого трения.
с сейсмоизолирущим
237.
2. Математическая модель и результаты свободных и вынужденныхколебаний системы «платформа - модель » от действия мгновенного
импульса и вибрационной нагрузки.
3. Результаты моделирования динамической задачи с сейсмоизоляцией в
виде шарнирных или демпфирующих опор при их линейной и нелинейной
работе.
4. Разработанные численные алгоритмы по расчѐту многоэтажных
каркасных зданий с учѐтом и без учѐта сейсмоизоляции при различных
воздействиях.
5. Решение задач по расчѐту сейсмоизолированных методом
сосредоточенных деформаций.
Область исследования соответствует - Строительная механика, в
частности:
- пункту «Общие принципы расчѐта сооружений и их элементов»;
- пункту «Численные методы расчѐта сооружений и их элементов».
Список научной литературы по использованию
гасителей динамических колебаний
для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения
сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при импульсных
растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым
натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с
образованными лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При
сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота
собственных колебаний увеличивается, а сейсмическая нагрузка падает, что описано в
прилагаемой
литературе СПб ГАСУ :
разработками инженеров организации «Сейсмофонд» при СПб ГАСУ по использованию косого компенсатора
к
трубопроводам с помощью фланцевых фрикционно-подвижных болтовых демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях по изобретению
проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое
соединение растянутых элементов» [email protected]
С научными
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», А.И.Коваленко
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко
6. Российская газета от 03.06.95 «Аргументы против катастроф найдены», А.И.Коваленко
7. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
11. «Грозненский рабочий» № 2 июнь 1995 «Грозному предрекают разрушительное землетрясение», А.И.Коваленко
12. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на грунте. Строительство
на пучинистых и просадочных грунтах»
13. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» – Фонда «Защита и
безопасность городов» в области реформы ЖКХ.
14. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету «Земля глобальные и
разрушительные потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.
15. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях
за рубежом
С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного Кавказа сторожевых
башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 тел.118-8691.
Литература по испытанию косого компенсатора для трубопроводов , закрепленного с помощью
фланцевых фрикционно-подвижных болтовых демпфирующих компенсаторов (ФПДК) с контролируемым
238.
натяжением, расположенных в длинных овальных отверстиях по изобретению проф. дтн ПГУПС А.М.Уздина№№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое соединение растянутых элементов» и
рассчитанного в программе SCAD
Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых
соединений стальных строительных конструкций. М. , ЦБНТИ Минмонтажспецстроя
СССР, 1989, с. 53.
Грудев И. Д. Прочность фланцевых соединений элементов открытого профиля. Болтовые
и специальные монтажные соединения в стальных строительных конструкциях.
Международный коллоквиум. – 1989. – Труды. Т.2 – С. 7-13.
Фланцевые соединения. Расчет и проектирование. Бугов А. У. – Л. Машиностроение,
1975. – с. 191.
Соскин А. Г. Особенности поведения и расчет болтов фланцевых соединений. Болтовые
и специальные монтажные соединения в стальных строительных конструкциях.
Международный коллоквиум. – 1989. – Труды. Т.2 – С. 24-31.
Каленов В. В, Соскин А. Г., Евдокимов В. В. Исследования и расчет усталостной
прочности фланцевых соединений растянутых элементов конструкций. Болтовые и
специальные монтажные соединения в стальных строительных конструкциях.
Международный коллоквиум. – 1989. – Труды. Т.2 – С. 41-17.
Проектирование металлических конструкций: Спец.курс. Учебное пособие для вузов/ В. В.
Бирюлев, И. И. Кошин, И. И. Крылов, А. В. Сильвестров. – Л.: Стройиздат, 1990 – 432 с.
крепления косого
компенсатора к трубопроводам с помощью фланцевых фрикционно-подвижных болтовых демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях по
изобретению проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748
«Стыковое соединение растянутых элементов»
ЛИТЕРАТУРЫ по маятниковой сейсмоизоляции для ЛСК с демпфирующим компенсатором для
каркаса здания с помощью фланцевых фрикционно-подвижных болтовых демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях по изобретению
проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое
соединение растянутых элементов»
Список лабораторной литературы , которая использовалась при лабораторных испытаниях в СПб ГАСУ
1. MSK-64. Шкала сейсмической интенсивности MSK. 1964.
2. Межгосударственный стандарт. ГОСТ 30546.1-98 «Общие требования к машинам, приборам и
другим техническим изделиям и методы расчета их сложных конструкций в части
сейсмостойкости».
3. СНиП 2.03.01-84*. «Бетонные и железобетонные конструкции. Нормы проектирования».
4. Я.М. Айзенберг, Р.Т. Акбиев, В.И. Смирнов, М.Ж. Чубаков. «Динамические испытания и
сейсмостойкость навесных фасадных систем». Ж. «Сейсмостойкое строительство. Безопасность
сооружений» №1, 2008г. стр. 13-15.
5. Назаров А.Г., С.С. Дарбинян. Шкала для определения интенсивности сильных землетрясений
на количественной основе. // В. кн.: Сейсмическая шкала и методы измерения сейсмической
интенсивности. Академия наук СССР. Междуведомственный совет по сейсмологии и
сейсмостойкому строительству (МСССС) при президиуме АН СССР. М.: Наука, 1975.
6. Методические рекомендации по инженерному анализу последствий землетрясений. ЦНИИСК
им. В.А.Кучеренко ГОССТРОЯ СССР. – М., 1980, 62 с.
239.
7. Отчет по результатам натурных испытаний фрагментов навесных вентилируемых фасадов«ДИАТ». ЦНИИСК им. В.А.Кучеренко-М., 2007.
8. Поляков С.В., «Сейсмостойкие конструкции зданий», Изд. «Высшая школа», М., 1969г., 335 с.
9. Корчинский И.Л. и др., «Сейсмостойкое строительство зданий», Изд. «Высшая школа», М.,
1971г., 319 с.
Карапетян Б.К. «Колебание сооружений, возведенных в Армении», Изд. «Айостан», Ереван, 1967
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2367917
(13)
C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭс" (RU)
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул.
Чапаева, 43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И ДИНАМОМЕТРИЧЕСКИЙ
КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретение относится к измерительной технике и может быть использовано для контроля крутящего момента затяжки резьбовых соединений.
Способ заключается в приложении к затянутому резьбовому соединению крутящего момента, перевода резьбового соединения из состояния покоя
в состояние движения, повороте на заданный угол, не превышающий 2-4°, и измерении крутящего момента при достижении углом поворота
заданного значения. При этом производится дополнительный поворот на такой же угол с измерением крутящего момента при достижении углом
поворота заданного значения, а крутящий момент затяжки определяют как разность удвоенного значения крутящего момента при первоначальном
повороте на заданный угол и значения крутящего момента при дополнительном повороте на заданный угол. Устройство содержит датчик момента,
подключенный ко входу усилителя, выходом соединенного со входом аналого-цифрового преобразователя, первый и второй регистр памяти,
счетчик импульсов, дешифратор, блок вычислений, цифровой индикатор и элемент ИЛИ. Технический результат заключается в повышении
точности контроля крутящего момента затяжки. 2 н.п. ф-лы, 3 ил
.
Изобретение относится к измерительной технике и может быть использовано для контроля крутящего момента затяжки резьбовых соединений.
Известен способ измерения крутящего момента затяжки резьбовых соединений заключающийся в приложении к затянутому резьбовому
240.
соединению крутящего момента, перевод резьбового соединения из состояния покоя в состояние движения, поворот на заданный угол, непревышающий 2+4°, и измерение крутящего момента при достижении углом поворота заданного значения (см. а.с
1500881, опубл. 15.08.89 г.).
Однако использование этого способа не позволяет точно определять крутящий момент затяжки, так как измеряется крутящий момент,
соответствующий повороту резьбового соединения на дополнительный угол, поэтому возникает погрешность в измерении крутящего момента
затяжки.
Технический результат изобретения повышение точности контроля крутящего момента затяжки.
Поставленный технический результат достигается тем, что согласно способу измерения крутящего момента затяжки, заключающемуся в
приложении к затянутому резьбовому соединению крутящего момента, переводе резьбового соединения из состояния покоя в состояние движения,
повороте на заданный угол, не превышающий 2÷4°, и измерении крутящего момента при достижении углом поворота заданного значения,
производится дополнительный поворот на такой же угол с измерением крутящего момента при достижении углом поворота заданного значения, а
крутящий момент затяжки определяют как разность удвоенного значения крутящего момента при первоначальном повороте на заданный угол и
значения крутящего момента при дополнительном повороте на заданный угол.
Известен динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом соединенного со входом аналогоцифрового преобразователя, и первый регистр памяти (см. патент RU
2296964 от 10.04.2007 г.).
Недостатком указанного ключа является недостаточно высокая точность измерения крутящего момента затяжки резьбовых соединений.
Технический результат изобретения - повышение точности измерения крутящего момента затяжки резьбовых соединений.
Поставленный технический результат достигается тем, что динамометрический ключ, содержащий датчик момента, подключенный ко входу
усилителя, выходом соединенного со входом аналого-цифрового преобразователя, и первый регистр памяти снабжен датчиком угла поворота,
вторым регистром памяти, счетчиком импульсов, дешифратором, блоком вычислений, цифровым индикатором и элементом ИЛИ, выходом
подключенным ко входу первого индикатора, выход датчика угла подключен к счетному входу счетчика импульсов, выходами соединенного со
входами дешифратора, информационные выходы аналого-цифрового преобразователя соединены с соответствующими информационными
входами первого и второго регистров памяти, информационными выходами подключенных к соответствующим информационным входам блока
вычислений, информационными выходами подключенного ко входам цифрового индикатора, первый выход дешифратора подключен ко входу
«Запись» первого регистра памяти, второй выход дешифратора подключен ко входу «Запись» второго регистра памяти, нулевой и первый выходы
дешифратора подключены ко входам элемента ИЛИ, второй выход дешифратора подключен ко входу «Вычисление» блока вычислений и входу
второго элемента индикации, а установочные входы регистров памяти и счетчика импульсов через кнопку управления подключены к шине
«Напряжение логической единицы».
На фиг.1 приведен график зависимости крутящего момента от угла поворота гайки при затяжке резьбового соединения.
На фиг.3 приведена блок схема динамометрического ключа.
На фиг.2 - общий вид динамометрического ключа.
Динамометрический ключ содержит датчик 1 момента, датчик 2 угла поворота, датчик 1 момента через усилитель 3 подключен ко входу аналогоцифрового преобразователя 4, первый и второй регистры 5 и 6 памяти, счетчик 7 импульсов, дешифратор 8, блок 9 вычислений, цифровой
индикатор 10 и элемент 11 ИЛИ, выходом подключенный ко входу первого индикатора 12, выход датчика 2 угла поворота подключен к счетному
входу счетчика 7 импульсов, выходами соединенного со входами дешифратора 8, информационные выходы аналого-цифрового преобразователя 4
соединены с соответствующими информационными входами первого и второго регистров 5 и 6 памяти, информационными выходами
подключенных к соответствующим информационным входам блока 9 вычислений, информационными выходами подключенного ко входам
цифрового индикатора 10, первый выход дешифратора 8 подключен ко входу «Запись» первого регистра 5 памяти, второй выход дешифратора 8
подключен ко входу «Запись» второго регистра 6 памяти, нулевой и первый выходы дешифратора 8 подключены ко входам элемента 11 ИЛИ,
второй выход дешифратора 8 подключен ко входу «Вычисление» блока 9 вычислений и входу второго элемента 13 индикации, а установочные
входы регистров 5 и 6 памяти и счетчика 7 импульсов через кнопку управления 14 подключены к шине 15 «Напряжение логической единицы».
Способ измерения крутящего момента затяжки осуществляется следующим образом. На резьбовое соединение надевают ключевую головку
динамометрического ключа (не указана) и производят поворот резьбового соединения. При достижении углом поворота установленного значения
2÷4° производится измерение крутящего момента. Затем производят дополнительный поворот на тот же угол, при достижении углом
установленного значения производят повторное измерение крутящего момента.
Так как затяжка резьбовых соединений осуществляется в пределах упругих деформаций, то зависимость момента на ключе от угла поворота имеет
линейную зависимость, поэтому зная значения момента в двух точках, можно рассчитать значение крутящего момента затяжки как разность
удвоенного значения крутящего момента при первоначальном повороте на заданный угол и значения крутящего момента при дополнительном
повороте на заданный угол.
Динамометрический ключ работает следующим образом.
Ключевой головкой (не указана) ключ устанавливают на резьбовое соединение (не указано) и нажимают кнопку 14 управления. При этом
осуществляется сброс содержимого регистров 5 и 6 памяти и установка счетчика 7 в нулевое состояние.
Это приводит к появлению напряжения логической единицы на нулевом выходе дешифратора 8, на выходе элемента 11 ИЛИ также появляется
241.
напряжение логической единицы, которое поступает на вход первого элемента 12 индикации.Элемент 12 индикации загорается, чем осуществляется индикация о начале измерения.
Затем к резьбовому соединению прикладывают крутящий момент и переводят резьбовое соединение из состояния покоя в состояние движения и
осуществляют его поворот.
При этом на выходе датчика 1 момента появляется напряжение, величина которого пропорциональна величине приложенного крутящего момента.
Это напряжение через усилитель 3 поступает на вход аналого-цифрового преобразователя 4, который осуществляет преобразование напряжения,
пропорционального моменту, в цифровой код. Цифровой код с выходов аналого-цифрового преобразователя 4 поступает на входы регистров 5 и 6
памяти.
Когда при повороте резьбового соединения угол поворота достигнет установленного значения в пределах 2÷4°, на выходе датчика 2 угла появится
импульс, который поступает на счетный вход счетчика 7 импульсов.
При этом на нулевом выходе дешифратора 8 напряжение логической единицы пропадает и оно появляется на первом выходе дешифратора 8.
Передним фронтом этого импульса осуществляется запись в память кода на его входах, соответствующего величине крутящего момента при
первоначальном угле поворота.
При дальнейшем повороте резьбового соединения на выходе датчика 2 угла вновь появится импульс, когда резьбовое соединение повернется на
такой же угол, что при первоначальном повороте. При этом счетчик 7 импульсов установится в следующее состояние, на втором выходе
дешифратора появится напряжение логической единицы, которым осуществляется запись в память второго регистра 6 памяти кода,
соответствующего крутящему моменту при повороте резьбового соединения на дополнительный угол.
Цифровой код с выходов регистров 5 и 6 памяти поступает на входы блока 9 вычислений.
При появлении на втором выходе дешифратора 8 напряжения логической единицы блок 9 осуществляет вычисление, при котором на его выходе
появляется код, соответствующий значению разности удвоенного значения крутящего момента при первоначальном повороте на заданный угол и
значения крутящего момента при дополнительном повороте на заданный угол. Код с выходов блока 9 вычислений поступает на входы цифрового
индикатора, которым осуществляется индикация вычисленной величины крутящего момента.
Так как напряжение логической единицы отсутствует на первом выходе дешифратора 8, то индикатор 12 гаснет, чем осуществляется индикация о
том, что измерение крутящего момента закончено.
При появлении напряжения на втором выходе дешифратора 8 загорается индикатор 13, который сигнализирует о том, что можно считывать
результат измерения.
Измерение крутящего момента затяжки закончено и ключ снимают с проверенного резьбового соединения.
Введение в динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом соединенного со входом аналогоцифрового преобразователя, и первый регистр памяти, датчика угла поворота, второго регистра памяти, счетчика импульсов, дешифратора, блока
вычислений, цифрового индикатора и элемента ИЛИ, выходом подключенного ко входу первого индикатора, при этом выход датчика угла поворота
подключен к счетному входу счетчика импульсов, выходами соединенного со входами дешифратора, информационные выходы аналого-цифрового
преобразователя соединены с соответствующими информационными входами первого и второго регистров памяти, информационными выходами
подключенных к соответствующим информационным входам блока вычислений, информационными выходами подключенного ко входам цифрового
индикатора, первый выход дешифратора подключен ко входу «Запись» первого регистра памяти, второй выход дешифратора подключен ко входу
«Запись» второго регистра памяти, нулевой и первый выходы дешифратора подключены ко входам элемента ИЛИ, второй выход дешифратора
подключен ко входу «Вычисление» блока вычислений и входу второго элемента индикации, а установочные входы регистров памяти и счетчика
импульсов через кнопку управления подключены к шине «Напряжение логической единицы», позволило повысить точность измерения крутящего
момента затяжки резьбовых соединений, так как величину момента затяжки вычисляют по результатам измерения крутящего момента в двух
точках, отстоящих друг от друга на один и тот же угол поворота, составляющий величину 2÷4°.
Формула изобретения
1. Способ измерения крутящего момента затяжки резьбовых соединений, заключающийся в приложении к
затянутому резьбовому соединению крутящего момента, переводе резьбового соединения из состояния покоя в
состояние движения, повороте на заданный угол, не превышающий 2÷4°, и измерении крутящего момента при
достижении углом поворота заданного значения, отличающийся тем, что производят дополнительный поворот на такой
же угол с измерением крутящего момента при достижении углом поворота заданного значения, а крутящий момент
затяжки определяют как разность удвоенного значения крутящего момента при первоначальном повороте на заданный
угол и значения крутящего момента при дополнительном повороте на заданный угол.
2. Динамометрический ключ, содержащий датчик момента, подключенный ко входу усилителя, выходом
соединенного со входом аналого-цифрового преобразователя, и первый регистр памяти, отличающийся тем, что
динамометрический ключ снабжен датчиком угла поворота, вторым регистром памяти, счетчиком импульсов,
дешифратором, блоком вычислений, цифровым индикатором и элементом «ИЛИ», выходом подключенным ко входу
первого индикатора, выход датчика угла подключен к счетному входу счетчика импульсов, выходами соединенного со
входами дешифратора, информационные выходы аналого-цифрового преобразователя соединены с
242.
соответствующими информационными входами первого и второго регистров памяти, информационными выходамиподключенных к соответствующим информационным входам блока вычислений, информационными выходами
подключенного ко входам цифрового индикатора, первый выход дешифратора подключен ко входу «Запись» первого
регистра памяти, второй выход дешифратора подключен ко входу «Запись» второго регистра памяти, нулевой и первый
выходы дешифратора подключены ко входам элемента «ИЛИ», второй выход дишифратора подключен ко входу
«Вычисление» блока вычислений и входу второго элемента индикации, а установочные входы регистров памяти и
счетчика импульсов через кнопку управления подключены к шине «Напряжение логической единицы».
РИСУНКИ
ОПОРА СЕЙСМОСТОЙКАЯ165 076
РОССИЙСКАЯ
(19)
ФЕДЕРАЦИЯ
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее
Статус:
изменение статуса: 07.06.2017)
)(22) Заявка: 2016102130/03,
22.01.2016
) Дата начала отсчета срока
действия патента:
22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
243.
иоритет(ы):) Дата подачи заявки: 22.01.2016
Коваленко Александр Иванович (RU)
) Опубликовано: 10.10.2016 Бюл.
№ 28
рес для переписки:
197371, Санкт-Петербург,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ 165 076
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за
счет использования фрикцион но податливых соединений. Опора состоит из корпуса в
котором выполнено вертикальное отверстие охватывающее цилиндрическую поверхность
щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия в которых
установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза
шириной <Z> и длиной <I> которая превышает длину <Н> от торца корпуса до нижней точки
паза, выполненного в штоке. Ширина паза в штоке соответствует диаметру калиброванного
болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока
совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают
гайку и затягивают до заданного усилия. Увеличение усилия затяжки приводит к уменьшению
зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия
сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и
оборудования от сейсмических воздействий за счет использования фрикционно податливых
соединений. Известны фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и
прокладки. В листах, накладках и прокладках выполнены овальные отверстия через которые
пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С
увеличением нагрузки происходит взаимное проскальзывание листов или прокладок
относительно накладок контакта листов с меньшей шероховатостью. Взаимное смещение
листов происходит до упора болтов в края овальных отверстий после чего соединения работают
упруго. После того как все болты соединения дойдут до упора в края овальных отверстий,
соединение начинает работать упруго, а затем происходит разрушение соединения за счет
смятия листов и среза болтов. Недостатками известного являются: ограничение демпфирования
по направлению воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно также Устройство для
фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту TW
201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98,
F16F 15/10. Устройство содержит базовое основание, поддерживающее защищаемый объект,
нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнены
продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы,
проходят запирающие элементы - болты, которые фиксируют сегменты и пластины друг
относительно друга. Кроме того, запирающие элементы проходят через блок поддержки, две
244.
пластины, через паз сегмента и фиксируют конструкцию в заданном положении. Таким образомполучаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность
расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного сопряжения отверстие корпуса - цилиндр штока,
а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из
двух частей: нижней - корпуса, закрепленного на фундаменте и верхней - штока,
установленного с возможностью перемещения вдоль общей оси и с возможностью ограничения
перемещения за счет деформации корпуса под действием запорного элемента. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и
поперечные отверстия (перпендикулярные к центральной оси) в которые устанавливают
запирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены
два открытых паза, которые обеспечивают корпусу возможность деформироваться в
радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина
которого соответствует диаметру запирающего элемента (болта), а длина соответствует
заданному перемещению штока. Запирающий элемент создает нагрузку в сопряжении штокотверстие корпуса, а продольные пазы обеспечивают возможность деформации корпуса и
«переход» сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса
превышает расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой
конструкции поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2
изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4
изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие
диаметром «D», которое охватывает цилиндрическую поверхность штока 2 например по
подвижной посадке H7/f7. В стенке корпуса перпендикулярно его оси, выполнено два отверстия
в которых установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси
отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по
ширине диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов «I»
всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней части корпуса
1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2
выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том,
что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают
с поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в
положении при котором нижняя поверхность паза штока контактирует с поверхностью болта
(высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до
заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр штока.
Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки
(болта) и для каждой конкретной конструкции (компоновки, габаритов, материалов,
шероховатости поверхностей, направления нагрузок и др.) определяется экспериментально.
При воздействии сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток,
245.
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушенияконструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел,
закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено центральное
вертикальное отверстие, сопряженное с цилиндрической поверхностью штока, при этом шток
зафиксирован запорным элементом, выполненным в виде калиброванного болта, проходящего
через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и
закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно центральной
оси, выполнено два открытых паза, длина которых, от торца корпуса, больше расстояния до
нижней точки паза штока.
246.
247.
248.
249.
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(45) Опубликовано: 10.05.2000 Бюл. № 13
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев
А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М.:
Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. EP 0170068
(72) Автор(ы):
A'', 05.02.86.
Рабер Лев Матвеевич
(UA),
Адрес для переписки:
Кондратов В.В.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Хусид Р.Г.(RU),
250.
Миролюбов Ю.П.(RU)(73) Патентообладатель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения. Предварительно ослабляют ее
затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной
формуле. Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других отраслях
строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки
выполненных работ (Инструкция по технологии устройства соединений на высокопрочных болтах в стальных
конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период
обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила
обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими
ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в
конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном
коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в
какой мере действительные коэффициенты закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на
стадии приемки выполненных работ, поскольку предусматриваемая технологией постановки болтов стабилизация
коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что
вносит существенную неточность в результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф.
("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент
закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом
251.
измеренные усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значенийболее чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента
k не оказывает влияния на результаты измерений. Способ реализован с помощью устройства (А.св. N 1139984
(СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер
Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае
сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке
эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению коэффициента
трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе
превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих
условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы
болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно специально
предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения
необходимо назначить величину момента закручивания для подтяжки болтов. Для назначения этого момента
необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения
коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию качества изготовления
болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат,
1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в
лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного обеспечения и контроля заданного
усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической
оценки необходимо произвести испытания нескольких десятков или даже сотен болтов. Кроме того, при
извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а
испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть
сопряжен с гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание
гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого
ослабление ее затягивания. Затягивание гайки на заданную величину угла ее поворота в области упругих
деформаций производят с замером значения момента закручивания гайки и определяют приращение момента
закручивания. При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр.
252.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении иповысить точность определения величины коэффициента закручивания за счет исключения необходимости
прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа
испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ
осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют
фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками
соответствует заданному углу поворота гайки; как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого
угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по
эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих
в исследовании влияния толщины пакета и уточнении влияния толщины и количества деталей, составляющих
пакет эксплуатируемого соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на
угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла
поворота гайки, соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно
стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного
натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань.
Погрешность системы определения коэффициента закручивания, характеризуемая как погрешностью выполнения
отдельных операций, так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт
испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает
возможность проводить испытания в конкретных условиях эксплуатации соединений, что повышает точность
полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы
как при определении усилий натяжения болтов в период обследования конструкций, так при назначении величины
момента для подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении
параметров затяжки соединения, по которым вычисляют коэффициент закручивания, отличающийся тем, что в
эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного
положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента
закручивания гайки в области упругих деформаций и определяют приращение момента закручивания, при этом
приращение усилия натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
253.
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о
поиске: SU 1753341 A1, 07.08.1992. SU 1735631 A1,
23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННОИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2,
кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С
ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными
болтами. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами включает приготовление образца-свидетеля, содержащего элемент металлоконструкции
и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно
увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с
нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством,
254.
содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1
ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными
болтами, но может быть использовано для определения фактического напряженно-деформированного состояния
болтовых соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся
в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью
болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов
высокопрочными метизами осуществляется только силами трения по контактным плоскостям усилием обжатия
болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по
среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости
трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент
работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн
- нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с
высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и
нормативный коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие
натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для
натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен
быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных
соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся поверхностям
соединяемых элементов. Этот вопрос приобретает особую актуальность в случае сочетания металлических
поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного
использования высокопрочных болтов. В качестве нормативного коэффициента трения принимается
среднестатистическое значение, определенное по возможно большему объему экспериментального материала
раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных
соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве
основного критерия сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых
стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным методом
с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение
усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем или иным неточностям в
определении коэффициентов трения.
255.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечениятребуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт»
(патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ его нанесения», которое
обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью
контактных поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение
1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие
«Контакт» подрезается ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после
чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными
строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей, временное
защитное покрытие «Контакт» в районе установки захватов повреждается. На строительном объекте приходится
производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после
длительной эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение
дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях
открытой атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных
показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к
снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное
воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской
Федерации умеренно-холодному климату (У1), а также циклических сдвиговых нагрузок от транспорта,
движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в
настоящее время обработка металлических поверхностей металлоконструкций осуществляется в заводских
условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения
высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому
возникает необходимость проверки фактической надежности работы фрикционного соединения с
высокопрочными болтами перед монтажом, для обеспечения надежности при их эксплуатации, причем
возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости
совершенствования диагностической и инструментальной базы, способствующей повышению эффективности
реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием
сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление
сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения,
зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; Abn - площадь поперечного
сечения болта; f - коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между
диаметрами отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных
болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L
5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента закручивания гайки к
произведению определяемого усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта
из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного положения
с замером значения момента закручивания в области упругих деформаций и определения приращения момента
затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
256.
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi- угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым болтом,
мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными
коэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на
заданную величину поворота (α=60°) от исходного положения производят после предварительного ее ослабления,
поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий
приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения
покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью
электрического сигнала или заранее оттарированной шкалы динамометрического ключа, но точность измерения и
область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже
металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1
и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на
одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О
деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия
нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой
расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если
болты, например, расположены несимметрично по отношению к направлению действия продольной силы N, в
силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего
соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей
способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных
болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении
усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в
проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины определяют по
показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в
зависимости от величины отклонения осуществляют меры по повышению надежности работы
металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе
нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к.
коэффициент трения может меняться и по другим причинам как климатического, так и эксплуатационного
характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов,
поэтому фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует
отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому желательно
применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие
прототипу и позволяющие повысить надежность монтажа и эксплуатации металлоконструкций с высокопрочными
болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности
фрикционного соединения с высокопрочными болтами, включающий приготовление образца-свидетеля,
содержащего основной элемент металлоконструкции и накладку, контактирующие поверхности которых
предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
257.
сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины отклоненияосуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное
при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное
патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее достоверность и
точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от
оптимального значения, для обеспечения надежности работы фрикционного соединения металлоконструкции при
монтаже ее изменяют натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований
установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение
усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение
меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение
дополнительной обработки контактирующих поверхностей, т.к. при значительном увеличении момента
закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения
усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является
переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и
сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный
болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух стоек,
торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под
болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен
рычаг, с возможностью соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В
качестве силоизмерительного устройства используется динамометрический ключ с предварительно
оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на
примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного
шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9,
выполненный из закаленной стали, образец-свидетель состоит из металлической накладки 10, пластины 11
обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также
болтовое соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной
металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой
накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте, причем
контактирующая поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить
нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед монтажом, то
берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях.
Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие
натяжения высокопрочного болта должна соответствовать проектной величине. Расчетный момент закручивания
определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия
сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы
сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4,
258.
снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово кработе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг
5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент
закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10
фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают
полученную величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В
зависимости от величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной
металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в
технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения
высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при
монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом
деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная
порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в
его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах
независимо от сложности конструкции, диаметров крепежных болтов и методов обработки соприкасающихся
поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы
рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными
болтами, включающий приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую
накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на
элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения, осуществляют коррекцию технологии
монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством,
содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения
высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении в
диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения
усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов
259.
Определение коэффициента трения между контактными поверхностямисоединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается
испытанием на сдвиг при сжатии дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого
сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в
скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем
фрезеруют до проектных размеров в плане. Отверстия образуются сверлением,
заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии,
принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в
монтажных соединениях конструкции. Натяжени е болта осуществляется
динамометрическими ключами, применяемыми на строительстве при сборке
соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был
гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а
торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс.
Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно
пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание несущей
способности образца. Испытания рекомендуется проводить с записью диаграммы
260.
сжатия образца. Для суждения о сдвиге необходимо нанести риски напластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания,
маркировка образца, нагрузка, соответствующая сдвигу (прик ладывается
диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при
приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие
Q bh , принятое в проекте сооружения, которое может быть воспринято каждой п о
верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным
болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом
из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с
участием заказчика, проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназнечено для защиты шаровых кранов и трубопровода от
возможных вибрационных , сейсмических и взрывных воздействий Конструкция
фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным
клином позволяет обеспечить надежный и быстрый погашение сейсмической
нагрузки при землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит их
латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того
между энергопоглощаюим клином вставляютмс свинффцовые шайбы с двух сторо,
а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или
втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение»,
1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и
трубопроводов от сейсмических воздействий за счет использования фрикционноеподатливых соединений. Известны фрикционные соединения для защиты объектов
от динамических воздействий. Известно, например, болтовое фланцевое соединение
, патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки
происходит взаимное демпфирование колец -тарелок.
261.
Взаимное смещение происходит до упора фланцевого фрикционно подвижногосоедиения (ФФПС), при импульсных растягивающих нагрузках при многокаскадном
демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также
устройство для фрикционного демпфирования и антисейсмических воздействий,
патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение
трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и
несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие
пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах,
которые выдерживает сейсмические нагрузки но, при возникновении динамических,
импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего
начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений в виде фрикци -болта , а также повышение точности расчета при
использования фрикци- болтовых демпфирующих податливых креплений для
шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного
фрикци –болта с пропиленным пазом, в который забит медный обожженный клин, с
бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации
трубопровода под действием запорного элемента в виде стопорного фрикци-болта
с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным
клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с
использованием латунной втулки или свинцовых шайб) поглотителями сейсмической
и взрывной энергии за счет сухого трения, которые обеспечивают смещение
опорных частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при
этом начет раскачиваться за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается взрывная, ветровая, сейсмическая, вибрационная энергия.
Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает
надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП,
262.
магистрального трубопровода, за счет уменьшения пиковых ускорений, за счетиспользования протяжных фрикционных соединений, работающих на растяжение
на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п.
14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых
элементов
Цель изобретения расширение области использования соединения в сейсмоопасных
районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4,
кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж
забивается медный обожженный клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с
пропиленныым пазом , кужа забиваенься стопорный обожженный медный,
установленных на стержнях фрикци- болтов Медный обожженный клин может
быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в
отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или
виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном
направлении, осуществляется смянанием с энергопоглощением забитого медного
обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами ,
расположенными между цилиндрическими выступами . При этом промежуток
между выступами, должен быть больше амплитуды колебаний вибрирующего
трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно
установить медный втулки или гильзы ( на чертеже не показаны), которые
служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения,
может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный
клин , который является амортизирующим элементом при многокаскадном
демпфировании .
263.
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени ,выполненные из латунной шпильки с забиты с одинаковым усилием медный
обожженный клин , например латунная шпилька , по названием фрикци-болт .
Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами
устанавливаются также дополнительные упругие свинцовые шайбы , повышающие
надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым
усилием , после чего производится стягивание соединения гайками с контролируемым
натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин
на строго определенную величину, обеспечивающую рабочее состояние медного
обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с
двух сторон .
Материалы медного обожженного клина и медных обожженных втулок
выбираются исходя из условия, чтобы их жесткость соответствовала расчетной,
обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность
фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны)
повышает герметичность соединения и надежность его работы в тяжелых
условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта
определяется исходя из, частоты вынужденных колебаний вибрирующего
трубчатого элемента с учетом частоты собственных колебаний всего соединения
по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент
динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее
крепежные элементы, подпружиненные и энергопоглощающие со стороны одного
из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом
и забитым медным обожженным клином с медной обожженной втулкой или
гильзой , охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с
целью расширения области использования соединения, фланцы выполнены с
помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м
медым обожженм коллином расположенными во фоанцемом фрикционноподвижном соедиении (ФФПС) , уплотнительными элемент выполнен в виде
свинцовых тонких шайб , установленного между цилиндрическими выступами
фланцев, а крепежные элементы подпружинены также на участке между
фланцами, за счет протяжности соединения по линии нагрузки .
264.
2. Соединение по и. 1, отличающееся тем, что между медным обожженнымэнергопоголощающим клином установлены тонкие свинцовые или обожженные
медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза
или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6
Фиг 7
265.
Фиг 8Фиг 9
266.
267.
268.
Рис Нарисунке показан узел гасителе динамических колебаний для применения легко сбрасываемость (ЛСК) из
последних двух этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их
программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений
проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с
применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает
269.
270.
271.
При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ ИСООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
272.
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ ИСЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136
746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(72) Автор(ы):
(22) Дата подачи заявки: 01.09.2010
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Адрес для переписки:
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант" Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов
рассчитанной площади для снижения до допустимой величины взрывного давления, возникающего во
взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого
проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным
огнестойким материалом и установленных на легкосбрасываемых фрикционных соединениях при избыточном
давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме
проема, а в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий момент
полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет
ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых
с высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу
фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений
затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65
мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при
аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек
и способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения
на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального
каркаса для малоэтажных зданий и сооружений.
273.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмическойэнергии может определить величину горизонтального и вертикального перемещения «сэндвич»-панели и
определить ее несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив
«сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и
перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS,
STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном
при объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и
проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций
(стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные
при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике разработанной
испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич
(UA),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М.:
Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. EP 0170068 Миролюбов Ю.П.(RU)
A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
Рабер Лев Матвеевич
(UA),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
274.
(57) Реферат:Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения. Предварительно ослабляют ее
затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной
формуле. Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других отраслях
строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки
выполненных работ (Инструкция по технологии устройства соединений на высокопрочных болтах в стальных
конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период
обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила
обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими
ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в
конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном
коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в
какой мере действительные коэффициенты закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на
стадии приемки выполненных работ, поскольку предусматриваемая технологией постановки болтов стабилизация
коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что
вносит существенную неточность в результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф.
("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент
закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом
измеренные усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений
более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента
k не оказывает влияния на результаты измерений. Способ реализован с помощью устройства (А.св. N 1139984
(СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер
Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае
сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке
эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению коэффициента
трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе
превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих
условиях пружины срабатывать не могут.
275.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбыболта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно специально
предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения
необходимо назначить величину момента закручивания для подтяжки болтов. Для назначения этого момента
необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения
коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию качества изготовления
болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат,
1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в
лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного обеспечения и контроля заданного
усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической
оценки необходимо произвести испытания нескольких десятков или даже сотен болтов. Кроме того, при
извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а
испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть
сопряжен с гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание
гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого
ослабление ее затягивания. Затягивание гайки на заданную величину угла ее поворота в области упругих
деформаций производят с замером значения момента закручивания гайки и определяют приращение момента
закручивания. При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и
повысить точность определения величины коэффициента закручивания за счет исключения необходимости
прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа
испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ
осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют
фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками
соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого
угла - Mк.
276.
- вычисляют приращение момента закручиванияΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по
эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих
в исследовании влияния толщины пакета и уточнении влияния толщины и количества деталей, составляющих
пакет эксплуатируемого соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на
угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла
поворота гайки, соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно
стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного
натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань.
Погрешность системы определения коэффициента закручивания, характеризуемая как погрешностью выполнения
отдельных операций, так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт
испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает
возможность проводить испытания в конкретных условиях эксплуатации соединений, что повышает точность
полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы
как при определении усилий натяжения болтов в период обследования конструкций, так при назначении величины
момента для подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении
параметров затяжки соединения, по которым вычисляют коэффициент закручивания, отличающийся тем, что в
эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного
положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента
закручивания гайки в области упругих деформаций и определяют приращение момента закручивания, при этом
приращение усилия натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
277.
C1(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о
поиске: SU 1753341 A1, 07.08.1992. SU 1735631 A1,
23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННОИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2,
кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С
ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными
болтами. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами включает приготовление образца-свидетеля, содержащего элемент металлоконструкции
и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно
увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с
нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством,
содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
278.
сухарик, выполненный из закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными
болтами, но может быть использовано для определения фактического напряженно-деформированного состояния
болтовых соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся
в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью
болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов
высокопрочными метизами осуществляется только силами трения по контактным плоскостям усилием обжатия
болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по
среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости
трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент
работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн
- нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с
высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и
нормативный коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие
натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для
натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен
быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных
соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся поверхностям
соединяемых элементов. Этот вопрос приобретает особую актуальность в случае сочетания металлических
поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного
использования высокопрочных болтов. В качестве нормативного коэффициента трения принимается
среднестатистическое значение, определенное по возможно большему объему экспериментального материала
раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных
соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве
основного критерия сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых
стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным методом
с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение
усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем или иным неточностям в
определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения
требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт»
(патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ его нанесения», которое
обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью
279.
контактных поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие
«Контакт» подрезается ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после
чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными
строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей, временное
защитное покрытие «Контакт» в районе установки захватов повреждается. На строительном объекте приходится
производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после
длительной эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение
дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях
открытой атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных
показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к
снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное
воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской
Федерации умеренно-холодному климату (У1), а также циклических сдвиговых нагрузок от транспорта,
движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в
настоящее время обработка металлических поверхностей металлоконструкций осуществляется в заводских
условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения
высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому
возникает необходимость проверки фактической надежности работы фрикционного соединения с
высокопрочными болтами перед монтажом, для обеспечения надежности при их эксплуатации, причем
возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости
совершенствования диагностической и инструментальной базы, способствующей повышению эффективности
реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием
сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление
сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения,
зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; Abn - площадь поперечного
сечения болта; f - коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между
диаметрами отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных
болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L
5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента закручивания гайки к
произведению определяемого усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта
из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного положения
с замером значения момента закручивания в области упругих деформаций и определения приращения момента
затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi
- угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым болтом,
мм.
280.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестнымикоэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на
заданную величину поворота (α=60°) от исходного положения производят после предварительного ее ослабления,
поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий
приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения
покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью
электрического сигнала или заранее оттарированной шкалы динамометрического ключа, но точность измерения и
область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже
металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1
и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на
одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О
деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия
нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой
расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если
болты, например, расположены несимметрично по отношению к направлению действия продольной силы N, в
силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего
соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей
способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных
болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении
усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в
проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины определяют по
показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в
зависимости от величины отклонения осуществляют меры по повышению надежности работы
металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе
нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к.
коэффициент трения может меняться и по другим причинам как климатического, так и эксплуатационного
характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов,
поэтому фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует
отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому желательно
применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие
прототипу и позволяющие повысить надежность монтажа и эксплуатации металлоконструкций с высокопрочными
болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности
фрикционного соединения с высокопрочными болтами, включающий приготовление образца-свидетеля,
содержащего основной элемент металлоконструкции и накладку, контактирующие поверхности которых
предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины отклонения
осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное
при заданном (проектном) значении величины k;
281.
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенноепатентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее достоверность и
точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от
оптимального значения, для обеспечения надежности работы фрикционного соединения металлоконструкции при
монтаже ее изменяют натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований
установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение
усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение
меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение
дополнительной обработки контактирующих поверхностей, т.к. при значительном увеличении момента
закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения
усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является
переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и
сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный
болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух стоек,
торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под
болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен
рычаг, с возможностью соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В
качестве силоизмерительного устройства используется динамометрический ключ с предварительно
оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на
примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного
шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9,
выполненный из закаленной стали, образец-свидетель состоит из металлической накладки 10, пластины 11
обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также
болтовое соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной
металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой
накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте, причем
контактирующая поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить
нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед монтажом, то
берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях.
Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие
натяжения высокопрочного болта должна соответствовать проектной величине. Расчетный момент закручивания
определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия
сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы
сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4,
снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к
работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг
5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент
закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10
фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают
282.
полученную величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). Взависимости от величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной
металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в
технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения
высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при
монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом
деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная
порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в
его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах
независимо от сложности конструкции, диаметров крепежных болтов и методов обработки соприкасающихся
поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы
рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными
болтами, включающий приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую
накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на
элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения, осуществляют коррекцию технологии
монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством,
содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения
высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении в
диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения
усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
283.
ФЕДЕРАЛЬНАЯ СЛУЖБАПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.03.2017)
Пошлина:учтена за 5 год с 18.06.2015 по 17.06.2016
(72) Автор(ы):
(21)(22) Заявка: 2011125214/12, 17.06.2011
Андрейченко Игорь
Леонардович (RU),
(24) Дата начала отсчета срока действия патента:
Полатиди Людмила Борисовна
17.06.2011
(RU),
Бурцева Ирина Валерьевна
Приоритет(ы):
(RU),
Бугреева Светлана Ильинична
(22) Дата подачи заявки: 17.06.2011
(RU),
Красинский Леонид
(45) Опубликовано: 20.01.2013 Бюл. № 2
Григорьевич (RU),
Миллер Олег Григорьевич
(RU),
(56) Список документов, цитированных в отчете о поиске: SU 176199 A1,
Шумягин Николай Николаевич
15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, 10.11.2005. WO
(RU)
2004/099632 A1, 18.11.2004. DE 202004012044 U1, 19.05.2005.
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО "Авиадвигатель",
отдел защиты интеллектуальной собственности
(73) Патентообладатель(и):
Открытое акционерное
общество "Авиадвигатель"
(RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть использовано для
соединения вращающихся деталей ротора газотурбинного двигателя авиационного и наземного применения.
Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности
отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных
отверстиях стяжными болтами. Каждое отверстие выполнено овальной формы и вытянуто в окружном
направлении, а втулка - с овальным сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,53)×b, где а - размер сечения втулки в радиальном направлении; b - размер сечения втулки в окружном
направлении; с - длина окружности между центральными отверстиями соседних втулок. Обеспечивается
повышение циклического ресурса и надежности болтового соединения вращающихся деталей при высоких
параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть использовано для
соединения вращающихся деталей ротора газотурбинного двигателя авиационного и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым сечением, которую
используют для центровки и разгрузки болта, снижения напряжений среза в самом болте и исключения сдвиговых
деформаций в соединяемых деталях (Атлас. Детали машин. В.Н.Быков, С.П.Фадеев, Издательство «Высшая
школа», 1969 г., с.83, рис.3.4). При вращении деталей в районе отверстий под болты возникают напряжения.
284.
Наличие концентратора напряжения, повышающего уровень действующих напряжений в 3-4 раза, являетсяосновным недостатком такой конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов. Отверстия под
болты, являющиеся концентраторами напряжений, могут быть расположены в полотне дисков и на выносных
фланцах деталей. Выносные фланцы применяют для удаления концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень действующих
напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что обеспечивает
достаточную разгрузку отверстий. Эффективность подобной доработки деталей подтверждена испытаниями и
широко используется, например, во фланцах под балансировочные грузики лабиринтов диска 13-ой ступени
ротора компрессора высокого давления (КВД) двигателей ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин,
В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий пакет деталей,
цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия (Патент РФ №2263828, F16B
5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая повышенные
напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и надежность болтового
соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и надежности
болтового соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон концентрации
напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей, объединенных в
пакет, с расположенными по окружности отверстиями, внутри которых на высоту пакета деталей установлены
втулки с размещенными в их центральных отверстиях стяжными болтами, согласно п.1 формулы изобретения,
каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и сохранения
необходимой площади контакта между деталями и болтом необходимо соблюдать следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков и расчетов
напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении, и
выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения циклического
ресурса деталей, оцененного по условной кривой малоцикловой усталости для дисковых сплавов (Технический
отчет №12045, М., ЦИАМ, 1993. Развитие методики управления ресурсами авиационного ГТД с целью повышения
285.
прочностной надежности, увеличения ресурсов и сокращения затрат при ресурсных испытаниях (применительно кдвигателю ПС-90А и его модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей компрессора, а при
изготовлении втулок из легкого и прочного материала - позволяет снижать массу фланцев дисков и всего ротора в
целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу использования в
современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных напряжений в
отверстиях соединяемых деталей, следовательно, снижается циклическая долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается площадь
цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей способности, возрастает
уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально уменьшается и
площадь цилиндрического сечения соединяемых деталей, что повышает риск потери несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии действий
окружных напряжений при этом выравниваются, а эффект снижения концентраций напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между деталями и
болтом, а также из технологических соображений необходимо соблюдать следующее соотношение: (a-d)/2>1,4 мм.
В противном случае возникают технологические сложности с изготовлением втулки, т.к. толщина стенки втулки
слишком мала. Кроме того, в тонкой стенке втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового соединения дает
возможность не только выравнивать напряжения по толщине пакета деталей и в болтах, но и значительно снижать
уровень действующих напряжений в соединяемых деталях, повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение, на фиг.2 разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД), например, фланца 1
диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД. В деталях 1, 2, 3 выполнены
овальные отверстия 4, вытянутые в окружном направлении под втулку 5 с таким же овальным сечением и
размерами а и b в радиальном и окружном направлениях, соответственно. В отверстии 4 втулка 5 размещена на
всю толщину пакета деталей 1, 2, 3. Во втулке 5 имеется круглое центральное отверстие 6 диаметром d под
стандартный стяжной болт 7 круглого сечения. Диаметр головки болта 7 и наружный диаметр гайки 8
перекрывают при сборке радиальный размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую площадь
контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при этом длина
окружности С между ними зависит от размера сечения b втулки 5 в окружном направлении.
Болтовое соединение собирают следующим образом.
286.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой размещаютстандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация напряжений в зоне отверстий 4
в полотне и во фланцах 1, дисков будут минимальной, что позволяет работать при высоких заданных параметрах
двигателя, повышая циклический ресурс и надежность болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности
отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных
отверстиях стяжными болтами, отличающееся тем, что каждое отверстие выполнено овальной формы и вытянуто в
окружном направлении, а втулка - с овальным сечением, вытянутым в окружном направлении, при этом b/a=1,361,5; c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d - диаметр
отверстия втулки под болт.
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
287.
(21)(22) Заявка: 2003107392/11, 17.03.2003(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(56) Список документов, цитированных в отчете о поиске: RU 2192383 C1,
10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986.
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
Туманов Антон
Вячеславович (RU)
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы кранов. Согласно
изобретению узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса. Ширина упомянутой прокладки на
5-10% меньше ширины верхнего пояса подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса
подкрановой балки и сквозь поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены
болты, снабженные тарельчатыми пружинными шайбами. Изобретение обеспечивает повышение долговечности
рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым конструкциям с
интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается резинометаллическая
прокладка, являющаяся податливым слоем, уменьшающим максимумы локальных напряжений σу, приводящих к
появлению усталостных трещин в подрельсовой зоне подкрановой балки. Резинометаллическая прокладка
значительно снижает локальные напряжения σу и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового рельса, и
поэтому ее приходится менять чаще, чем рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка, обладающая
такой же податливостью, как резинометаллическая, но обладающая большей долговечностью. Известен также
трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
288.
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс. Тормознаябалка симметрична и помещена ниже боковых глав рельса для обеспечения свободного прохода направляющих
роликов крана. Симметрия тормозной балки исключает косой изгиб подкрановой конструкции и позволяет достичь
наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и удобство
эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с подкрановой балкой
и тормозной балкой между рельсом и подкрановой балкой размещена демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными, имеющими плавные
закругления гофрами и непрерывной по всей длине рельса, причем ширина упомянутой прокладки на 5...10%
меньше ширины верхнего пояса подкрановой балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний
пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной тормозной
балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии, обеспечивающем свободный
проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные безребордные
колеса 2 мостового крана и передают вертикальные силовые импульсы Р. Направляющие ролики 3 крана
фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по боковым главам рельса и передают на них
горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с продольными гофрами
(5...10 шт.) одинаковой высоты с плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной балки. Швеллеры
6 соединяют верхний пояс 5 с симметричной тормозной балкой 7. Тормозная балка 7 может быть и не
симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом посредством болтов 8, затянутых
с гарантируемым натягом. Симметричные элементы тормозной балки 7 также соединены друг с другом через
стенку двутавровой прокатной подкрановой балки посредством болтов 8 с гарантируемым натягом. Болты 9
проходят сквозь подошву трехглавого рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми
шайбами 10, выполненными из пружинной стали. Кроме этого, в зазоре между боковой гранью верхнего пояса 5 и
гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на верхний пояс 5, а
между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1 упруго
оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую прокладку 4. Высота каждого из гофров
уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью подошвы рельса 2 и верхнего пояса 5
возникают распорные силы, гасящиеся за счет сил трения. Напряжение в тарельчатых пружинах несколько
ослабевает (на 10...15%). Локальное взаимодействие между трехглавым рельсом 2 и верхним поясом 5
подкрановой балки распределяется на большую длину и тем самым локальные суммарные напряжения Σσу
значительно снижаются и этим выносливость повышается. При уходе колеса крана демпфирующая подрельсовая
прокладка 4 упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3 горизонтальные
усилия передаются за счет сил трения. Если же силы трения будут превышены, то в работу вступает внутренняя
поверхность боковой главы рельса через шайбу с продольной торцевой кромкой верхнего пояса 5. Далее в работу
на изгиб включается симметричная тормозная балка 7, опирающаяся в горизонтальной плоскости на колонны
каркаса цеха.
289.
Сопоставление с аналогами показывает следующие существенные отличия:1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса размещена
демпфирующая подрельсовая прокладка с продольными гофрами (5...10 штук) одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью пружинной стали,
толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые шайбы,
выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за старения
резины, свойства демпфирующей подрельсовой прокладки остаются неизменными во времени, а долговечность их
такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой прокладки, так
как в ней отсутствует быстро изнашивающаяся и стареющая резина. Экономический эффект достигнут также из-за
удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки долговечности
подкрановых путей производственных зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск,
2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000
119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся тем, что узел
снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей
подрельсовой прокладкой, выполненной из пружинной стали с продольными, имеющими плавные закругления
гофрами и непрерывной по всей длине рельса, причем ширина упомянутой прокладки на 5-10% меньше ширины
верхнего пояса подкрановой балки, при этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и
сквозь поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
Адреса американских и немецких фирм, организация
занимающихся проектированием, изготовлением монтажом
гасителей
динамических колебаний для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого дома,
для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при
импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с
контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух
сторон с образованными лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в
среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
При сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных, для сдвига
болтовых соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается,
частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
в США ,
Германии, Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220
www.jcmindustries.com
290.
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPOThunderbird Langley V1M 0A9 Call Toll Free: 1-800-585-TAPS (8277)
Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel
- Stainless Steel 21919 20th Avenue SE • Suite 100 • Bothell, WA 98021
425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA
98021 [map] Toll Free: 800.426.9341 Local: 425.951.6200 Fax:
425.951.620 Website address: www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING
ASSOCIATION 994 Old Eagle School Road, Suite 1019, Wayne, PA
19087 Telephone: (610) 971-4850
Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
PA 19087-1866 610.971.4850 (USA)
Wayne,
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany
Phone +49 40 540093-0 Fax +49 40 540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30
[email protected]
Subsidiary Berlin Breitenbachstra?e 7 – 9
13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20
[email protected] WILLBRANDT
Gummiteknik A/S Finlandsgade
29 4690 Haslev Denmark www.willbrandt.dk www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В
СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук А.С. П латонов,
канд. техн. наук И.Б . Ройзм ан, инж . А.В. К ру чинки н, канд. техн. наук М.Л. Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября 1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации «Трансстрой»,
Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии устройства
соединений на высокопрочных болтах в стальных конструкциях мостов»
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии
двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
291.
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755, 1174616, №2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРО-ВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано
20.01.2013 , № 165076 RU E 04H 9/02 «Опора сейсмостойкая», опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение №
20181229421/20 (47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка", E04 Н 9 /02, заявки на изобретение № 2018105803/20
(008844) от 11.05.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопро-водов" F 16L 23/02 , заявки на
изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на изобретение №
20190028 "Виброизолирующая опора E04 Н 9 /02 для лабораторного испытание на взрывостойкость и взрывопожаростойкость
сейсмостойкость фрагментов крепления на ФФПС).
- основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при
использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в
плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжение болта осуществляется динамометрическими ключами, применяемыми на строительстве
при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии
пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на
одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины
должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прикладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой поверхностью трения соединяемых элеме нтов, стянутых
одним высокопрочным болтом (одним болтоконтактом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех
образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика,
проектной и научно-исследовательской организаций.
:1
Приложение М (информационное) Библиография
[1 ] . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
[2 ] . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. Госгортехнадзор СССР,
1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
[4 ] . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко воспламеняющихся и
взрывоопасных грузов. Оргт рансст рой, 1978 г.
[ 5 ] . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93 Российской
Федерации.