Похожие презентации:
Углы и отрезки
1.
2. Окружность
секущаядиаметр
радиус
О
хорда
касательная
Дуга
3. Центральный угол
Оα
А
В
Угол с вершиной в центре
окружности называется
центральным углом
4. Вписанный угол
αУгол, вершина которого лежит на
окружности, а стороны пересекают
окружность, называется
вписанным углом
5. Теорема о центральном угле
ОА
В
Градусная мера
центрального угла
равна градусной мере
дуги , на которую он
опирается.
AOB AB
6. Теорема о вписанном угле
СВписанный угол
измеряется половиной
дуги, на которую он
опирается
О
А
В
1
ACB AB
2
7. Следствия о вписанных углах
ОВписанные углы,
опирающиеся на одну и
ту же дугу, равны.
Вписанный угол,
опирающийся на
полуокружность – прямой.
О
8. Угол между касательной и хордой
ОВ
А
1
AB
2
α
Угол между касательной и хордой, проходящей
через точку касания, измеряется половиной
заключенной в нем дуги
9. Угол между двумя пересекающимися хордами
1AC BD
2
А
О
D
α
С
В
Угол между двумя пересекающимися
хордами измеряется полусуммой
заключенных между ними дуг
10. Угол между двумя секущими, проведенными из одной точки
1CE BD
2
C
B
О
α
E
D
А
Угол между двумя секущими, проведенными
из одной точки, измеряется полуразностью
заключенных внутри него дуг
11. Угол между касательной и секущей, проведенными из одной точки
BО
D
C
1
BD BC
2
α
A
Угол между касательной и секущей, проведенными
из одной точки, измеряется полуразностью
заключенных внутри него дуг
12. Угол между двумя касательными, проведенными из одной точки
BО
α
180 BC
0
A
C
Угол между двумя касательными, проведенными из
одной точки, равен 1800 минус величина
заключенной внутри него дуги, меньшей
полуокружности.