22.41M
Категория: СтроительствоСтроительство
Похожие презентации:

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD

1.

Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул.
Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я
Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru
[email protected] с[email protected] [email protected] (994) 434-44-70,
(996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
127051, г. Москва, ул. Садовая-Самотечная, д. 10, стр. 1
[email protected] [email protected] Всего : 449 стр
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ»
Президент «Сейсмофонд» при СПб ГАСУ /Мажиев Х.Н. 23.07.2022
ПРОТОКОЛ СПб ГАСУ № 575 от 23.07.2022

2.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 2

3.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 3

4.

Лабораторные испытания демпфирующего компенсатора гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011
SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое
фрикционное соединение для сборно-разборного быстрособираемого армейского моста из
стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно»
(серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со
сдвиговой фрикционно-демпфирующей прочностью и предназначенные для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов,
необходимо использование в строительных конструкциях демпфирующих компенсаторов с
упругопластическими шарнирами на фрикционно-подвижных соединениях, расположенных в длинных
овальных отверстиях, с целью обеспечения многокаскадного демпфирования при импульс-ных
растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616,
1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием
сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от
14.02.2022 "Огнестойкий компенсатор -гаситель температурных напряжений", заявки №
2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки №
2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки №
2022102937 от 07.02.2022 "Термический компенсатор- гаситель температурных колебаний СПб
ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными
торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354
от 22.02. 2022, Минск, "Антисейсмическое фланцевое фрикционное соединения для сборно-разборного
моста" для обеспечения сейсмостойкости и сдвиговой прочности для пролетных строений
железнодорожного моста
1. Объект испытаний: испытания демпфирующего компенсатора гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD, серийный выпуск
предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с
сейсмичностью более 9 баллов, необходимо использование в строительных конструкциях
демпфирующих компенсаторов с упругопластическими шарнирами на фрикционно-подвижных
соединениях, расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного
демпфирования при импульс-ных растягивающих и динамических нагрузках согласно изобретениям,
патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 ,
2550777, с использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно
заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор -гаситель температурных
напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для
трубопроводов", заявки № 2021134630 от 29.12.2021 "Термический компенсатор- гаситель
температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсаторИспытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 4

5.

гаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых
элементов трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки
"Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое
фланцевое фрикционное соединения для сборно-разборного моста" для обеспечения
сейсмостойкости и сдвиговой прочности для строительных систем предназначенная для районов с
сейсмичностью 9 баллов (шкала MSK-64).
Рис. 1 Общий вид лабораторных испытания фрагмента демпфирующих сдвиговых
компенсаторов, гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD строительных конструкций, для повышения сейсмостойкости и
взрывостойкости за счет перемещения сдвига - сдвиговых компенсаторов строительных систем
, выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей
трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и
амортизирующими элементами в виде свинцового или из красной меди стопорного
энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую
SEISMIC BRACING FOR WATER-BASED FIRE PROTECTION SYSTEMS
ACCORDING TO FM GLOBAL LOSS PREVENTION DATA SHEET 2-8 (MAY 2010)
http://www.tuyak.org.tr/files/478502017-05_TuyakES_JoseLuisGonzales-Sprinkler-Sistemlerinde-FMstandartlarina-gore-Sismik-.pdf
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 5

6.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 6

7.

Рис. 2 Общий вид лабораторных испытания демпфирующих сдвиговых компенсаторов гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD для
повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 7

8.

Рис. 3 Принципиальная схема сдвигоустойчиквого податливого крепления демпфирующих
сдвиговых компенсаторов гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD для повышение сейсмостойкости и взрывостойкости
достигается за счет перемещения, сдвига - сдвиговых компенсаторов строительных систем ,
выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей
трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и
амортизирующими элементами в виде свинцового или из красной меди стопорного
энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую
2. Разработчик: 127051, г. Москва, ул. Садовая-Самотечная, д. 10, стр. 1 [email protected]
3. Изготовитель: 127051, г. Москва, ул. Садовая-Самотечная, д. 10, стр. 1 [email protected]
[email protected]
[email protected]
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 8

9.

4. Место проведения испытаний
и ОРГАН ПО СЕРТИФИКАЦИИ: ФГБОУ СПб ГАСУ №
RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» при
СПб ГАСУ ОГРН: 1022000000824, https://www.spbgasu.ru т/ф:694-78-10, [email protected] (аттестат
№ RA.RU.21СТ39, выдан 27.05.2015)
5. Условия проведения испытания на скольжение и податливость.
Испытания проводились в нормальных климатических условиях по ГОСТ 15150-69: - температуре
воздуха +25°С; - относительной влажности воздуха - 80%; - атмосферное давление - 84 кПа (730
мм ртутного столба).
6. Цель испытаний.
Испытания проводились с целью проверки возможности сдвигоустойчивого податливого
крепления для демпфирующего компенсатора гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный
выпуск. В районах с сейсмичностью более 9 баллов, необходимо использование в строительных конструкциях демпфирующих компенсаторов
с упругопластическими шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных отверстиях, с целью
обеспечения многокаскадного демпфирования при импульс-ных растягивающих и динамических нагрузках согласно изобретениям, патенты:
№№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор -гаситель
температурных напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки
№ 2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от 07.02.2022
"Термический компенсатор- гаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов
трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск для
обеспечения сейсмостойкости и сдвиговой прочности для строительных систем и противостоять
разрушающему
действию сейсмических нагрузок и сохранить параметры во время и после воздействия
землетрясений интенсивностью 9 баллов по шкале MKS-64 на отметках установки до 25 м и
интенсивностью 8 баллов по шкале MKS-64 на отметках задний и сооружений до 70 м, что
соответствует I-й и II-й категориям сейсмостойкости по НП-031-01 в указанных режимах
сейсмических воздействий (9 баллов - 25 м, 8 баллов - 70 м).
7. Методика испытаний.
Испытания проводились в программе ПК SCAD с учетом экономической прогрессивной теории
активной сейсмозащиты зданий (АССЗ) вместо устаревшей консольной расчѐтно –динамической
модели (РДМ).
Испытания демпфирующего компенсатора гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 9

10.

https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для районов с сейсмичностью 8-9 баллов (шкала MSK-64) осуществлялись в
программе SCAD согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 531742008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88
П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000 с использованием
изобретений №№ 2327878, 2228488, 2256272, 2440638, 2035835, 2252473.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 10

11.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 11

12.

Испытание сдвигоустойчивого крепления податливого крепления демпфирующих сдвиговых
компенсаторов для гашения динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую нагрузку, на осевое статическое
усилие сдвига –скольжения дугообразного зажима с анкерной шпилькой с учетом экономической
прогрессивной теории активной сейсмозащиты промышленного оборудования (АССО) вместо
консольной расчетно-динамической модели (РДМ).
Модельные испытания сдвигоустойчивого податливого крепления демпфирующих сдвиговых
компенсаторов гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 12

13.

https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения
,сдвига сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую нагрузку.
Испытания проводились в соответствии с новыми РСУ для пространственных моделей с учетом
графика динамичности норм Азербайджана AzDTN 2.3-1, ГОСТ Р 54257-2010, ГОСТ Р 541572010, Eurocade-3, А500СП, СП 53-102-2004 согласно синтезированных акселерограмм с учетом
НП-31-01, ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9
баллов».
Испытания динамических моделей сдвигоустойчивого податливого крепления испытания
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений
с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и
взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую энергию.
Испытание на сейсмостойкость производились спектральным методом на основе синтезированных
акселерограмм c загружением новых РСУ (расчетные сочетания усилий) AzDTN 2.3-1 в
соответствии с НП-031-01, ГОСТ 17516.1-90, ГОСТ 30546.1, 2, 3-98, ГОСТ 16962.2-90, ГОСТ
30631-99 на основе рекомендаций: ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24.
038.12-72, ВСН 382-87, ОСТ 108.275.51-80, для взрывоопасных и пожароопасных объектов
категории А и Б.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 13

14.

Рис. 4 Скользящее (сдвиговое) крепление демпфирующих сдвиговых компенсаторов для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и
взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую и взрывную энергию
Скользящее (сдвиговое) крепление выполнено в виде болтового соединения с изолирующей
трубой или свинцовой обоймой, с амортизирующим элементом в виде свинцового или из красной
меди клина, забитого в паз, пропиленный в нижней части анкера. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру до стопорного (тормозного) клина, поглощая при
этом сейсмическую или взрывную энергию.
Крутящий момент определяется по изобретению № 2367917 "Способ измерения крутящего
момента затяжки резьбовых соединений и динамометрический ключ для его осуществления"
Испытания сдвигоустойчивого податливого крепления, демпфирующих сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига -
сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию ,
предназначенной для районов с сейсмичностью 8-9 баллов (шкала MSK-64) проводились на
воздействие электромагнитных помех согласно ГОСТ Р 51317.6.4-2009 «Электромагнитные
помехи от технических средств, применяемых в промышленных зонах». В соответствии с нормами
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и
взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 14

15.

дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую и взрывную энергию
обеспечена заземлением и защитой от молний (имеется громоотвод) с электромагнитной защитой
от СВЧ–генераторов Active Denial Sytem («микроволновая пушка») и других искусственных
молний, которые вызывают пожар.
Испытанные податливые (скользящие) узлы крепления демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига -
сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию ,
предназначенные для работы в сейсмоопасных районах с сейсмичностью 8-9 баллов по шкале
MSK-64 соответствуют ГОСТ Р 54257-2010 «Надежность строительных конструкций и
оснований», ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9
баллов», испытания производились в ПК SCAD. Испытания проходили элементы демпфирующих
узлов креплений (свинцовые шайбы, демпфирующие болты в свинцовой обмотке, тросовые
зажимы или дугообразные зажимы, анкерные шпильки со свинцовыми сминаемыми клиньями)
согласно ОСТ 37.001.050-73 «Затяжка резьбовых соединений», «Руководство по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ, альбома серии
4.402-9 «Анкерные болты», вып.5, ЛЕНГИПРОНЕФТЕХИМ, «Инструкция по выбору рамных
податливых крепей», «Инструкции по применению высокопрочных болтов в эксплуатируемых
мостах», ОСТ 108.275.80, ОСТ 37.001.050-73.
Испытания фрагментов сдвигоустойчивых узлов крепления демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига -
сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию , для
сейсмоопасных районов 8-9 баллов по шкале MSK-64 проводились на основе синтезированных
акселерограмм c загружением РСУ (расчет сочетаний усилий) AzDTN 2.3-1 в соответствии c НП031-01 в части категории сейсмостойкости II, ГОСТ 17516.1-90, ГОСТ 30546.1,2,3-98 в ПК SCAD.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 15

16.

9. Испытательное оборудование и измерительные приборы.
Перечень испытательного оборудования и измерительных приборов для проведения испытаний
сдвигоустойчивого податливого крепления демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига -
сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в
которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен
скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового
или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного
в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает
скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию приведен в
таблице 1.
Таблица 1
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 16

17.


п/п
Испытания на перемещение
демпфирующих узлов с
амортизирующими элементами
Тип прибора,
оснастки,
оборудование
Диапазон
измерения
Примечание
1
Определение статических усилий для
сдвига податливого анкера,
установленного в изолирующей трубе
с амортизирующими податливыми
элементами в виде тросового
дугообразного зажима с анкерной
шпилькой производилось в ИЦ
«ПКТИ- Стройтест» («Протокол
испытания на осевое статическое
усилие сдвигу дугообразного зажима с
анкерной шпилькой» № 1516-2 от
25.11.2013)
Рулетка,
штангенциркул
ь
+- (2- 5) см
2
Индикатор с манометром до 10 тонн,
для измерения перемещения
податливого анкера по дугообразному
зажиму с анкерной шпилькой
(тросовому зажиму) инж Андреева
Борис Александровича тел (812) 66365-27, моб 8 (911) 706-23-64 ,
1 - шт.
Домкрат до 10 тонн для отрыва
демпфирующего крепления
Индикатор
измерений
перемещений
с ценой
деления в
динах 2 мм
1%
Рулетка,
штангенциркул
ь
+- (2- 5) см
Протокол испытания
на осевое
статическое усилие
сдвига
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013
согласно патента на
полезную модель №
102228 «Анкерная
крепь для горных
выработок» и №
44350 «Анкерная
крепь».
См. Протокол
испытания на осевое
статическое усилие
сдвига
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013 г.
См. Протокол
испытания на осевое
статическое усилие
сдвигу
дугообразного
зажима с анкерной
шпилькой № 1516-2
от 25.11.2013
согласно патента на
полезную модель №
102228 «Анкерная
крепь для горных
выработок» и №
44350 «Анкерная
крепь»
См. Протокол
испытания на осевое
статическое усилие
сдвигу
дугообразного
зажима с анкерной
шпилькой №1516-2
от 25.11.2013
Годен до 12.2017 г.
3
4
Лебедка рычажная (усилие 5 тонн) для Теодолит
определения смятия при выдергивании
анкера со свинцовым «тормозным»
клином, забитым в прорезанный паз в
резьбовой части анкера М16
1%
5
Кувалда, вес 4 кг. (для определения
перемещения демпфирующего анкера
+/- 0,0
T/c2
Нивелир
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 17

18.

6
7
с тормозным клином во время
испытания на монтажной
строительной площадке)
лабораторный механический манометр
мерить для измерения перемещения
анкера М16 ГОСТ 24376.1 на
податливость
Аналогично вибростенду ES -180590 использовалась испытательная
машина ZD-10/90 на сдвиг,
скольжение и податливость согласно
ГОСТ 53166-2008 «Землетрясения»
Штатив с
манометром
0,01 мм 1000 мм
Свидетельство № 1
до 01.2017 г.
Усилия
выдергивания
шкала 100 кгс.
Зав № 66/79
(сертификат
о
калибровке
№ 143-1371
от
28.08.2013г.
)
+/- 0,0
T/c2
0,01 мм. 1000 мм.
Зав № 1
(сертификат
№ 14 от
18.09.2013г.
)
Годен до 12.2017 г.
8
Ключ динамометрический
Нивелир
9
Нивелир
10
Домкрат 5 т
Штатив с
манометром
Усилия
выдергивания
шкала 5 тонн
11
Лебедка 5 тонная
12
Болгарка для простукивания пазов в
анкерных болтах для забивки
стопорного свинцового клина
Гайковерт ИП-3128 исползовался при
испытаниях на фрагментах, деталях
сдвигоустойчивых скользящих
сейсмостойких и взрывостойких
узлах крепления.
13
Для
определения
сдвига или
скольжение
анкера в
изолированной
трубе
Болгарка
дисковая пила
Годен до 12.2017 г.
Свидетельство № 1
до 01.2017 г.
Годен до 01.2017 г.
Годен до 12.2017 г.
Паз
Свидетельство № 3
пропила 2
до 01.2017 г.
мм
Зав № 1 № Годен до 01.2017
при
19 от
испытаниях
18.09.2013г.
на
демпфированн )
ость и
сдвигоустойчи
вость,
допускает
настройку
величины
крутящих
моментов от
80 до 150 кгс
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 18

19.

10. Характеристики механических ВВФ (внешние воздействующие факторы) при
испытаниях на сейсмостойкость фрагментов демпфирующих податливых узлов крепления.
Сейсмическое воздействие
Испыт. на сейсмичные
воздействие
9 балов 25 м.
8 балов 70 м.
Ускорение (g) для
диапазона частот
(Гц)
3,5 Гц-9 Гц
Ускорение (g) для
диапазона частот
(Гц)
9Гц- 3,0 Гц
Время
воздействия,
мин
0,56 g
0,31 g
0,56 g-0,23 g
0,31 g-0,13 g
1
1
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 19

20.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 20

21.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 21

22.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 22

23.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 23

24.

Рис На рисунке показан узел гасителе динамических колебаний для применения испытания
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и
взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов
строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части (
шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по
анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую, предназначенные для сейсмоопасных районов с
сейсмичностью до 9 баллов, В районах с сейсмичностью более 9 баллов при динамических, импульсных растягивающих
нагрузках для поглощения сейсмической энергии необходимо использование фрикционно-демпфирующих компенсаторов,
соединенных с кабеленесущими системами с помощью фланцевых фрикционно-подвижных демпфирующих компенсаторов
(с учетом сдвиговой прочности), согласно заявки на изобретение: " Фрикционно -демпфирующий компенсатор для
трубопроводов" F 16L 23/00 , регистрационный № 2021134630 (ФИПС), от 25.11.2021, входящий № 073171, "Фланцевое
соединение растянутых элементов трубопровода со скошенными торцами", Минск № а 20210217 от 28 декабря 2021 ,
"Компенсатор для трубопроводов " Минск , регистрационный № а 20210354 от 27 декабря 2021. , при импульсных
растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с
контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой
части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их
программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
При сбрасывании, сдвиге строительных конструкций , с применением фрикционноподвижных болтовых соединений для обеспечения сейсмостойкости конструкций здания:
масса строительной системы уменьшается, частота собственных колебаний
увеличивается, а сейсмическая нагрузка падает
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 24

25.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 25

26.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 26

27.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 27

28.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 28

29.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 29

30.

Рис.5 Графики задающих режимов расчетных схем перемещений узла крепления
сдвигоустойчивого податливого выпуск в ПК SCAD для 8-9 баллов (высота от 0м до 25м).
Суммарные внешние нагрузки на основную схему демпфирующего податливого узла крепления X,
Y, Z, UX, UY, UZ использовались в программном комплексе SCAD с применением блочного
метода Ланцоша со сдвигами применительно к сейсмическому анализу сооружений (разработан
Сергем Фиалко - д.т.н., с.н.с. (проф. Киевского национального университета строительства и
архитектуры) и Перельмутером Анатолием Викторовичем - д.т.н, проф.
1,0
1,0
1,0
1,0
1,0
Рис.6. Графиков испытания элементов демпфирующих узлов в ПК SCAD для районов с
сейсмичностью 8-9 баллов. Суммарные внешние нагрузки на основную схему демпфирующего
податливого узла крепления X, Y, Z, UX, UY, UZ использовались в программном комплексе SCAD
с применением блочного метода Ланцоша со сдвигами применительно к сейсмическому анализу
сооружений (разработан Сергем Фиалко - д.т.н.с.н.с. (проф. Киевского национального
университета строительства и архитектуры) и Перельмутером Анатолием Викторовичем - д.т.н,
проф. При испытаниях элементов сдвигоустойчивого податливого крепления на сейсмическую
нагрузку периодически встречаются задачи, в которых в нижней части спектра лежит большое
количество локальных форм колебаний, причем спектр собственных частот является очень густым.
Такие задачи создают серьезные проблемы, поскольку вычислительные алгоритмы, реализованные
в современных компьютерных системах МКЭ-анализа, как правило, в таких случаях оказываются
малоэффективными. Разработанный в программном комплексе SCAD алгоритм блочного метода
Ланцоша со сдвигами, реализующий сейсмический режим, позволяет значительно продвинуться в
решении этой проблемы. Согласно письма Минстроя РФ от 04.07.2014 № 01-01/206 на 6307-01/04
от 19.5.2014 Кальгин А А «Ордена Трудового Красного Знамени Академия коммунального
хозяйства им. К.Д. Памфилова» по поручению Минтстроя РФ признала две теории испытания на
сейсмику с использованием в практике испытаний экономичной прогрессивной теории активной
сейсмозащиты зданий (АССЗ), имеет место применение и консервативной старой консольной
расчѐтно-динамической модели (РДМ), согласно ГОСТ Р 53166-2008 «Землетрясение» стр. 9., при
испытаниях может потребоваться уточнение для некоторых спектров ответа между амплитудой
перемещений комесатора и демпфирования узлов крепления. Для испытательных целей:
1. Два образца жестко крепились на виброплатформе поочередно в трех взаимноперпендикулярных направлениях.
2. Предварительно, до испытаний на сейсмостойкость, был проведен лабораторный анализ
податливости демпфирующего крепления для коменстаора . Образцы испытывались поочередно в
трех взаимно-перпендикулярных направлениях с ускорением l,0g, в диапазоне 5-100 Гц путем
плавного изменения частоты 1окт./мин и от 100 до 5 Гц с той же скоростью изменения частоты.
3.После проведения комплекса вибрационных испытаний, вторично был проведен анализ
сдвигоустойчивости демпфирующего крепления.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 30

31.

11. Результат испытаний сдвигоустойчивых, податливых узлов крепления
Испытания проходили в испытательном Центре «ПКТИ –Строй- ТЕСТ» (протокол испытаний №
1516-2 от 25.11.2021, № 1506-1 от 18.11.2013, результаты статических испытаний крепежных
изделий на испытательную нагрузку. Аттестат аккредитации федерального агентства по
техническому регулированию и метрологии РОСС RU 0001.22.CЛ 33 от 24.12.2010. Срок действия
аттестата аккредитации до 24 декабря 2015).
Таблица 2
№ Наименование
Испытательное
проверок и
оборудование
п испытаний
/
п
1 Проверка крепления
скольжения и
податливости
сдвигоустойчивого
анкера
Создание
осевого усилия
2 Проверка крепления
испытательной
скольжения и
машиной ZD податливости
10/90 зав №
сдвигоустойчивого
66/79
анкера
(сертификат о
3 Величина усилия, кгс
калибровке №
при котором
13-1371 от
происходит вырыв
28.08.2013
болтового крепления из
стального листа (Ст3)
При испытаниях
4 Величина усилия, кгс
податливых
при котором
сдвигоустойчив
происходит вырыв
болтового крепления из ых и скользящих
узлов крепления
стального листа (Ст3)
5 Величина усилия, кгс
при котором
Регистрация
происходит вырыв
усилий
болтового крепления из
производилось
стального листа (Ст3)
по шкале до
6 Результаты
Величина контролируемого
параметра
Результаты
испытаний
Величина усилия 580 кгс при
котором происходит
скольжение или перемещение
стального тросового зажима
по стальному анкеру
Величина усилия 1420 кгс при
котором происходит
скольжение или перемещение
стального тросового зажима
по стальному анкеру
Величина усилий кгс 2420
800 кгс
Срыв резьбы на стальном
листе
Величина усилий кгс 4000
Срыв резьбы на стальном
листе
Величина усилий кгс 730
340 кгс
Характер
разрушения
срыв резьбы на
стальном листе
Характер
разрушения
срыв резьбы на
стальном листе
Срыв резьбы на стальном
листе
Характер
разрушения
срыв резьбы на
стальном листе
Величина усилий 30 кгс
Срыв гайки М10
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 31

32.

7
8
9
статических испытаний
крепежных изделий на
испытательную
нагрузку
Результаты
статических испытаний
крепежных изделий на
испытательную
нагрузку
Результаты
статических испытаний
крепежных изделий на
испытательную
нагрузку
Результаты
статических испытаний
крепежных изделий на
испытательную
нагрузку
1000 кгс
сдвигоустойчив
ого коменсатора
Смятие граней полимидальной на резьбе гайки
гайки М12на резьбе гайки
М22
Величина усилий 40 кгс
Срыв гайки М12,
Смятие граней полимодальной М22
гайки М12на резьбе гайки
М22
Величина усилий 50 кгс
Срыв гайки М14,
М22
Смятие граней полимидальной
гайки М12на резьбе гайки
М22
Величина усилий 150 кгс
Срыв гайки М16,
М22
Смятие граней полимидальной
гайки М12на резьбе гайки
М22
12. Заключение по испытанию на сейсмостойкость компенсатора сдвигового А.М.Уздина :
В соответствии с испытаниями сдвигоустойчивого податливого крепления делается вывод, что
компенстоар соответствует требованиям, которые предъявляются к оборудованию I и II
группы сейсмостойкости, так как сдвигоустойчивые податливые крепления
податливого
выполнены согласно требованиям НП -031-01 «Нормы проектирования сейсмостойких
атомных станций», согласно «Руководство по креплению технологического оборудования
фундаментными болтами», РЧ серия 4.402-9, вып.5 «Анкерные болты» и «Инструкция по выбору
рамных податливых крепей горных выработок». Скользящие (сдвиговые) крепления выполнены в
виде болтовых соединений с изолирующей трубой или свинцовой обоймой, с податливыми
элементами в виде свинцового или из красной меди стопорного клина, забитого в пропиленный в
нижней части анкера паз.
К протоколу прилагаются:
1. Приложение 1. Фотографии фрагментов демпфирующих узлов крепления
2. Приложение 2. Перечень научных работ, используемых при испытаниях податливого
крепления
3. Приложение 3. Чертежи, схемы вариантов демпфирующих узлов крепления в виде
болтовых соединений с изолирующими трубами и амортизирующими элементами
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 32

33.

Рис.7.Узлы крепления фрагментов сдвигоустойчивого податливого сдвигового крепления
Приложение 1.
Фотографии фрагментов демпфирующих узлов сдвигового крепления
Рис.8. Фотографии фрагментов демпфирующих узлов крепления выполненных в виде болтовых
соединений с изолирующими трубами и амортизирующими элементами согласно СН 471-75,
«Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПромзданий, М.,Стройиздат, 1979 г. и альбома «Анкерные болты», серии
4.402-9, вып. 5 (проходили испытания в ИЦ «ПКТИ-СтройТЕСТ», протокол испытаний на осевое
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 33

34.

статистическое усилие сдвига дугообразного зажима с анкерной шпилькой № 1516-2 от
25.11.2013г.).
Приложение 2.
Перечень научных работ, используемых при испытаниях сдвигоустойчивого податливого
Прогрессивное крепление оборудования из латунной сдвигоустойчивой заклепка шпилька с
резьбой с забитым из обожженной меди с энергопоглощающим забитым стопорным или
"тормозным" клином для сейсмоопасных районов
Резьбовая податливая заклепка-гайка цилиндр фланец с рифлением и забитым медным
стопорным клином
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 34

35.

Изобретение Петрика Устройство для крепления деталей при помощи гибкого сердечника
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)SU
(51) МПК 4
(11)1296753
(13)A2
F16B2/06
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
к авторскому свидетельству
(12)
Статус: по данным на 17.11.2014 - нет данных
Пошлина:
(21), (22) Заявка: 3920543,
01.07.1985
(45) Опубликовано: 15.03.1987
(71) Заявитель(и):
КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ
ИМ.50-ЛЕТИЯ ВЕЛИКОЙ ОКТЯБРЬСКОЙ
СОЦИАЛИСТИЧЕСКОЙ РЕВОЛЮЦИИ
(56) Список документов,
цитированных в отчете о
поиске: Авторское
(72) Автор(ы):
свидетельство СССР №
ВЕЛИКОИВАН ВАЛЕНТИН СЕМЕНОВИЧ,
597867, кл. F 16 В 2/06, 1973.
ЛУЦЕКО ЮРИЙ СТЕПАНОВИЧ,
МИКУЛЕНОК ИГОРЬ ОЛЕГОВИЧ
(61) Номер основного
авторского свидетельства:
597867
(54) Устройство для крепления деталей при помощи гибкого сердечника
(57) Реферат:
Изобретение относится к области ма- 1уиностроения и может быть использовано для соединения
различных деталей машин. Целью изобретения является увеличение срока службы и повышение
прочности соединения . Устройство содержит детали 5 и 6, соединенные посредством гибкого
сердечника 1, выполненного в виде пучка проволок , расположенных концентричными слоями . Каждый
слой содержит проволоки одинакового диа.метра, а диаметры смежных слоев выполнены различными и
уменьи аются от центра к периферии. Указанная цель достигается за счет увеличения несущей
способности периферийных участков гибкого .сердечика вследствие увеличения площади их
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 35

36.

поперечного сечения. 1 з.п. ф-лы, 2 ил. IND О С5 СП СО Го
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 36

37.

Рекомендуемые моменты затяжки болтов и винтов остаются прежними для
сдвигоустойчивого податливого крепления податливого
Момент затяжки – необработанные винты (отделка чернением). Коэффициент трения 0,14
Класс
Момент
Номинальный размер – Резьба крупная
M6
M8
M10
M12
M16
M20
M24
M27
M30
5.6
8.8
Nm
Ft. lb
4.6
3.3
Nm
10.5
Ft. lb
7.7
10.9
Nm
15
Ft. lb
11
12.9
Nm
18
Ft. lb
13
Nm = Нм, Ft. lb = фунто-футы
M33
M36
M39
11
8.1
22
16
39
28
95
70
184
135
315
232
470
346
636
468
865
637
1111
819
1440
1062
26
19
36
26
43
31
51
37
72
53
87
64
89
65
125
92
150
110
215
158
305
224
365
269
420
309
590
435
710
523
725
534
1020
752
1220
899
1070
789
1510
1113
1810
1334
1450
1069
2050
1511
2450
1805
1970
1452
2770
2042
3330
2455
2530
1865
3680
2625
4260
3156
3290
2426
4520
3407
5550
4093
Момент затяжки – гальваническая оцинковка. Коэффициент трения 0,125
Класс
Момент
Номинальный размер – Резьба крупная
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 37

38.

M6
5.6
M8
Nm
4.3
10.5
Ft. lb
3.1
7.7
8.8
Nm
9.9
24
Ft. lb
7.3
17.7
10.9
Nm
14
34
Ft. lb
10.3 25
12.9
Nm
16.5 40
Ft. lb
12.1 29
Nm = Нм, Ft. lb = фунто-футы
M10
21
15
48
35
67
49
81
59
M12
M16
M20
M24
M27
M30
M33
M36
M39
36
25
83
61
117
86.2
140
103
88
64
200
147
285
210
340
260
171
126
390
297
550
405
650
485
295
217
675
497
960
708
1140
84o
435
320
995
733
1400
1032
1660
1239
560
435
1350
995
1900
1401
2280
1681
800
590
1830
1349
2580
1902
3090
2276
1030
768
2360
1740
3310
2441
3880
2535
1340
988
3050
2249
4290
3163
5150
3798
Рис 18. Гайковерт ИП-3128 (допускает настройку величины крутящих моментов от 80 до 150
кгсхм) сдвигоустойчивого податливого крепления
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 38

39.

Рис.19. Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-64:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для податливого крепления разработанной
для
сейсмоопасных районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск).
Испытания проводились спектральным методом на основе синтезированных акселерограмм в лаборатории
«ПКТИ» ( СПб, ул. Афонская, д.2) на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9
баллов по шкале MSK-64 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные»
(скользящие, катковые, шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с
испытаниями на сейсмостойкость демпфирующего анкера с сейсмоизолирующим зажимом в ПКТИ можно
ознакомиться на сайте: https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Рис. 20. Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 39

40.

4:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для податливого , разработанной
для сейсмоопасных
районов с сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск). Испытания проводились
спектральным методом на основе синтезированных акселерограмм в лаборатории «ПКТИ» ( СПб, ул.
Афонская, д.2) на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9 баллов по шкале
MSK-64 на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ
24. 038.12-72, альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые,
шариковые), ВСН 382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с испытаниями на сейсмостойкость
демпфирующего анкера с сейсмоизолирующим зажимом в ПКТИ можно ознакомиться на сайте:
https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Рис.21. . Испытание демпфирующего фланцевого узла крепления выполненного в виде болтового
соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами,
расположенными с двух сторон болтового крепления изготовленными согласно «Руководства по
креплению технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании спектров ответов для
зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8,
10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ
12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-64:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488, 2256272,
2440638, 2035835, 2252473 для податливого крепления
для сейсмоопасных районов с
сейсмичностью 8-9 баллов по шкале MSK-64 (серийный выпуск). Испытания проводились спектральным
методом на основе синтезированных акселерограмм в лаборатории «ПКТИ» ( СПб, ул. Афонская, д.2) на
соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 8-9 баллов по шкале MSK-64 на основе
рекомендаций: ОСТ -34-10-757-97, ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые), ВСН
382-87, ОСТ 108.275.51-80, ГОСТ 25756-83, подробно с испытаниями на сейсмостойкость демпфирующего
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 40

41.

анкера с сейсмоизолирующим зажимом в ПКТИ можно ознакомиться на сайте:
https://vimeo.com/76231859 https://vimeo.com/76231805 https://vimeo.com/76231827
https://vimeo.com/76231640 https://vimeo.com/76231758 https://vimeo.com/76231684
https://vimeo.com/76222202 https://vimeo.com/76222129 https://vimeo.com/76222067
https://vimeo.com/76222000 https://vimeo.com/76222042 https://vimeo.com/76221962
https://vimeo.com/76222173 https://vimeo.com/76194054 https://vimeo.com/76193714
https://vimeo.com/76194198 https://vimeo.com/76194157 https://vimeo.com/76194145
https://vimeo.com/76194133 https://vimeo.com/76194118 https://vimeo.com/7619380
Рис. 22. . Испытание демпфирующего фланцевого узла крепления выполненного в виде
болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми
шайбами, расположенными с двух сторон болтового крепления изготовленными согласно
«Руководства по креплению технологического оборудования фундаментными болтами»,
ЦНИИПРОМЗДАНИЙ, ВНИИМОНТАЖСПЕЦСТРОЙ, М., Стройиздат, 1979 для на основании
спектров ответов для зданий UBS и UBN по НП-031-01 согласно ГОСТ Р 50785-95 п.п. 10.1.
10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р 53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9;
раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009
(МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000, согласно изобретений 2327878, 2228488,
2256272, 2440638, 2035835, 2252473 для податливого
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 41

42.

Демпфирующее фланцевое соединение для сдвигоустойчивого податливого крепления
податливого крепления при наличии фланцевого соединения работающего на сдвиг и выполнен в виде
болт. соединения. из латунной шпильки, с подпилен. пазом, с изолир трубой и элементами в виде
свинцовой шайбы и медным стопорным «тормозным» клином , выполн согл: ГОСТ Р 53166-2008, РБ 00699, СП 14.13330.2011 п.4.6, МДС 2-1.2004 , ОСТ 37.001.050-73,сборника 1-487-1997.00.000, сер. № 4.402-9, в
5, СН 471-75 выполнены согласно ГОСТ 17516.1-90 п.5 к сейсмическим. возд 9 баллов по шкале MSK-64,
при наличии фланцевого соединения работающего на сдвиг( латунная шпилька с медным клином и
амортизирующими элементами в виде свинцовых шайб, согласно рекомендаций ЦНИИП им Мельникова,
ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72,ОСТ 37.001.050-73,альбома 1-487-1997.00.00 на
основании спектров ответов для зданий UBS и UBN по НП-031-01, установленного на
мелкозаглубленном фундаменте с демпфирующей песчаной «подушкой» и
амортизирующей прослойкой из гравия или других материалов (щебенка, пеностекло,
пеноплекс, пенотерм), согласно ТСН МФ -97, МО ВСН 29-85, СТО 36554501-012-2008, СН
536-81, с пластовым дренажом согласно альбома «Конструкции пластовых дренажей»,
серия 8-005-1, вып. 0 и вып.1, с устройством автоматического отключения при
землетрясении, пожаре или воздействии электромагнитных помех, согласно
изобретениям №№ 2327878, 2228488, 2256272, 2440638, 2035835, 2252473, Податливое
болтовое крепление выполнено с использованием тросового зажима с графитом
(порошком ) и стопором для троса. Между зажимом и стопором, расстояние 10 мм -30 мм.
( в зависимости от бальности, где проходит трубопровод ) Осевое усилие на тросовом
зажиме, должно составлять не выше 3 тс, согласно СНиП III -18-75 , а на стопоре (
тросовом), натяжение высокопрочного болта, должно составлять 27.1 тс (М24), ( М27-35,3
тс ), что дает возможность работать тросовому зажиму расположенному на
высокопрочном болте работать на сдвиг, что позволит демпфирующему фланцевому
соединению во время землетрясения перемещаться до 20 мм- 30 мм, что исключает
разрыв трубопровода и обеспечивает сейсмостойкость и фланцевому соединению и
агрегату, закрепленному на фундаментном болте с изолирующей трубой и
амортизирующими или демпфирующими элементами (допускается крепление клеммами
согласно ГОСТ 24741-81 «Крепление крановых рельсов к стальным подкрановым бакам» с
расчетной сейсмостойкостью до 9 баллов).
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 42

43.

Выбор элементов, их геометрических параметров проведен на основании изучения
представленной Заказчиком технической документации. сдвигоустойчивого податливого крепления
податливого крепления Таблица 1. Параметры колебаний грунта при силе землетрясения,
выраженной в долях целого балла (7,0≤I≤7,9).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
7,0
4,0
8,0
100
7,1
4,3
8,6
107
7,2
4,6
9,2
115
7,3
4,9
9,8
123
7,4
5,3
10,6
132
7,5
5,7
11,3
141
7,6
6,1
12,1
152
7,7
6,5
13,0
162
7,8
7,0
13,9
174
7,9
7,5
14,9
187
Таблица 2. Параметры колебаний грунта при силе землетрясения, выраженной в долях
целого балла (8,0≤I≤8,9).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
8,0
8,0
16,0
200
8,1
8,6
17,1
214
8,2
9,2
18,4
230
8,3
9,8
19,7
246
8,4
10,6
21,1
264
8,5
11,3
22,6
283
8,6
12,1
24,3
303
8,7
13,0
26,0
325
8,8
13,9
27,9
348
8,9
14,9
29,2
373
Таблица 3. Параметры колебаний грунта при силе землетрясения, выраженной в долях
целого балла (9,0≤I≤10,0).
Сила землетрясения,
Горизонтальные составляющие колебаний грунта (наибольшие
баллы
значения)
Перемещение U, см
Скорость V, см/с
Ускорение W, см/с2
9,0
16,0
32,0
400
9,1
17,1
34,3
429
9,2
18,4
36,8
460
9,3
19,7
39,4
492
9,4
21,1
42,2
528
9,5
22,6
45,3
566
9,6
24,3
48,5
606
9,7
26,0
51,9
650
9,8
27,9
55,7
696
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 43

44.

9,9
10,0
29,9
32,0
59,7
64,0
746
800
Испытания проводились в два этапа:
- Первый этап. Испытания проводились на податливость фрагмента демпфирующего узла
крепления податливого крепления
- Второй этап. Испытания проводились на демпфирующих монтажных соединениях.
Вариант «Скольжение», см. сайт ОО «СейсмоФонд», ссылка
http://video.yandex.ru/users/tvkrestiyanskoe/view/1/.
3.2 На сайте можно посмотреть двигающегося, скользящего податливо-демпферного
соединения.
С фотографиями демпфирующих двигающихся фрикционно-податливых узлов
соединения податливого крепления можно ознакомиться на сайте, см. ссылка
http://video.yandex.ru/users/tvkrestiyanskoe/view/1/.
С конструктивными решениями фрикционно-податливых узлов крепления демпфирующих
соединений с креплением трубопроводов (способ скольжения) можно ознакомиться на сайте,
см.ссылка : http://video.yandex.ru/users/tvkrestiyanskoe/view/1/
Более подробно новыми, оригинальными, прогрессивными, современными, безрезьбовыми
креплениями с подпиленной сточенной резьбой с двух противоположенных сторон латунной
шпильки : 4.0 мм, 3,5 мм, 3.0 мм демпфирующие, сейсмостойкие взрывостойкие, податливые
крепления по изобретению талантливого, великого изобретателя Петрика В. А. из Киевского
политехнического института , при помощи гибкого сердечника, в виде "танцующей" латунной
шпильки в свинцовой или медной "рубашке" с прорезанным пазом и забивным стопорным
тормозным клином и свинцовыми шайбами , которое является надежным скреплением
коменстаора ( оборудования в сейсмоопасных зонах ) , трубопроводов, фланцевых соединений
вытяжной трубы со стальными оттяжками с многослойными медно -латунными шайбами в
жестком кольце, которые при сейсмических, ударных, вибрационных, внешних техногенных
и геофизических нагрузок изгибаются.
Более подробно смотри изобретение номер 1296753 международный класс F 16B2/06 или
ссылки: http://rutube.ru/video/e9c2b309d2a83b73ced491e3ecddb853/
https://cloud.mail.ru/home/tula_seismostoykie_podogrevateli_toplivnogo_gaza_304_16%20_oktyabrya_2
014_seismofond.ru.doc http://dfiles.ru/files/2rhqe843l https://docs.google.com/file/d/0B22-AI_3XYBd05FeWtsQklNWjA/edit http://turbobit.net/r2e7td7fmcxh.html
Список научной и технической литературы используемая
при лабораторных испытаниях ИЛ ОО "Сейсмофонд" :
1. .Алпатов В.Ю., Соловьев А.В., Холопов И.С. К вопросу расчета фланцевых
соединений на прочность при знакопеременной эпюре напряжений //
Промышленное и гражданское строительство. — № 2. — 2009, с. 26-30.
2. 2.
Бирюлев В.В., Катюшин В.В. Проектирование фланцевых соединений с
учетом развития пластических деформаций // Труды международного
коллоквиума "Болтовые и специальные монтажные соединения в стальных
строительных конструкциях". — Том 2. - М.: ВНИПИ Промсталь- конструкция.
— 1989, с. 32-36.
3. 3.
Каленов В.В., Глауберман В.Б. Исследования Т-образных фланцевых
соединений на моделях из оптически активного материала // Известия вузов.
Строительство и архитектура. — 1985,-№9, с. 14-17.
4. 4.
Катюшин В.В. Здания с каркасами из стальных рам переменного
сечения. — М.: Стройиздат, 2005. — 450 с.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 44

45.

5. 5.
Карпиловский B.C., Криксунов Э.З., Маляренко А.А., Перельмутер А.В.,
Перельмутер М.А SCAD Office. Вычислительный комплекс SCAD. — М.:
Издательство АСВ, 2008. - 592 с.
6. 6.
Рекомендации по расчету, проектированию, изготовлению и монтажу
фланцевых соединений стальных строительных конструкций // СО
Стальмонтаж, ВНИПИ Промсталь- конструкция, ЦНИИПСК им. Мельникова. М., 1988. - 83 с.
7. 7.
Руководство по проектированию, изготовлению и сборке монтажных
фланцевых соединений стропильных ферм с поясами из широкополочных
двутавров. - М.: ЦНИИПСК им. Мельникова, 1981.
8. 8.
СНиП П-23-81*. Стальные конструкции. Нормы проектирования //
Госстрой СССР. - М.: ЦИТП Госстроя СССР, 1990, 96 с.
9. 9.
СП 53-102-2004. Общие правила проектирования стальных
конструкций // ЦНИИСК им. Кучеренко, ЗАО ЦНИИПСК им. Мельникова, ОАО
Ин-т "Энергосеть".
10. 10.
Cerfontaine Е, Jaspart J. P. Analytical study of the interaction between
bending and axial force in bolted joints // Eurosteel Coimbra, 2002. - pp. 997- 1006.
11. 11.
EN 1993-1-8. Eurocode 3. Design of Steel Structures. Part 1.8: Design of
joints. CEN, 2005.
12. 12.
Jaspart J. P. General report: session on connections // Journal of
Constructional Steel Research, 2000. — \fol. 55. - pp. 69-89.
13. 13.
PisarekZ., KozlowskiA. End-plate steel joint with four bolts in the row //
Proceeding of the International
14. Conference "Progress in Steel, Composite and Aluminium Struc-tures"// Gizejowski,
Kozlowski, Sleczka & Ziolko (eds.) / Taylor & Francis Group, London, 2006. - pp.
257-826.
15. 14.
Sokol Z., Wald F., Delabre V., Muzeau J. P., Svarc M. Design of end plate
joints subject to moment and normal force // Eurosteel Coimbra, 2002. - pp. 12191228.
16. 15.
Sumner E. A., Murray Т. M. Behaviour and design of multi-row extended
end- plate moment connections // Proceedings of International Conference
Advances in Structures (ASCCA'03). - Sydney, 2003.
17. 16.
Undermann D., Schmidt B. Moment Resistance of Bolted Beam to Column
Connections with Four Bolts in each Row // Proceedings of IV European
Conference on Steel and Composite Structures "Eurosteel 2005". — Maastricht,
2005.
18. 17.
Urbonas K, Daniunas A. Behaviour of steel beam-to-beam connections
under bending and axial force // Proceedings of 8th International Conference
"Modern Building Materials, Structures and Techniques" (Lithuania, Vilnius, May 1921, 2004) - pp. 650-653.
19. Анатолий Перельмутер, д.т.н., главный научный сотрудник ООО НПФ
"СКАДСОФТ" Эдуард Криксунов, к.т.н., директор ООО НПФ "СКАДСОФТ"
Виталина Юрченко, к.т.н., ведущий научный сотрудник ООО НПФ "СКАДСОФТ"
Тел.: (499) 267-4076 E-mail: [email protected] scad @scadsoft.com
Список использованной литературы по лабораторному испытанию сдвигового компенсатора на
техногенное и геофизическое воздействие в сейсмоопасной зоне
1. Байда С.Е. Мега-катастрофы, как стратегическое и тактическое оружие войн нового поколения, возможность их
прогнозирования и предупреждения. Технологии гражданской безопасности, Том 7,2010, № 1—2, с. 191—198.
2. Байда С.Е. Исследования авиационных происшествий и катастроф, как следствие совместного влияния ге- лиогеофизических
факторов. Сборник трудов по материалам научных исследований адъюнктов, аспирантов и соискателей Академии. Выпуск
8. Закрытого пользования. Новогорск: АГЗ МЧС России, 2004, с. 181—190.
3. Байда С.Е., Мищенко В.Ф. Взаимосвязь изменения солнечной активности и социальной нестабильности в мире. Безопасность
жизнедеятельности. № 12. 2004, с. 46 — 50.
4. Байда С.Е. Исследование частотно-временных и пространственно-волновых закономерностей возникновения землетрясений,
аварий электроснабжения и авиакатастроф. 53-я НПК МФТИ секция «Высокие технологии в обеспечении безопасности
жизнедеятельности» в трудах 53-й научной конференции МФТИ «Современные проблемы фундаментальных и прикладных
наук». Часть III. Аэрофизика и космические исследования. Том 2. М.: МФТИ, 2010, с. 28 — 30.
5. Землетрясения и микросейсмичность в задачах современной геодинамики восточно-европейской платформы. Книга 2.
Микросейсмичность. Российская академия наук, Геофизическая служба, Карельский научный центр, институт геологии.
Под редакцией Н.В. Шаврова, А.А. Маловичко, Ю.К.Щукина. Петрозаводск, 2007.
6. Байда С.Е. Математический подход анализу рисков возникновения фатальных случаев у переживших природные бедствия и
техногенные катастрофы людей. Проблемы анализа риска. Том 6, 2009, № 2, с. 14 — 24.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 45

46.

7. Bayda S. Interrelations of Changes of Space and He- lio-Geophysical Factors and the Number of Victims after Catastrophic
Earthquakes. Proceedings of the International Disaster and Risk Conference (IDRC Davos 2008), August 25-29 2008. Extended
Abstracts / Edited by Walter J. Ammann Myriam Poll Emily Hдkkinen Graaldine Hoffer, Global Risk Forum GRF Davos,
Switzerland, 2008, P. 92 — 94.
8. Арнольд В.И. Теория катастроф. 3-е изд., доп. М.: «Наука», Главная редакция физико-математической литературы, 1990.128 с.
9. С.Е. Байда. Задача прогнозирования катастрофы сложной системы, как проявления совокупности эффектов и
закономерностей изменения внешних и внутренних условий и процессов. Безопасность критичных инфраструктур и
территорий: Сборник трудов I — II-й Всероссийской конференции и XI — XII Школ молодых ученых 2007 — 2008.
Екатеринбург: УрО РАН, 2009, с. 14 — 29.
10.
Кузнецов В.В. Физика земли. Учебник-монография. Глава 20. Атмосферное электричество.
http://www.vvkuz.ru/books/ch_20.pdf
11.
Попов И.М. «Сетецентрическая война»: Готова ли к ней Россия? http://www.milresource.ru/index.html
12. Байда С.Е. Прогностические задачи обеспечения гуманитарных операций. Современные аспекты гуманитарных операций
при чрезвычайных ситуациях и в вооруженных конфликтах. Материалы XIV-й Международной научно-практической
конференции по проблемам защиты населения и территорий от чрезвычайных ситуаций. 20 мая 2009 г., г. Москва, Россия,
МЧС России. М: ФГУ ВНИИ ГОЧС (ФЦ), 2009, с. 97—102.
13. Байда С.Е. «Проблема 2012»: оценка реальных угроз. Проблемы анализа риска, Том 8, 2011, № 1, с. 74 — 91.
14. Никола Тесла и его работы с переменными токами и их приложение в радиотелеграфию. Телефонная связь и передача
мощности: растянутое интервью. Перевод выполнен Рауфом Курбановым. ISBN: 1-893817-01-6, Патент 1,119,732 США, 1
декабря 1914 года, с. 55.
http://www.tfcbooks.com:80/mall/more/321tps.htm
15. Прищепенко А.Б. Огонь. Об оружии и боеприпасах. М.: «МОРККНИГА», 2009,195 с.
16.
По материалам: http://ru.wikipedia.org/wiki/
17.
По материалам: http://lenta.ru/news/2011/11/16/mop
18. Сергей Плужников. Сергей Соколов. Украли бомбу. Расследование. Совершенно секретно № 8/113 от 08/1998.
19.
По материалам: http://www.epochtimes.ru/content/view/9912/5/
20.
По материалам: http://yh.by.ru/index.html#pzn/tek- ton/tekt-weapon.htm
21.
По материалам: http://wikimapia.org
22. Jerry E. Smith. The ultimate weapon of the conspiracy / Jerry E. Smith. Published by Adventures Unlimited Press One Adventure
Place, - Kempton, Illinois, USA, 2002. P. 24 — 27.
23.
По материалам: http://neutrino.mk.ua/roboti/proekt-chaarp-2
24.
По материалам: Grazyna Fosar, Franz Bludorf http://www.fosar-bludorf.com/archiv/ schum_eng.htm Transition to the age of
frequencies
25.
По материалам: http://gifakt.ru/archives/nauka/haarp— oruzhie-sudnogo-dnya/
26.
По материалам: http://niqnaq.wordpress.com /2010/09/23/haa.. .ica-tajikistan/
27.
По материалам: http://www.ifz.ru/
28.
По материалам: http://www.abovetopsecret.com/forum/ thread206138/pg1
29.
По материалам: http://rp.iszf.irk.ru/prengl/Radarwenglish.htm
30. Bayda S. New principles of the short-term forecast of time and place of occurrence of mega-catastrophes. Edited by Walter J.
Amman, Jordahna Haig, Christine Huovien, Martina Stocker Proceedings of the International Disaster Reduction Conference,
Davos, Switzerland august 27 September 1. Extended abstracts: - Swiss Federal Research Institute WSL, Birmensdorf and Davos,
Switzerland, 2006. P. 62 — 65.
31. Байда С.Е. О некоторых подходах в прогнозировании времени и места катастроф. V-я Научно-практическая конференция
«Проблемы прогнозирования чрезвычайных ситуаций». 15 — 16 ноября 2005 г. Доклады и выступления. М.: ООО
«Рекламно-издательская фирма «МТП-инвест», 2006, с. 295 — 305.
32. Байда С.Е. Предупреждение о времени и месте возникновения крупных землетрясений и мониторинг локальных
геофизических параметров. III научно-практическая конференция «Совершенствование гражданской обороны в Российской
Федерации», 10 октября 2006 г., Москва, 2006, с. 5.
32. Байда С.Е. Глобализация современных мега-катаст- роф, особенности и тенденции. Материалы II-го Международного
научного конгресса «Глобалисти- ка-2011: пути к стратегической стабильности и проблема глобального управления»,
Москва, 18 — 22 мая 2011 г. / Под общей ред. И.И. Абылгазиева, И.В. Ильина. В 2-х томах. Т. 2. М.: МАКС-Пресс, 2011, с. 139
— 140.
33. Байда С.Е. Научно-методическое обеспечение ситуационных центров, необходимое для решения аналитических задач,
связанных с предупреждением и прогнозированием возникновения кризисных процессов и ЧС. Тезисы докладов XVI-й
Международной научно-практической конференции по проблемам защиты населения и территорий от чрезвычайных
ситуаций на тему: «Технологии обеспечения комплексной безопасности, защиты населения и территорий от чрезвычайных
ситуаций — проблемы, перспективы, инновации», Москва, 17 — 19 мая 2011 г. М.: ФГУ ВНИИ ГОЧС (ФЦ) МЧС России, 2011,
с. 38 — 39.
34. Байда С.Е. Закономерности взаимодействия и влияния космических и гелиогеофизических факторов на возникновение мегакатастроф и их использование для прогнозирования угроз и предупреждения бедствий. Технология гражданской
безопасности. Материалы заседания научно-координационного совета ФЦ НВТ, Том 6, 2009, № 3—4, с. 107 — 123.
35. Рвачев В.Л. Теория R-функций и некоторые еж приложения. Киев, «Наукова Думка», 1982, с. 5 — 12.
36. Bayda S. Globalization of modern mega disasters, their prevention and loss reduction. Proceedings of the Second International
Conference on Integrated Disaster Risk Management. Reframing Disasters and Reflecting on Risk Governance Deficits. University of
Southern California Los Angeles, California, July 14 — 16, 2011, P. 55.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 46

47.

С научными разработками ученых ОО «Сейсмофонд» по сейсмозащите сдвигового коменсатора , можно ознакомится
научных журналах и газетах РФ, :
в
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», 3.
Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости».
6. Российская газета от 03.06.95 «Аргументы против катастроф найдены»,
7. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»,
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы»
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». 11. «Грозненский рабочий» № 2 июнь 1995
«Грозному предрекают разрушительное землетрясение»,
12. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на
грунте. Строительство на пучинистых и просадочных грунтах»
13. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» – Фонда
«Защита и безопасность городов» в области реформы ЖКХ.
14. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету «Земля
глобальные и разрушительные потрясения «звездотрясения» .
15. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных волн,
предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и журналах за
1994- 2004 гг. изданиях за рубежом
С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 тел.118-8691.
Литература по испытанию демпфирующего, скользящего
в программе SCAD 11.5
креплений
1. Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций. М. , ЦБНТИ Минмонтажспецстроя СССР, 1989, с. 53.
2. Грудев И. Д. Прочность фланцевых соединений элементов открытого профиля. Болтовые и специальные
монтажные соединения в стальных строительных конструкциях. Международный коллоквиум. – 1989. –
Труды. Т.2 – С. 7-13.
3. Фланцевые соединения. Расчет и проектирование. Бугов А. У. – Л. Машиностроение, 1975. – с. 191.
4. Соскин А. Г. Особенности поведения и расчет болтов фланцевых соединений. Болтовые и специальные
монтажные соединения в стальных строительных конструкциях. Международный коллоквиум. – 1989. –
Труды. Т.2 – С. 24-31.
5. Каленов В. В, Соскин А. Г., Евдокимов В. В. Исследования и расчет усталостной прочности фланцевых
соединений растянутых элементов конструкций. Болтовые и специальные монтажные соединения в
стальных строительных конструкциях. Международный коллоквиум. – 1989. – Труды. Т.2 – С. 41-17.
6.
Проектирование металлических конструкций: Спец.курс. Учебное пособие для вузов/ В. В. Бирюлев, И. И.
Кошин, И. И. Крылов, А. В. Сильвестров. – Л.: Стройиздат, 1990 – 432 с.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 47

48.

Перечень (приведен в таблице 1) испытательного оборудования и измерительных приборов для проведения испытаний фрагментов
фрикционно-подвижных соединений для крепления опоры скользящей для демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в
длинных овальных отверстиях.
Таблица 1

Испытания на перемещение демпфирующих
Тип прибора,
Диапазон
Примечание
п/п
узлов с амортизирующими элементами
оснастки,
измерения
оборудование
1
Определение статических усилий для сдвига податливого анкера, установленного в изолирующей
трубе с амортизирующими податливыми элементами в виде тросового «или» дугообразного зажима
с анкерной шпилькой производилось в ИЦ «ПКТИСтрой-ТЕСТ» («Протокол испытания на осевое
статическое усилие сдвигу дугообразного зажима с
анкерной шпилькой»)
Рулетка,
штангенциркуль
+- (2- 5) см
Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой согласно патента на полезную модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь».
2
Индикатор с манометром до 10 тонн, для измерения
перемещения податливого анкера по дугообразному
зажиму с анкерной шпилькой (тросовому зажиму).
Индикатор
измерений
перемещений с
ценой деления в
динах 2 мм
1%
См. Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой
3
Домкрат до 10 тонн для отрыва демпфирующего
крепления
Рулетка,
штангенциркуль
+- (2- 5) см
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой согласно патента на полезную
модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь»
4
Лебедка рычажная (усилие 5 тонн) для определения смятия при выдергивании анкера со
свинцовым «тормозным» клином, забитым в
прорезанный паз в резьбовой части анкера М16
Теодолит
1%
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой
5
Кувалда, вес 4 кг. (для определения перемещения
демпфирующего анкера с тормозным клином во
время испытания на монтажной строительной
площадке)
Нивелир
6
Лабораторный механический манометр для
измерения перемещения анкера М16 ГОСТ 24376.1
на податливость
Штатив с
манометром
0,01 мм – 1000
мм
Свид. №1 до 12.2023 г.
7
Аналогично вибростенду ES -180-590
использовалась испытательная машина ZD-10/90 на
сдвиг, скольжение и податливость согласно ГОСТ
53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
Заводской №
66/79
(сертификат о
калибровке №
143-1371 от
28.08.2013г.)
Годен до 12.2022 г.
+/- 0,0 T/c2
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Годен до 12.2025 г.
Всего листов 409
Лист 48

49.

8
Ключ динамометрический
Нивелир
9
Нивелир
Штатив с
манометром
0,01 мм. – 1000
мм.
Свид. № 1 до 12.2023 г.
10
Домкрат 5 т
Усилия
выдергивания
шкала 5 тонн
Заводской № 1
(сертификат №
14 от
18.09.2013г.)
Годен до 12.2022 г.
11
Лебедка 5 тонная
Для определения
сдвига или
скольжение анкера в
изолированной
трубе
5%
Годен до 12.2023 г.
12
Болгарка для простукивания пазов в анкерных
болтах для забивки стопорного свинцового клина
Болгарка дисковая
пила
Паз пропила 2
мм
Свидетельство № 3 до
01.12.2023 г.
13
Гайковерт ИП-3128 исползовался при испыта-ниях
на фрагментах, деталях сдвигоустойчи-вых
скользящих сейсмостойких и взрывостой-ких узлах
крепления.
При испытаниях на
демпфирован-ность
и сдвигоустойчивость, допускает настройку
величины крутя-щих
моментов от 80до
150 кгс
Заводской № 1
№ 19 от 18.09.
2013г.)
Годен до 12.2023
+/- 0,0 T/c2
Годен до 12.2022 г.
Условия проведения испытания узлов крепления опоры скользящей для демпфирующих
сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
на скольжение и податливость -согласно нормативным документам, действующим на 09.11 2021 г., действующим ГОСТ Р и
специальным техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей опоры скользящей с трубопроводом для
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf и фрагментов антисейсмического фрикционнодемпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов, серийный выпуск.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 49

50.

Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмич-ностью более 9 баллов, серийный выпуск и возможность эксплуатации
опоры скользящей с трубопроводом в районах с сейсмич-ностью более 9 баллов.
Цель лабораторных испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения с контроли-руемым
натяжением трубопроводов для опоры скользящей для кабеленесущей системы , предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов - определение возможности их использова-ния в районах с сейсмичностью более 9 баллов по шкале
MSK-64.
5.Применение численного метода моделирования при испытании в ПК SCAD демпфирующих
сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
скользящее с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК), предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов. Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7,
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 50

51.

согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ
мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
демпфирующих сдвиговых компенсаторов для строительных
конструкций, покрытых с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с
РАСЧЕТНАЯ СХЕМА испытания СКАД
сейсмичностью более 9 баллов.
Геометрические характеристики схемы испытания математических моделей
демпфирующих сдвиговых
компенсаторов
с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов в ПК SCAD.
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
РАСЧЕТНАЯ СХЕМА демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online Вывод.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Геометрические характеристики схемы демпфирующих сдвиговых компенсаторов для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 51

52.

п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Нагрузки приложенные на схему демпфирующих сдвиговых компенсаторов гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Результата расчета
Эпюры усилий
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы (демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Нагрузки приложенные на схему
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 52

53.

Результата расчета
Эпюры усилий
«N»
«Му»
«Qz»
«Qy»
Деформации
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 53

54.

Коэффициент использования профилейОпорыскользящая для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и
контрольная сборка производилась в организации «Сейсмофонд». Инструкция по креплению фланцев к трубам предусматривала
такую последовательность производства работ:
1.
2.
3.
4.
5.
6.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами
с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости {в плане и по высоте}.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по
ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов соединены с помощью фрикци-анкерных,
протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых соединений (латунная
шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые
шайбы), расположенных в длинных овальных отверстиях.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 54

55.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 55

56.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 56

57.

Для испытания на сейсмостойкость опоры скользящей для
демпфирующих сдвиговых компенсаторов для
строительных конструкций, использовались
узлы крепления опоры к трубопроводу в виде фланцевых фрикционно –
демпфирующих соединений (ФПС) с контролируемым натяжением, расположенных в длинных овальных отверстиях,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.

п/п
1
Наименование проверок и испытаний
2
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
3
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
4
5
6
7
8
9
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Испытательное
оборудование
Создание осевого
усилия испытательной
машиной ZD -10/90 зав
№ 66/79 (сертификат о
калибровке № 13-1371
от 28.08.2018
При испытаниях
податливых
сдвигоустойчивых и
скользящих узлов
крепления
Величина контролируемого
параметра
Величина усилия 580 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилия 1420 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилий кгс 2420
Срыв резьбы на стальном листе
Величина усилий кгс 4000
Регистрация усилий
производилось по
шкале до 1000 кгс
сдвигоустойчивого
податливого крепления
подогревателя
топливного газа
Срыв резьбы на стальном листе
Величина усилий кгс 730
Срыв резьбы на стальном листе
Величина усилий 30 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 40 кгс
Смятие граней полимодальной гайки
М12на резьбе гайки М22
Величина усилий 50 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 150 кгс
Смятие граней полимидальной гайки
М12 на резьбе гайки М22
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Результаты
испытаний
800 кгс
340 кгс
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Срыв гайки М10
на резьбе гайки
Срыв гайки М12,
М22
Срыв гайки М14,
М22
Срыв гайки М16,
М22
Всего листов 409
Лист 57

58.

Таблица комплектующих фрикционно-подвижного соединения (ФПС) с контролируемым натяжением (протяжное повышенной
надежности), работающего на растяжение согласно СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8
Стальные конструкции, Технический кодекс, СП 16.13330.2011 (СниП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3,
14.4, 15, 15.2, в соответствии с изобретением № TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК)
E04B1/98; F16F15/10 (демпфирующая опора с фланцевыми, фрикционно–подвижными соединениями), Тайвань, согласно
изобретениям №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278, 2403488, 2076985, SU United States Patent 4,094,111 [45]
June 13, 1978, согласно изобретения «Опора сейсмостойкая, патент № 165076 (авторы: Андреев Б.А, Коваленко А.И) (проходили
испытания).
Поз.
1
2
3
4
5
6
Кол
4
4
4
4
4
4
Наименование изделия
Шпилька
Нормативная документация
ГОСТ 9066-75
Применение
Фрикционно-подвижное соединение по ГОСТ 12815-80
Шпилька полнорезьбовая
Гайка
Шайба
Шайба
Болт
Заклѐпка вытяжная
Шпилька
DIN 976-1
ГОСТ 9064-75
ГОСТ 9065-75
ГОСТ 6402-70
ГОСТ 7798-70
Хомут
БОЛТЫ
АТК-25.000.000
Для крепления транспортировочных брусков
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и дополнительного
оборудования
Фиксация кабельтрасс

1
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в пропиленный паз
латунной или обожженной стальной шпильки (болта)
Испытание в ПК SCAD спектральным
методом на основе синтезированных
акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ -34-10-75797, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83
Наименование и тип
Диап
Класс
лабораторного
азон
точности
измерительного
измер или предел
оборудования
ений
допускаемо
контр й
олир
погрешност
уемы и
х
велич
ин
Испытание в ПК SCAD
узлов крепления спект-
Испытание фрагментов демпфирующих
узлов крепления согласно «Руководства
по креплению технологического оборудования фунд. Болтами»,
ЦНИИПРОМЗДАНИЙ, М., Стройиздат,
1979 г. И альбома «Анкерные болты», сер.
4.402-9, в.5.
Заводско
й№
Примечание
Согласно программному комплексу
«Интегрированная система анализа
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 58

59.

ральным методом на основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90
п.5 (к сейсмическим
воздействиям 9 баллов по
шкале MSK-64) на основе
рекомендаций: ОСТ -34-10757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые)
ВСН 382-87, ОСТ
108.275.51-80, ГОСТ
25756-83.
Наименование и тип лабораторного
измерительного оборудования
1
Испытание в ПК SCAD спектральным методом на основе синтезированных акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по
шкале MSK-64) на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 3672-82, СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (сколь-зящие,
катковые, шариковые) ВСН 382-87,
ОСТ 108.275.51-80, ГОСТ 25756-83.

Наименование и тип
лабораторного
измерительного
оборудования
конструкции SCADOffice» № 0896002 от
28.12.2013.
http://www.youtube.com/watch?v=pHelYxRUhttp://www.youtube.com/watch?v=siCT9
DhdhjAhttp://smotri.com/video/view/?id=v2275
5810d79
Испытание в ПК SKAD на основе синтезированных акселерограмм фрагментов
демпфирующего узла крепления выполненного в виде болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами, расположенными
с двух сторон болтового крепления, изготовленного согласно «Ру-ководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979, предназначенного для
работы в сейсмоопасных районах с сейсмичностью 8 баллов по шкале MSK-64.
Диап
азон
изме
рени
й
конт
роли
руем
ых
вели
чин
Класс
точности
или предел
допускаемо
й
погрешност
и
Завод
ской

Примечание
В программе SCAD и программмах SCADOffice реализованы и
сертифицированы положения следующих
нормативных документов:
1) СниП 2.01.07-85* – Нагрузки и
воздействия;
2) СниП II-23-81* – Стальные конструкции;
3) СниП 2.03.01-84* – Бетонные и
железобетонные конструкции;
4) СниП II-22-81 – Каменные и
армокаменные конструкции;
5) СниП II-7-81* Строительство в
сейсмических районах;
6) СниП 2.02.01-83* – Основания зданий и
сооружений;
7) СниП 2.02.03-85 – Свайные фундаменты;
8) СниП II-25-80 – Деревянные конструкции;
9) СниП 52-01-2003 – Бетонные и
железобетонные конструкции. Основные
положения.
9) СП 52-101-2003 – Бетонные и
железобетонные конструкции без
предварительного напряжения арматуры;
10) СП 53-101-96 – Общие правила
проектирования элементов стальных
конструкций и соединений;
11) СП 50-101-2004 – Проектирование и
устройство оснований и фундаментов зданий
и сооружений;
12) СП 50-102-2003 – Проектирование и
устройство свайных фундаментов
Диапазон
измерений
контролируемы
х величин
Класс
точнос
ти или
предел
Заводск
ой №
Примечание
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 59

60.

допуск
аемой
погре
шност
и
1
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейсмическим воздействиям 9
баллов по шкале MSK-64) на
основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
1)
ДБН В.1.2-2:2006 – Нагрузки и
воздействия (Украина);
2) СП 31-114-2004 –
Строительство в сейсмических
районах (Россия);
3) СниП В1.2-1-98 –
Строительство в сейсмических
районах (Казахстан);
4) СниП РК 2.03-30-2006 –
Строительство в сейсмических
районах. Нормы
проектирования (Казахстан);
5) СНРА ІІ-2.02-94 –
Сейсмостойкое строительство.
Нормы проектирования
(Армения);
6) МГСН 4-19-2005 –
Временные нормы и правила
проектирования многофункциональных высотных зданий и
зданий-комплексов в городе
Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ
СЕЙСМОСТОЙКИХ АТОМНЫХ
СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие с 1 января
2002 г. Утверждены постановлением
Госатомнадзора России от 19 октября
2001 г. № 9
Результаты испытаний фрагментов демпфирующих узлов крепления (работают на растяжение) и фрикционно-подвижных
соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым натяжением
согласно изобретениям № 1143895, 1174616, 1168755 для крепления опоры скользящей для демпфирующих сдвиговых
компенсаторов для
сейсмоопасных районов с сейсмичностью более 9 баллов с тру-бопроводами, с креплением
трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (Ф ПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и
медного клина)
Наименование проверок и
испытаний
№ пункта
по ПМ
Величина контролируемого
параметра
Результаты испытаний
п.6
Величина усилий в кгс согласно
протокола ПКТИ –Строй-ТЕСТ
При величине усилий 800 кгс
происходит перемещение скобы
зажима по шпильке при испытании
Уточняется опытным путем
2
Проверка скольжения ,
податливости
Проверка скольжения гайки
в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341, СПб,
Афонская ул.2 .
3
Проверка смятия свинцовой шайбы.
4
Проверка свинцовой
прокладки
Проверка фланцевого
соединения

п/п
1
5
6
Проверка фрагментов
Смотри протокол ПКТИ –СтройТЕСТ от 18.11.2020
[email protected]
Соответствуют требованиям
Функционирует при податливых
характеристиках и перемещениях
до 2-4 см
Фрикционно-подвижное соединение
Соответствует при монтаже
зданий для сейсмоопасных
районов 8 баллов (по шкале
MSK-64), необходимо
испытание на перемещение
узла крепления
Определяется при установке
зданий
соответствует
соответствует
Проверяются перемещения
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 60

61.

фрикционно-подвижных
соединений
7
8
9
Проверка срыва резьбы на
шпильке согласно протокола № 1506-1 от 18.11.
2020
Проверка соединения латунной гайки и полиамидальной гайки
Проверка гайки М12 с
пазом
(происходит многокаскадное демпфирование при импульсных растягивающих нагрузках)
Осевое статическое усилие отрыва в
кгс(Ст3) 1500-600 кгс ПКТИ –
Строй-ТЕСТ
домкратом или лебедкой
Маркировка, таблички, надписи
соответствуют требованиям КД
Величина усилия кгс (при котором
происходит перемещение гайки в
узле крепления)
После испытаний фрагменты демпфирующих узлов крепления и
фрикционно-подвижных соединений
для объектов проходят проверку на
соответствие Инструкции "Элементы теории трения, расчет и технология применения фрикционноподвижных соединений".
Происходит пере-мещение
гайки при 30-150 кгс,
уточняется при монтаже
Регистрационные усилия
выдергивания производились по шкале до 4000 кгс
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и фрикционноподвижных сое-динений для
объ-ектов для сейсмоопасных районов 8 баллов
по шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений
(латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой
шайбы и медного стопорного «тормозного» клина) для опоры скользящей с трубопроводами для демпфирующих
сдвиговых компенсаторов для демпфирующих сдвиговых компенсаторов для строительных
конструкций, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с конт-ролируемым натяжением, расположенных в
длинных овальных отверстиях. При осмотре не обнаружено механических повреждений и ослабления демпфирующего фрикцианкерного крепления.
1
2
3
Проверка податливости
латунной шпильки .
Проверка подпиленной
латунной гайки
Проверка латунной шпильки с
пропиленным пазом для
стопорного клина
п.6
Необходимо обернуть свинцовым или
медным листом шпильку
Наблюдается перемещение шпильки
соответствует
Энергию поглощает стопорный (тормозной) клин на шпильке
соответствует
соответствует
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционноподвижных соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным
пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного
«тормозного» клина) для крепления опоры скользящей для демпфирующих сдвиговых компенсаторов для
строительных конструкций,
При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения трубопроводов для опоры
скользящей для демпфирующих сдвиговых компенсаторов для сейсмоопасных районов с сейсмичностью более 9
баллов
1
Проверка смятия свинцовой
п.6
Происходит смятие свинцовой шайбы
соответствует
Проверка смятия забитого в
Клин забивается в паз шпильки с
соответствует
паз латунной шпильки
помощью кувалды (4 кг)
шайбы
2
обожженного медного
стопорного клина
3
Проверка изолирующей
Латунная шпилька (расположена в
трубки в виде обертки
изолирующей трубе или обернута
шпильки медным листом
тонким слоем медного листа)переме-
соответствует
щается на 1 градус при ударе кувалдой
4
Проверка гайки со спилен-
Гайка с подпиленным пазом сдвигается
соответствует
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 61

62.

ным пазом
5
Проверка свинцовой
Свинцовая рубашка, нанесенная на
рубашки при обвертывании
шпилька демпфирует
соответствует
шпильки
6
7
Проверка свинцовой
Многослойная медно-свинцовая
прокладки
прокладка при ударе сминается
Проверка шпильки, у кото-
Согласно протокола ПКТИ от
рой две противоположные
18.11.2013 № 1506 -1 при нагрузке
стороны сточены 4.0, 3,5 и
1500- 610 кгс ( Ст3) отрыв шпильки
3.0 мм
происходит со срывом резьбы.
Проверка фланцевого
Происходит срыв резьбы и сдвиг на
соединения со стальной
0,5-0,9см
соответствует
соответствует
соответствует
шпилькой со сточенными
зубьями
8
9
Проверка компенсаторов Z –
Крепление комплектующих элементов
образных для трубопровода
не ослаблено. Крепеж не ослаблен.
Проверка компенсаторов
Необходимо дополнительные
«змейка» для трубопровода
испытания при укладке кабельтрасс (до
соответствует
соответствует
контролируемых неразрушающих
перемещений 2-6 см) .
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 62

63.

Результаты испытания болтового соединения на сдвиг для опоры скользящей для
демпфирующих сдвиговых
компенсаторов для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами и с креплением
трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях.
№ п.п.
Наименование узла крепления Опора
скользящая для Кабеленесущие системы:
Величина усилия, кгс, при
Характеристики
KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM
котором происходит
скольжения,
скольжение или
податливости.
перемещение стального
зажима для троса по
стальному анкеру
1
1.
2
3
Фрикционно-подвижное соединение (ФПС) с
болтовыми
зажимами
с
четырьмя
Было ранее
(50)
Стало
4
Перемещение шайбы с гайкой 2,5 см
по овальному отверстию при
постоянной нагрузке
шестигранными гайками Ml0, затянутыми с
помощью гаечного
усилия или
усилием
ключа
на половина
динамометрического ключа с
40
Н*м.
с
контактирующими
(
между
поверхностями
проложен стальной трос в пластмассой
оплетке диаметром 4 мм)
2.
Фрикционно –подвижное соединение
с
Было 90-150
четырьмя гайками с двух сторон затянуты
гаечным ключом на максимальную нагрузку
двумя
шестигранными
гайками
М10,
Перемещение шайбы с гайком 3,54.0 см по условному овальному
отверстию при постоянной
Стало
нагрузке
_______
затянутыми с помощью гаечного ключа или
динамометрического ключа с усилием 20
Н*м.
( между контактирующими поверхностями
проложен
стальной
трос
впластмассой
оплетке диаметром 4 мм)
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 63

64.

Рис. Общий вид образцов и узлов при лабораторных испытаниях опоры скользящей для демпфирующих
сдвиговых
компенсаторов для ,согласно изобретения
№ 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения № 2010136746 от
20.01.201 «Способ защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической
энергии», заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на
изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 , испытываемых на сдвиг с болтами ( шпилькой) М 10 с тросом в оплетке и без оплетки со стальным
тросом М 2 мм. Образец № 1 ГОСТ 22353- 77 с платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Рис. Варианты конструктивного решения сейсмозащиты элементов скользящих опор для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 64

65.

Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 22.12.2020). Аттестат
аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО»,
ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность»
Типовые альбомы, используемые при испытаниях фрагментов антисейсмического компенсатора для опор скользящих для
демпфирующих сдвиговых компенсаторов для пролетных строений
При испытаниях математических моделей опор скользящих для прольных строений предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов, серийный выпуск с трубопровода-ми с использованием для соединения трубопровода
косых компенсаторов, работающих на сдвиг расчетным способом определялась расчетная несущая способность узлов податливых
креплений, стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7
(см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым
натяжением, в соответствии со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле
(3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Описание испытание антисейсмического компенсатора работающего на сдвиг 1-2 смс использованием овальных отверстий
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно
0,85
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 65

66.

Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при любом другом способе обработки должна быть основана
на результатах испытаний образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Моделирование систем сейсмоизоляции для демпфирующих
сдвиговых компенсаторов для пролетных
строений
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции
при сейсмических воздействиях, представлены в таблице Б.1.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
сейсмоизоляции для трубопроводов
Типы сейсмоизолирующих
элементов
Схемы сейсмоизолирующих элементов
Идеализированная зависимость
«нагрузка-перемещение»
(F-D)
F
F
F
Струнные и маятниковые опоры
с низкой способностью
к диссипации энергии
D
D
D
FF
F
F
с высокой способностью
к диссипации энергии
DDD
D
F
F
FF
DD
С демпфирующими
способностями
DD
FF
Фрикционно-подвижные опоры
F
FF
с плоскими
горизонтальными
поверхностями скольжения
FF
Маятниковые с
демпфирующими
способностями за счет
сухого трения скользящих
поверхностей
F
F
F
FF
DD
D
DD
DD
D
D
D
DD
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов
409
F
F
F
FF
Лист 66
D
D
DD
D

67.

F
DD
D
Струнная опора с ограничителями перемещений за
счет демпфирующих упругих стальных пластин со
скольжением верха опоры
за счет фрикционно-подвижного соединения поверхностями скольжения
при R1=R2 и μ1≈μ2
FF
F
DD
D
FF
Струнная опора с
трущимися поверхностями
согласно изобретения по
Уздина А.М № 2550777
«Сейсмостойкий мост»
F
DD
D
Тарельчатая сейсмоизолирующая опора по изобретению. № 2285835 «Тарельчатый виброизолятор
кочетовых», Бюл № 29
20.10.2006 с демпфирующим сердечником по
изобретению № 165076
«Опора сейсмостойкая»
FFF
DD D
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения
F
взрывной энергии, для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках для опор скользящих сейсмоизолирующих для демпфирующих сдвиговых
компенсаторов
Дата проведения испытаний: 23 июня 2022 г.
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
Энергопоглощающие
демпфирующие
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
кабеленесущей системы
) из шести уголков
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей
D
Идеализированная зависимость фрикционнодемпфирующей «нагрузки для перемещения»
(F-D)
F
F
D
F
D
F
D
D
с высокой способностью
к поглощению пиковых
ускорений
Винтообразный
,упругопластические
демпфирующий
компенсатор для
трубопроводов на
фланцевых, фрикционо
–подвижных
соединениях (ФФПС )
из шести уголков
Зиг-заго образный
компенсатор для
трубопроводов
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии (
из 3-х уголков)
F
F
F
F
D
F
D
D
F
D
D
F
D
F
F
F
D
D
F
D
D
D
F
F
F
F
D
D
D
D
F
F
F
D
F
F
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD F
D
D
Всего Dлистов 409
Лист 67
D
F
F
D

68.

D
D
D
F
Демпфирующий
GTNKTJ,HFPYSQ
компенсатор ( из шести
уголков) на скользящих
опорах раскачивается
при смятии медного
обож-женного клина,
забитого в пропиленный
паз шпильки
Тросовая опора
демпфирующая
перемещающая по
линии нагрузки
(ограничитель
перемещений
одноразовый)
F
F
D D
D
F
F
F
D
D D
F
F
F
D
D
D
F
Тросовая трубпровдная
опора с упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (многоразовая)
Демпфирующая опора
(с короткими овальными
отверстиями ) и
пластическим шарниром
– скольжения,
перемещения по
длинным овальным
отверстиям по линии
нагрузки
(многоразовый)
нагрузки
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
F
F
D
D
D
F
F
D
F
D
F
D
D
Всего листов 409
Лист 68

69.

Моменты затяжки для крепления трубопровода Опора скользящая для демпфирующих
сдвиговых компенсаторов
для антисейсмического фланцевого фрикционного -подвижного соединения -
сдвигового компенсатора
с фланцевыми фрикционно-подвижными соединениями.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью фрикционных
протяжных демпфирующих компенсаторов с контролируемым натяжением, для применения в районах с сейсмичностью 9 балловпо
шкале MSK-64,обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, [H∙м] для резьбового или болтового соединения
с шлицевой головкой (винты)
с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для М6 – (8,0±1,0) H∙м, для М8 –
(20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить согласно
технической документации завода-изготовителя комплектующих изделий.
Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
f0
N0, кН
к
Всего листов 409
Лист 69

70.

1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
15
0.3
9
2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
154
75
8
Значения параметров
Параметры
соединения
математическое
ожидание
среднеквадратичное
отклонение
k1 106, КН-1
9.25
2.76
6
21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
q,мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
k2 10 , кН-
1
-1
Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0, мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
8
0.35
154
75
15
0.3
9
2.5
0.00028
Таблица коэффициентов трения скольжения и качения.
к (мм)
f ск
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс.
6. Изобретения, используемые при испытаниях компенсатора сдвигового - гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов к опоре скользящей с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК).
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи используемые при
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 70

71.

испытаниях на сейсмостойкость в ПК SCAD опоры скользящей для
демпфирующих сдвиговых компенсаторов
для компенсатора сдвигового - гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением трубопроводов с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных
овальных отверстиях (используются в США, Канаде, Японии, Китае (фирма STARSEIMIC).,,.
1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н. ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ
(ФФПС) ТРУБОПРОВОДОВ, содержащее крепежные элементы,
подпружиненные и энергопоглощающие со стороны одного или двух из
фланцев, амортизирующие в виде латунного фрикци -болта, с
пропиленным пазом и забитым медным обожженным клином , с
вставленной медной обожженной втулкой или медной тонкой гильзой ,
охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что,
с целью расширения области использования соединения в сейсмоопасных
районах, фланцы выполнены с помощью энергопоглощающего латунного
фрикци -болта , с забитым с одинаковым усилием, медным обожженным
клином, расположенными во фланцевом фрикционно-подвижном
соединении (ФФПС) , уплотнительными элемент выполнен в виде
свинцовых тонких шайб , установленные между цилиндрическими выступами
фланцев, а крепежные элементы подпружинены, также на участке между
фланцами, за счет протяжности соединения по линии нагрузки, а между
медным обожженным энергопоголощающим стопорным клином,
установлены тонкие свинцовые или обожженные медные шайбы, а в
латунную шпильку устанавливается тонкая медная обожженная гильза втулка .
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназначено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной шпильки
с забитым медным обожженным клином позволяет обеспечить надежный и
быстрый погашение сейсмической нагрузки при землетрясении,
вибрационных воздействий от железнодорожного и автомобильного
транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной
шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) .
Кроме того, между энергопоглощающим клином, вставляются свинцовые
шайбы с двух сторон, а латунная шпилька вставляется в ФФПС с медным
обожженным клином и втулкой - медной обожженной гильзой ( на чертеже
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 71

72.

не показана) 1-9 ил.
Фигуры полезная модель Антисейсмическое фланцевое фрикционное
соединение для сборно-разборного моста F 16 L 23/12
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 72

73.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 73

74.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 74

75.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 75

76.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 76

77.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 77

78.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 78

79.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 79

80.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 80

81.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 81

82.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 82

83.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 83

84.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 84

85.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 85

86.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 86

87.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 87

88.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 88

89.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 89

90.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 90

91.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 91

92.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 92

93.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 93

94.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 94

95.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 95

96.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 96

97.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 97

98.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 98

99.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU
(11)
165 076
(13)
U1
(51) МПК
(12)
E04H 9/02 (2006.01)
ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.09.2019)
(21)(22) Заявка: 2016102130/03, 22.01.2016
(24) Дата начала отсчета срока действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
КоваленкоАлександр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмическ их воздействий за счет использования
фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие
охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия
в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 99

100.

<I> которая превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в штоке. Ширина паза в штоке
соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз
штока совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до
заданного усилия. Увеличение усилия затяжки приводит к уменьшению зазор а<Z>корпуса, увеличению сил трения в
сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты
объектов от динамических воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах,
накладках и прокладках выполнены овальные отверстия через которые пропущены болты, объединяющие листы,
прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительн о
накладок контакта листов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края
овальных отверстий, соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия
листов и среза болтов. Недостатками известного являются: ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению.
Известно также Устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту
TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10.Устройство
содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних
пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие
элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы
проходят через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещае тся от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейс мостойкая выполнена из двух частей: нижней корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси
и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элеме нта. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий элемент -болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность
деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует за данному перемещению штока.
Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется чертежами,
где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен
разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое
охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса
перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3.
Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше ра сстояния от торца корпуса
до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что
шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями
корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5,
скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с поверхностью болта
(высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение
усилия затяжки гайки (болта) приводит к деформации корпуса и уменьше нию зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр
штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок
и др.) определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении
корпус-шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде калиброванного болта,
проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный
гайкой с заданным усилием, кроме того вкорпусе, параллельно центральной оси, выполнено два открытых паза, длина
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 100

101.

которых, от торца корпуса, больше расстояния до нижней точки паза штока.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2010136746
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(13)
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:
Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теп
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU)
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 101

102.

рассчитанной площади для снижения до допустимой величины взрывно го давления, возникающего во взрывоопасных
помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении,
при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема
и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с
высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу
фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек
сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали
в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки
на уровне фундамента), не подвергая разрушению и обрушению конс трукции при аварийных взрывах и сильных
землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все чет ыре-восемь гаек и
способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным
несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на
шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической
энергии может определить величину горизонтального и вертикального перемещения «сэндвич» -панели и определить ее
несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «с эндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения опре деляются, проверяются и затем
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES
2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич» -панелей,
щитовых деревянных панелей, колонн, перекрытий, перегор одок) на возможные при аварийном взрыве и при
землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» «Защита и безопасность городов».
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU(11)
2367917(13) C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭ
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 102

103.

10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул.
Чапаева, 43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И
ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(45) Опубликовано: 10.05.2000 Бюл. № 13
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
(56) Список документов, цитированных в отчете о поиске: Чесноков
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, Миролюбов Ю.П.(RU)
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 103

104.

(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
G01N 3/00 (2006.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете
о поиске: SU 1753341 A1, 07.08.1992. SU
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 104

105.

СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия
образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 105

106.

Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е
болта осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных
болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не
ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия
образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу
(прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое
может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт
оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научноисследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт
выполненный из латунной шпильки с забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение
сейсмической нагрузки при землетрясении, вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве
.Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс
свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на
чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за
счет использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены
продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикциболтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который
забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под действием запорного элемента в виде
стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 106

107.

Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических
воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет
раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и
при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также
установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими
выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента,
Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении,
можно установить медный втулки или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными
упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим
элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с
одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с
уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между
выступами устанавливаются также дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и
герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание
соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения
трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность
его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше
единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 107

108.

Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и
забитым медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области
использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м
медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными
элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг.5
Фиг 6
Фиг 7
Фиг 8
Фиг 9
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 108

109.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 109

110.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 110

111.

7. Результаты и выводы по испытаниям математических моделей опоры скользящей для гасителя динамических колебаний
и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf и узлов крепления опоры скользящей с помощью
демпфирующих и косых антисейсмических компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов ДЛЯ ПРОЛЕТНЫХ СТРОЕНИЙ НАДВИЖНЫХ СБОРОНО-РАЗБОРНЫХ МОСТОВ
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 111

112.

ВЫВОДЫ по испытанию математических моделей опоры скользящей для
демпфирующих сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных
овальных отверстиях и их программная реализация в SCAD Office.
Испытания математических моделей опор скользящих для демпфирующих сдвиговых компенсаторов
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для
, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно программной реализации в SCAD Office
проводились по прогрессивному методу испытания зданий и сооружений как более новому. Для практического применения
фрикционно-подвижных соединений (ФПС) после введения количественной характеристики сейсмостойкости надо дополнительно
испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD. Процедура оценок эффекта и обработки
полученных данных существенно улучшена и представляет собой стройный алгоритм, обеспечивающий высокую воспроизводимость
оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности землетрясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для
оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для
демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Демпфирующие сдвиговые компенсаторы проф Уздина А М для гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , которые предназначены для сейсмоопасных районов с
сейсмичностью более 9 баллов с антисейсмическими косых компенсаторов ( изобретение № 887748 « Стыковое соединение
растянутых элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях, оценено влияние продолжительности колебаний на сейсмическую
интенсивность. За полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить
точность испытания математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных
отклонений. Корреляция инструментальных данных о параметрах сейсмического движения грунта с использованием
сейсмоизолирующих опор с использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений
(ФПС) в местах крепления строительных конструкций , трубопровода , предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого
использования сейсмоизоляции для трубопроводов и использования ФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения трубопро-вода,
соединенного с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить перемещение зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла
крепления опор скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов с трубопроводами с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине
испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр
34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п
.4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5
«Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.
2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 112

113.

высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627,
2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для
определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее
составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных
соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом,
установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для демпфирующих
сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD
и лабораторных испытаний фрагментов узлов крепления опоры скользящей и трубопровода делается вывод
Опоры скользящие для демпфирующих
сдвиговых компенсаторов для гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенные для сейсмоопас-ных районов с сейсмичностью
более 9 баллов, серийный выпуск, с трубопроводами, соединенными между собой с помощью демпфиру-ющих компенсаторов на
фланцевых фрикционно–подвижных соединениях (ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных
отверстиях для обеспечения многокаскадного демпфирования при динамических нагрузках (преимуществен-но при импульсных
растягивающих нагрузках в узлах соединения), выполненных согласно изобретениям, патенты №№ 1143895, 1174616,1168755, №
165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобретению №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ
ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ
17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП
3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , при испытаниях в ПК SCAD и при испытаниях узлов
крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И.
Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных
конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc.
of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions
of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.:
Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных
болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл.
04.01.1990; опубл. 23.01.1992, Бюл. № 3.
4. Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувостшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588;
заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 113

114.

5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В.,
Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл.
26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5.
- С. 96-98
Библиографический список
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения,
1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов
всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного
профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский
государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования
20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и
идентификации в механике деформируемых сред и конструкций физическим и математическим моделирование в ПК
SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
ix.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобетон
x.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобетон
xi.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций
xii.
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
xiii.
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
xiv.
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
xv.
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
xvi.
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
xvii.
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
xviii.
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
xix.
Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
xx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxiii.
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxiv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxv.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.90310_л1_Тепловые сети. Детали трубопроводов.djvu
xxvi.
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
xxvii.
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые
сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов
сальниковые.djvu
xxviii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxix.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
xxx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
xxxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 114

115.

xxxii.
xxxiii.
xxxiv.
xxxv.
xxxvi.
xxxvii.
xxxviii.
xxxix.
xl.
xli.
xlii.
xliii.
xliv.
xlv.
xlvi.
xlvii.
xlviii.
xlix.
l.
li.
lii.
liii.
liv.
lv.
lvi.
lvii.
lviii.
lix.
lx.
lxi.
lxii.
lxiii.
lxiv.
lxv.
lxvi.
lxvii.
lxviii.
lxix.
lxx.
lxxi.
lxxii.
lxxiii.
lxxiv.
lxxv.
lxxvi.
lxxvii.
lxxviii.
lxxix.
lxxx.
lxxxi.
lxxxii.
lxxxiii.
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия
3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0
Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01
в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13
Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ
конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для
проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчѐт
трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 115

116.

lxxxiv.
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые
альбомы котрые использовались в лаборатории СПб ГАСУ для
магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК
SCADОпора скользящая для демпфирующих сдвиговых компенсаторов
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск
1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие
чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu
Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23)
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения предназначена для сейсмозащиты , виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых соединений отличающаяся тем,
что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры выполнен
сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной
верхней части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью
фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 116

117.

упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и
нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном отверстии верха и
низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующий
компенсатор для трубопроводов" F16 L 23/00 организации "Сейсмофонд" при СПб
ГАСУ ОГРН : 102000000824 ИНН : 2014000780 № 2021134630 от 2511.2021 ,
входящий № 073171 ФИПС, отдел № 17 направленная в Федеральный институт
промышленной собственности (ФИПС) , автор Президент организации "Сейсмофон"
Мажиев Х Н. ( В Минск, направлено изобретение с названием "Сталинский
компенсатор" См ссылки: https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://pptonline.org/1026337
Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов
, а старое название Фрикционно- демпфирующий компенсатор для трубопроводов
аналог компенсатора Сальникова для системы противопожарной защиты или
техническое решение предназначено для защиты магистральных трубопроводов,
агрегатов, оборудования, зданий, мостов, сооружений, линий электропередач,
рекламных щитов от сейсмических воздействий за счет использования фланцевого
соединение растянутых элементов трубопровода, с упругими демпферами сухого
трения установленных на пружинистую гофру с ломающимися демпфирующими
ножками при многокаскадном демпфировании и динамических нагрузках на
протяжных фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М
"Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение
плоских деталей". Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение плоских
деталей встык, патент Фланцевое соединение растянутых элементов
замкнутого профиля № 2413820, «Стыковое соединение растянутых элементов» №
887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G
01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения
" направлено в г.Минск , Республика Беларусь" : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg
https://ppt-online.org/1026337
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 117

118.

Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов и
фрагментов сейсмоизоляции для опоры скользящей для демпфирующих сдвиговых компенсаторов для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначенные для сейсмоопасных районов с сейсмичностью
более 9 баллов, серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –демпфирющая опора»
https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для трубопроводов»
https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog «Опора
сейсмоизолирующая «маятниковая» https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 118

119.

ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, [email protected] г т/ф: (812) 694-78-10 , (996) 798-26-54, (911) 175-84-65
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от
27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010
г. [email protected] эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО «НИПИтел (921) 962-67-78 ктн
Аубакирова И У, проф дтн Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г. http://nasgage.ru/[email protected]
проф. д.т.н. СПб ГАСУ(996) 798-26-54, (994) 434-44-70, (951) 644-16-48 Тихонов Ю.М.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 119

120.

Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (921) 962-67-78 [email protected] Копия аттестата
испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к
протоколу испытаний организацией СПб ГАСУ и организацией "Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС [email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС [email protected] (996) 798-26-54, (921) 962-677-78 О.А.Егорова
Президент органа по сертификации продукции Испытательного Центра организации «СейсмоФОНД» при
СПб ГАСУ ОГРН 1022000000824 Хасан Нажоевич Мажиев [email protected]
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я
Красноармейская ул. д 4 krestianinformburo8.narod.ru [email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры
подтверждения компетентности8590-гу (А-5824) т/ф (812) 694-78-10 (999) 535-47-29
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected] [email protected]
[email protected]тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65,
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 120

121.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 121

122.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 122

123.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 123

124.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 124

125.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 125

126.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 126

127.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 127

128.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 128

129.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 129

130.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 130

131.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 131

132.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 132

133.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 133

134.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 134

135.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 135

136.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 136

137.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 137

138.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 138

139.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 139

140.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 140

141.

https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-EtajaObespecheniya-Seismostoykosti-351-Str
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 141

142.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 142

143.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 143

144.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 144

145.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 145

146.

Более подробно об использовании демпфирующих сдвиговых
компенсаторов гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
для обеспечения сейсмостойкости на
фрикционно-подвижных соединениях сери ФПС-2015- Сейсмофонд, с
использованием изобретения Андреева Борис Александровича № 165076
«Опора сейсмостойкая» и патента № 2010136746 «Способ защиты зданий
и сооружений с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения сейсмической энергии» и патент №
154506 «Панель противовзрывная» для демпфирующих сдвиговых компенсаторов
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Более подробно ,смотрите внедренные изобртения организации
"Сейсмофонд" при СПб ГАСУ Японо-Американской фирмой RUBBER
BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBERBEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARINGFRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя
с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 146

147.

https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВСН 144-76
-----------------------------Минтрансстрой, МПС
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ
ИНСТРУКЦИЯ
ПО ПРОЕКТИРОВАНИЮ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
Дата введения 1977-01-01
РАЗРАБОТАНА Всесоюзным научно-исследовательским институтом транспортного строительства (ЦНИИС) - авторы
К.П.Большаков, В.А.Зубков - и Научно-исследовательским институтом мостов Ленинградского института инженеров
железнодорожного транспорта (НИИмостов ЛИИЖТ) - авторы В.Н.Савельев, Р.Г.Хусид - взамен действовавших ранее "Указаний по
применению высокопрочных болтов в стальных конструкциях мостов" (ВСН 144-68) в отношении норм проектирования (в отношении
норм и правил выполнения соединений на высокопрочных болтах ВСН 144-68 были ранее заменены ВСН 163-69 - ”Инструкцией по
технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов”) и п.7.24. ”Указаний по
проектированию вспомогательных сооружений и устройств для строительства мостов” (ВСН 136-67).
При разработке ВСН 144-76 был учтен отечественный и зарубежный опыт в области исследования, проектирования, строительства
и эксплуатации пролетных строений с соединениями на высокопрочных болтах и использованы результаты последних научноисследовательских работ ЦНИИС и НИИмостов ЛИИЖТ по нормам вероятностного расчета фрикционных соединений (авторысоставители настоящей Инструкции), по клеефрикционным (М.Л.Лобков), фланцевым (В.Н.Савельев, А.А.Ровный) соединениям и
фрикционным соединениям с консервацией контактных поверхностей специальным грунтом (Б.П.Кругман, А.Н.Потапов) и др.
Инструкция разработана в развитие действующих нормативных документов по проектированию мостов. В Инструкции учтены
требования действующих государственных и отраслевых стандартов.
ВНЕСЕНА ЦНИИС Минтрансстроя и НИИмостов ЛИИЖТ МПС
УТВЕРЖДЕНА распоряжением Минтрансстроя и МПС от 8 октября 1976 года N А-1470/П-30621
ВЗАМЕН ВСН 144-68 и п.7.24 ВСН 136-67
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 147

148.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 148

149.

МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СВОД ПРАВИЛ
СП 16.13330.2011
СТАЛЬНЫЕ КОНСТРУКЦИИ
Актуализированная редакция
СНиП II-23-81* Москва 2011
СП 16.13330.2011
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 149

150.

14.3 Фрикционные соединения (на болтах с
контролируемым натяжением) СП 16.13330.2011
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие
динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh
Rbh Abn
h
,
(1)
где Rbh
– расчетное сопротивление растяжению высокопрочного болта,
определяемое
согласно требованиям;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения,
распределение
этой силы между болтами следует принимать равномерным. В этом случае
количество
болтов в соединении следует определять по формуле
n
N
,
Qbh k b c
где Qbh
(2)
– расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не
найден.;
k
– количество плоскостей трения соединяемых элементов;
γс
– коэффициент условий работы, принимаемый по таблице 1;
γb
– коэффициент условий работы фрикционного соединения,
зависящий от
количества п болтов, необходимых для восприятия расчетного усилия,
и принимаемый равным:
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 150

151.

0,8 при п < 5;
0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям СП 16.13330.2011
Т а б л и ц а 42
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
номинальных
Способ обработки
Коэффици
диаметров отверстий и болтов
(очистки)
ент
δ, мм, при нагрузке
соединяемых
трения μ
поверхностей
динамической δ = 3 –
динамической δ = 1;
6;
статической δ = 1 – 4
статической δ = 5 – 6
1 Дробемѐтный
0,58
1,35
1,12
или
дробеструйный
двух
поверхностей без
консервации
2 Газопламенный 0,42
1,35
1,12
двух
3 поверхностей
Стальными без 0,35
1,35
1,17
консервации
щетками
4 двух
Без обработки
0,25
1,70
1,30
поверхностей
без
П р и м е ч а н и е – При контроле натяжения болтов по углу поворота гайки
консервации
значения γh
следует умножать на 0,9.
2) Несущую способность по местной устойчивости сжатых пластин на участках
между крепежными деталями следует определять в соответствии с ТКП EN 1993-1-1,
принимая расчетную длину равной 0,6р-|. Расчет на местную устойчивость не
требуется, если отношение p-i/f меньше 9в. Расстояние до края элемента поперек
усилия не должно превышать значений для свободных свесов сжатых элементов
согласно ТКП EN 1993-1-1. Эти требования не распространяются на расстояния до
края элемента вдоль усилия.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов
крепления в виде болтовых соединений с изолирующими трубами и
амортизирующими элементами широк используются в США , Канаде на Алскинском
нефтепроводе ( см Канадские изобретения ) для работы в сейсмоопасных
районах с сейсмичностью до 9 баллов по шкале MSK-64), серийный выпуск,
закрепленных на основании фундамента с помощью фрикционно-подвижных
соединений (ФПС) и демпфирующих узлов крепления (ДУК), выполненных
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 151

152.

согласно ТКП 45-5.04-274-2012 (02250), п.10.3.2 и изобретениям №№
1143895,1174616, 1168755 SU, 4094111US, TW201400676
Наименование
Нормативная
Применение
изделия
документация
Шпилька
ГОСТ 9066-75
Фланцевое соединение по ГОСТ
12815-80
Шпилька
DIN 976-1
Для крепления транспортировочных
полнорезьбовая
брусков
Гайка
ГОСТ 9064-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 9065-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 6402-70
Фланцевое соединение по ГОСТ
12815-80
Болт
ГОСТ 7798-70
Фланцевое соединение по ГОСТ
12815-80
Заклѐпка
Установка доборного элемента
вытяжная
Саморезы
Закрепления
металоосайдинга/сэндвича и
дополнительного оборудования к
блок – боксу
Хомут
АТК-25.000.000
Фиксация трубопровода
БОЛТЫ
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 152

153.

ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционноподвижных соединений контролируемых натяжением и
растяжные соединения описаны в СП 16. 13330.2011 . Стальные
конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на
болтах с контролируемым натяжением) и ТКП 45-05. 04-274-2012
(02250). Стальные конструкции (правила расчета). Минск. 2013
г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия
передаются через трение,
возникающее по соприкасающимся поверхностям
соединяемых элементов вследствие
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 153

154.

натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375
Н/мм2 и
непосредственно воспринимающих подвижные,
вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются
повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять
болты, гайки и шайбы
согласно требованиям 5.6.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 154

155.

Расчетную несущую способность фланцевого фрикционно -подвижного
соединения (ФФПС) или фланцевого демпфирующего узла крепления
(ФДУК) демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 155

156.

напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
на сдвиг поверхностей трения,
стянутых одним болтом с предварительным натяжением классов прочности
8.8 и 10.9, следует определять по формуле
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний
поверхностей, приведенных в ссылочных стандартах группы 7 (см. 1.2.7),
или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным
стандартам группы 4 (см. 1.2.4) с контролируемым натяжением, в
соответствии со ссылочными стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует
принимать равным
(3.7)
Таблица 3.6 — Значения ks
Описание
Болты, установленные в нормальные отверстия
Болты, установленные в отверстия с большим зазором или в короткие
овальные отверстия при передаче усилия перпендикулярно
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче
нагрузки перпендикулярно продольной оси отверстия
Болты, установленные в короткие овальные отверстия при передаче
нагрузки параллельно продольной оси отверстия
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
ks
1,0
0,85
0,7
0,76
Всего листов 409
Лист 156

157.

Болты, установленные в длинные овальных отверстиях при передаче
нагрузки параллельно продольной оси отверстия
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с
предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты
группы 7 (см. 1.2.7))
A
B
C
D
Примечание 1 — Требования к испытаниям и контролю
приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при
любом другом способе обработки должна быть основана на
результатах испытаний образцов поверхностей по
процедуре, изложенной в ссылочных стандартах группы 7
(см. 1.2.7). Примечание 3 — Определения классов
поверхностей трения приведены в ссылочных стандартах
группы 7 (см. 1.2.7). Примечание 4 — При наличии
окрашенной поверхности с течением времени может
произойти потеря предварительного натяжения.
Коэффициент
трения m
0,5
0,4
0,3
0,2
Вместо упруго пластичного материала для внутренней трубы
виброизолирующих материал гофрированные бы или Виброфлекс а болт
обматываетсмя медной мягкой лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое
соединение Епишев А П , Клепцов И.П
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 157

158.

Можно использовать в демпфирующем болтовом соединении
используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой
проволоки
В заключение необходимо сказать о соединении работающим на
растяжение при контролируемом натяжении может обеспечить не
разрушаемость сухого или сварного стыка при импульсных
растягивающих нагрузках и многокаскадном демпфировании
магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу
за бесценок , внедряются за рубежом на аляскинском нефтепроводе в
США, патентуются в Канаде, США
Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 158

159.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 159

160.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
Приоритет(ы):
(RU)
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Адрес для переписки:
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО
Коваленко Александр Иванович (RU)
"Теплант"
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение
проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления,
возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся
тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких
полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и
землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а
в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий
момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового
соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с
сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной
подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в
районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до
7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции
при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес
здания и амплитуду колебания здания.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 160

161.

4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого
соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как
самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального перемещения
«сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по
вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d,
SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем
допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном
взрыве и при землетрясении более 9 баллов перемещение по методике разработанной
испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(45) Опубликовано: 10.05.2000 Бюл. № 13
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A,
(72) Автор(ы):
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Рабер Лев Матвеевич
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 161

162.

Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(UA),
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 2527), используют динамометрические ключи. Этими ключами измеряют момент закручивания M з,
которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 162

163.

Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 163

164.

том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 164

165.

и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60 o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 165

166.

RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
(56) Список документов, цитированных в отчете ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
о поиске: SU 1753341 A1, 07.08.1992. SU
ФИРМА "ПАРТНЁР" (RU)
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(45) Опубликовано: 27.02.2011 Бюл. № 6
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 166

167.

усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 167

168.

болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 168

169.

Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 169

170.

и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 170

171.

- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 171

172.

контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 172

173.

далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.03.2017)
Пошлина:
учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(72) Автор(ы):
Андрейченко Игорь
(24) Дата начала отсчета срока действия патента:
Леонардович (RU),
17.06.2011
Полатиди Людмила
Борисовна (RU),
Приоритет(ы):
Бурцева Ирина Валерьевна
(RU),
(22) Дата подачи заявки: 17.06.2011
Бугреева Светлана
Ильинична (RU),
(45) Опубликовано: 20.01.2013 Бюл. № 2
Красинский Леонид
Григорьевич (RU),
Миллер Олег Григорьевич
(56) Список документов, цитированных в отчете о поиске: SU
176199 A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, (RU),
10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, Шумягин Николай
Николаевич (RU)
19.05.2005.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 173

174.

Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО
"Авиадвигатель", отдел защиты интеллектуальной
собственности
(73) Патентообладатель(и):
Открытое акционерное
общество "Авиадвигатель"
(RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей
установлены втулки с размещенными в их центральных отверстиях стяжными болтами. Каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер
сечения втулки в радиальном направлении; b - размер сечения втулки в окружном направлении; с длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение
циклического ресурса и надежности болтового соединения вращающихся деталей при высоких
параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы,
3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым
сечением, которую используют для центровки и разгрузки болта, снижения напряжений среза в
самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении
деталей в районе отверстий под болты возникают напряжения. Наличие концентратора напряжения,
повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов.
Отверстия под болты, являющиеся концентраторами напряжений, могут быть расположены в
полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления
концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень
действующих напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком
такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что
обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки деталей
подтверждена испытаниями и широко используется, например, во фланцах под балансировочные
грузики лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей
ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования
авиационных двигателей и энергетических установок, том 4,стр.109).
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 174

175.

Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий
пакет деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия
(Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая
повышенные напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и
надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и
надежности болтового соединения вращающихся деталей при высоких параметрах работы путем
разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей,
объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту
пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными
болтами, согласно п.1 формулы изобретения, каждое отверстие выполнено овальной формы и
вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном
направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и
сохранения необходимой площади контакта между деталями и болтом необходимо соблюдать
следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков
и расчетов напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении,
и выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения
циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости для
дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и
сокращения затрат при ресурсных испытаниях (применительно к двигателю ПС-90А и его
модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 175

176.

- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой
формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей
компрессора, а при изготовлении втулок из легкого и прочного материала - позволяет снижать массу
фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу
использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных
напряжений в отверстиях соединяемых деталей, следовательно, снижается циклическая
долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается
площадь цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей
способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально
уменьшается и площадь цилиндрического сечения соединяемых деталей, что повышает риск потери
несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии
действий окружных напряжений при этом выравниваются, а эффект снижения концентраций
напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между
деталями и болтом, а также из технологических соображений необходимо соблюдать следующее
соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке
втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового
соединения дает возможность не только выравнивать напряжения по толщине пакета деталей и в
болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях,
повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение,
на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД
в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД),
например, фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД.
В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5
с таким же овальным сечением и размерами а и b в радиальном и окружном направлениях,
соответственно. В отверстии 4 втулка 5 размещена на всю толщину пакета деталей 1, 2, 3. Во втулке
5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 176

177.

сечения. Диаметр головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный
размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую
площадь контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при
этом длина окружности С между ними зависит от размера сечения b втулки 5 в окружном
направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой
размещают стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация
напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет
работать при высоких заданных параметрах двигателя, повышая циклический ресурс и надежность
болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по
окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с
размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5; c>(2,5-3)∙b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d диаметр отверстия втулки под болт.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 177

178.

2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(56) Список документов, цитированных в отчете о поиске: RU 2192383
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
Туманов Антон
Вячеславович (RU)
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 178

179.

C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986.
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ
БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов. Согласно изобретению узел снабжен размещенной под рельсом и опирающейся на верхний
пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей
длине рельса. Ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса
подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами. Изобретение обеспечивает повышение долговечности
рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым
конструкциям с интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается
резинометаллическая прокладка, являющаяся податливым слоем, уменьшающим максимумы
локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне
подкрановой балки. Резинометаллическая прокладка значительно снижает локальные напряжения σ у
и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового
рельса, и поэтому ее приходится менять чаще, чем рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка,
обладающая такой же податливостью, как резинометаллическая, но обладающая большей
долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 179

180.

За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс.
Тормозная балка симметрична и помещена ниже боковых глав рельса для обеспечения свободного
прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и
удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с
подкрановой балкой и тормозной балкой между рельсом и подкрановой балкой размещена
демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс
подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с
продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса,
причем ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой
балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной
тормозной балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии,
обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные
безребордные колеса 2 мостового крана и передают вертикальные силовые импульсы Р.
Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по
боковым главам рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с
продольными гофрами (5...10 шт.) одинаковой высоты с плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной
балки. Швеллеры 6 соединяют верхний пояс 5 с симметричной тормозной балкой 7. Тормозная балка
7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной
балки 7 также соединены друг с другом через стенку двутавровой прокатной подкрановой балки
посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого
рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10,
выполненными из пружинной стали. Кроме этого, в зазоре между боковой гранью верхнего пояса 5 и
гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на
верхний пояс 5, а между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1
упруго оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую прокладку 4.
Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 180

181.

подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения.
Напряжение в тарельчатых пружинах несколько ослабевает (на 10...15%). Локальное взаимодействие
между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσу значительно снижаются и этим
выносливость повышается. При уходе колеса крана демпфирующая подрельсовая прокладка 4
упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3
горизонтальные усилия передаются за счет сил трения. Если же силы трения будут превышены, то в
работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7,
опирающаяся в горизонтальной плоскости на колонны каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса
размещена демпфирующая подрельсовая прокладка с продольными гофрами (5...10 штук)
одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью
пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые
шайбы, выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за
старения резины, свойства демпфирующей подрельсовой прокладки остаются неизменными во
времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой
прокладки, так как в ней отсутствует быстро изнашивающаяся и стареющая резина. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся
тем, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина
упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки, при этом
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 181

182.

сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми
пружинными шайбами.
Адреса американских и немецких фирм, организация
занимающихся проектированием, изготовлением монтажом
гасителей динамических колебаний гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для применения демпфирующих сдвиговых
компенсаторов для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с
существующего здания , при импульсных растягивающих нагрузках с использованием протяжных
фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных
болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей
длине резьбы латунного болта и их программная реализация расчета, в среде вычислительного
комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616 При сбрасывании навесных легко сбрасываемых панелей с применением фрикционноподвижных, для сдвига болтовых соединений для обеспечения сейсмостойкости конструкций
здания: масса здания уменьшается, частота собственных колебаний увеличивается, а
в США , Германии, Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220
www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box
31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1-800585-TAPS (8277) Phone: 604-888-6363
www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves
Carbon Steel - Stainless Steel 21919 20th Avenue SE • Suite
100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax:
425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE
Bothell, WA 98021 [map] Toll Free: 800.426.9341 Local:
425.951.6200 Fax: 425.951.620 Website address:
www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID
SEALING ASSOCIATION 994 Old Eagle School Road, Suite
1019, Wayne, PA 19087 Telephone: (610) 971-4850
Facsimile: (610) 971-4859
сейсмическая нагрузка падает
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 182

183.

Fluid Sealing Association 994 Old Eagle School Road #1019
Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg
Germany Phone +49 40 540093-0 Fax +49 40 540093-47
[email protected]
Subsidiary Hanover Reinhold-SchleeseStr. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30
[email protected]
Subsidiary Berlin Breitenbachstra?e
7 – 9 13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20
[email protected] WILLBRANDT
Gummiteknik A/S
Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk
www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук
А.С. П латонов, канд. техн. наук И.Б . Ройзм ан, инж . А.В. К ру чинки н, канд. техн. наук М.Л.
Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября
1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации
«Трансстрой», Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов»
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг
при сжатии двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 183

184.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755,
1174616, № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРО-ВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано 20.01.2013 , № 165076 RU E 04H 9/02 «Опора сейсмостойкая»,
опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора
сейсмоизолирующая "гармошка", E04 Н 9 /02, заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
"Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопро-водов" F 16L 23/02 , заявки на
изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на
изобретение № 20190028 "Виброизолирующая опора E04 Н 9 /02 для лабораторного испытание на взрывостойкость и
взрывопожаростойкость сейсмостойкость фрагментов крепления на ФФПС).
- основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры
при использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до
проектных размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в
отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте
сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных
соединениях конструкции. Натяжение болта осуществляется динамометрическими ключами,
применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над
болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы
пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность
испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом
фиксируется нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания
рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо
нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца,
нагрузка, соответствующая сдвигу (прикладывается диаграмма сжатия), и фамилии лиц,
проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое
в проекте сооружения, которое может быть воспринято каждой поверхностью трения соединяемых
элеме нтов, стянутых одним высокопрочным болтом (одним болтоконтактом), оценивается
соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
:1
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 184

185.

В случае невыполнения указанного соотношения решение принимается комиссионно с участием
заказчика, проектной и научно-исследовательской организаций.
Приложение М (информационное) Библиография
[1 ] . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
[2 ] . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением.
Госгортехнадзор СССР, 1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
[4 ] . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко
воспламеняющихся и взрывоопасных грузов. Оргт рансст рой, 1978 г.
[ 5 ] . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93
Российской Федерации.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 185

186.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 186

187.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 187

188.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 188

189.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 189

190.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 190

191.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 191

192.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 192

193.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 193

194.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 194

195.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 195

196.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 196

197.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 197

198.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 198

199.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 199

200.

ОПОРА СЕЙСМОСТОЙКАЯ165 076
(19)
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее
Статус:
изменение статуса: 07.06.2017)
(21)(22) Заявка: 2016102130/03,
22.01.2016
(24) Дата начала отсчета срока
действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл.
№ 28
Адрес для переписки:
197371, Санкт-Петербург,
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 200

201.

Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076
Опора сейсмостойкая предназначена для защиты объектов от сейсмических
воздействий за счет использования фрикцион но податливых соединений. Опора
состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной
оси, выполнены отверстия в которых установлен запирающий калиброванный
болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для
сборки опоры шток сопрягают с отверстием корпуса при этом паз штока
совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего
одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки
приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении
корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений,
объектов и оборудования от сейсмических воздействий за счет использования
фрикционно податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например Болтовое
соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от
11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через которые
пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание
листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий, соединение начинает
работать упруго, а затем происходит разрушение соединения за счет смятия листов
и среза болтов. Недостатками известного являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также
Устройство для фрикционного демпфирования антиветровых и антисейсмических
воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое
основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев)
и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение
демпфирования создается между пластинами и наружными поверхностями
сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы,
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 201

202.

проходят запирающие элементы - болты, которые фиксируют сегменты и пластины
друг относительно друга. Кроме того, запирающие элементы проходят через блок
поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном
положении. Таким образом получаем конструкцию опоры, которая выдерживает
ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих
расчетные силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного сопряжения отверстие
корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая
выполнена из двух частей: нижней - корпуса, закрепленного на фундаменте и
верхней - штока, установленного с возможностью перемещения вдоль общей оси и с
возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий
элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два
открытых паза, которые обеспечивают корпусу возможность деформироваться в
радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз
ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает
нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью перемещения
только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от
торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции
поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2
изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1);
на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное
отверстие диаметром «D», которое охватывает цилиндрическую поверхность штока
2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его
оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два
паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный
глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов
«I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней
части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 202

203.

Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса
по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса
и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором
нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток
зависит от величины усилия затяжки гайки (болта) и для каждой конкретной
конструкции (компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При воздействии
сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток,
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без
разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел,
закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено
центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью
штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через
вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным
усилием, кроме того в корпусе, параллельно центральной оси, выполнено два
открытых паза, длина которых, от торца корпуса, больше расстояния до нижней
точки паза штока.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 203

204.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 204

205.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 205

206.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 206

207.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 207

208.

2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 208

209.

(45) Опубликовано: 10.05.2000 Бюл. № 13
(RU),
Миролюбов Юрий
Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, (72) Автор(ы):
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Рабер Лев Матвеевич
(UA),
Адрес для переписки:
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 2527), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз,
которым затянуты гайки.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 209

210.

Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 210

211.

Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 211

212.

- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60 o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 212

213.

- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
(56) Список документов, цитированных в отчете ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
о поиске: SU 1753341 A1, 07.08.1992. SU
ФИРМА "ПАРТНЁР" (RU)
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
(45) Опубликовано: 27.02.2011 Бюл. № 6
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 213

214.

которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 214

215.

Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 215

216.

эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 216

217.

Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 217

218.

- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 218

219.

контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 219

220.

далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов
Определение коэффициента трения между контактными поверхностями
соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах
оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции
возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и
гайкой (в скобках размеры при исполь зовании болтов М27 )
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 220

221.

Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а
затем фрезеруют до проектных размеров в плане. Отверстия образуются
сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или
выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по
технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и
натяжению в монтажных соединениях конструкции. Натяжени е болта
осуществляется динамометрическими ключами, применяемыми на
строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был
гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть
параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее
50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т
носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания
рекомендуется проводить с записью диаграммы сжатия образца. Для
суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата
испытания, маркировка образца, нагрузка, соответствующая сдвигу (прик
ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется
при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и
расчетное усилие Q bh , принятое в проекте сооружения, которое может
быть воспринято каждой п о верхностью трения соединяемых элеме нтов,
стянутых одним высокопрочным болтом (одним болт оконт акт ом),
оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается
комиссионно с участием заказчика, проектной и научно-исследоват е
льской организаций.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 221

222.

F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназнечено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной
шпильки с забитмы медным обожженным клином позволяет обеспечить
надежный и быстрый погашение сейсмической нагрузки при
землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт,
состоит их латунной шпильки , с забитым в пропиленный паз медного
клина, которая жестко крепится на фланцевом фрикционно- подвижном
соединении (ФФПС) . Кроме того между энергопоглощаюим клином
вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька
вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой (
на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение
трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М.,
«Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых
кранов и трубопроводов от сейсмических воздействий за счет
использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С
увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно
подвижного соедиения (ФФПС), при импульсных растягивающих
нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение
демпфирования по направлению воздействия только по горизонтали и
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 222

223.

вдоль овальных отверстий; а также неопределенности при расчетах изза разброса по трению. Известно также устройство для фрикционного
демпфирования и антисейсмических воздействий, патент SU 1145204, F
16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин
и несколько внешних пластин. В сегментах выполнены продольные пазы.
Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на
пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы трения
в сопряжениях, смещается от своего начального положения, при этом
сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции
и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
или нескольких сопряжений в виде фрикци -болта , а также повышение
точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с
ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с
пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого
трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения,
которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама
опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз
стальной шпильки.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 223

224.

Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с
помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные
отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям
трубчатых элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4,
кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом
куж забивается медный обожженный клин и снабжен
энергопоглощением .
+
Антисейсмический виброизоляторы выполнены в виде латунного фрикци
-болта с пропиленныым пазом , кужа забиваенься стопорный
обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух
сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца:
расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если
антисейсмическим или виброизолирующим является медный
обожженный клин .
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 224

225.

Гашение многокаскадного демпфирования или вибраций, действующих в
продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми
шайбами , расположенными между цилиндрическими выступами . При
этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более
надежной виброизоляции и сейсмозащиты шарового кран с
трубопроводом в поперечном направлении, можно установить медный
втулки или гильзы ( на чертеже не показаны), которые служат
амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность
соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный
обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом
соединени , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность
виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с
одинаковым усилием , после чего производится стягивание соединения
гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный
обожженный клин на строго определенную величину, обеспечивающую
рабочее состояние медного обожженного клина . свинцовые шайбы
применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок
выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 225

226.

и герметичность фланцевого соединения трубопровода и шаровых
кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не
показаны) повышает герметичность соединения и надежность его
работы в тяжелых условиях вибронагрузок при моногкаскадном
демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци болта определяется исходя из, частоты вынужденных колебаний
вибрирующего трубчатого элемента с учетом частоты собственных
колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если
коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ,
содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в
виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой ,
охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем,
что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с забитимы
с одинаковм усилеи м медым обожженм коллином расположенными во
фоанцемом фрикционно-подвижном соедиении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб ,
установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным
обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливает медная обожженная гильза или втулка .
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 226

227.

Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 227

228.

Фиг 7
Фиг 8
Фиг 9
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 228

229.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 229

230.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 230

231.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 231

232.

Рис На рисунке показан узел гасителе динамических колебаний для демпфирующих сдвиговых
компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания
, при импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных
соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении
резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и
их программная реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная»,
№ 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании
навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 232

233.

соединений для обеспечения сейсмостойкости конструкций здания: масса здания
уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 233

234.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 234

235.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 235

236.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 236

237.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант"
Приоритет(ы):
(RU)
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Адрес для переписки:
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО
Коваленко Александр Иванович (RU)
"Теплант"
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 237

238.

СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение
проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления,
возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся
тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких
полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и
землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а
в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий
момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового
соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с
сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной
подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в
районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до
7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции
при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес
здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого
соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как
самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального перемещения
«сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по
вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d,
SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем
допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном
взрыве и при землетрясении более 9 баллов перемещение по методике разработанной
испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 238

239.

2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич
(UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич
(UA),
(56) Список документов, цитированных в отчете о поиске: Чесноков
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, Миролюбов Ю.П.(RU)
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
Рабер Лев Матвеевич
(UA),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
(57) Реферат:
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 239

240.

Изобретение относится к области мостостроения и другим областям строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента
закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент
закручивания резьбового соединения определяют как отношение приращения момента закручивания
гайки к произведению приращения усилия натяжения болта на его диаметр. Технический результат
заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений
для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других
отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки
болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии
приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных
болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР,
Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила
СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 2527), используют динамометрические ключи. Этими ключами измеряют момент закручивания M з,
которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные
болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при
известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит
от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным
величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило,
лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией
постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С.
и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в
пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 240

241.

устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых
соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879),
опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного
(до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации
срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко,
поскольку с течением времени неподвижный контакт резьбовой пары приводит к увеличению
коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина
момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над
гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно
специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их
натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для
назначения этого момента необходимы знания фактического значения коэффициента закручивания
k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ
измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию
качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении
коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для
статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной
или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на
том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя
предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла
ее поворота в области упругих деформаций производят с замером значения момента закручивания
гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения
болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 241

242.

i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом
соединении и повысить точность определения величины коэффициента закручивания за счет
исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта.
Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт
сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и
измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между
метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по
достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN
по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных
экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины
и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность
приращения усилия натяжения болтов при повороте гайки на угол 60 o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой
области, равному приращению угла поворота гайки, соответствует равное приращение усилий
натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном
диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный
угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект
явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на
одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как
погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых
соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 242

243.

Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций,
так при назначении величины момента для подтяжки болтов, в которых по результатам обследования
выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в
измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление
ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта
определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения
момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
(24) Дата начала отсчета срока действия патента:
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 243

244.

19.11.2009
Хусид Раиса Григорьевна (RU)
Приоритет(ы):
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ
ФИРМА "ПАРТНЁР" (RU)
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете
о поиске: SU 1753341 A1, 07.08.1992. SU
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения
металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности
которых, предварительно обработанные по проектной технологии, соединяют высокопрочным
болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом
рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 244

245.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных
узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с
помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых
элементов высокопрочными метизами осуществляется только силами трения по контактным
плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего
сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и
одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также
коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных
соединений с высокопрочными болтами, которые отражаются в проектной документации, являются
усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы
фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на
заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть
в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее
выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую
актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных
болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение,
определенное по возможно большему объему экспериментального материала раздельно для
различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно
сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей
f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно
соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до
степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по
показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов.
Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем
или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и
обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов
съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие
и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 245

246.

условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных
конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных
работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается
ножом и ручным способом легко снимается «чулком» с контактных поверхностей, после чего сборка
конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с
пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов
повреждается. На строительном объекте приходится производить повторную абразивно-струйную
обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом
воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки
значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой
атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение
фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а
следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает
постоянное воздействие на контактные соединения климатических факторов, соответствующих в
пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов
металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения
об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной
период, поэтому возникает необходимость проверки фактической надежности работы фрикционного
соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством
приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о
необходимости совершенствования диагностической и инструментальной базы, способствующей
повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и
растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий
работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного
усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся
поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа
натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов,
характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах,
Днепропетровск: Системные технологии, 2008 г., с.8-10).
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 246

247.

Известен способ определения коэффициента закручивания резьбового соединения (патент РФ
№2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента
закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента
закручивания в области упругих деформаций и определения приращения момента затяжки.
Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта
диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей,
соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с
неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят
после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного),
что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости
выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига
(силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент
сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их
ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в
процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что
две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4
и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной
смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например,
расположены несимметрично по отношению к направлению действия продольной силы N, в силу
чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может
произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения
несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М.
Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36).
Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей,
который заключается в том, что образцы изготавливают из стали, применяемых и собираемых
конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте
конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным
болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной машины
определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 247

248.

нормативным значением и в зависимости от величины отклонения осуществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в
процессе нагружения образцов могут приводить к тем или иным неточностям в определении
коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как
климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком
коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие
сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в
качестве сдвигающего устройства применяются специальные средства (пресса, испытательные
машины), которых на объекте монтажа или сборки металлоконструкции может не быть, поэтому
желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения
несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии,
соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной
величиной показателя сравнения, в зависимости от величины отклонения осуществляют
необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и
обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения
высокопрочного болта от оптимального значения, для обеспечения надежности работы
фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или
проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных
исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта
равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если
отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,500,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного
болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают
коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60,
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 248

249.

это означает, что усилие натяжения превышает нормативную величину, и для надежности
металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно
является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем
неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной
планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью
соединения его с фигурной планкой, а между выступом рычага и сдвигаемой деталью
металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного
материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности
металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4,
снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8,
плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из
металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между
собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное
для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем
соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на
обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или,
если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки,
контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин
10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения
высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают
устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12
(болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2,
размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5,
посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта
через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая
пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига
(силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят
действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению,
корректировку в технологию монтажа не вносят;
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 249

250.

- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие
натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных
болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности
поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной
металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций
заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на
высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на
обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка
несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках
и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном
значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для
определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения,
далее, в зависимости от величины отклонения, осуществляют коррекцию технологии монтажа,
отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию
натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 250

251.

2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.03.2017)
Пошлина:
учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(72) Автор(ы):
Андрейченко Игорь
(24) Дата начала отсчета срока действия патента:
Леонардович (RU),
17.06.2011
Полатиди Людмила
Борисовна (RU),
Приоритет(ы):
Бурцева Ирина Валерьевна
(RU),
(22) Дата подачи заявки: 17.06.2011
Бугреева Светлана
Ильинична (RU),
(45) Опубликовано: 20.01.2013 Бюл. № 2
Красинский Леонид
Григорьевич (RU),
Миллер Олег Григорьевич
(56) Список документов, цитированных в отчете о поиске: SU
176199 A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, (RU),
10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, Шумягин Николай
Николаевич (RU)
19.05.2005.
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО
"Авиадвигатель", отдел защиты интеллектуальной
собственности
(73) Патентообладатель(и):
Открытое акционерное
общество "Авиадвигатель"
(RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей
установлены втулки с размещенными в их центральных отверстиях стяжными болтами. Каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер
сечения втулки в радиальном направлении; b - размер сечения втулки в окружном направлении; с Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 251

252.

длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение
циклического ресурса и надежности болтового соединения вращающихся деталей при высоких
параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы,
3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть
использовано для соединения вращающихся деталей ротора газотурбинного двигателя авиационного
и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым
сечением, которую используют для центровки и разгрузки болта, снижения напряжений среза в
самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении
деталей в районе отверстий под болты возникают напряжения. Наличие концентратора напряжения,
повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов.
Отверстия под болты, являющиеся концентраторами напряжений, могут быть расположены в
полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления
концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень
действующих напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком
такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что
обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки деталей
подтверждена испытаниями и широко используется, например, во фланцах под балансировочные
грузики лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей
ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования
авиационных двигателей и энергетических установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий
пакет деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия
(Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая
повышенные напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и
надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и
надежности болтового соединения вращающихся деталей при высоких параметрах работы путем
разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей,
объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту
пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными
болтами, согласно п.1 формулы изобретения, каждое отверстие выполнено овальной формы и
вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном
направлении, при этом
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 252

253.

b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и
сохранения необходимой площади контакта между деталями и болтом необходимо соблюдать
следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков
и расчетов напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении,
и выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения
циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости для
дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и
сокращения затрат при ресурсных испытаниях (применительно к двигателю ПС-90А и его
модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой
формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей
компрессора, а при изготовлении втулок из легкого и прочного материала - позволяет снижать массу
фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу
использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных
напряжений в отверстиях соединяемых деталей, следовательно, снижается циклическая
долговечность.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 253

254.

В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается
площадь цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей
способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально
уменьшается и площадь цилиндрического сечения соединяемых деталей, что повышает риск потери
несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии
действий окружных напряжений при этом выравниваются, а эффект снижения концентраций
напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между
деталями и болтом, а также из технологических соображений необходимо соблюдать следующее
соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке
втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового
соединения дает возможность не только выравнивать напряжения по толщине пакета деталей и в
болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях,
повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение,
на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД
в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД),
например, фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД.
В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5
с таким же овальным сечением и размерами а и b в радиальном и окружном направлениях,
соответственно. В отверстии 4 втулка 5 размещена на всю толщину пакета деталей 1, 2, 3. Во втулке
5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого
сечения. Диаметр головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный
размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую
площадь контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при
этом длина окружности С между ними зависит от размера сечения b втулки 5 в окружном
направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой
размещают стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация
напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет
работать при высоких заданных параметрах двигателя, повышая циклический ресурс и надежность
болтового соединения.
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 254

255.

Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по
окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с
размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое
отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5; c>(2,5-3)∙b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d диаметр отверстия втулки под болт.
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 255

256.

СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
(56) Список документов, цитированных в отчете о поиске: RU 2192383
Туманов Антон
C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986.
Вячеславович (RU)
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ
БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов. Согласно изобретению узел снабжен размещенной под рельсом и опирающейся на верхний
пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей
длине рельса. Ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса
подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами. Изобретение обеспечивает повышение долговечности
рельсовой конструкции. 1 ил.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 256

257.

Изобретение относится к транспортным конструкциям, преимущественно к подкрановым
конструкциям с интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается
резинометаллическая прокладка, являющаяся податливым слоем, уменьшающим максимумы
локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне
подкрановой балки. Резинометаллическая прокладка значительно снижает локальные напряжения σ у
и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового
рельса, и поэтому ее приходится менять чаще, чем рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка,
обладающая такой же податливостью, как резинометаллическая, но обладающая большей
долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс.
Тормозная балка симметрична и помещена ниже боковых глав рельса для обеспечения свободного
прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и
удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с
подкрановой балкой и тормозной балкой между рельсом и подкрановой балкой размещена
демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс
подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с
продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса,
причем ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой
балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь
поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной
тормозной балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии,
обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные
безребордные колеса 2 мостового крана и передают вертикальные силовые импульсы Р.
Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по
боковым главам рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с
продольными гофрами (5...10 шт.) одинаковой высоты с плавными закруглениями.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 257

258.

Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной
балки. Швеллеры 6 соединяют верхний пояс 5 с симметричной тормозной балкой 7. Тормозная балка
7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной
балки 7 также соединены друг с другом через стенку двутавровой прокатной подкрановой балки
посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого
рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10,
выполненными из пружинной стали. Кроме этого, в зазоре между боковой гранью верхнего пояса 5 и
гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на
верхний пояс 5, а между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1
упруго оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую прокладку 4.
Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения.
Напряжение в тарельчатых пружинах несколько ослабевает (на 10...15%). Локальное взаимодействие
между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσу значительно снижаются и этим
выносливость повышается. При уходе колеса крана демпфирующая подрельсовая прокладка 4
упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3
горизонтальные усилия передаются за счет сил трения. Если же силы трения будут превышены, то в
работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7,
опирающаяся в горизонтальной плоскости на колонны каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса
размещена демпфирующая подрельсовая прокладка с продольными гофрами (5...10 штук)
одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью
пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые
шайбы, выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за
старения резины, свойства демпфирующей подрельсовой прокладки остаются неизменными во
времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой
прокладки, так как в ней отсутствует быстро изнашивающаяся и стареющая резина. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 258

259.

1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся
тем, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки
демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина
упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки, при этом
сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми
пружинными шайбами.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 259

260.

Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 260

261.

Материалы хранятся на Кафедре металлических и деревянных конструкций 190005, СанктПетербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и
деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич строительный факультет
Альбом Специальные технические условия (СТУ) по изготовлению и монтажу
энергопоглощающего демпфирующего компенсатора для демпфирующих сдвиговых
компенсаторов согласно альбома ШИФР 1.010.1-1-2с.94 , выпуск 0-2 , 0-3 можно заказать по
[email protected] [email protected] (911) 175-84-65, (921) 962-67-78, (966) 798-26-54 т/ф
(812) 694-78-10 Карта Сбербанка № 2202 2006 4085 5233
Более подробно об использовании Специальные технические условия по применения
компенсатора -гасителя сдвиговых напряжений , для обеспечения сдвиговой прочности и
сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9
баллов . Серия ШИФР ТУ 8126947810 СПб ГАСУ , с использованием изобретения Андреева
Борис Александровича № 165076 «Опора сейсмостойкая» и патента № 2010136746 «Способ
защиты зданий и сооружений с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для
поглощения сейсмической энергии» и патент № 154506 «Панель противовзрывная» для
разработки и испытания на сейсмостойкость по применению изобретения; "Огнестойкого
компенсатора -гасителя температурных напряжений" ( отправлено в ФИПС, Москва, от 14.02.2022
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 261

262.

, для получения патента на применение огнестойкого компенсатора -гасителя температурных
напряжений , для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для
обеспечения сейсмостойкости пролетных строений железнодорожного моста в сейсмоопасных
районах , сейсмичностью более 9 баллов .
Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ
Более подробно о применения огнестойкого компенсатора -гасителя температурных напряжений
,смотрите внедренные изобретения организации "Сейсмофонд" при СПб ГАСУ ЯпоноАмериканской фирмой RUBBER BEARING FRICTION DAMPER (RBFD)
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя
с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является
пластическим шарниром, трубчатого в вида Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic
Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake
Protection Damper https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con
marco didáctico QuakeTek QuakeTek https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября
1988 г.
Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75
и СНиП 3.03.01-87. С изданием настоящих рекомендаций отменяется "Руководство по
проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя
базы данных.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 262

263.

Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид
болтовых монтажных соединений, их применение в конструкциях одно- и многоэтажных зданий и
сооружений позволяет существенно повысить производительность труда и сократить сроки монтажа
конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных
болтов, основные положения по конструированию и расчету фланцевых соединений, особенности
технологии изготовления и монтажа конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических
исследований, выполненных во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им.
Мельникова, а также другие отечественные и зарубежные материалы по исследованиям фланцевых
соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук
В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук, А.Г.Соскин; ЦНИИПроектстальконструкцией
им. Мельникова (канд. техн. наук И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук
Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).
1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в
части изготовления и СНиП 3.03.01-87 в части монтажа конструкций, а также в дополнение к ОСТ
36-72-82 "Конструкции строительные стальные. Монтажные соединения на высокопрочных болтах.
Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке
фланцевых соединений (ФС) несущих стальных строительных конструкций производственных
зданий и сооружений, возводимых в районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:
эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие
подвижные, вибрационные или другого вида нагрузки с количеством циклов 10 и более при
коэффициенте асимметрии напряжений в соединяемых элементах
.
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует выполнять только с предварительно напряженными
высокопрочными болтами. Такие соединения могут воспринимать местные поперечные усилия за
счет сопротивления сил трения между контактирующими поверхностями фланцев от
предварительного натяжения болтов и наличия "рычажных усилий".
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию
сжатия с изгибом при однозначной эпюре сжимающих напряжений в соединяемых элементах (в
дальнейшем ФС сжатых элементов), следует выполнять на высокопрочных болтах без
предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения
могут воспринимать сдвигающие усилия за счет сопротивления сил трения между контактирующими
поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 263

264.

1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля широкополочные двутавры и тавры, парные уголки, замкнутого профиля - круглые трубы,
изгибаемых элементов из широкополочных двутавров, которые следует, как правило, применять при
проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в
соответствии с требованиями, изложенными в разделе 6 настоящих рекомендаций, а также с учетом
положительного опыта освоенной технологии изготовления ФС Белгородским, Кулебакским,
Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским
заводом металлоконструкций (г.Назарово) Минэнерго СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических
исследований,
выполненных
в
1981-1987
гг.
во
ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкции им. Мельникова и ВНИИКТИСтальконструкции. В рекомендациях
отражен опыт внедрения ФС, выполненных в соответствии с "Руководством по проектированию,
изготовлению и сборке монтажных фланцевых соединений стропильных ферм с поясами из
широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с
требованиями главы СНиП II-23-81*, постановления Государственного строительного комитета
СССР от 21 ноября 1986 г. N 28 о сокращенном сортаменте металлопроката в строительных
стальных конструкциях и приказа Министерства монтажных и специальных строительных работ
СССР от 28 января 1987 г. N 34 "О мерах, связанных с утверждением сокращенного сортамента
металлопроката для применения в строительных стальных конструкциях".
Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ
8509-72, балки двутавровые по ГОСТ 8239-72* , балки с параллельными гранями полок по ГОСТ
26020-83, швеллер горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили
гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные
прямошовные трубы по ГОСТ 10704-76 и горячедеформированные трубы по ГОСТ 8732-78* (для
сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ
10704-91, соответственно. - Примечание изготовителя базы данных.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или
их совместному действию, следует применять листовую сталь по ГОСТ 19903-74* марок 09Г2С-15
по ГОСТ 19282-73
и 14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими
свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей,
предназначенных для строительных стальных конструкций по ГОСТ 19282-73, при этом сталь
должна удовлетворять следующим требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 264

265.

категория качества стали - 12;
относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали
по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.)
должно удовлетворять требованиям, указанным в табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Площадь дефекта, см
минимального
учитываемого
Допустимая
частота
дефекта
Максимальная
допустимая
длина дефекта
Минимальное
допустимое
расстояние между
дефектами
максимального
допустимого
см
Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0

4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности
минимального из них, оцениваются как один дефект.
2. По
усмотрению
завода
строительных
стальных
конструкций
разрешается
дефектоскопический контроль материала фланцев производить только после приварки их к
элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных стальных конструкций.
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект"
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 265

266.

климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а
также высокопрочные гайки и шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по
тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок.
Геометрические и механические характеристики таких болтов должны отвечать требованиям ГОСТ
22353-77, ГОСТ 22356-77 - для болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 2235677. Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с
проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание
изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по
ГОСТ 2246-70 или порошковую проволоку ПП-АН8 по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же
марок, что и основные соединяемые профили.
3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и
коэффициенты условий работы следует принимать в соответствии с указаниями главы СНиП II-2381*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:
,
где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков,
подверженных воздействию растяжения или сжатия. Растянутые участки фланцев передают внешние
усилия через предварительно натянутые пакеты "фланец-болт", сжатые - через плотное касание
фланцев.
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 266

267.

4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без
разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты
диаметром 24 мм (М24); использование болтов М20 и М27 следует допускать в тех случаях, когда
постановка болтов М24 невозможна или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра
болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных
стенками (полками профиля, ребрами жесткости) с двух и более сторон, и болты наружных зон,
ограниченных с одной стороны (рис.1); характер работы и расчет ФС в этих зонах различны.
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 267

268.

Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по
контуру и как можно ближе к элементам присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
- ширина фланца, приходящаяся на
-ый болт наружной зоны;
- катет углового шва.
Если по конструктивным особенностям ФС
(раздел 5) величину
принимают равной
, то в расчетах на прочность ФС
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального
растяжения, болты следует располагать безмоментно относительно центра тяжести присоединяемого
профиля с учетом неравномерности распределения внешних усилий между болтами наружной и
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Всего листов 409
Лист 268

269.

внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с
учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.)
должна обеспечивать возможность свободной установки и натяжения болтов, в том числе
выполнения контроля усилий натяжения болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна
для передачи внешних силовых воздействий или необходимо повысить несущую способность
растянутых участков ФС без увеличения числа болтов или толщины фланцев, последние следует
усиливать ребрами жесткости (рис.1 и 2).
Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля,
длина должна быть не менее 200 мм. Ребра жесткости следует располагать так, чтобы концентрация
напряжений в сечении основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта
и т.п.
4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность
ФС должна удовлетворять суммарному усилию в узле, а не усилию в смежной панели пояса.
4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует
строго соблюдать требования точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
на сжатых участках устанавливать дополнительное количество болтов с предварительным их
Всего листов 409
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
Лист 269

270.

натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не
предусмотрены, расчетные рамные моменты следует снижать до 15%.
4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального
растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости.
Рекомендуемый сортамент ФС этого типа (приложение 1) с фланцами толщиной 25-40 мм включает
в себя профили от 20Ш1 до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН
(163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные
сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального
растяжения, следует выполнять с фасонками для обеспечения необходимой несущей способности
сварных швов. Рекомендуемый сортамент ФС этого типа (приложение 2) с фланцами толщиной 2040 мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного
типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения,
следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый
сортамент ФС этого типа (приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3,
расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров
данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения,
следует выполнять, как правило, со сплошными фланцами и ребрами жесткости в количестве не
менее 3 шт. Ширина ребер определяется разностью радиусов фланцев и труб, длина - не менее 1,5
диаметра трубы (см. рис.2).
Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные
прямошовные и горячедеформированные трубы размерами от 114х2,5 до 377х10, расчетные
продольные усилия 630-3532 кН (64-360 тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными
сопротив