21.33M
Категория: СтроительствоСтроительство
Похожие презентации:

Проектирование "Армейского сборно - разборного надвижного быстро возводимого автомобильного однопутного моста"

1.

Техническое задание на проектирование "Армейского сборно-разборного надвижного быстро
возводимого автомобильного однопутного моста", длиной 62,484 метров ( для переправы через
реку Днепр). Грузоподъемность моста 60 тонн. Ширина моста 3 метра, ширина прохода 0.75м

2.

УТВЕРЖДАЮ
Командин ЧВК "Вангер" военной частное комании
_________________Евгений Викторович Пригожин
« 31 » октября 2022года
М.П.
Испытательного центра СПбГАСУ, аккредитован Федеральной
службой по аккредитации (аттестат № RA.RU.21СТ39, выд.
27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН:
1022000000824 [email protected] [email protected]

3.

Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39,
выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
.

4.

Испытательного центра СПбГАСУ, аккредитован
Федеральной службой по аккредитации (аттестат №
RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд"
при СПб ГАСУ ОГРН: 1022000000824 [email protected]

5.

ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская
ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru [email protected] с[email protected] [email protected] (994) 434-44-70, (996) 798-26-54,
(921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Сборно-разборный дорожный надвижной мост со сдвиговыми компенсаторами проф ден
ПГУПС Уздина А.М ( изобретения №№ 1143895, 1168755, 1174616, 165076, 2010136746,
2550777, 858604 «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО
МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ
типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные
конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборноразборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный

6.

универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой
компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от
02.06.2022
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская
ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru [email protected] с[email protected] [email protected] (994) 434-44-70, (996) 798-26-54,
(921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)

7.

ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская
ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru [email protected] с[email protected] [email protected] (994) 434-44-70, (996) 798-26-54,
(921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность городов»

8.

«Сейсмофонд» при СПб ГАСУ ИНН : 2014000780 ОГРН : 1022000000824 [email protected]
Счет получателя СБЕР № 40817810455030402987 СБЕР 2202 2006 4085 5233 (921) 962-67-78
Ответ на письмо инженерных войск от 10 октября 2022 № 567/Н/5499 на УГ -88073 от 29 сентября
2022 от ветерана боевых действий , инвалида первой группы Президента организации "Сейсмофонд" при СПб
ГАСУ Мажиевым Хасан Нажоевичем по вопросу представления предложений по описанию конструкции,
тактико-технических характеристик, схемы и анализ ранее проведенных, в том числе за рубежом,
разработок. До настоящего времени указанные материалы в УНИВ ВС не поступали. Отсутствие данной
информации не позволяет сделать вывод о целесообразности реализации Вашего предложения. Поэтому
организация "Сейсмофонд" при СПб ГАСУ и представляет опыт Университета Монтана США ,
Китайское народной Республики, Великобритании блока НАТО, по этому вопросу для разработки рабочих
чертежей с учетом опыта Университета Монтано США для отечетсвенных быстровозводимого, быстро
собираемого железнодорожного моста из стальных конструкций, с применением замкнутых гнутосварных
профилей прямоугольного сечения для системы несущих элементов и элементов проезжей части армейского сборноразборного пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными
компенсаторам, гасителем вибрационных напряжений от динамических нагрузок с учетом опыта наших
американских инженеров из штата Монтана ( река Суон, США) из блока НАТО, США, Канады, Великобритании
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выдан 27.05.2015),
ОО "Сейсмофонд"
ОГРН:

9.

1022000000824 [email protected] т/ф (812) 694-78-10, (921) 962-67-78 190005, СПб, 2-я Красноармейская ул д 4
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС №
SP01.01.406.045 от 27.05.2014, 190031, Организация «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected]
[email protected] (911) 175-84-65, ( 996) 798-26-54, (951) 644-16-48 Всего 518 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 Мжиев Х.Н.
13.10. 2022
Всего : 577 стр
Специальные технические условия надвижки пролетного строения из стержневых пространственных структур с
использованием рамных сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного
сечения, типа "Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого
строительства железнодорожных мостов в Киевской Руси https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA
Техническое задание на разработку быстровозводимого, быстро собираемого железнодорожного моста из
стальных конструкций, с применением замкнутых гнутосварных профилей прямоугольного сечения для системы
несущих элементов и элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторам, гасителем вибрационных
напряжений от динамических нагрузок с учетом опыта наших американских инженеров из блока НАТО, США,
Канады, Великобритании
Стальные ферменные мосты являются эффективным и эстетичным вариантом для пересечения автомобильных дорог. Их
относительно небольшой вес по сравнению с пластинчато-балочными системами делает их желательной альтернативой как с точки
зрения экономии материалов, так и с точки зрения конструктив-ности. Прототип сварной стальной фермы, сконструированной со
встроенным бетонным настилом, был предложен в качестве потенциальной альтернативы для проектов ускоренного строительства
мостов (ABC) в Монтане. Эта система состоит из сборно-разборной сварной стальной фермы, увенчанной бетонным настилом,
который может быть отлит на заводе-изготовителе (для проектов ABC) или в полевых условиях после монтажа (для обычных
проектов). Чтобы исследовать возможные решения усталостных ограничений некоторых сварных соединений элементов в этих
фермах, были оценены болтовые соединения между диагональными натяжными элементами и верхним и нижним поясами фермы. В
этом исследовании для моста со стальной фермой, скрепленной болтами /сваркой, были оценены как обычная система настила на
месте, так и ускоренная система настила моста (отлитая за одно целое с фермой). Для более точного расчета распределения нагрузок
на полосу движения и грузовые автомобили по отдельным фермам была использована 3D-модель конечных элементов. Элементы фермы
и соединения для обоих вариантов конструкции были спроектированы с использованием нагрузок из комбинаций нагрузок AASHTO
Strength I, Fatigue I и Service II. Было проведено сравнение между двумя конфигурациями ферм и длиной 205 футов. пластинчатая балка,
используемая в ранее спроектированном мосту через реку Суон. Оценки материалов и изготовления показывают, что стоимость
традиционных и ускоренных методов строительства на 10% и 26% меньше, соответственно, чем у пластинчатых балок,
предназначенных для переправы через реку Суон.

10.

№ RA.RU.21СТ39, выдан 27.05.2015), ОО "Сейсмофонд" ОГРН:
1022000000824 [email protected] т/ф (812) 694-78-10, (921) 962-67-78 190005, СПб, 2-я Красноармейская ул д 4
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС №
SP01.01.406.045 от 27.05.2014, 190031, Организация «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected]
[email protected] (911) 175-84-65, ( 996) 798-26-54, (951) 644-16-48 Всего 518 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 Мжиев Х.Н.
13.10. 2022
Всего : 518 стр
А, ИССЛЕДОВАНИя по изобртеним проф дтн ПГУПС Уздина А М проведены в СЩА СБОРНЫХ СИСТЕМ НАСТИЛА МОСТА ИЗ
СТАЛЬНЫХ ФЕРМ FHWA/MT-17-009/8226-001 Итоговый отчет подготовлен для ДЕПАРТАМЕНТА ТРАНСПОРТА ШТАТА МОНТАНА
в сотрудничестве с ИССЛЕДОВАТЕЛЬСКИМИ ПРОГРАММАМИ МИНИСТЕРСТВА ТРАНСПОРТА США ФЕДЕРАЛЬНОГО
УПРАВЛЕНИЯ АВТОМОБИЛЬНЫХ ДОРОГ MUTk Ноябрь 2017 г. подготовлен Дэймоном Фиком, доктором ФИЛОСОФИИ, ЧП
Тайлером Кюлем Майклом Берри, доктором ФИЛОСОФИИ.Д Джерри Стивенс, доктор философии, ЧП "Вестерн Транспорт" в США
INVESTIGATION OF PREFABRICATED STEEL-TRUSS BRIDGE DECK SYSTEMS
fhwa/mt-17-009/8226-001 Final Report prepared for the state of montana department of transportation
in cooperation with the u.s. department of transportation federal highway administration November 2017
prepared by Damon Fick, Ph.D., PE Tyler kuehl Michael Berry, Ph.D Jerry Stephens, PhD., PE Western Transportation Institute Montana State
university - Bozeman
МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБОРОНЫ РОССИИ) Х.Н.
МАЖИЕВУ 72. ф^а,/ ru
г. Москва, 119160 « /#>» октября 2022 г. № 565/Н/^-^ На №УГ-88073 от 29
сентября 2022 г. Уважаемый Хасан Нажоевич!
В соответствии со ст. 8 Федерального закона от 2 мая 2006 г. № 59-ФЗ «О порядке рассмотрения
обращений граждан Российской Федерации» Ваше обращение по вопросу использования
быстровозводимых, автомобильных мостов из стальных конструкций покрытий производственных зданий
с пролетами 18, 24 и 30 метров с применением замкнутых гнуто-сварных профилей прямоугольного
сечения в Управлении начальника инженерных войск Вооруженных Сил Российской Федерации (далее УНИВ ВС) повторно рассмотрено.

11.

На данное обращение направлен ответ за исх. 565/Н/4984 от 14 сентября 2022 г. В ответе указано, что
представленное предложение не содержит описание конструкции, тактико-технические характеристики,
схемы и анализ ранее проведенных, в том числе за рубежом, разработок. До настоящего времени
указанные материалы в УНИВ ВС не поступали. Отсутствие данной информации не позволяет сделать
вывод о целесообразности реализации Вашего предложения.
Благодарю Вас за активную гражданскую позицию и желание помочь Вооруженным Силам Российской
Федерации.
Врио начальника инженерных войск Вооруженных Сил Российской Федерации А.Круглов
Kruglovu Inzh voyska Listi katalozhniei Most plasticheskix stalnix ferm shtate Montana reky Suon USA NATO 415
https://disk.yandex.ru/i/fCYvuumkKNyJ3w
Kruglovu Inzh voyska Listi katalozhniei Most plasticheskix stalnix ferm shtate
Montana reky Suon USA NATO 415
https://studylib.ru/doc/6370495/kruglovu-inzh-voyska-listi-katalozhniei-most-plasticheski...
https://mega.nz/file/7aQxzLCL#stVFq004Wk2szsYC-2PKH-4nZuTwFKeHruP_17YnLps
https://mega.nz/file/DexkTIKZ#EAIIItqkgzjmczgmhfnRngYLwzuvrn1K8sWRuBqVdPU
БЫСТРО-ВОЗВОДИМЫЕ дорожные мосты из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых гнутосварных профилей
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов проезжей части дорожного сборноразборного пролетного надвижного строения дорожного моста, с быстросъемными упругопластичными компенсаторами со сдвиговой фрикционно-демпфирующей жесткостью со
сдвиговой фрикционно-демпфирующей прочностью, согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА
НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755, 1174616, 2550777,
2010136746, 165076.

12.

13.

14.

15.

ОРГАН ПО СЕРТИФИКАЦИИ: ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от
27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4,
организация «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10, (996)798-26-54, (951)644-16-48
[email protected] (аттестат № RA.RU.21СТ39, выдан 27.05.2015)
Полное наименование
ФОНДА ПОДДЕРЖКИ И РАЗВИТИЯ СЕЙСМОСТОЙКОГО СТРОИТЕЛЬСТВА "ЗАЩИТА И БЕЗОПАСНОСТЬ ГОРОДОВ"
"СЕЙСМОФОНД"
Сокращенное наименование
ОГРН
ИНН
КПП
Юридический адрес
Фактический адрес
Телефон и факс
Президент
Организация «СЕЙСМОФОНД»
1022000000824
2014000780
201401001
364024, г.Грозный, ул. им. С.Ш. Лорсанова, д.6
190005, СПб, 2-я Красноармейская ул. д 4 ( ФГБОУ СПб ГАСУ ) ОГРН: 1022000000824
т/ф (812) 694-78-10 [email protected]
Мажиев Хасан Нажоевич

16.

ОКВЭД
ОКПО
ОКАТО
21.12 Деятельность профессиональных организаций
45270815
96401364
Название банка
Расчетный счет
БИК
Корреспондентский счет
40817810555031236845
044030653
30101810500000000653
http://188.254.71.82/rao_rf_pub/?show=view&id_object=
DCB44608D54849B2A27CFEFEBEF970D4
Техническое задание на проектирование "Армейского сборно-разборного
надвижного быстро возводимого автомобильного однопутного моста", длиной 62,484 метров с
использованием упругих , пластических соединений стальных пролетов с использованием изобретений
проф. дтн ЛИИЖТа , изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755, 1174616, 2550777,
165076, 2010136746, 858604, 1760020 и опыта строительства двух мостов с упругопластическими
стальными балками (ферм) автомобильных мостов в США , в штате Монтана, через реку Суон (2017 г
) и в штате Миннесота, через реку Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост
через реку в г Вильнюсе ( 2016 г) , для использования опыта блока НАТО, для переправы, через реку
Днепр (Россия) в Смоленской области .
ИЗГОТОВИТЕЛЬ рабочих чертежей :
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с использованием
(аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой механики с
упругопластической деформации , пролетных строений мостов в механик деформируемых сред и
конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие пролетного
строения с геологической средой , в том числе нелинейным методом расчета стальной фермы
пролетного строения моста и численным и аналитическим методом , оптимизацией и идентификации
динамических и статических задач теории устойчивости автомобильного и железнодорожного моста с

17.

помощью моделирования конструкций пролетных строений мост , что исключает деформаций и
обрушения конструкций опор, пилонов и самого пролетного строения моста согласно нормам MSK-64
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «
Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10 https://www.spbstu.ru [email protected]
(994) 434-44-70 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Президент организации «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 Мажиев Х.Н.
https://pub.fsa.gov.ru/ral/view/26088/applicant [email protected] [email protected] [email protected]
[email protected] (921) 962-67-78, (996) 798-26-54 СБЕР 2202 2006 4085 5233 Счет получателя СБЕР №
40817810455030402987

18.

19.

20.

Лабораторные испытания демпфирующего компенсатора гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП
16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое фрикционное соединение для сборно-разборного быстрособираемого
армейского моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых гнутосварных профилей прямоугольного сечения
типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» ) для системы несущих элементов и элементов проезжей части армейского сборно-разборного пролетного
надвижного строения железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей прочностью и
предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо
использование в строительных конструкциях демпфирующих компенсаторов с упругопластическими шарнирами на фрикционно-подвижных соединениях,
расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного демпфирования при импульс-ных растягивающих и динамических
нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с
использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор гаситель температурных напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки №
2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсаторгаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217
от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки "Компенсатор .... для
трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста" для обеспечения
сейсмостойкости и сдвиговой прочности для пролетных строений железнодорожного моста

21.

1. Объект испытаний: испытания демпфирующего компенсатора гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD, серийный
выпуск предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо
использование в строительных конструкциях демпфирующих компенсаторов с упругопластическими шарнирами на фрикционно-подвижных соединениях,
расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного демпфирования при импульс-ных растягивающих и динамических
нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с
использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор гаситель температурных напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки №
2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсаторгаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217
от 23.09. 2021, заявки "Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки "Компенсатор .... для
трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста" для обеспечения
сейсмостойкости и сдвиговой прочности для строительных систем предназначенная для районов с сейсмичностью 9 баллов (шкала MSK-64).
Рис. 1 Общий вид лабораторных испытания фрагмента демпфирующих сдвиговых компенсаторов, гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD строительных конструкций, для повышения сейсмостойкости и взрывостойкости за счет перемещения сдвига - сдвиговых компенсаторов строительных
систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным
зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую
SEISMIC BRACING FOR WATER-BASED FIRE PROTECTION SYSTEMS
ACCORDING TO FM GLOBAL LOSS PREVENTION DATA SHEET 2-8 (MAY 2010)
http://www.tuyak.org.tr/files/478502017-05_TuyakES_JoseLuisGonzales-Sprinkler-Sistemlerinde-FM-standartlarina-gore-Sismik-.pdf

22.

23.

Рис. 2 Общий вид лабораторных испытания демпфирующих сдвиговых компенсаторов гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую

24.

Рис. 3 Принципиальная схема сдвигоустойчиквого податливого крепления демпфирующих сдвиговых компенсаторов гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения, сдвига - сдвиговых компенсаторов строительных
систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным
зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и
стопорного клина, поглощая при этом сейсмическую
2. Разработчик: 127051, г. Москва, ул. Садовая-Самотечная, д. 10, стр. 1 [email protected] [email protected]

25.

3. Изготовитель: 127051, г. Москва, ул. Садовая-Самотечная, д. 10, стр. 1 [email protected] [email protected]
4. Место проведения испытаний и ОРГАН ПО СЕРТИФИКАЦИИ: ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4,
организация «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, https://www.spbgasu.ru т/ф:694-78-10, [email protected]
27.05.2015)
(аттестат № RA.RU.21СТ39, выдан
5. Условия проведения испытания на скольжение и податливость.
Испытания проводились в нормальных климатических условиях по ГОСТ 15150-69: - температуре воздуха +25°С; - относительной влажности воздуха - 80%; - атмосферное давление - 84
кПа (730 мм ртутного столба).
6. Цель испытаний.
Испытания проводились с целью проверки возможности сдвигоустойчивого податливого крепления для демпфирующего компенсатора гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначен для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо использование в
строительных конструкциях демпфирующих компенсаторов с упругопластическими шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных отверстиях, с целью обеспечения
многокаскадного демпфирования при импульс-ных растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 ,
2550777, с использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение от 14.02.2022 "Огнестойкий компенсатор -гаситель температурных напряжений", заявки №
2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов", заявки № 2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от
07.02.2022 "Термический компенсатор- гаситель температурных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки
"Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки "Компенсатор .... для трубопроводов" № а 20210354 от 22.02. 2022, Минск для обеспечения сейсмостойкости и
сдвиговой прочности для строительных систем и противостоять разрушающему действию сейсмических нагрузок и сохранить параметры во время и после воздействия землетрясений
интенсивностью 9 баллов по шкале MKS-64 на отметках установки до 25 м и интенсивностью 8 баллов по шкале MKS-64 на отметках задний и сооружений до 70 м, что соответствует I-й и
II-й категориям сейсмостойкости по НП-031-01 в указанных режимах сейсмических воздействий (9 баллов - 25 м, 8 баллов - 70 м).
7. Методика испытаний.
Испытания проводились в программе ПК SCAD с учетом экономической прогрессивной теории активной сейсмозащиты зданий (АССЗ) вместо устаревшей консольной расчѐтно –
динамической модели (РДМ).
Испытания демпфирующего компенсатора гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для районов с сейсмичностью 8-9 баллов (шкала MSK-64) осуществлялись в программе SCAD согласно ГОСТ Р 50785-95 п.п. 10.1. 10.2, 10.5, 10.6, 10.8, 10.13, ГОСТ Р
53174-2008 п.п. 6.3.2; 6.3.10-6.3.15; 6.6.1; 7.1-7.9; раздел II, ГОСТ 12.1.003-83 Раздел 2; ГОСТ 12.1.005-88 П. 2.4; ГОСТ Р 51317.6.4-2009 (МЭК 61000-6-4:2006), ГОСТ Р 50030.6.2-2000 с
использованием изобретений №№ 2327878, 2228488, 2256272, 2440638, 2035835, 2252473.

26.

27.

28.

Splice Connection Design
Structural calculations for steel beam splice connection design
We provide steel beam splices calculations to BS5950 or Eurocode 3 design codes, ensuring your splice connection complies with Building Regulation standards.
Our structural engineers will design your splice connection to suit your exact beam size and loading requirements and provide design calculations that are accepted by Building Control
departments nationwide.

29.

Fast service and detailed output
We supply as standard detailed connection drawings and installation instructions so fabricators know exactly what to make and installers know exactly how the connection should be
fitted.
Our fast online service ensures a quick turnaround helping you to avoid delays and keep your project on schedule. You can also contact us for a quote.
Order Online | Fast Turnaround | £195+VAT
Includes structural calculations and drawings
suitable for submission to Building Control
Go to order form
Why use a bolted splice connection?
Bolted splice connections are the quickest and easiest way for steel beams to be joined on site in a quality assured manner and avoid the fire risk and quality control difficulties of onsite welding.
Reducing long beams into shorter and more manageable sections is often necessary for ease of transport, safe handling or to facilitate installation, particularly when installing steelwork
in loft conversions and existing buildings.
Which splice connection type?
A bolted splice connection can be formed using 'cover plate' splices or bolted 'end plate' splices (see images). Both are designed to transmit bending moment and shear forces across
the joint, allowing a spliced beam to behave as a continuous member and each have their pros and cons - see box below for more technical information.
The size and thickness of steel plates, grade, diameter and quantity of bolts and weld specification (where relevant) vary depending on beam size and applied loads so it's important
splices are designed to suit each application.
Cover Plate Splice Connection

30.

End Plate Splice Connection
Hollobolt® Splice Connection
https://www.smartbuild.uk.com/steel-beam-splice-design
Испытание сдвигоустойчивого крепления податливого крепления демпфирующих сдвиговых компенсаторов для гашения динамических колебаний и сдвиговых напряжений с учетом

31.

сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений,
в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде
свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую нагрузку, на осевое статическое усилие сдвига –скольжения дугообразного зажима с анкерной шпилькой с учетом экономической прогрессивной теории активной
сейсмозащиты промышленного оборудования (АССО) вместо консольной расчетно-динамической модели (РДМ).
Модельные испытания сдвигоустойчивого податливого крепления демпфирующих сдвиговых компенсаторов гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую нагрузку.
Испытания проводились в соответствии с новыми РСУ для пространственных моделей с учетом графика динамичности норм Азербайджана AzDTN 2.3-1, ГОСТ Р 54257-2010, ГОСТ Р
54157-2010, Eurocade-3, А500СП, СП 53-102-2004 согласно синтезированных акселерограмм с учетом НП-31-01, ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от
6 до 9 баллов».
Испытания динамических моделей сдвигоустойчивого податливого крепления испытания демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и взрывостойкости достигается за счет
перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей трубе или в
свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного энергопоглощающего
клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в
свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом сейсмическую энергию.
Испытание на сейсмостойкость производились спектральным методом на основе синтезированных акселерограмм c загружением новых РСУ (расчетные сочетания усилий) AzDTN 2.3-1
в соответствии с НП-031-01, ГОСТ 17516.1-90, ГОСТ 30546.1, 2, 3-98, ГОСТ 16962.2-90, ГОСТ 30631-99 на основе рекомендаций: ОСТ 36-72-82, СТО 0041-2004, МДС 53-1.2001, РТМ 24.
038.12-72, ВСН 382-87, ОСТ 108.275.51-80, для взрывоопасных и пожароопасных объектов категории А и Б.
Рис. 4 Скользящее (сдвиговое) крепление демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов

32.

строительных систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней
части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг
шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию
Скользящее (сдвиговое) крепление выполнено в виде болтового соединения с изолирующей трубой или свинцовой обоймой, с амортизирующим элементом в виде свинцового или
из красной меди клина, забитого в паз, пропиленный в нижней части анкера. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру до стопорного (тормозного)
клина, поглощая при этом сейсмическую или взрывную энергию.
Крутящий момент определяется по изобретению № 2367917 "Способ измерения крутящего момента затяжки резьбовых соединений и динамометрический ключ для его
осуществления"
Испытания сдвигоустойчивого податливого крепления, демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую и взрывную энергию , предназначенной для районов с сейсмичностью 8-9 баллов (шкала MSK-64) проводились на воздействие электромагнитных помех согласно ГОСТ Р
51317.6.4-2009 «Электромагнитные помехи от технических средств, применяемых в промышленных зонах». В соответствии с нормами демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для повышение сейсмостойкости и взрывостойкости
достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых соединений, в которых анкер, расположенный в изолирующей
трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди стопорного
энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве тросовой зажим начинает скользить по анкеру,
расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом сейсмическую и взрывную энергию
обеспечена заземлением и защитой от молний (имеется громоотвод) с электромагнитной защитой от СВЧ–генераторов Active Denial Sytem («микроволновая пушка») и других
искусственных молний, которые вызывают пожар.
Испытанные податливые (скользящие) узлы крепления демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую и взрывную энергию , предназначенные для работы в сейсмоопасных районах с сейсмичностью 8-9 баллов по шкале MSK-64 соответствуют ГОСТ Р 54257-2010
«Надежность строительных конструкций и оснований», ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9 баллов», испытания производились в ПК SCAD.
Испытания проходили элементы демпфирующих узлов креплений (свинцовые шайбы, демпфирующие болты в свинцовой обмотке, тросовые зажимы или дугообразные зажимы, анкерные
шпильки со свинцовыми сминаемыми клиньями) согласно ОСТ 37.001.050-73 «Затяжка резьбовых соединений», «Руководство по креплению технологического оборудования
фундаментными болтами», ЦНИИПРОМЗДАНИЙ, альбома серии 4.402-9 «Анкерные болты», вып.5, ЛЕНГИПРОНЕФТЕХИМ, «Инструкция по выбору рамных податливых крепей»,
«Инструкции по применению высокопрочных болтов в эксплуатируемых мостах», ОСТ 108.275.80, ОСТ 37.001.050-73.
Испытания фрагментов сдвигоустойчивых узлов крепления демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом

33.

сейсмическую и взрывную энергию , для сейсмоопасных районов 8-9 баллов по шкале MSK-64 проводились на основе синтезированных акселерограмм c загружением РСУ (расчет
сочетаний усилий) AzDTN 2.3-1 в соответствии c НП-031-01 в части категории сейсмостойкости II, ГОСТ 17516.1-90, ГОСТ 30546.1,2,3-98 в ПК SCAD.
9. Испытательное оборудование и измерительные приборы.
Перечень испытательного оборудования и измерительных приборов для проведения испытаний сдвигоустойчивого податливого крепления демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://pptonline.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
для повышение сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых компенсаторов строительных систем , выполненных в виде болтовых
соединений, в которых анкер, расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым дугообразным зажимом и амортизирующими элементами в
виде свинцового или из красной меди стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки ) последнего. При землетрясении или взрыве
тросовой зажим начинает скользить по анкеру, расположенному в свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при этом
сейсмическую и взрывную энергию приведен в таблице 1.
Техническое задание

34.

на проектирование "Армейского сборно-разборного надвижного быстро возводимого
автомобильного однопутного моста", длиной 62,484 метров с использованием упругих ,
пластических соединений стальных пролетов с использованием изобретений проф. дтн ЛИИЖТа
, изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746,
858604, 1760020 и опыта строительства двух мостов с упругопластическими стальными балками
(ферм) автомобильных мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате
Миннесота, через реку Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в
г Вильнюсе ( 2016 г) , для использования опыта блока НАТО, для переправы, через реку Днепр
(Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик
деформируемых сред и конструкций , с учетом математического моделировании в ПК SCАD , и
взаимодействие пролетного строения с геологической средой , в том числе нелинейным методом
расчета стальной фермы пролетного строения моста и численным и аналитическим методом ,
оптимизацией и идентификации динамических и статических задач теории устойчивости
автомобильного и железнодорожного моста с помощью моделирования конструкций пролетных
строений мост , что исключает деформаций и обрушения конструкций опор, пилонов и самого
пролетного строения моста согласно нормам MSK-64
Перечень
Характеристика основных данных,
основных
требований строительства
данных и
требований
Основание для
строительства
ОрганизацияАдминистрация ДНР ЛНР

35.

заказчик
Цель
строительства
Стадийность
проектирования
Основные
технические
параметры для
разработки
проектной и
рабочей
документации
Основные
требования к
проекту
Обеспечение ЛДНР
1 стадия – Рабочий проект
В соответствии с требованиями СНиП 02.05.02-85 «Автомобильные дороги»; ГОСТ Р
52399-2005 «Геометрические элементы автомобильных дорог»; ГОСТ Р 52282-2004
«Технические средства организации дорожного движения. Светофоры дорожные. Типы,
основные параметры, общие технические требования, методы испытаний»; ГОСТ Р
52289-2004 «Правила применения дорожных знаков, разметки, светофоров, дорожных
ограждений и направляющих устройств»
Проектные
решения
разработать
в
соответствии
с
требованиями
Градостроительного кодекса РФ, а также распорядительной и методической
документации Федерального Дорожного агентства Минтранса РФ, ГОСТ.
Состав разделов проектной и рабочей документации и требования к содержанию
этих разделов принять в соответствии с Постановлением Правительства РФ от 16
февраля 2008 г. N 87 "О составе разделов проектной документации и требованиях к их
содержанию".
Выполнить проект "Армейского сборно-разборного надвижного быстро возводимого
автомобильного однопутного моста", длиной 62,484 метров с использованием
упругих , пластических соединений стальных пролетов с использованием изобретений
проф. дтн ЛИИЖТА , изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755,
1174616, 2550777, 165076, 2010136746, 858604, 1760020 и опыта строительства двух
мостов с упругопластическими стальными балками (ферм) автомобильных мостов в
США , в штате Монтана, через реку Суон (2017 г ) и в штате Миннесота, через реку
Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г

36.

Вильнюсе ( 2016 г) , для использования опыта блока НАТО, для переправы, через реку
Днепр (Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м,
с использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в
упругой механики с упругопластической деформации , пролетных строений мостов в
механик деформируемых сред и конструкций , с учетом математического
моделировании в ПК SCАD , и взаимодействие пролетного строения с геологической
средой , в том числе нелинейным методом расчета стальной фермы пролетного
строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости
автомобильного и железнодорожного моста с помощью моделирования конструкций
пролетных строений мост , что исключает деформаций и обрушения конструкций
опор, пилонов и самого пролетного строения моста согласно нормам MSK-64
.
1. Предусмотреть двух- или трехфазную систему регулирования дорожного движения
(определяется проектной документацией);
2. Предусмотреть светофоры типа:
- транспортные и пешеходные, количество светофоров определяется проектной
документацией. Диаметр светодиодной линзы транспортных светофоров принять 300
мм, пешеходной – 200мм. (уточняется проектной документацией) и только в
светодиодном исполнении;
- табло обратного отсчета времени (ТООВ)
- пешеходные светофоры, должны иметь световое табло обратного отсчета
(уточняется проектной документацией);
3. Кабельные трассы выполнить в надземном варианте – над проезжей частью
дороги на высоте не менее 5-8м. (уточняется проектной документацией);

37.

Особые условия
Согласование
проектных
решений.
Состав
4. Запроектировать управляющий контроллер многофункционального типа.
5. Разработать раздел «Электроснабжение светофорного объекта», в соответствии
с ТУ №301-10ТУ/409 от 27.05.10г. выданных Краснодарские электрические сети филиал
ОАО «Кубаньэнерго»
6. Высоту установки от нижнего края светофорного оборудования до проезжей
части предусмотреть согласно ГОСТ Р 52289-2004 «Технические средства организации
дорожного движения. Правила применения дорожных знаков, разметки, светофоров,
дорожных ограждения и направляющих устройств».
7. Материалы проектной и рабочей документации разработать и оформить в
соответствии с ГОСТ Р 21.101-97 «Система проектной документации для
строительства. Основные требования к проектной и рабочей документации».
8. Проектирование осуществлять в соответствии с основными требованиями
Федерального закона «О техническом регулировании» от 27.02.2002 г. № 184-ФЗ и
другими действующими нормативными документами и техническими указаниями.
Автор проекта обязан:
- участвовать без дополнительной оплаты в рассмотрении проекта заказчиком в
установленном им порядке, защите проекта в экспертных органах, представлять
пояснения, документы, расчеты и обоснования по требованию заказчика и экспертиз,
вносить в проект по результатам рассмотрения у заказчика и замечаниям экспертиз,
согласованными заказчиком, необходимые изменения и дополнения;
- устранять без дополнительной оплаты, выявленные на стадии реализации проекта
недостатки, ошибки и т.п. до завершения строительства.
Проект согласовать:
- с УГИБДД ГУВД Краснодарского края
- с Управлением автомобильных дорог Краснодарского края
- иными заинтересованными организациями
Проект выполнить в полном объеме, в том числе: пояснительная записка, генплан,

38.

проектной
документации
кабельная трасса и кабельный журнал, монтажные схемы технических средств,
чертежи, электроснабжение светофорного объекта, сводный сметный расчет,
локальные сметы.
Сметная документация должна быть составлена:
в сметно-нормативной базе 2001 года в соответствии с «Методикой определения
стоимости строительной продукции на территории Российской Федерации» МДС
81-35.2004 Госстроя России.
Метод
определения
сметной
стоимости
строительства
Требования к
Проектно-сметная документация предоставляется Заказчику в 2-х экземплярах.
сдаче
проектной и
рабочей
документации
Заказчику
Срок окончания В соответствии с календарным планом к договору
проектирования
Осуществление Отсутствует
авторского
надзора
Дополнительные
требования

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

http://www.mem50212.com/MDME/MEMmods/MEM30007A/properties/Properties.html Introduction
When a material is subject to forces (loads), they will deform (elongate, compress, twist) by some amount. It may be a small amount, but never zero. Engineers calculate
these forces in order to predict the behaviour of the materials.
Materials scientists learn about these mechanical properties by testing materials. Results from the tests depend on the size and shape of material to be tested (specimen),
how it is held, and the way of performing the test. That is why we use common procedures, or standards, such as NATA.
What is a Property?
A property is something that will be measured the same regardless of the size of a piece of material. For example, density is a property, but mass is not.
Important Properties for Engineering
There are many material properties used for all sorts of things, like how well the material conducts heat, or magnetism, or resists electricity or how much it expands with heat etc etc. (Thermal
conductivity, Magnetic permeability, Resistivity, Coefficient of thermal expansion etc)
Mechanical properties are more focussed on how the material behaves under stress. Here are the key properties;

80.

Elasticity
The ability of the material to return to its original size (or shape) after being deformed. (stretched, compressed, twisted, bent etc) Rubber is elastic, so is glass and spring steel
Plasticity
The ability of the material to be deformed and stay like that after load is removed. (Opposite of elasticity) Lead is quite plastic.
There are some specific types of plasticity.
Ductility = tensile plasticity. A material that can be stretched. (Like chewing gum - it stretches when you pull it). Good examples are copper, and plastics like polypropylene.
Malleability = compressive plasticity. A material that can be compressed or hammered. (Like wet clay - it squashes when you press it, but doesn't stretch much). Engineering example; lead. Most
plastic materials show a bit of both - ductile and malleable.
Stress
The intensity of force inside a solid material. It is just like pressure except that it has a set direction (wheras pressure is in every direction). Stress acts through a cross-section of the material where the
forces are applied on EACH SIDE of that cross-sectional area. So there is a SET of 2 forces - when they are pulling it is tensile, if they push towards each other it is compressive.
Definition of Stress
f = F / A where
f is the average stress, also called engineering or nominal stress, and
F is the force acting over the area - and perpendicular to it.
The SI unit for stress is the pascal (symbol Pa), which is a shorthand name for one newton (Force) per square metre (Unit Area). The unit for stress is the
same as that of pressure, which is also a measure of Force per unit area. Engineering quantities are usually measured in megapascals (MPa) or gigapascals
(GPa). We always work in Newtons (N) and mm, which gives the stress in MPa, because 1 MPa = 1N / 1mm 2.
Example:
In the diagram at left, assume a force of 2000N up and 2000N down.
The area of cross-section is 50 square mm.
Stress = 2000 / 50 = 40 MPa
Strength: The amount of Stress a material can 'take'. Where 'take' might be before it breaks, before it deforms permanently, etc
Yield Strength: The stress that makes the material begin to have some plasticity.
Ultimate Strength. The highest stress the material can get to - any more and it will break.
Tensile Strength. Pulling - yield or ultimate.
Compressive Strength: Compressing strength
Shear Strength: Sliding or distorting, twisting. Yield or ultimate.
Fatigue Strength: The stress the material can handle when applied on and off many times.
Strain
The relative stretch of a material. It the material started with a length L, the amount of change (deformation) is x as a result of a tensile or compressive stress. This is not a property because it depends on

81.

how long the object is, so we have a property Strain,
where
= /L
The Stress/Strain Curve
Elastic deformation. When the stress is removed, the material returns to the dimension it had before the load was applied. Valid for small strains (except the case of
rubbers).
Deformation is reversible, non permanent.
Plastic deformation. When the stress is removed, the material does not return to its previous dimension but there is a permanent (irreversible) deformation.
Introduction
When a material is subject to forces (loads), they will deform (elongate, compress, twist) by some amount. It may be a small amount, but never zero. Engineers calculate
these forces in order to predict the behaviour of the materials.

82.

Materials scientists learn about these mechanical properties by testing materials. Results from the tests depend on the size and shape of material to be tested (specimen),
how it is held, and the way of performing the test. That is why we use common procedures, or standards, such as NATA.
What is a Property?
A property is something that will be measured the same regardless of the size of a piece of material. For example, density is a property, but mass is not.
Important Properties for Engineering
There are many material properties used for all sorts of things, like how well the material conducts heat, or magnetism, or resists electricity or how much it expands with heat etc etc. (Thermal
conductivity, Magnetic permeability, Resistivity, Coefficient of thermal expansion etc)
Mechanical properties are more focussed on how the material behaves under stress. Here are the key properties;
Elasticity
The ability of the material to return to its original size (or shape) after being deformed. (stretched, compressed, twisted, bent etc) Rubber is elastic, so is glass and spring steel
Plasticity
The ability of the material to be deformed and stay like that after load is removed. (Opposite of elasticity) Lead is quite plastic.
There are some specific types of plasticity.
Ductility = tensile plasticity. A material that can be stretched. (Like chewing gum - it stretches when you pull it). Good examples are copper, and plastics like polypropylene.
Malleability = compressive plasticity. A material that can be compressed or hammered. (Like wet clay - it squashes when you press it, but doesn't stretch much). Engineering example; lead. Most
plastic materials show a bit of both - ductile and malleable.
Stress
The intensity of force inside a solid material. It is just like pressure except that it has a set direction (wheras pressure is in every direction). Stress acts through a cross-section of the material where the
forces are applied on EACH SIDE of that cross-sectional area. So there is a SET of 2 forces - when they are pulling it is tensile, if they push towards each other it is compressive.

83.

Definition of Stress
f = F / A where
f is the average stress, also called engineering or nominal stress, and
F is the force acting over the area - and perpendicular to it.
The SI unit for stress is the pascal (symbol Pa), which is a shorthand name for one newton (Force) per square metre (Unit Area). The unit for stress is the
same as that of pressure, which is also a measure of Force per unit area. Engineering quantities are usually measured in megapascals (MPa) or gigapascals
(GPa). We always work in Newtons (N) and mm, which gives the stress in MPa, because 1 MPa = 1N / 1mm2.
Example:
In the diagram at left, assume a force of 2000N up and 2000N down.
The area of cross-section is 50 square mm.
Stress = 2000 / 50 = 40 MPa
Strength: The amount of Stress a material can 'take'. Where 'take' might be before it breaks, before it deforms permanently, etc
Yield Strength: The stress that makes the material begin to have some plasticity.
Ultimate Strength. The highest stress the material can get to - any more and it will break.
Tensile Strength. Pulling - yield or ultimate.
Compressive Strength: Compressing strength
Shear Strength: Sliding or distorting, twisting. Yield or ultimate.
Fatigue Strength: The stress the material can handle when applied on and off many times.
Strain
The relative stretch of a material. It the material started with a length L, the amount of change (deformation) is x as a result of a tensile or compressive stress. This is not a property because it depends on
how long the object is, so we have a property Strain,
where
= /L
The Stress/Strain Curve
Elastic deformation. When the stress is removed, the material returns to the dimension it had before the load was applied. Valid for small strains (except the case of
rubbers).
Deformation is reversible, non permanent.
Plastic deformation. When the stress is removed, the material does not return to its previous dimension but there is a permanent (irreversible) deformation.

84.

Stiffness
In tensile tests, if the deformation is elastic, the stress-strain relationship is called Hooke's law:
E=f/e E is the slope of the stress-strain curve, called Young's modulus or modulus of elasticity. In some cases (especially plastics and high speed loadings), the
relationship is not linear so that E can be defined alternatively as the local slope: E = df/de
Shear stresses also produce strains according to: G=f/e
where G is the shear modulus.
Elastic moduli measure the stiffness of the material. They are related to the second derivative of the interatomic potential, or the first derivative of the force vs.
internuclear distance. By examining these curves we can tell which material has a higher modulus. Due to thermal vibrations the elastic modulus decreases with
temperature. E is large for ceramics (stronger ionic bond) and small for polymers (weak covalent bond). Since the interatomic distances depend on direction in the
crystal, E depends on direction (i.e., it is anisotropic) for single crystals. For randomly oriented policrystals, E is isotropic.

85.

Anelasticity
Here the behavior is elastic but not the stress-strain curve is not immediately reversible. It takes a while for the strain to return to zero. The effect is normally small for
metals but can be significant for polymers. This is a type of friction effect and is sensitive to the speed of loading.
Poisson's Ratio (lateral shrinking)
Materials subject to tension shrink laterally. Those subject to compression, bulge. The ratio of lateral and axial strains is called the Poisson's ratio . = lateral/ axial
The elastic modulus, shear modulus and Poisson's ratio are related by E = 2G(1+ ), so Poisson's ratio can be worked out from measurements of G and E.
Tensile Properties
Yield point. If the stress is too large, the strain deviates from being proportional to the stress. The point at which this happens is the yield point because there the material yields, deforming permanently
(plastically) Yield stress. Hooke's law is not valid beyond the yield point. The stress at the yield point is called yield stress, and is an important measure of the mechanical properties of materials. In
practice, the yield stress is chosen as that causing a permanent strain of 0.002 (strain offset, Fig. 6.9.) The yield stress measures the resistance to plastic deformation.
Plastic deformation: The reason for plastic deformation, in normal materials, is not that the atomic bond is stretched beyond repair, but the motion of dislocations, which involves breaking and
reforming bonds. Plastic deformation is caused by the motion of dislocations.
Tensile strength. When stress continues in the plastic regime, the stress-strain passes through a maximum, called the tensile strength ( TS) , and then falls as the material starts to develop a neck and it
finally breaks at the fracture point (Fig. 6.10). Note that it is called strength, not stress, but the units are the same, MPa. So strength is a certain stress a material can take.For structural applications, the
yield stress is usually a more important property than the tensile strength, since once the it is passed, the structure has deformed beyond acceptable limits.
Ductility. Tensile Plasticity. The ability to deform before braking. It is the opposite of brittleness. Ductility can be given either as percent maximum elongation max or maximum area reduction. %EL =
max x 100 %, %AR = (A0 - Af)/A0 These are measured after fracture (repositioning the two pieces back together).
Malleability. Compressive Plasticity.
Toughness. Ability to absorb energy up to fracture. The energy per unit volume is the total area under the strain-stress curve. It is also measured by an impact test.

86.

Resilience. Capacity to absorb energy elastically. The energy per unit volume is the area under the strain-stress curve in the elastic region.
True Stress and Strain. When one applies a constant tensile force the material will break after reaching the tensile strength. The material starts necking (the transverse area decreases) but the stress
cannot increase beyond TS. The ratio of the force to the initial area, what we normally do, is called the engineering stress. If the ratio is to the actual area (that changes with stress) one obtains the true
stress.
Elastic Recovery During Plastic Deformation. If a material is taken beyond the yield point (it is deformed plastically) and the stress is then released, the material ends up with a permanent strain. If the
stress is reapplied, the material again responds elastically at the beginning up to a new yield point that is higher than the original yield point (strain hardening, Ch. 7.10). The amount of elastic strain that
it will take before reaching the yield point is called elastic strain recovery
Compressive, Shear, and Torsional Deformation. Compressive and shear stresses give similar behavior to tensile stresses, but in the case of compressive stresses there is no maximum in the
curve, since no necking occurs.
Hardness. Hardness is the resistance to plastic deformation (e.g., a local dent or scratch). Thus, it is a measure of plastic deformation, as is the tensile strength, so they are well correlated. Historically, it
was measured on an empirically scale, determined by the ability of a material to scratch another, diamond being the hardest and talc the softer. Now we use standard tests, where a ball, or point is pressed
into a material and the size of the dent is measured. There are a few different hardness tests: Rockwell, Brinell, Vickers, etc. They are popular because they are easy and non-destructive (except for the
small dent).
Variability of Material Properties. Tests do not produce exactly the same result because of variations in the test equipment, procedures, operator bias, specimen fabrication, etc. But, even if all those
parameters are controlled within strict limits, a variation remains in the materials, due to uncontrolled variations during fabrication, non homogenous composition and structure, etc. The measured
mechanical properties will show scatter, which is often distributed in a Gaussian curve (bell-shaped), that is characterized by the mean value and the standard deviation (width).
Design/Safety Factors. To take into account variability of properties, designers use, instead of an average value of, say, the tensile strength, the probability that the yield strength is above the minimum
value tolerable. This leads to the use of a safety factor N > 1 (typ. 1.2 - 4). Thus, a working value for the tensile strength would be W = TS / N.
Bolt Grades
Grades are stamped into the head of the bolt (for high strength bolts). The larger the number, the stronger the bolt.
The first number is the ultimate tensile strength (UTS) in 100 x MPa. The second number (if shown) is the yield strength (YS) as a proportion of UTS. So, for 8.8 bolt,
UTS=800MPa, YS = 0.8x800 = 640MPa. More details given below

87.

Grade
Nominal Size
Proof Stress
YS
UTS
Hardness R (core)
Min.
Max.
4.6
M5-M100
225
240
400
B67
B95
4.8
M1.6-M16
310
340
420
B71
B95
5.8
M5-M24
380
420
520
B82
B95
8.8
M16-M72
600
660
830
C23
C34
9.8
M1.6-M16
650
720
900
C27
C36
10.9
M5-M100
830
940
1040
C33
C39
12.9
M1.6-M100
970
1100
1220
C38
C44
Fatigue
If stress is cycled on and off, the material can fail at a much lower stress than the yield or ultimate strength. This is due to fatigue - the slow growth of a crack each time the load is re-applied. If stresses
are low, and the number of cycles is high, we use the S-N diagram, or Wohler diagram. (High = 100,000 or more)

88.

The S-N diagram plots stress S versus cycles to failure N. The graph is usually displayed on a log-log plot, with the actual S-N line representing the mean of the data from several tests.
Endurance Limit: (Material A) Some materials have a fatigue limit or endurance limit - the stress level below which the material never fails. This is characteristic of steel and titanium in benign
environmental conditions.
Many non-ferrous metals and alloys, such as aluminum, magnesium, and copper alloys, do not exhibit well-defined endurance limits. These materials instead display a continuously decreasing S-N
response, similar to Curve B above. In such cases a fatigue strength Sf for a given number of cycles must be specified. An effective endurance limit for these materials is sometimes defined as the stress
that causes failure at 1E8 or 5E8 loading cycles.
The concept of an endurance limit is used in infinite-life or safe stress designs. It is due to interstitial elements (such as carbon or nitrogen in iron) that pin dislocations, thus preventing the slip
mechanism that leads to the formation of microcracks. Care must be taken when using an endurance limit in design applications because it can disappear due to:
Periodic overloads (unpin dislocations)
Corrosive environments (due to fatigue corrosion interaction)
High temperatures (mobilize dislocations)
The endurance limit is not a true property of a material, since other significant influences such as surface finish cannot be entirely eliminated. However, a test values (Se') obtained from polished
specimens provide a baseline to which other factors can be applied. Influences that can affect (i.e. decrease) the endurance limit include:
Surface Finish (rough)
Temperature (higher)
Stress Concentrations (geometry that increases stress)
Size (larger)
Fatigue usually begins from a stress concentration at the surface. The fatigue cracks grow slowly and usually leaves a striated pattern that looks like a smooth sea shell. Then, when the crack has gone far
enough, the object will break suddenly due to the stress in the small remaining area exceeding the ultimate strength. This sudden fracture will usually look different - rough or torn looking.
Creep
Creep is the slow stretching of a material over time - especially at "high temperature". Boilers, gas turbine engines, and ovens are some of the systems that have
components that experience creep. For some materials "high temperature" could be room temperature - like lead. Many plastics is also very prone to creep. Failures
involving creep usually involves deformation, but failures may appear ductile or brittle.

89.

In a creep test a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the
curve, identified in the above figure, is the strain rate of the test during stage II or the creep rate of the material.
Primary creep, Stage I, is a period of decreasing creep rate. Primary creep is a period of primarily transient creep. During this period deformation takes place and the
resistance to creep increases until stage II. Secondary creep, Stage II, is a period of roughly constant creep rate. Stage II is referred to as steady state creep. Tertiary
creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation.
Quiz Study: (Multiple choice questions)
1. Ability of a material to be deformed and then return to its original size after removing the load.
2. Ability of a material to resist indentation or abrasion.
3. Ability of a material to sustain a high load for its size.
4. A material that requires a high stress to deform a small amount is...
5. Ultimate Tensile Strength is a measure of the ........ a material can take.
6. A material that takes a lot of energy to break has a high level of...
7. A tough material will exhibit both...
8. The ability of a material to absorb energy without permanent deformation.
9. Percentage elongation is a measure of a material's...
10. The rate of creep is higher when you increase ...
11. Which of the following would most likely be a CREEP problem?
12. Deformation that increases gradually is likely to be due to...
13. A crack which grows gradually through a shaft is likely to be due to...
14. Shot peening of springs is used to...
15. How does shot peening work?
16. What is a Fatigue Strength?
17. What is the Endurance Limit?
18. Which of the following would most likely be a FATIGUE problem?
19. Which graph indicates Mild Steel?

90.

20. Which is FALSE?
21. The slope of the curve up to the yield point tells you the ...
22. The area under the entire stress-strain curve is an indication of a material's ...
23. Yield Point: Which is ... F A L S E ?
24. A bolt has 12.9 stamped on the head. This means it has maximum strength of ...
25. Comparison between a 25x1 spring steel ruler and 25x1 mild steel strip under bending. If the yield point of MS is 250MPa and SS is 400MPa, which is TRUE?
26. A Mild Steel beam deflects 0.3mm under load and springs back on removal. Which is FALSE?
27. A bent nail is an example of going beyond the .................
28. A new chain broke while attempting to drag a large fallen tree. This is an example of going beyond the .................
29. If the stress was between the Yield point and UTS then...
30. If the stress was below the Yield point then...
31. If the stress was above the UTS then...
32. Which is stiffer, mild steel or high tensile steel? (Up to yield point)
33. Which is stronger, Mild steel or High tensile steel?
34. Steel has a Modulus of Elasticity of about;
35. A 10m steel rod is stretched by 1cm. What is the Strain?
36. An electrical wire (cross section = 1 square mm) holds 12 N weight. The stress is;
37. How much will a 100m fence wire stretch if it is tensioned to 100MPa?
38. You are designing an aluminium crank for a bicycle. Which entry is most relevant to ensure it does not crack?

91.

Whiteboard Photos

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Приложение №4
Исходные данные для расчета сметной стоимости по объекту: "Армейского сборно-разборного
надвижного быстро возводимого автомобильного однопутного моста", длиной 62,484 метров с
использованием упругих , пластических соединений стальных пролетов с использованием
изобретений проф. дтн ЛИИЖТа, изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755,
1174616, 2550777, 165076, 2010136746, 858604, 1760020 и опыта строительства двух мостов с
упругопластическими стальными балками (ферм) автомобильных мостов в США , в штате
Монтана, через реку Суон (2017 г ) и в штате Миннесота, через реку Лебель и в КНР через пролив
Тайвань ( 2020) и в Литве, мост через реку в г Вильнюсе ( 2016 г) , для использования опыта блока
НАТО, для переправы, через реку Днепр (Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной
фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения
моста согласно нормам MSK-64

п.п.
1.
1.1 Наименование
Общие положения

159.

проектной
документации
1.2
Стоимость
работ
Метод
1.3 определения
стоимости
2
Оплата труда
2.1 основных рабочих
и механизаторов.
Затраты на
эксплуатацию
2.2
машин
2.2. Годовой режим
1 работы
Стоимость
эксплуатации
2.2.
строительных
2
машин и
механизмов.
1.Сметная стоимость определяется на дату представления (сдачи) ПСД Заказчику.
2. Сметную документацию выполнить в соответствии с МДС 81-35.2004.
3. Разработку сметной документации осуществлять с применением государственных
сметных нормативов, включенных в федеральный реестр сметных нормативов.
1. Выполнить расчеты ресурсным методом по ГЭСН - 2001 в редакции 2009г., с учетом
цен, сложившихся на дату представления (сдачи) ПСД Заказчику для проведения
проверки, с использованием программного комплекса, прошедшего подтверждение
соответствия в установленном порядке.
2.Выполнение сметных расчѐтов по переустройству коммуникаций допускается с
применением базисно - индексного метода.
Определение основных статей сметной стоимости
1. Определить в соответствии с данными филиала ФГУ ФЦЦС по Пермскому краю.
Определить проектом.
1.Определять в соответствии с "Каталогом текущих цен на материалы, изделия и
конструкции", выпускаемым филиалом Федерального центра ценообразования в
строительстве и промышленных материалов по Пермскому краю.
2. Применение машин и механизмов импортного производства при отсутствии
отечественных аналогов согласовывать с Заказчиком.
3. При отсутствии данных о стоимости механизмов в "Каталоге текущих цен"
допускается применение базисных цен с применением сборников цен включенных в
Федеральный реестр сметных нормативов с учетом индексов, разработанных
филиалом ФГУ ФЦЦС по Пермскому краю.

160.

2.3
2.4
2.5
2.5.
1
2.6
2.7
2.7.
1
Определять в соответствии с согласованной Заказчиком сводной ведомостью завоза
материалов, подтвержденной ценами:
1.Прайс-листами Производителя (на заданную дату)
2. "Каталогом текущих цен на материалы, изделия и конструкции", выпускаемым
филиалом Федерального центра ценообразования в строительстве и промышленных
Стоимость
материалов по Пермскому краю.
материальных
3. При отсутствии данных о стоимости материалов в "Каталоге текущих цен"
ресурсов
допускается применение базисных цен по сборникам цен включенных в Федеральный
реестр сметных нормативов с применением индексов по группам материалов,
разработанных филиалом ФГУ ФЦЦС по Пермскому краю.
4. Допускается применение данных из информационного журнала "Пермские
строительные ведомости".
Определять в процентах от ФОТ в соответствии с нормативами накладных расходов
Накладные
по видам работ по МДС 81-33.2004, с учетом коэффициентов в соответствии с
расходы в
письмами №3757-КК/08, 20246-АП/08 Министерства регионального развития РФ.
текущей цене
Расчет по каждой строке работ в локальных сметах.
Определять в процентах от ФОТ в соответствии с нормативами сметной прибыли по
Сметная прибыль видам работ по МДС 81-25.2001, с учетом коэффициентов в соответствии с письмами
в текущей цене
№3757-КК/08, 20246-АП/08 Министерства регионального развития РФ.
Расчет по каждой строке работ в локальных сметах.
Переустройство При переустройстве коммуникаций, согласно тех.условиям, учесть в смете все
коммуникаций
необходимые затраты, в т.ч затраты на отключение и подключение к действующим
сетям, затраты на технологическое присоединение (при необходимости).
Затраты на
временные здания ГСН 81-05-01-2001
и сооружения
Прочие затраты
Подготовка
территории
строительства

161.

2.7.
1.1.
2.7.
2
2.7.
2.1
2.7.
2.2
2.7.
2.3
2.7.
2.4
2.7.
2.5
Затраты по
разбивке основных
осей сооружения,
Расчет
переносу их в
натуру и их
закрепление.
Прочие работы и
затраты
Дополнительные
затраты при
производстве
Не учитываются.
работ в зимнее
время
Затраты на
мероприятия по
Не учитываются.
снегоборьбе
Затраты,
связанные с
испытанием
Учесть (при необходимости).
моста при сдаче в
эксплуатацию.
Затраты по
перевозке
автомобильным
транспортом
Затраты определяются расчетом на основе данных проекта.
работников
строительных
организаций.
Затраты,
Не учитываются.
связанные с

162.

2.7.
2.6
2.7.
2.7
2.7.
2.8
вахтовым
методом
производства
работ (кроме
затрат на
выплату
вахтовой
надбавки к
зарплате).
Затраты,
связанные с
премированием за
Не учитываются.
ввод в действие
построенных
объектов
Средства на
покрытие затрат
строительных
организаций по
добровольному
страхованию
Не учитываются.
работников и
имущества, в том
числе
строительных
рисков
Затраты,
связанные с
Учесть.
приемкой и
утилизацией

163.

2.7.
3
2.7.
3.1
2.7.
4
мусора
Содержание
дирекции
Содержание
службы
заказчиказастройщика
Не учитываются.
(строительный
контроль)
строительства
Проектные и
изыскательские
работы,
авторский надзор
Проектные
На основе заключенных договоров.
работы
Изыскательские
На основе заключенных договоров.
работы
2.7.
4.1
2.7.
4.2
2.7.
Авторский надзор
4.3
Экспертиза
2.7.
проектной
4.4
документации
Резерв средств на
2.8 непредвиденные
работы.
Возвратные
2.9 суммы (за
итогом)
Не учитываются.
Не учитываются.
3%
Учитываются согласно МДС 81-35.2004(п.4.100.1) расчетом

164.

Затраты,
связанные с
2.10 уплатой налога на
добавленную
стоимость (НДС)
Дополнительная
3
информация
Среднее
расстояние и
3.1 способы
транспортировки
материалов.
Оформление
3.2
расчетов
Наличие
3.3 документации в
томе "Сметы"
Наличие сметной
3.3. документации на
1 электронном
носителе
Принимаются в соответствии с действующим законодательством Российской
Федерации.
1.Экономически обосновать представленную Заказчику сводную ведомость завоза
материалов, с проработкой сметных цен, путем рассмотрения прайс-листов не менее
чем 3-х Поставщиков.
2. Согласовать и утвердить заказчиком.
1. Пояснительная записка.
2. Сводный сметный расчет.
3. Расчет возвратных сумм в целом по объекту с указанием объемов, стоимости
возможной реализации и стоимости транспортных расходов к месту их реализации.
4 . Локальные сметы.
5. Ресурсные сметы (по каждой локальной смете и общая на весь объект с
обоснованием стоимости (материалов, механизмов)) в т.ч. в программе
использованной для составления смет.
6.Калькуляция стоимости материалов с приложением транспортных калькуляций.
7.Сводная ведомость объемов работ (формируется отдельным томом).
8. Обосновывающие документы (расчеты, прайсы и т.д.)
1.
Локальные и
ресурсные сметы в исходном формате программы, в файле программы и в переходном
формате XML или АРПС .
1.
П.3.3 в полном
объеме

165.

Перечень (приведен в таблице 1) испытательного оборудования и измерительных приборов для проведения испытаний фрагментов
фрикционно-подвижных соединений для крепления опоры скользящей для демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с
помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в
длинных овальных отверстиях.
Таблица 1

Испытания на перемещение демпфирующих
Тип прибора,
Диапазон
Примечание
п/п
узлов с амортизирующими элементами
оснастки,
измерения
оборудование
1
Определение статических усилий для сдвига податливого анкера, установленного в изолирующей
трубе с амортизирующими податливыми элементами в виде тросового «или» дугообразного зажима
с анкерной шпилькой производилось в ИЦ «ПКТИСтрой-ТЕСТ» («Протокол испытания на осевое
статическое усилие сдвигу дугообразного зажима с
анкерной шпилькой»)
Рулетка,
штангенциркуль
+- (2- 5) см
Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой согласно патента на полезную модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь».
2
Индикатор с манометром до 10 тонн, для измерения
перемещения податливого анкера по дугообразному
зажиму с анкерной шпилькой (тросовому зажиму).
Индикатор
измерений
перемещений с
ценой деления в
динах 2 мм
1%
См. Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой
3
Домкрат до 10 тонн для отрыва демпфирующего
крепления
Рулетка,
штангенциркуль
+- (2- 5) см
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой согласно патента на полезную
модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь»
4
Лебедка рычажная (усилие 5 тонн) для определения смятия при выдергивании анкера со
свинцовым «тормозным» клином, забитым в
прорезанный паз в резьбовой части анкера М16
Теодолит
1%
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой
5
Кувалда, вес 4 кг. (для определения перемещения
демпфирующего анкера с тормозным клином во
время испытания на монтажной строительной
площадке)
Нивелир
+/- 0,0 T/c2
Годен до 12.2025 г.

166.

6
Лабораторный механический манометр для
измерения перемещения анкера М16 ГОСТ 24376.1
на податливость
Штатив с
манометром
0,01 мм – 1000
мм
Свид. №1 до 12.2023 г.
7
Аналогично вибростенду ES -180-590
использовалась испытательная машина ZD-10/90 на
сдвиг, скольжение и податливость согласно ГОСТ
53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
Заводской №
66/79
(сертификат о
калибровке №
143-1371 от
28.08.2013г.)
Годен до 12.2022 г.
8
Ключ динамометрический
Нивелир
+/- 0,0 T/c2
Годен до 12.2022 г.
9
Нивелир
Штатив с
манометром
0,01 мм. – 1000
мм.
Свид. № 1 до 12.2023 г.
10
Домкрат 5 т
Усилия
выдергивания
шкала 5 тонн
Заводской № 1
(сертификат №
14 от
18.09.2013г.)
Годен до 12.2022 г.
11
Лебедка 5 тонная
Для определения
сдвига или
скольжение анкера в
изолированной
трубе
5%
Годен до 12.2023 г.
12
Болгарка для простукивания пазов в анкерных
болтах для забивки стопорного свинцового клина
Болгарка дисковая
пила
Паз пропила 2
мм
Свидетельство № 3 до
01.12.2023 г.
13
Гайковерт ИП-3128 исползовался при испыта-ниях
на фрагментах, деталях сдвигоустойчи-вых
скользящих сейсмостойких и взрывостой-ких узлах
крепления.
При испытаниях на
демпфирован-ность
и сдвигоустойчивость, допускает настройку
величины крутя-щих
моментов от 80до
150 кгс
Заводской № 1
№ 19 от 18.09.
2013г.)
Годен до 12.2023
Условия проведения испытания узлов крепления опоры скользящей для демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
на скольжение и податливость -согласно нормативным документам, действующим на 09.11 2021 г., действующим ГОСТ Р и
специальным техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей опоры скользящей с трубопроводом для
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-

167.

online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf и фрагментов антисейсмического фрикционнодемпфирующего соединения с контролируемым натяжением трубопровода, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов, серийный выпуск.
Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей демпфирующих сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмич-ностью более 9 баллов, серийный выпуск и возможность эксплуатации
опоры скользящей с трубопроводом в районах с сейсмич-ностью более 9 баллов.
Цель лабораторных испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения с контроли-руемым
натяжением трубопроводов для опоры скользящей для кабеленесущей системы , предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов - определение возможности их использова-ния в районах с сейсмичностью более 9 баллов по шкале
MSK-64.

168.

5.Применение численного метода моделирования при испытании в ПК SCAD демпфирующих сдвиговых компенсаторов
для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
скользящее с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК), предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов. Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ
мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
РАСЧЕТНАЯ СХЕМА испытания СКАД демпфирующих сдвиговых компенсаторов для строительных конструкций,
покрытых с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов.

169.

Геометрические характеристики схемы испытания математических моделей демпфирующих сдвиговых компенсаторов с
помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов в ПК
SCAD.
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
РАСЧЕТНАЯ СХЕМА демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил
https://ppt-online Вывод.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Геометрические характеристики схемы демпфирующих сдвиговых компенсаторов для гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf

170.

Нагрузки приложенные на схему демпфирующих сдвиговых компенсаторов гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Результата расчета
Эпюры усилий
РАСЧЕТНАЯ СХЕМА
Геометрические характеристики схемы (демпфирующих сдвиговых компенсаторов для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD
п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf

171.

Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
«N»
«Му»
«Qz»
«Qy»

172.

Деформации
Коэффициент использования профилейОпорыскользящая для Кабеленесущие системы:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM

173.

Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и
контрольная сборка производилась в организации «Сейсмофонд». Инструкция по креплению фланцев к трубам предусматривала
такую последовательность производства работ:
1.
2.
3.
4.
5.
6.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами
с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости {в плане и по высоте}.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по
ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов соединены с помощью фрикци-анкерных,
протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых соединений (латунная
шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые
шайбы), расположенных в длинных овальных отверстиях.

174.

175.

176.

Научное обоснование и расчеть в ПK SCAD "Армейского сборно-разборного надвижного быстро
возводимого автомобильного однопутного моста", длиной 62,484 метров с использованием упругих
, пластических соединений стальных пролетов с использованием изобретений проф. дтн ЛИИЖТа,
изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746,
858604, 1760020 и опыта строительства двух мостов с упругопластическими стальными балками
(ферм) автомобильных мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате
Миннесота, через реку Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г
Вильнюсе ( 2016 г) , для использования опыта блока НАТО, для переправы, через реку Днепр (Россия) в
Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной
фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения моста
согласно нормам MSK-64
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).

177.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на
строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания
рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших
испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме
нтов, стянутых одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Q bh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых кранов и трубопровода от возможных вибрационных , сейсмических и
взрывных воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение сейсмической
нагрузки при землетрясении, вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный
паз медного клина, которая жестко крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс свинффцовые шайбы с двух сторо, а
латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за счет использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных растягивающих нагрузках при многокаскадном демпфировании, корые работают
упруго.

178.

Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за
разброса по трению. Известно также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение
трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с
пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также
повышение точности расчета при использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и
свинцовой шайбой , установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под действием запорного элемента в виде стопорного
фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения,
которые обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный
паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП,
магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах, установленных в длинные
овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься стопорный обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с энергопоглощением забитого
медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими выступами . При этом промежуток между выступами, должен быть больше
амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить
медный втулки или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с одинаковым усилием медный обожженный клин , например латунная
шпилька , по названием фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между выступами
устанавливаются также дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и
давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину, обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы
применяются с одинаковой жесткостью с двух сторон .

179.

Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и
виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность его работы в тяжелых условиях вибронагрузок при моногкаскадном
демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных
колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде
латунного фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с
забитимы с одинаковм усилеи м медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких
шайб , установленного между цилиндрическими выступами фланцев, а крепежные элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг.5
Фиг 6

180.

Фиг 7
Фиг 8
Фиг 9

181.

182.

183.

7. Результаты и выводы по испытаниям математических моделей опоры скользящей для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf и узлов крепления опоры скользящей с помощью демпфирующих и косых антисейсмических компенсаторов, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов ДЛЯ ПРОЛЕТНЫХ СТРОЕНИЙ НАДВИЖНЫХ СБОРОНО-РАЗБОРНЫХ МОСТОВ

184.

ВЫВОДЫ по испытанию математических моделей опоры скользящей для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Испытания математических моделей опор скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК)
согласно программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий и сооружений как более новому. Для практического применения фрикционно-подвижных
соединений (ФПС) после введения количественной характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD. Процедура
оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм, обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности земле-трясений по значительно расширенному кругу объектов при различной
обеспеченности данными). Шкала также создает основу для оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Демпфирующие сдвиговые компенсаторы проф Уздина А М для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011
SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf ,
которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с антисейсмическими косых компенсаторов ( изобретение № 887748 « Стыковое соединение растянутых элементов»)

185.

илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, оценено влияние продолжительности
колебаний на сейсмическую интенсивность. За полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность испытания математических моделей в ПК
SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция инструментальных данных о параметрах сейсмического движения грунта с использованием
сейсмоизолирующих опор с использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления строительных конструкций , трубопровода ,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого использования
сейсмоизоляции для трубопроводов и использования ФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения трубопро-вода, соединенного с помощью фрикционных протяжных демпфирующих
компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить переме-щение зажима по условному длинному овальному отверстию в зависимости
от усилия затяжки гаек, испытаны два образца узла крепления опор скользящих для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с креплением трубопроводов с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях (описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине испытательной машины и приложения усилия к дугообразному зажиму в
направлении оси шпильки, фрагмента узла протяжного фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр 34 мм),
установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.298, ГОСТ 30546.3-98, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5 «Ленгипронефтехим», ГОСТ
17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330. 2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2
-10.10.3, СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488,
2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно
ГОСТ 6249-52 «Шкала для определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее составлен акт испытаний на осевое статическое
усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных соединений работающих на сдвиг и выполненных в виде болтового
соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина), при осмотре не
обнаружено механических повреждений и ослабления демпфирующего соединения для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений
с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры скользящей
и трубопровода делается вывод
Опоры скользящие для демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенные для сейсмоопас-ных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами, соединенными между
собой с помощью демпфиру-ющих компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных отверстиях для
обеспечения многокаскадного демпфирования при динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах соединения), выполненных согласно изобретениям, патенты
№№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676
Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ
30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД
26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели опоры скользящей для демпфирующих сдвиговых компенсаторов для гасителя динамических
колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , при испытаниях в ПК SCAD и при испытаниях узлов крепления опоры
скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов

186.

1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И. Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им.
Мельникова. Промышленное и гражданское строительство. - 2008. - № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc. of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction,
2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.: Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл. 04.01.1990; опубл. 23.01.1992, Бюл. № 3.
4. Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувос- тшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник
Нацюнальна металургшна акадспя Украши. - № 2000105588; заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В.,
Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл. 26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5. - С. 96-98
Библиографический список
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов всех форм обучения специальности «Промышленное и гражданское
строительство» и слушателей Института дополнительного профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и идентификации в механике деформируемых сред и конструкций физическим и
математическим моделирование в ПК SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
ix.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобетон
x.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобетон
xi.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций
xii.
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
xiii.
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
xiv.
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
xv.
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
xvi.
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
xvii.
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
viii.
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
xix.
Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
xx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
xxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu

187.

xxii.
xiii.
xxiv.
xxv.
xxvi.
xvii.
viii.
xxix.
xxx.
xxxi.
xxii.
xiii.
xxiv.
xxv.
xxvi.
xvii.
viii.
xxix.
xl.
xli.
xlii.
xliii.
xliv.
xlv.
xlvi.
lvii.
viii.
xlix.
l.
li.
lii.
liii.
liv.
lv.
lvi.
lvii.
viii.
lix.
lx.
lxi.
lxii.
xiii.
lxiv.
lxv.
lxvi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1
Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.903-10_л1_Тепловые сети. Детали
трубопроводов.djvu
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы
водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы
водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов
для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для
железных и автомобильных.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл
гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы
водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu

188.

xvii.
viii.
lxix.
lxx.
lxxi.
xxii.
xiii.
xxiv.
xxv.
xxvi.
xvii.
viii.
xxix.
xxx.
xxxi.
xxii.
xiii.
xxiv.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК
SCADОпора скользящая для демпфирующих сдвиговых компенсаторов
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2 Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu

189.

Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23) гасителя динамических колебаний и сдвиговых напряжений с
учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения предназ-начена для сейсмозащиты , виброзащиты трубопроводов , оборудования,

190.

сооружений, объектов, зданий от сейсмических, взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей опоры с упругими
демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых
соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде
раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между
собой с помощью фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных в
длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном отверстии верха и низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующий компенсатор для трубопроводов" F16 L 23/00
организации "Сейсмофонд" при СПб ГАСУ ОГРН : 102000000824 ИНН : 2014000780 № 2021134630 от 2511.2021 , входящий №
073171 ФИПС, отдел № 17 направленная в Федеральный институт промышленной собственности (ФИПС) , автор Президент
организации "Сейсмофон" Мажиев Х Н. ( В Минск, направлено изобретение с названием "Сталинский компенсатор" См ссылки:
https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337
Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов , а старое название Фрикционнодемпфирующий компенсатор для трубопроводов аналог компенсатора Сальникова для системы противопожарной защиты или
техническое решение предназначено для защиты магистральных трубопроводов, агрегатов, оборудования, зданий, мостов,
сооружений, линий электропередач, рекламных щитов от сейсмических воздействий за счет использования фланцевого соединение
растянутых элементов трубопровода, с упругими демпферами сухого трения установленных на пружинистую гофру с
ломающимися демпфирующими ножками при многокаскадном демпфировании и динамических нагрузках на протяжных
фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей". Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например, болтовое соединение плоских деталей встык, патент Фланцевое соединение растянутых элементов
замкнутого профиля № 2413820, «Стыковое соединение растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от
11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L
5/24 "Способ определения коэффициента закручивания резьбового соединения " направлено в г.Минск , Республика Беларусь" :
https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337

191.

192.

Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов и фрагментов сейсмоизоляции для опоры скользящей для демпфирующих
сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий
поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf предназначенные для сейсмоопасных
районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая фрикционно –демпфирющая опора» https://yadi.sk/i/JZ0YxoW0_V6FCQ
«Антисейсмическое фланцевое фрикционное соединение для трубопроводов» https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog «Опора
сейсмоизолирующая «маятниковая» https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора https://yadi.sk/i/dZRdudxwOald2w
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s

193.

ВЫПОЛНЕНИЕ РАБОТ ПО РАЗРАБОТКЕ ПРОЕКТНОЙ ДОКУМЕНТАЦИИ на проектирование
"Армейского сборно-разборного надвижного быстро возводимого автомобильного однопутного
моста", длиной 62,484 метров с использованием упругих , пластических соединений стальных

194.

пролетов с использованием изобретений проф. дтн ЛИИЖТа, изобретенные в СССР А.М.Уздиным
№№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746, 858604, 1760020 и опыта
строительства двух мостов с упругопластическими стальными балками (ферм) автомобильных
мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате Миннесота, через реку
Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г Вильнюсе ( 2016 г) , для
использования опыта блока НАТО, для переправы, через реку Днепр (Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной
фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения моста
согласно нормам MSK-64
1. Основание для проектирования
Перечень объектов, подлежащих включению в краевую инвестиционную программу автодорожного строительства
Пермского края на 2012 год.
2. Цели и задачи разработки проектной документации – разработка оптимальных, обоснованных, экономически
целесообразных и эффективных функционально-технологических, конструктивных и инженерно-технических
решений при ремонте объекта, их частей. Обеспечение безопасности дорожного движения, создания условий для
удобства движения транспортных средств и улучшения зрительного ориентирования водителей.
3. Заказчик – Краевое государственное бюджетное учреждение «Управление автомобильных дорог и

195.

транспорта» Пермского края
4. Исполнитель – определяется по результатам размещения заказа.
5. Статус работы – Государственный заказ.
6. Источник финансирования – субсидии из бюджета Пермского края.
7. Исходные данные
7.1. Материалы, передаваемые при заключении договора на проектные работы (согласно приложению № 1 к
Заданию).
7.2. Протяженность подходов – минимально необходимая для сопряжения отремонтированного моста с
существующей дорогой.
При разработке проектной документации принять следующие основные технические параметры: на
проектирование "Армейского сборно-разборного надвижного быстро возводимого автомобильного
однопутного моста", длиной 62,484 метров с использованием упругих , пластических соединений
стальных пролетов с использованием изобретений проф. дтн ЛИИЖТа, изобретенные в СССР
А.М.Уздиным №№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746, 858604, 1760020 и опыта
строительства двух мостов с упругопластическими стальными балками (ферм) автомобильных
мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате Миннесота, через реку
Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г Вильнюсе ( 2016 г) , для
использования опыта блока НАТО, для переправы, через реку Днепр (Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной

196.

фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения моста
согласно нормам MSK-64
Технические параметры
Категория автомобильной
дороги
Число полос движения
Длина моста, м
Схема моста
Габарит моста
Существующие / Расчетные
нагрузки
Вид покрытия на мосту
Тип дорожной одежды
Вид покрытия на подходах
Ограждение на подходах к
мосту
III
2
50,2
3 х 15
существующий
10,07 + 2 х 0,75
проектный габарит в существующих параметрах, ширину тротуаров – в
соответствии с требованиями
СП 35.13330.2011
Н-30 НК-80/А11 НК-80
а/бетон
капитальный
а/бетон
существующее парапетное.
проектное согласно ГОСТ Р 52289-2004 и ГОСТ Р 52607-2006
При разработке проектной документации ^"Армейского сборно-разборного надвижного быстро
возводимого автомобильного однопутного моста", длиной 62,484 метров с использованием упругих
, пластических соединений стальных пролетов с использованием изобретений проф. дтн ЛИИЖТа,
изобретенные в СССР А.М.Уздиным №№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746,

197.

858604, 1760020 и опыта строительства двух мостов с упругопластическими стальными балками
(ферм) автомобильных мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате
Миннесота, через реку Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г
Вильнюсе ( 2016 г) , для использования опыта блока НАТО, для переправы, через реку Днепр (Россия) в
Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной
фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения моста
согласно нормам MSK-64
8.
8.1. Выполнить сбор исходных данных для проектирования, не перечисленных в п. 7 настоящего задания.
8.2. Разработать программу инженерных изысканий, а также выполнить инженерные изыскания в объеме,
необходимом для обоснования и принятия решений при разработке проектной документации, в том числе:
8.2.1. Инженерно-геодезические;
8.3. Определить местонахождение инженерных коммуникаций, попадающих в границы проектных работ, получить
технические условия, составить сводный план инженерных сетей и согласовать с владельцами сетей.
Разработать проектную документацию на переустройство инженерных коммуникаций (при необходимости).
8.4. Составить ведомости материальных ресурсов и технических параметров материалов (с учетом указания
физико-механических свойств материалов, прочностных характеристик) в соответствии с письмом Росавтодора
№ об-28/1266-ис от 23.03.05 (приложение к письму № 1 и № 2).

198.

8.5. Составить ведомость дефектов в соответствии с требованиями ВСН 4-81, с фотоиллюстрациями
выявленных дефектов и направить Заказчику для рассмотрения выявленных видов дефектов и мероприятий по их
устранению на рабочей группе.
8.6. При составлении дефектной ведомости отразить и учесть при проектировании следующее:
8.6.1.
состояние насадок и ригелей опор (наличие трещин, сколов, раковин, оголения арматуры,
недостаточный защитный слой), просадку грунта насыпи подходов под насадкой или ригелем устоев
8.6.2.
состояние тела опоры (наличие трещин, в том числе и «волосяных»)
8.6.3.
состояние и конструкцию опорных частей моста;
8.6.4.
состояние пролетных строений и накладных тротуарных блоков (при их наличии)
8.6.5.
состояние и конструкцию сопряжения моста с насыпью подходов ( переходных плит, шкафной
стенки)
8.6.6.
состояние и конструкцию укрепления откосов конусов и насыпи;
8.6.7.
состояние и наличие организованного сброса воды с проезжей части моста и сопряжения
моста с насыпью.
8.7. Разработать проектную документацию, включая:
9.7.1.Материалы с обоснованием принятых технических решений;
9.7. 2.Основные проектные решения (применение новых или дорогостоящих материалов, машин, механизмов и
технологий), согласованные с Заказчиком;
8.8. Согласовать проектную документацию с заинтересованными физическими и юридическими лицами в
соответствии с действующим законодательством.
8.9. Участвовать без дополнительной оплаты при рассмотрении проекта Заказчиком в установленном им порядке,
представлять пояснения, документы и обоснования по требованию Заказчика, вносить в проектную документацию
по результатам рассмотрения у Заказчика изменения и дополнения, не противоречащие данному заданию.
8.10. При устройстве временных площадок для складирования строительных материалов при ремонте мостового
перехода согласовать проектную документацию с Администрацией района, заинтересованными организациями и с
лицами, чьи права могут быть нарушены при временном устройстве площадок.
8.11. Предусмотреть на время ремонта временную разметку.
8.12. Предусмотреть устройство светофорных объектов для пропуска автомобильного движения на период
ремонта.

199.

10 Требования к составу работ, содержанию и оформлению проектной документации на проектирование
"Армейского сборно-разборного надвижного быстро возводимого автомобильного однопутного
моста", длиной 62,484 метров с использованием упругих , пластических соединений стальных
пролетов с использованием изобретений проф. дтн ЛИИЖТа, изобретенные в СССР А.М.Уздиным
№№ 1143895, 1168755, 1174616, 2550777, 165076, 2010136746, 858604, 1760020 и опыта
строительства двух мостов с упругопластическими стальными балками (ферм) автомобильных
мостов в США , в штате Монтана, через реку Суон (2017 г ) и в штате Миннесота, через реку
Лебель и в КНР через пролив Тайвань ( 2020) и в Литве, мост через реку в г Вильнюсе ( 2016 г) , для
использования опыта блока НАТО, для переправы, через реку Днепр (Россия) в Смоленской области .
Грузоподъемностью моста 60 тонн. Ширина моста 3 метра, ширина прохода 0,75 м, с
использованием (аналог) и с использованием теории проф дтн ПГУПС А.М. Уздина , в упругой
механики с упругопластической деформации , пролетных строений мостов в механик деформируемых
сред и конструкций , с учетом математического моделировании в ПК SCАD , и взаимодействие
пролетного строения с геологической средой , в том числе нелинейным методом расчета стальной
фермы пролетного строения моста и численным и аналитическим методом , оптимизацией и
идентификации динамических и статических задач теории устойчивости автомобильного и
железнодорожного моста с помощью моделирования конструкций пролетных строений мост , что
исключает деформаций и обрушения конструкций опор, пилонов и самого пролетного строения моста
согласно нормам MSK-64
10.1. Состав проектной документации принять в соответствии с требованием постановления правительства
Российской федерации № 87 от 16.02.2008г «О составе разделов проектной документации и требования к их
содержанию».
10.2. Состав работ, предусмотренных проектной документацией, принять в соответствии с «Классификацией
работ по капитальному ремонту, ремонту и содержанию автомобильных дорог общего пользования и
искусственных сооружений на них», утвержденной приказом Министерства транспорта Российской Федерации
№160 от 12.11.2007;

200.

10.3. В проектной документации представить дополнительные разделы:
10.3.1. Организация дорожного движения на время ремонта мостового перехода;
10.3.2. Внедрение новых технологий, техники, конструкций и материалов, в соответствии с письмом Росавтодора
от 26.05.06 № 01-28/3486, с учетом «Примерного перечня приоритетных технологий, конструкций, материалов,
которые необходимо использовать при разработке проектной документации» (Приложение №3 к заданию);
10.4. Сметную документацию разработать и оформить в соответствии с приложением №4 к заданию;
10.5. Проектные решения должны отвечать требованиям технических документов, приведенных в Приложении №
2.
10.6. Для разработки и обоснования проектных решений могут быть использованы и другие технические
документы и результаты научно-исследовательских разработок по письму Росавтодора от 13.01.2004 года № ОС28/172-ис.
10.7. Проектную документацию оформить подписями руководителя генеральной проектной организации и главного
инженера проекта, круглой печатью генеральной проектной организации, а также справкой проектной организации
о соответствии проекта требованиям действующего законодательства и задания на проектирование.
10.8. Материалы проектной документации
оформить в соответствии с ГОСТ Р 21.1101-2009 «Система
проектной документации для строительства. Основные требования к проектной и рабочей документации».
10.9. Электронную версию проектной документации выполнить в полном соответствии с бумажной версией по
принципу:
10.9.1 Каталог - «Наименование объекта» электронная версия проекта в формате «*.pdf» с разбивкой по составу
проекта и содержанию томов.
10.9.2 Каталог - «Наименование объекта» - электронная версия проекта в формате «*.doc», «*.xls», «*.dwg» с
разбивкой по составу проекта и содержанию томов. Расчет дорожной одежды в формате «*.rdo», ЦММ проекта с
проектным решением, CRD проекта.
10.9.3 Каталог «Сметная документация» - файлы сметной документации в исходном формате программы и
промежуточных форматах ESTML и АРПС.
10.10.
Все папки, и файлы должны иметь наименование, соответствующее их содержанию. В связи с тем, что
путь к файлу складывается из большого количества символов, допускается сокращение в наименовании томов,
разделов, файлов, позволяющее читать и открывать файл в необходимой программе.
10.11.
Вся проектная документация, все тома должны иметь наименование и оглавление с содержанием тома, с
соответствующими титульными листами пронумерована, сшита и представлена Заказчику.
10.12.
Копии документов приложить в отсканированном виде. Электронную версию проектной документации

201.

передать заказчику на CD или DVD дисках.
11 Дополнительные требования
11.1. Требования к точности, составу, сдаче отчетов об изыскательских работах, выполнить на основе положений
СНиП 11-02-96, а также:
11.1.1
по инженерно-геодезическим изысканиям – СП 11-104-97.
11.2. Продолжительность ремонта – принять на основе проекта организации строительства.
11.3. Применение зарубежных машин, механизмов, оборудования, материалов, конструкций и технологий при
отсутствии отечественных аналогов согласовать с Заказчиком, представить рекомендации по применению
строительных материалов, конструкций и изделий.
11.4. План мостового перехода выполнить в масштабе 1:500 зоны мостового перехода.
11.5. В составе проектной документации выделить в отдельные книги:
11.5.1.Технический отчет об инженерных изысканиях;
11.5.2.Пояснительная записка в соответствии с постановлением правительства Российской федерации № 87 от
16.02.2008г «О составе разделов проектной документации и требования к их содержанию» с обоснованием
технических решений и разработкой всех разделов, включая:
11.5.2.1.проект организации ремонта (разработать чертежи: «строительный генеральный план» с указанием
площадок для стоянки техники, складирования материалов, бытовых вагончиков; «временная транспортная схема
движения построечного транспорта»;
11.5.2.2.организация дорожного движения на период ремонта;
11.5.2.3.переустройство коммуникаций, в том числе перечень коммуникаций с разработкой чертежа «сводный план
сетей»,согласованный с собственниками инженерных сетей (при необходимости);
11.5.2.4.внедрение новых технологий, техники, конструкций и материалов.
11.5.3.Сводная ведомость объемов работ;
11.5.4.Сметная документация.
12 Требования к сдаче проекта Заказчику
12.1. Геодезические знаки разбивочной основы, закрепляющие планово-высотное положение проектируемой
автомобильной дороги, моста в натуре передать Заказчику по акту после окончания работ по инженерным
изысканиям, до окончания проектирования.
12.2. Знаки должны быть установлены вдоль границы участка строительных работ, быть четко обозначены для

202.

исключения неумышленного уничтожения, позволять однозначно идентифицировать закрепляемый пункт, в
соответствии со СНиП 3.01.03-84 «Геодезические работы в строительстве».
12.3. Технический отчет об инженерных изысканиях передается Заказчику по установленному в договоре графику
работ в 3-х экземплярах на бумажном носителе по накладным, в 1-м экземпляре в электронном виде, в срок по
установленному в договоре графику работ по накладным с сопроводительным письмом.
12.4. Проектная документации передается Заказчику на электронном носителе в 1-ом экземпляре, а также в
книгах в 4-х экземплярах, сметная документация в книгах в 3-х экземплярах, в электронном виде – в 1 экземпляре на
диске в срок по установленному в договоре графику работ по накладным с сопроводительным письмом. В
накладных, в том числе, указать номер и дату договора
12.5. Порядок отчетности выполнения работ: ежемесячно, не позднее 20 числа каждого месяца, представлять
Заказчику отчет по утвержденной форме.
12.6. Срок сдачи проектной документации Заказчику в соответствии с договором.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-Etaja-Obespecheniya-Seismostoykosti-351-Str

239.

240.

241.

242.

243.

Более подробно об использовании демпфирующих сдвиговых компенсаторов гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой
жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
для обеспечения сейсмостойкости на фрикционно-подвижных соединениях
сери ФПС-2015- Сейсмофонд, с использованием изобретения Андреева Борис Александровича № 165076 «Опора
сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения сейсмической энергии» и патент № 154506 «Панель противовзрывная» для
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb
действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
Более подробно ,смотрите внедренные изобртения организации "Сейсмофонд" при СПб ГАСУ ЯпоноАмериканской фирмой RUBBER BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTIONDAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает преимущества вращательного трения
амортизируя с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина
крошится. Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим шарниром, трубчатого в вида
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s

244.

https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВСН 144-76
-----------------------------Минтрансстрой, МПС
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ
ИНСТРУКЦИЯ
ПО ПРОЕКТИРОВАНИЮ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
Дата введения 1977-01-01
РАЗРАБОТАНА Всесоюзным научно-исследовательским институтом транспортного строительства (ЦНИИС) - авторы К.П.Большаков, В.А.Зубков - и
Научно-исследовательским институтом мостов Ленинградского института инженеров железнодорожного транспорта (НИИмостов ЛИИЖТ) - авторы
В.Н.Савельев, Р.Г.Хусид - взамен действовавших ранее "Указаний по применению высокопрочных болтов в стальных конструкциях мостов" (ВСН 144-68) в
отношении норм проектирования (в отношении норм и правил выполнения соединений на высокопрочных болтах ВСН 144-68 были ранее заменены ВСН
163-69 - ‖Инструкцией по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов‖) и п.7.24. ‖Указаний по
проектированию вспомогательных сооружений и устройств для строительства мостов‖ (ВСН 136-67).

245.

При разработке ВСН 144-76 был учтен отечественный и зарубежный опыт в области исследования, проектирования, строительства и эксплуатации
пролетных строений с соединениями на высокопрочных болтах и использованы результаты последних научно-исследовательских работ ЦНИИС и
НИИмостов ЛИИЖТ по нормам вероятностного расчета фрикционных соединений (авторы-составители настоящей Инструкции), по клеефрикционным
(М.Л.Лобков), фланцевым (В.Н.Савельев, А.А.Ровный) соединениям и фрикционным соединениям с консервацией контактных поверхностей специальным
грунтом (Б.П.Кругман, А.Н.Потапов) и др.
Инструкция разработана в развитие действующих нормативных документов по проектированию мостов. В Инструкции учтены требования действующих
государственных и отраслевых стандартов.
ВНЕСЕНА ЦНИИС Минтрансстроя и НИИмостов ЛИИЖТ МПС
УТВЕРЖДЕНА распоряжением Минтрансстроя и МПС от 8 октября 1976 года N А-1470/П-30621
ВЗАМЕН ВСН 144-68 и п.7.24 ВСН 136-67

246.

247.

МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СВОД ПРАВИЛ
СП 16.13330.2011
СТАЛЬНЫЕ КОНСТРУКЦИИ
Актуализированная редакция
СНиП II-23-81* Москва 2011
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах с контролируемым натяжением) СП 16.13330.2011

248.

14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh
Rbh Abn
h
,
(1)
где Rbh
– расчетное сопротивление растяжению высокопрочного болта, определяемое
согласно требованиям;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения, распределение
этой силы между болтами следует принимать равномерным. В этом случае количество
болтов в соединении следует определять по формуле
n
N
,
Qbh k b c
где Qbh
(2)
– расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не найден.;
k
– количество плоскостей трения соединяемых элементов;
γс
– коэффициент условий работы, принимаемый по таблице 1;
γb
– коэффициент условий работы фрикционного соединения, зависящий от
количества п болтов, необходимых для восприятия расчетного усилия, и принимаемый равным:
0,8 при п < 5;

249.

0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям СП 16.13330.2011
Т а б л и ц а 42
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
номинальных
Способ обработки
Коэффици
диаметров отверстий и болтов
(очистки)
ент
δ, мм, при нагрузке
соединяемых
трения μ
поверхностей
динамической δ = 3 –
динамической δ = 1;
6;
статической δ = 1 – 4
статической δ = 5 – 6
1 Дробемѐтный
0,58
1,35
1,12
или
дробеструйный
двух
поверхностей без
консервации
2 Газопламенный 0,42
1,35
1,12
двух
3 поверхностей
Стальными без 0,35
1,35
1,17
консервации
щетками
4 двух
Без обработки
0,25
1,70
1,30
поверхностей
без
П р и м е ч а н и е – При контроле натяжения болтов по углу поворота гайки
консервации
значения γh
следует умножать на 0,9.
2) Несущую способность по местной устойчивости сжатых пластин на участках между крепежными деталями следует определять в
соответствии с ТКП EN 1993-1-1, принимая расчетную длину равной 0,6р-|. Расчет на местную устойчивость не требуется, если
отношение p-i/f меньше 9в. Расстояние до края элемента поперек усилия не должно превышать значений для свободных свесов сжатых
элементов согласно ТКП EN 1993-1-1. Эти требования не распространяются на расстояния до края элемента вдоль усилия.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов крепления в виде болтовых соединений с
изолирующими трубами и амортизирующими элементами широк используются в США , Канаде на Алскинском нефтепроводе ( см

250.

Канадские изобретения ) для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64), серийный
выпуск, закрепленных на основании фундамента с помощью фрикционно-подвижных соединений (ФПС) и демпфирующих
узлов крепления (ДУК), выполненных согласно ТКП 45-5.04-274-2012 (02250), п.10.3.2 и изобретениям №№
1143895,1174616, 1168755 SU, 4094111US, TW201400676
Наименование
Нормативная
Применение
изделия
документация
Шпилька
ГОСТ 9066-75
Фланцевое соединение по ГОСТ
12815-80
Шпилька
DIN 976-1
Для крепления транспортировочных
полнорезьбовая
брусков
Гайка
ГОСТ 9064-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 9065-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 6402-70
Фланцевое соединение по ГОСТ
12815-80
Болт
ГОСТ 7798-70
Фланцевое соединение по ГОСТ
12815-80
Заклёпка
Установка доборного элемента
вытяжная
Саморезы
Закрепления
металоосайдинга/сэндвича и
дополнительного оборудования к
блок – боксу
Хомут
АТК-25.000.000
Фиксация трубопровода
БОЛТЫ

251.

ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционно-подвижных соединений
контролируемых натяжением и растяжные соединения описаны в СП 16. 13330.2011 . Стальные
конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на болтах с контролируемым
натяжением) и ТКП 45-05. 04-274-2012 (02250). Стальные конструкции (правила расчета). Минск. 2013
г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011

252.

14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям 5.6.

253.

254.

Расчетную несущую способность фланцевого фрикционно -подвижного соединения (ФФПС) или фланцевого
демпфирующего узла крепления (ФДУК) демпфирующих сдвиговых компенсаторов для гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
на сдвиг поверхностей трения, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9, следует определять по формуле
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных
стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с
контролируемым натяжением, в соответствии со ссылочными стандартами группы 7

255.

(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица 3.6 — Значения ks
Описание
Болты, установленные в нормальные отверстия
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия
перпендикулярно продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси
отверстия
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси
отверстия
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси
отверстия
ks
1,0
0,85
0,7
0,76
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
A
B
C
D
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы
7 (см. 1.2.7). Примечание 2 — Классификация поверхностей трения при любом другом способе
Коэффициент
трения m
0,5
0,4
0,3
0,2

256.

обработки должна быть основана на результатах испытаний образцов поверхностей по процедуре,
изложенной в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 3 — Определения классов
поверхностей трения приведены в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 4 — При
наличии окрашенной поверхности с течением времени может произойти потеря предварительного
натяжения.
Вместо упруго пластичного материала для внутренней трубы виброизолирующих материал гофрированные бы или
Виброфлекс а болт обматываетсмя медной мягкой лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое соединение Епишев А П , Клепцов И.П
Можно использовать в демпфирующем болтовом соединении используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой проволоки
В заключение необходимо сказать о соединении работающим на растяжение при контролируемом натяжении
может обеспечить не разрушаемость сухого или сварного стыка при импульсных растягивающих нагрузках и
многокаскадном демпфировании магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу за бесценок , внедряются за рубежом на
аляскинском нефтепроводе в США, патентуются в Канаде, США

257.

Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895

258.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
(51) МПК 2010 136 746
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(71) Заявитель(и):
(21)(22) Заявка: 2010136746/03, 01.09.2010
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)

259.

443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и установленных на легкосбрасываемых фрикционных соединениях при
избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под действием
взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет ослабленной подпиленной
гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности фрикционных, скользящих
соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением
и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет
одинаковое напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным несущим
конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определить величину горизонтального и вертикального
перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное
перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном
полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций
(стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по
методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК

260.

G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович
(RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - Миролюбов Ю.П.(RU)
М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом
соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения. Предварительно ослабляют ее затягивание. Замеряют при затягивании значение
момента закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышения точности результатов испытаний.

261.

Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может быть использовано в мостостроении и
других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии устройства соединений на
высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период обследования конструкций (строительные
нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют
момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты закручивания k соответствуют
расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ, поскольку предусматриваемая
технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в результаты измерений. По данным
Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент закручивания зависит от качества смазки
резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем
в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты измерений. Способ реализован с
помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл.
08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более
длительном сроке эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт
резьбовой пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе превосходит величину
крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях
должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента закручивания для подтяжки болтов.
Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с учетом влияния времени,
аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний
абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента k i в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.

262.

Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как
правило, не на том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения,
произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее поворота в области упругих деформаций производят с замером значения
момента закручивания гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения величины коэффициента закручивания за
счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы,
на котором болт сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) M з и измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки; как правило, этот угол составляет
60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины и
количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах
этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при
постоянном диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного

263.

натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения коэффициента закручивания,
характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий натяжения болтов в период обследования
конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого
ослабление ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия
натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)

264.

ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1, 07.08.1992. SU 1735631
A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO 2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения несущей способности фрикционного
соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку,
контактирующие поверхности которых, предварительно обработанные по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения
болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие
сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют коррекцию технологии монтажа. В качестве
показателя сравнения используют проектное значение усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала. В
результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.

265.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использовано для определения фактического
напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся в эксплуатации, так и при
подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в которых передача усилия обжатия
соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному
высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m 1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые отражаются в проектной документации,
являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для
натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных болтов. В качестве нормативного коэффициента трения принимается
среднестатистическое значение, определенное по возможно большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55.
Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно
по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ
Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ его нанесения», которое обеспечивает временную защиту от коррозии
отдробеструенных в условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет
(до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На строительном объекте приходится производить повторную абразивноструйную обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение
дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от
промышленных центров требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно снижение усилий
обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения климатических факторов,
соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых нагрузок от транспорта, движущегося по мостам, поэтому со
временем требуется замена узлов металлоконструкции. Более того, в настоящее время обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и
при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.

266.

Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки фактической надежности работы
фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их эксплуатации, причем возможность проверки предусмотрена условиями
поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и инструментальной базы,
способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на
срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Y b - коэффициент условий работы соединения, зависящий от количества (n) болтов, необходимых для восприятия
расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям соединенных элементов; Y h - коэффициент надежности,
зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на
высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого
момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента
затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета
деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после предварительного ее ослабления, поэтому он может отличаться от расчетного
(нормативного), что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий
приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в
момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы динамометрического ключа, но точность измерения и область возможного применения
их ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3
болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О деформации судят по отношению
между величиной смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой
расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в менее напряженных. В
итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с высокопрочными болтами (Рабер

267.

Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении усилия сдвига посредством образцовсвидетелей, который заключается в том, что образцы изготавливают из стали, применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в
проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от величины
отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к тем или иным неточностям в
определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического, так и эксплуатационного характера. Кроме того, неизвестно при
каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения.
Следует отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки
металлоконструкции может не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочными болтами, включающий
приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку, контактирующие поверхности которых предварительно обработаны по проектной
технологии, соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно
увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины
отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную модель, обладающее рядом
преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечения надежности работы фрикционного
соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным отношением усилия сдвига к усилию
натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление
сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение меньше 0,5, то кроме увеличения усилия
натяжения высокопрочного болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно
сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает
нормативную величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом преимуществ перед известными устройствами.
Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным
устройством, причем неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое
соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом рычага
и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве силоизмерительного устройства используется
динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.

268.

На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и
гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные
между собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной
металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится
ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения
f>0,55 или, если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях.
Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной величине.
Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия сдвига путем закрепления корпуса 1,
болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4,
снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10
(тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10 фиксируют полученную величину. Это усилие и
является усилием сдвига (силой трения покоя). Сравнивают полученную величину момента сдвига (М сд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от
величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительно обработать контактирующие
поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно использовать для любых болтовых
соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и методов обработки соприкасающихся поверхностей, причем т.к. измерение
усилия сдвига на обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего
элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют высокопрочным болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта, а
определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой
помещают самоустанавливающийся сухарик, выполненный из закаленного материала.

269.

2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят
обработку контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.03.2017)
Пошлина:учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(24) Дата начала отсчета срока действия патента:
17.06.2011
Приоритет(ы):
(22) Дата подачи заявки: 17.06.2011
(45) Опубликовано: 20.01.2013 Бюл. № 2
(72) Автор(ы):
Андрейченко Игорь Леонардович (RU),
Полатиди Людмила Борисовна (RU),
Бурцева Ирина Валерьевна (RU),
Бугреева Светлана Ильинична (RU),
Красинский Леонид Григорьевич (RU),
Миллер Олег Григорьевич (RU),
Шумягин Николай Николаевич (RU)
(56) Список документов, цитированных в отчете о поиске: SU 176199 A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1, 10.11.2005. (73) Патентообладатель(и):
Открытое акционерное общество
WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, 19.05.2005.
"Авиадвигатель" (RU)
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО "Авиадвигатель", отдел защиты интеллектуальной собственности
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть использовано для соединения вращающихся деталей ротора газотурбинного двигателя

270.

авиационного и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту
пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами. Каждое отверстие выполнено овальной формы и вытянуто в окружном направлении,
а втулка - с овальным сечением, вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер сечения втулки в радиальном направлении; b - размер сечения
втулки в окружном направлении; с - длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение циклического ресурса и надежности болтового
соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть использовано для соединения вращающихся деталей ротора газотурбинного двигателя
авиационного и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым сечением, которую используют для центровки и разгрузки болта, снижения напряжений
среза в самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин. В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При
вращении деталей в районе отверстий под болты возникают напряжения. Наличие концентратора напряжения, повышающего уровень действующих напряжений в 3-4 раза, является
основным недостатком такой конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов. Отверстия под болты, являющиеся концентраторами напряжений, могут быть расположены
в полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления концентратора в виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень действующих напряжений в 3-4 раза и снижает ресурс деталей, является основным
недостатком такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки
деталей подтверждена испытаниями и широко используется, например, во фланцах под балансировочные грузики лабиринтов диска 13-ой ступени ротора компрессора высокого давления
(КВД) двигателей ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий пакет деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые
отверстия (Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая повышенные напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и
надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и надежности болтового соединения вращающихся деталей при высоких параметрах работы
путем разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей, объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на
высоту пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами, согласно п.1 формулы изобретения, каждое отверстие выполнено овальной
формы и вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и сохранения необходимой площади контакта между деталями и болтом необходимо

271.

соблюдать следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков и расчетов напряженно-деформированного состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении, и выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости
для дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления ресурсами авиационного ГТД с целью повышения прочностной надежности,
увеличения ресурсов и сокращения затрат при ресурсных испытаниях (применительно к двигателю ПС-90А и его модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей компрессора, а при изготовлении втулок из легкого и прочного материала - позволяет снижать
массу фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных напряжений в отверстиях соединяемых деталей, следовательно, снижается циклическая
долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается площадь цилиндрического сечения сопрягаемых деталей, что повышает риск потери
несущей способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально уменьшается и площадь цилиндрического сечения соединяемых деталей, что повышает риск
потери несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии действий окружных напряжений при этом выравниваются, а эффект снижения
концентраций напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между деталями и болтом, а также из технологических соображений необходимо соблюдать
следующее соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в
тонкой стенке втулки возникают недопустимо высокие напряжения.

272.

Таким образом, при высоких параметрах работы использование данной конструкции болтового соединения дает возможность не только выравнивать напряжения по толщине пакета
деталей и в болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях, повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение, на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей
ротора КВД в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД), например, фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй
ступени КВД. В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5 с таким же овальным сечением и размерами а и b в радиальном и
окружном направлениях, соответственно. В отверстии 4 втулка 5 размещена на всю толщину пакета деталей 1, 2, 3. Во втулке 5 имеется круглое центральное отверстие 6 диаметром d под
стандартный стяжной болт 7 круглого сечения. Диаметр головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую площадь контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при этом длина окружности С между ними зависит от размера сечения b втулки 5 в окружном
направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой размещают стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация
напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет работать при высоких заданных параметрах двигателя, повышая циклический ресурс и
надежность болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с
размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с
овальным сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5; c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d - диаметр отверстия втулки под болт.

273.

2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
(56) Список документов, цитированных в отчете о поиске: RU 2192383 C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР 0194615 A1, 18.09.1986. Туманов Антон Вячеславович (RU)
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову

274.

(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы кранов. Согласно изобретению узел снабжен размещенной под рельсом и опирающейся на
верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из пружинной стали с продольными, имеющими плавные закругления гофрами и
непрерывной по всей длине рельса. Ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса
подкрановой балки и сквозь поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами. Изобретение
обеспечивает повышение долговечности рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым конструкциям с интенсивным тяжелым режимом работы кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается резинометаллическая прокладка, являющаяся податливым слоем, уменьшающим максимумы
локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне подкрановой балки. Резинометаллическая прокладка значительно снижает локальные
напряжения σу и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового рельса, и поэтому ее приходится менять чаще, чем рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка, обладающая такой же податливостью, как резинометаллическая, но обладающая
большей долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс. Тормозная балка симметрична и помещена ниже боковых глав рельса для обеспечения
свободного прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб подкрановой конструкции и позволяет достичь наибольшего снижения
материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с подкрановой балкой и тормозной балкой между рельсом и подкрановой балкой размещена

275.

демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной
стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса
подкрановой балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные
тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной тормозной балкой. Тормозная балка находится ниже боковых глав рельсов на расстоянии,
обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные безребордные колеса 2 мостового крана и передают вертикальные силовые импульсы Р.
Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по боковым главам рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с продольными гофрами (5...10 шт.) одинаковой высоты с плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной балки. Швеллеры 6 соединяют верхний пояс 5 с симметричной тормозной балкой 7.
Тормозная балка 7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом посредством болтов 8, затянутых с гарантируемым натягом.
Симметричные элементы тормозной балки 7 также соединены друг с другом через стенку двутавровой прокатной подкрановой балки посредством болтов 8 с гарантируемым натягом.
Болты 9 проходят сквозь подошву трехглавого рельса 1 и полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10, выполненными из пружинной стали. Кроме этого, в
зазоре между боковой гранью верхнего пояса 5 и гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на верхний пояс 5, а между нижней гранью
боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1 упруго оседает под каждым из колес 2, сдавливая демпфирующую подрельсовую
прокладку 4. Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью подошвы рельса 2 и верхнего пояса 5 возникают распорные силы,
гасящиеся за счет сил трения. Напряжение в тарельчатых пружинах несколько ослабевает (на 10...15%). Локальное взаимодействие между трехглавым рельсом 2 и верхним поясом 5
подкрановой балки распределяется на большую длину и тем самым локальные суммарные напряжения Σσ у значительно снижаются и этим выносливость повышается. При уходе колеса
крана демпфирующая подрельсовая прокладка 4 упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3 горизонтальные усилия передаются за счет сил трения. Если же силы трения будут
превышены, то в работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой кромкой верхнего пояса 5. Далее в работу на изгиб включается
симметричная тормозная балка 7, опирающаяся в горизонтальной плоскости на колонны каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса размещена демпфирующая подрельсовая прокладка с продольными гофрами (5...10
штук) одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью пружинной стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые шайбы, выполненные пружинными стальными.

276.

4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за старения резины, свойства демпфирующей подрельсовой прокладки остаются
неизменными во времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой прокладки, так как в ней отсутствует быстро изнашивающаяся и стареющая резина.
Экономический эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки долговечности подкрановых путей производственных зданий. Автореферат диссертации
докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся тем, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс
подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине
рельса, причем ширина упомянутой прокладки на 5-10% меньше ширины верхнего пояса подкрановой балки, при этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и
сквозь поддерживающие верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.
Адреса американских и немецких фирм, организация занимающихся проектированием,
изготовлением монтажом гасителей динамических колебаний гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD СП 16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380 https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf для применения демпфирующих сдвиговых компенсаторов для обеспечения сейсмостойкости, за счет легко сбрасываемости
панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением из
латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их программная реализация
расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных, для сдвига болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
в США , Германии, Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M
0A9 Call Toll Free: 1-800-585-TAPS (8277) Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919
20th Avenue SE • Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201
www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map] Toll Free:

277.

800.426.9341 Local: 425.951.6200 Fax: 425.951.620 Website address: www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle
School Road, Suite 1019, Wayne, PA 19087 Telephone: (610) 971-4850 Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
610.971.4850 (USA)
Wayne, PA 19087-1866
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0
Fax +49 40 540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22
30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Berlin Breitenbachstra?e 7 – 9 13509 Berlin
Subsidiary
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Gummiteknik A/S Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ
«ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук А.С. П латонов, канд. техн. наук И.Б . Ройзм ан, инж . А.В. К ру чинки н, канд. техн. наук
М.Л. Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября 1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации «Трансстрой», Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов»
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).

278.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755, 1174616, № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И
СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРО-ВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано 20.01.2013 , № 165076 RU E 04H 9/02 «Опора
сейсмостойкая», опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка", E04 Н 9 /02, заявки
на изобретение № 2018105803/20 (008844) от 11.05.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопро-водов" F 16L 23/02 , заявки на изобретение №
2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на изобретение № 20190028 "Виброизолирующая опора E04 Н 9 /02 для
лабораторного испытание на взрывостойкость и взрывопожаростойкость сейсмостойкость фрагментов крепления на ФФПС).
:1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в
отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжение болта осуществляется динамометрическими ключами,
применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание несущей способности образца.
Испытания рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прикладывается диаграмма сжатия), и фамилии лиц,
проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть воспринято каждой поверхностью трения
соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болтоконтактом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследовательской организаций.
Приложение М (информационное) Библиография
[1 ] . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
[2 ] . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. Госгортехнадзор СССР, 1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
[4 ] . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко воспламеняющихся и взрывоопасных грузов. Оргт рансст рой, 1978 г.
[ 5 ] . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93 Российской Федерации.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

ОПОРА СЕЙСМОСТОЙКАЯ165 076

293.

РОССИЙСКАЯ
ФЕДЕРАЦИЯ
(19)
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее
Статус:
изменение статуса: 07.06.2017)
21)(22) Заявка: 2016102130/03,
22.01.2016
24) Дата начала отсчета срока
действия патента:
22.01.2016
Приоритет(ы):
22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
45) Опубликовано: 10.10.2016 Бюл.
№ 28
Адрес для переписки:
197371, Санкт-Петербург,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076

294.

Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования фрикцион но
податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия в котор ых
установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в штоке. Ширина паза в штоке соответствует
диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока совмещают с
поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до заданного усилия.
Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к
увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты объектов
от динамических воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02
с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках
выполнены овальные отверстия через которые пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит
взаимное проскальзывание листов или прокладок относительно накладок контакта листов с меньшей шероховатостью. Взаимное
смещение листов происходит до упора болтов в края овальных отверстий после чего соединения работают упруго. После того как
все болты соединения дойдут до упора в края овальных отверстий, соединение начинает работать упруго, а затем происходит
разрушение соединения за счет смятия листов и среза болтов. Недостатками известного являют ся: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из -за
разброса по трению. Известно также Устройство для фрикционного демпфирования антиветровых и антисейсмичес ких воздействий
по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10.
Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько
внешних пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементы болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через блок
поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении. Таким образом получаем
конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих
расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет конструкцию без
разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей
до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней - корпуса,

295.

закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси и с возможностью
ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе выполнено центральное
отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия (перпендикулярные к центральной оси) в
которые устанавливают запирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два открытых
паза, которые обеспечивают корпусу возможность деформироваться в радиальном направлении. В теле штока, вдоль центра льной
оси, выполнен паз ширина которого соответствует диаметру запирающего элемента (болта), а длина соответствует заданному
перемещению штока. Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы
обеспечивают возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от
торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется чертежами, где на фиг. 1 изображен
разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4
изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое охватывает
цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его оси,
выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси отверстия
корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный глухой паз длиной «h»
(допустмый ход штока) соответствующий по ширине диаметру калиброванного болта, проходящего через этот паз. При этом длина
пазов «I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с
отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную)
навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с
поверхностью болта (высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия.
Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в
свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отвер стие корпуса - цилиндр
штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для каждой
конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.)
определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении корпус -шток,
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью
штока, при этом шток зафиксирован запорным элементом, выполненным в виде калиброванного болта, проходящего через
поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным усилием,
кроме того в корпусе, параллельно центральной оси, выполнено два открытых паза, длина которых, от торца корпуса, больше

296.

расстояния до нижней точки паза штока.

297.

298.

299.

300.

301.

2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
G01L 5/24 (2000.01)

302.

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович
(RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - Миролюбов Ю.П.(RU)
М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом
соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения. Предварительно ослабляют ее затягивание. Замеряют при затягивании значение
момента закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может быть использовано в мостостроении и
других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии устройства соединений на
высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период обследования конструкций (строительные
нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют
момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,

303.

где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты закручивания k соответствуют
расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ, поскольку предусматриваемая
технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в результаты измерений. По данным
Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент закручивания зависит от качества смазки
резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем
в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты измерений. Способ реализован с
помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл.
08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более
длительном сроке эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт
резьбовой пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе превосходит величину
крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях
должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента закручивания для подтяжки болтов.
Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с учетом влияния времени,
аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний
абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного
обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания нескольких десятков или даже сотен
болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как
правило, не на том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения,
произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее поворота в области упругих деформаций производят с замером значения
момента закручивания гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α

304.

/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения величины коэффициента закручивания за
счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы,
на котором болт сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки; как правило, этот угол составляет
60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины и
количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах
этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при
постоянном диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного
натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения коэффициента закручивания,
характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в конкретных условиях эксплуатации
соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий натяжения болтов в период обследования
конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.

305.

Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания,
отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого
ослабление ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия
натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его
диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
(24) Дата начала отсчета срока действия патента:
Хусид Раиса Григорьевна (RU)
19.11.2009
(73) Патентообладатель(и):
Приоритет(ы):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)

306.

(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1, 07.08.1992. SU 1735631
A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO 2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения несущей способности фрикционного
соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку,
контактирующие поверхности которых, предварительно обработанные по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения
болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие
сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют коррекцию технологии монтажа. В качестве
показателя сравнения используют проектное значение усилия натяжения высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала. В
результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использовано для определения фактического
напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся в эксплуатации, так и при
подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в которых передача усилия обжатия
соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному
высокопрочному болту и одной плоскости трения, определяют по формуле:

307.

где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые отражаются в проектной документации,
являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом
механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для
натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы оценки коэффициентов трения по
соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с
новыми элементами, а также для оценки возможности повторного использования высокопрочных болтов. В качестве нормативного коэффициента трения принимается
среднестатистическое значение, определенное по возможно большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55.
Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей,
обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно
по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ
Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ его нанесения», которое обеспечивает временную защиту от коррозии
отдробеструенных в условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет
(до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях
контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На строительном объекте приходится производить повторную абразивноструйную обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение
дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от
промышленных центров требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно снижение усилий
обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения климатических факторов,
соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых нагрузок от транспорта, движущегося по мостам, поэтому со
временем требуется замена узлов металлоконструкции. Более того, в настоящее время обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и
при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки фактической надежности работы
фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их эксплуатации, причем возможность проверки предусмотрена условиями
поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и инструментальной базы,
способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на
срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:

308.

где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов, необходимых для восприятия
расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh - коэффициент надежности,
зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на
высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого
момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на
контролируемую величину угла ее поворота от исходного положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента
затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм 2; αi - угол поворота гайки от исходного положения; σ - толщина пакета
деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания,
т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после предварительного ее ослабления, поэтому он может отличаться от расчетного
(нормативного), что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий
приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в
момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы динамометрического ключа, но точность измерения и область возможного применения
их ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3
болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О деформации судят по отношению
между величиной смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой
расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в менее напряженных. В
итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с высокопрочными болтами (Рабер
Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении усилия сдвига посредством образцовсвидетелей, который заключается в том, что образцы изготавливают из стали, применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в
проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от величины
отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к тем или иным неточностям в
определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического, так и эксплуатационного характера. Кроме того, неизвестно при
каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения.
Следует отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки

309.

металлоконструкции может не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с высокопрочными болтами, устраняющего
недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочными болтами, включающий
приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку, контактирующие поверхности которых предварительно обработаны по проектной
технологии, соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно
увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины
отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную модель, обладающее рядом
преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечения надежности работы фрикционного
соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным отношением усилия сдвига к усилию
натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление
сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение меньше 0,5, то кроме увеличения усилия
натяжения высокопрочного болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно
сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает
нормативную величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом преимуществ перед известными устройствами.
Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным
устройством, причем неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое
соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом рычага
и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве силоизмерительного устройства используется
динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и
гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные
между собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной
металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится
ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения
f>0,55 или, если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях.

310.

Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной величине.
Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия сдвига путем закрепления корпуса 1,
болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4,
снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10
(тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10 фиксируют полученную величину. Это усилие и
является усилием сдвига (силой трения покоя). Сравнивают полученную величину момента сдвига (М сд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от
величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительно обработать контактирующие
поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно использовать для любых болтовых
соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и методов обработки соприкасающихся поверхностей, причем т.к. измерение
усилия сдвига на обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего
элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют высокопрочным болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта, а
определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой
помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не
производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят
обработку контактирующих поверхностей металлоконструкции.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов

311.

Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву
хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь
зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в
плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на строительстве
при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в
отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться

312.

на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины
должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых
одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех
образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика,
проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для
защиты шаровых кранов и трубопровода от возможных вибрационных , сейсмических и взрывных воздействий
Конструкция фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным клином позволяет
обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении, вибрационных
вождействий от железнодорожного и автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит
их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на фланцевом
фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс
свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным
кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов

313.

Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических
воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое соединение , патент
RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное
демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при
импульсных растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только
по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению.
Известно также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU
1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В
сегментах выполнены продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических
нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения, при
этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности
расчета при использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и
трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным
пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой ,

314.

установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации
трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в
стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или
свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают
смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные сочетания
расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев,
которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает
надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за счет
уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный
клин и снабжен энергопоглощением .
+
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа
забиваенься стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный
клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.

315.

Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является
медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется
смянанием с энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты
шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на
чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной
шпильки с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по названием
фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента, воспринимающего
вибрационные и сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие
свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится
стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную
величину, обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с
одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их
жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и
герметичность фланцевого соединения трубопровода и шаровых кранов.

316.

Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность
соединения и надежность его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты
вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего
соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта
будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы,
подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного
фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой или
гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент,
фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены
с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м медым обожженм коллином
расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными элемент выполнен
в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки
.
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином
установлены тонкие свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная
обожженная гильза или втулка .
Фиг 1

317.

Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6
Фиг 7

318.

Фиг 8
Фиг 9

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

Заключение по использованию упругопластического сдвигового компенсатора гасителя
сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения
временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих
деформаций пролетного строения, кроме упругопластического сдвигового
компенсатора, гасителя сдвиговых напряжений для быстрособираемых на
антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций
САРМ под современной автомобильной нагрузкой не обеспечено прочностью как
основного сечения секций, так и элементов штыревых соединений, а использование
упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для
быстро собираемых на антисейсмических фрикционно-подвижных соединениях для
сборно–разборного железнодорожного армейского моста , все напряжения снимает
3. В металле элементов штыревых соединений при современной нагрузке
накапливаются пластические деформации, приводящие к выработке контактов
«штырь-проушина» и нарастанию общих деформаций (провисов), а упругопластический
сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на

377.

антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует
многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на
антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние
продольного профиля ездового полотна, снижающее пропускную способность и
безопасность движения, упругопластический сдвиговой компенсатор гаситель сдвиговых
напряжений для быстро собираемых на антисейсмических фрикционно-подвижных
соединениях для сборно–разборного железнодорожного армейского моста сдвиговый
нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного
ведомства для мобильного и кратковременного применения и штыревые монтажные
соединения в полной мере соответствуют такому назначению. При применении в
гражданском строительстве эту особенность следует учитывать в разработке
проектных решений, назначении и соблюдении режима эксплуатации, например путем
уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–

378.

разборного железнодорожного армейского моста исключает обрушение
железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых
конструкций разборных мостов, разработке отвечающих современным требованиям
проектных решений вариантов поперечной и продольной компоновки пролетных
строений с использованием упругопластических , сдвиговых компенсатор, которые
гасят, сдвиговые напряжения для быстро собираемых, на антисейсмических
фрикционно-подвижных соединениях , для отечественного сборно–разборного
железнодорожного армейского моста «Уздина»
Выводы Перспективы применения быстровозво-димых мостов и переправ
очевидны. Не имея хорошей методической, научной, технической и практической
базы, задачи по быстрому временному восстановлению
мостовых переходов будут невыполнимы. Это приведет к предсказуемым потерям
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в начале 1983 году
благодаря проф дтн ЛИИЖТ А.М.Уздину , который получил патент № 1143895, 1168755, 1174616, 2550777 на сдвиговых
болтовых соединениях, а инженер -механик Андреев Борис Иванович получил патент № 165076 "Опора сейсмостойкая" и №
2010136746 "Способ защита здания и сооружений ", который спроектировал необычный сборно-разборный армейский
универсальный железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов,
пластический сдвиговой компенсатор ( Сдвиговая прочность при действии поперечной силы СП 16.13330.2011, Прочностные
проверки SCAD Закон Гука ) для сборно-разборного моста" , названный в честь его имени в честь русского ученого,
изобретателя "Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн ПГУПС Уздина ,
пока на бумаге. Sborno-razborniy bistrosobiraemiy universalniy most UZDINA PGUPS 453 str https://ppt-online.org/1162626
https://disk.yandex.ru/d/iCyG5b6MR568RA
Зато, западные партнеры из блока НАТО , уже внедрили похожие изобретения проф дтн ПГУПС Уздина А М. по использованию
сдвигового компенсатора под названием армейский Bailey bridge при использовании сдвиговой нагрузки, по заявке на

379.

изобретение № 2022111669 от 27.04.2022 входящий ФИПС 024521 "Конструкция участка постоянного железобетонного моста
неразрезной системы" , № 2021134630 от 06.05.2022 "Фрикционно-демпфирующий компенсатор для трубопроводов",
а20210051 от 29 июля 2021 Минск "Спиральная сейсмоизолирующая опора с упругими демпферами сухого терния" . № а
20210217 от 23 сентября 2021, Минск " Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами"
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области при форсировании реки
Северский Донец российская армия потеряла много военнослужащих семьдесят четвѐртой мотострелковой бригады из-за отсутствия
на вооружение наплавных ложных мостов , согласно изобретениям № 185336, № 77618. Об этом сообщил американский Институт
изучения войны. "11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные мосты и плотно
сконцентрированные вокруг них российские войска и технику, в результате чего, как сообщается, погибло много русских солдат и
было повреждено более 80 единиц техники», — отмечается в публикации. По оценке института, войска РФ допустили значительные
тактические ошибки при попытке форсирования реки в районе Кременной, что привело к таким потерям. Ранее в Институте изучения
войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк, отказавшись от плана крупномасштабного
окружения ВСУ и выхода на административные границы Донецкой области https://disk.yandex.ru/i/3ncRcfqDyBToqg
Administratsiya Armeyskie mosti uprugoplasticheskim sdvigovoy jestkostyu 176 str
https://ppt-online.org/1235168
Среди прочих мостов , в том числе и современных разборных конструкций мостов, особое место занимает средний
автомобильный разборный мост (САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд
Минобороны СССР. В процессе вывода накопленных на хранении комплектов САРМ в гражданский сектор
строительства выяснилась значительная востребованность этих конструкций, обусловленная следующими их
преимуществами: полная укомплектованность всеми элементами моста, включая опоры; возможность перекрытия
пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде.
Паспортная грузоподъемность обозначена как 40 т при однопутном проезде и 60 т при двухпутном проезде.
Так как по ряду геометрических и технических параметров конструкции САРМ не в полной мере соответствуют
требованиям современных норм для капитальных мостов, то применение их ориентировано в основном как
временных.
Следует отметить, что при незначительной доработке - постановке современных ограждений и двухпутной
поперечной компоновке секций для однополосного движения можно добиться соответствия требуемым
геометрическим параметрам ездового полотна и общей грузоподъемности для мостов на дорогах общего
пользования IV и V технической категории.
В статье рассматривается конструктивная особенность штыревых монтажных соединений секций разборного
пролетного строения как фактор, определяющий грузоподъемность, характер общих деформаций и в итоге
влияющий на транспортно- эксплуатационные характеристики мостового сооружения.

380.

Целью настоящего исследования является анализ работы штыревых монтажных соединений секций пролетного
строения САРМ с оценкой напряженного состояния элементов узла соединения. Новизной в рассмотрении вопроса
полагаем оценку прочности элементов штыревых соединений и ее влияние на общие деформации - прогибы главных
балок.
Ключевые слова: пролетное строение; нижний пояс; верхний пояс; штыревое соединение; проушина; прочность;
прогиб, методом оптимизации и идентификации статических задач теории устойчивости надвижного армейского моста
(жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и
конструкций с учетом сдвиговой прочности при математическом моделировании.
Введение
Наряду с постоянными, капитальными мостами на автомобильных дорогах общего пользования востребованы
сооружения на дорогах временных, объездных, внутрихозяйственных с приоритетом сборно-разборности и
мобильности конструкций надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП
16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом
моделировании методом оптимизации и идентификации статических задач теории устойчивости надвижного армейского моста
(жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и
конструкций с учетом сдвиговой прочности при математическом моделировании.
.
Прокладка новых дорог, а также ремонты и реконструкции существующих неизбежно сопровождаются
временными мостами, первоначально пропускающими движение основной магистрали или решающими
технологические задачи строящихся сооружений. Подобные сооружения могут быть пионерными в развитии
транспортных сетей регионов с решением освоения удаленных сырьевых районов.
В книге А.В. Кручинкина «Сборно-разборные временные мосты» [1] сборно-разборные мосты классифицированы как
временные с меньшим, чем у постоянных мостов сроком службы, обусловленным продолжительностью выполнения
конкретных задач. Так, для пропуска основного движения и обеспечения технологических нужд при строительстве
нового или ремонте (реконструкции) существующего моста срок службы временного определен от нескольких
месяцев до нескольких лет. Для транспортного обеспечения лесоразработок, разработки и добычи полезных
ископаемых с ограниченными запасами временные мосты могут служить до 10-20 лет [1]. Временные мосты
применяют также для обеспечения транспортного сообщения сезонного характера и для разовых транспортных
операций.
Особая роль отводится временным мостам в чрезвычайных ситуациях, когда решающее значение имеют

381.

мобильность и быстрота возведения для срочного восстановления прерванного движения транспорта.
В силу особенностей применения к временным мостам как отдельной ветви мостостроения уделяется
достаточно много внимания и, несмотря на развитие сети дорог, повышение технического уровня и надежности
постоянных сооружений, задача совершенствования временных средств обеспечения переправ остается актуальной
[2].
Что касается материала временных мостов, то традиционно применялась древесина как широко
распространенный и достаточно доступный природный ресурс. В настоящее время сталь, конкурируя с
железобетоном, активно расширяет свое применение в сфере мостостроения становясь все более доступным и
обладающим лучшим показателем «прочность-масса» материалом. Давно проявилась тенденция проектирования и
строительства стальных пролетных строений постоянных мостов даже средних и малых, особенно в удаленных
территориях с недостаточной транспортной доступностью и слабо развитой
инфраструктурой. Разумеется, для мобильных и быстровозводимых временных мостов сталь - давно признанный и
практически единственно возможный материал.
Конструктивное развитие временных мостов можно разделить на следующие направления:
• цельноперевозимые конструкции максимальной заводской готовности, как например «пакетные» пролетные
строения, полностью готовые для пропуска транспорта после их установки на опоры [3];
• складные пролетные строения, способные трансформироваться для уменьшения габаритов при их перевозке1 [4];
• сборно-разборные2 [5; 6].
Разборность конструкций обусловлена необходимостью в перекрытии пролетов длиной, превышающей
габаритные возможности транспортировки, отсюда и большое разнообразие исполнения временных мостов такого
типа. Членение пролетного строения на возможно меньшие части с целью ускорения и удобства сборки наиболее
удачно реализовано в Российской разработке «Тайпан» (патент РФ 1375583) или демпфирующий упругопластичный
компенсатор гаситель сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1антисейсмическое фланцевое фрикционно-подвижное соединение) для сборно-разборного быстрособираемого армейского моста
из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м. с применением замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих
элементов и элементов проезжей части армейского сборно-разборного пролетного надвижного строения железнодорожного
моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей прочностью, согласно
заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные
конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» №
2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой

382.

компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755,
1174616, 2550777, 2010136746, 165076, 858604, 154506, в которой отдельные «модули» не только упрощают сборку-
разборку без привлечения тяжелой техники, но и являются универсальными монтажными марками, позволяющими
собирать мосты разных габаритов и грузоподъемности [7; 8].
Основные параметры некоторых инвентарных сборно-разборных мостов
Ожидаемо, что сборно-разборные мобильные мостовые конструкции приоритетным образом разрабатывались
и выпускались для нужд военного ведомства и с течением времени неизбежно попадали в гражданский сектор
мостостроения. Обзор некоторых подобных конструкций приведен в ссылке
ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ
1
1
ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ
ФГБОУ ВО «Тихоокеанский государственный университет», Хабаровск Россия
https://elibrary.ru/item.asp?id=43813437
Временные мосты необходимы для обеспечения движения при возведении или ремонте (реконструкции) капитальных
мостовых сооружений, оперативной связи прерванных путей в различных аварийных ситуациях, для разовых или
сезонных транспортных сообщений.
В мостах такого назначения целесообразны мобильные быстровозводимые конструкции многократного
применения. Инвентарные комплекты сборно-разборных мостов разрабатывались и производились прежде всего в
интересах военного ведомства, но в настоящее время широко востребованы и применяются в гражданском секторе
мостостроения в силу их экономичности, мобильности, доступности в транспортировке. Среди прочих, в том числе
и современных разборных конструкций мостов, особое место занимает средний автомобильный разборный мост
(САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода
накопленных на хранении комплектов САРМ в гражданский сектор строительства выяснилась значительная
востребованность этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность
всеми элементами моста, включая опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами
ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде...
Однако, смотрите ссылку антисейсмический сдвиговой фрикционнодемпфирующий компенсатор, фрикци-болт с гильзой, для соединений
секций разборного моста https://ppt-online.org/1187144

383.

Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ
СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ
СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Несмотря на наличие современных разработок [7; 8], инвентарные комплекты сборно-разборных мостов в
процессе вывода их из мобилизационного резерва широко востребованы в гражданском секторе мостостроения в
силу их экономичности, мобильности, доступности в транспортировке и многократности применения [9; 10].
Среди описанных в таблице 1 инвентарных комплектов мостов особое место занимает САРМ (средний
автомобильный разборный мост) 4 . Разработанный в 1968 г. и модернизированный в 1982 г. инвентарный комплект
позволяет перекрывать пролеты 18,6, 25,6 и 32,6 м с габаритом ездового полотна 4,2 м при однопутном и 7,2 м при
двухпутном проезде (рисунок 1). Удобный и эффективный в применении комплект САРМ в процессе вывода
накопленных на хранении конструкций в гражданский сектор строительства показал значительную
востребованность, обусловленную, кроме отмеченных выше преимуществ также и полную укомплектованность
всеми элементами моста, включая опоры. Факт широкого применения конструкций САРМ в гражданском
мостостроении отмечен тем, что федеральное дорожное агентство «Росавтодор» в 2013 году выпустило
нормативный документ ОДМ 218.2.029 - 20135, специально разработанный для применения этого инвентарного
комплекта.
К недостаткам проекта САРМ следует отнести несоответствия некоторых его геометрических и
конструктивных параметров действующим нормам проектирования: габариты ездового полотна 4,2 м при
однопутном и 7,2 м при двухпутном проезде, также штатные инвентарные ограждения (колесоотбои) не
соответствуют требованиям действующих норм СП 35.1333.20116, ГОСТ Р 52607-20067, ГОСТ 26804-20128.
Выполнение требований указанных выше норм может быть обеспечено ограничением двухсекционной поперечной
компоновки однопутным проездом с установкой добавочных ограждений [10] или нештатной поперечной

384.

компоновкой в виде трех и более секций, рекомендуемой нормами ОДМ 218.2.029
20135.
Пролетное строение среднего автомобильного разборного моста (САРМ) в продольном направлении набирается
из средних и концевых секций расчетной длиной 7,0 и 5,8 м соответственно. Количество средних секций (1, 2 или 3)
определяет требуемую в каждом конкретном случае длину пролета 18,6, 25,6, 32,6 м (рисунок 1).
Объединение секций в продольном направлении в сечениях 3 (рисунок 1) выполняется с помощью штырей,
вставляемых в отверстия (проушины) верхнего и нижнего поясов секций. В поперечном направлении в стыке одной
секции расположены два штыревых соединения в уровне верхнего и два - в уровне нижнего пояса (рисунок 2).
4 Средний автодорожный разборный мост. Техническое описание и инструкция по эксплуатации / Министерство
обороны СССР. -М.: Военное изд-во мин. обороны СССР, 1982. - 137 с.
5 Методические рекомендации по использованию комплекта среднего автодорожного разборного моста (САРМ)
на автомобильных дорогах в ходе капитального ремонта и реконструкции капитальных искусственных сооружений:
Отраслевой дорожный методический документ ОДМ 218.2.029 - 2013. - М.: Федеральное дорожное агентство
(РОСАВТОДОР), 2013. - 57 с.
6 Свод правил. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84* (с
Изменениями № 1, 2) / ОАО ЦНИИС. - М.: Стандартинформ, 2019.
7 ГОСТ Р 52607-2006. Технические средства организации дорожного движения. Ограждения дорожные
удерживающие боковые для автомобилей. Общие технические требования / ФДА Минтранса РФ, ФГУП
РосдорНИИ, Российский технический центр безопасности дорожного движения, ОАО СоюздорНИИ, МАДИ (ГТУ),
ДО БДД МВД России, НИЦ БДДМВД России. - М.: Стандартинформ, 2007, - 21 с.
8 ГОСТ 26804-2012. Ограждения дорожные металлические барьерного типа. Технические условия / ЗАО
СоюздорНИИ, ФГУП РосдорНИИ, ООО НПП «СК Мост». - М.: Стандартинформ, 2014, - 24 с.
Страница 4 из 14
25SATS220
1 - концевая секция; 2 - средняя секция; 3 - сечения штыревых соединений секций
Рисунок : Томилова Сергей Николаевича вставлен

385.

Рисунок 1. Фасад пролетного строения разборного моста САРМ с вариантами длины 18,6 м (а), 25,6 м (б), 32,6 м (в)
(разработано автором)
Каждое соединение верхнего пояса секций включает тягу в виде пластины с двумя отверстиями и два
вертикальных штыря, а соединение нижнего пояса выполнено одним горизонтальным штырем через проушины
смежных секций (рисунок 4).
Таким образом, продольная сборка пролетного строения осуществляется путем выгрузки и проектного
расположения секций, совмещения проушин смежных секций и постановки штырей.
1 - штыревые соединения верхнего пояса; 2 - штыревые соединения нижнего пояса; а - расстояние между осями
штыревых соединений

386.

Рисунок 2. Двухсекционная компоновка поперечного сечения пролетного строения (разработано автором)
Постановка задачи
Штыревое соединение секций пролетных строений позволяет значительно сократить время выполнения работ, но
это обстоятельство оборачивается и недостатком - невозможностью обеспечения плотного соединения при
работе его на сдвиг. Номинальный диаметр соединительных штырей составляет 79 мм, а отверстий под них и
проушин - 80 мм.
Разница в 1 мм необходима для возможности постановки штырей при сборке пролетных строений.
Цель настоящего исследования - оценить напряженное состояние узла штыревого соединения, сравнить
возникающие в материале элементов соединения напряжения смятия и среза с прочностными параметрами стали,
возможность проявления пластических деформаций штыря и проушин и как следствие - их влияние на общие
деформации пролетного строения.
Штыревые соединения как концентраторы напряжений в конструкциях мостов уже привлекали внимание
исследователей [11] и также отмечался характерный для транспортных сооружений фактор длительного
циклического воздействия [8]. Изначально неплотное соединение «штырь-проушина» и дальнейшая его выработка
создает концентрацию напряжения до 20 % против равномерного распределения [11], что может привести к

387.

ускорению износа, особенно с учетом цикличного и динамического воздействия подвижной автотранспортной
нагрузки.
В настоящей статье рассмотрены напряжения смятия и деформации в штыревых соединениях и как их
следствие - общие деформации (прогибы) пролетного строения. Оценка напряженного состояния в соединении
выполнена исходя из гипотезы равномерного распределения усилий по расчетным сечениям.
Сравнительный расчет выполним для распространенного пролета 32,6 м в следующей последовательности:
прочность основного сечения одной секции при изгибе; прочность штыревого соединения по смятию металла
проушин; прочность металла штыря на срез.
Паспортная (проектная) грузоподъемность при двухсекционной поперечной компоновке и двухпутном ездовом
полотне - временные вертикальные нагрузки Н-13, НГ-60 по нормам СН 200-621. Так как конструкции САРМ
запроектированы на нагрузки, уступающие современным, то для обеспечения приемлемой грузоподъемности можно
использовать резервы в компоновке - например двухсекционная поперечная компоновка будет пропускать только
одну полосу движения, что на практике зачастую не организовано и транспорт движется двумя встречными
полосами. Рассмотрим именно такой случай и в качестве полосной автомобильной нагрузки примем А11 по СП
35.1333.20116, хотя и меньшую, чем принятая для нового проектирования А14, но в полной мере отражающую
состав транспортных средств регулярного поточного движения. При постоянстве поперечного сечения по длине
пролета и исходя из опыта проектирования для оценочного усилия выбираем изгибающий момент.
В работе основного сечения одной секции при изгибе участвуют продольные элементы верхнего и нижнего пояса:
верхним поясом являются лист настила шириной 3,0 м, продольные швеллеры и двутавры № 12; нижним поясом
являются два двутавра № 23Ш2 (рисунок 3).
Предельный момент, воспринимаемый основным сечением секции (рисунок 3)
где Ry = 295 МПа - расчетное сопротивление стали 15ХСНД; I - момент инерции сечения секции относительно
оси изгиба; - максимальная ордината расчетного сечения относительно оси изгиба.

388.

1 - лист настила толщиной 0,006м; 2 - швеллер № 12 по ГОСТ 8239; 3 - двутавр № 12 по ГОСТ 8240; 4 - двутавр №
23Ш2 по ТУ 14-2-24-72
Рисунок 3. Поперечное сечение секции пролетного строения САРМ с выделением продольных элементов с функциями
верхнего и нижнего пояса при изгибе (разработано автором)
Данные расчета по (1) приведены в таблице 2.
Расчет предельного изгибающего момента основного сечения секции САРМ
Расчет предельного изгибающего момента основного сечения секции САРМ
Для сравнительной оценки несущей способности основного сечения секции (предельный изгибающий момент,
таблица 2) представим расчетный изгибающий момент от временной нагрузки А11 для двухпутного проезда, а
именно 1 полоса А11 - на 1 секцию в поперечном направлении.
Для выделения полезной части грузоподъемности из предельного удерживается изгибающий момент от
постоянной нагрузки. Расчетными сечениями по длине пролета принимаем его середину и сечение штыревого

389.

соединения, ближайшее к середине пролета. Результаты расчета путем загружения линий влияния изгибающего
момента в выбранных сечениях приведены в таблице 3.
Как видно, предельный изгибающий момент основного сечения секции (3894,9 кН-м) только на 59,4 %
обеспечивает восприятие момента (1134,5 + 5418,6 = 6553,1 кН-м) от суммы постоянной и временной А11
расчетных нагрузок.
Оценить напряженное состояние металла проушин по смятию штырем можно по схеме контакта штыря с
внутренней поверхностью проушин, где усилие N с плечом a составляет внутренний момент, уравновешивающий
внешний, обусловленный нагрузкой на пролет (рисунок 4).
Рисунок 5. Схема штыревого соединения нижнего пояса, вид сверху (разработано автором). Но , есть
упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических
фрикционно-подвижных соединениях для сборно–разбороного железнодорожного армейского моста и он надежнее
1 - одинарная проушина; 2 - двойная проушина; 3 - штырь
Сравним полученные в (3) и (4) результаты с прочностными характеристиками стали 15ХСНД, из которой
изготовлены несущие элементы моста САРМ, таблица 4.
Следует определить суммарный расчетный изгибающий момент М от постоянной Мпост и временной Мвр
(А11) нагрузок для сечения ближайшего к середине пролета стыка по данным таблицы 3.
M = Mпост + Mвр = 1081,2 + 5195,3 = 6276,5 кН- м.

390.

1 - вертикальный штырь верхнего пояса; 2 - горизонтальный штырь нижнего пояса
Рисунок 4. Схема стыка секций пролетного строения
При суммарной толщине элементов проушины нижнего пояса, сминаемых в одном направлении, 0,06 м и
диаметре штыря 0,079 м площадь смятия составит А = 0,06-0,079 = 0,0047 м2 на один контакт (рисунок 5). При
наличии двух контактов нижнего пояса в секции напряжение смятия металла проушины составит
Для расчета сечения штыря на срез следует учесть, что каждый из двух контактов на секцию имеет две
плоскости среза (рисунок 5), тогда напряжение сдвига
Примечание:расчетные сопротивления стали смятию и сдвигу определены по таблице 8.3 СП 35.13330.20116
(составлено автором)
Сравнение полученных от воздействия нагрузки А11 напряжений с характеристиками прочности стали 15ХСНД
Напряжение сдвига в штыре превосходит расчетное сопротивление стали, а напряжение смятия в контакте
штырь-проушина превосходит как расчетное сопротивление, так и предел текучести, что означает невыполнение
условия прочности, выход металла за предел упругости и накопление пластических деформаций при регулярном и
неорганизованном воздействии временной нагрузки А11.
Практическое наблюдение
В организациях, применяющих многократно использованные конструкции САРМ, отмечают значительные

391.

провисы (прогибы в незагруженном состоянии) пролетных строений, величина которых для длин 32,6 м доходит до
0,10-0,15 м. Это создает искажение продольного профиля ездового полотна и негативно влияет на пропускную
способность и безопасность движения. При этом визуально по линии прогиба отчетливо наблюдаются переломы в
узлах штыревых соединений секций. При освидетельствовании таких пролетных строений отмечается повышенный
зазор между штырем и отверстием (рисунок 6).
Рисунок 6. Повышенный зазор в штыревом соединении секций пролетного строения САРМ (разработано автором)
Смещения в штыревых соединениях, обусловленные пластическими деформациями перенапряженного металла,
определяют величину общих деформаций (прогибов) пролетных строений (рисунок 7).

392.

Рисунок 7. Схема общих деформаций вследствие смещения в штыревых соединениях (разработано автором)
Полное смещение (подвижка) на одно соединение с0 = с + с2, где с1 = 1 мм - исходное конструктивное; с2 добавленное за счет смятия в соединении (рисунок 7).
Вертикальное перемещение f (прогиб) в середине пролета для рассмотренного примера будет суммой xi и Х2
(рисунок 7).
f = Xi + Х2.
Величины x1 и x2 можно определить, зная углы а и 2а, которые вычисляются через угол
где а - расстояние между осями штыревых соединений верхнего и нижнего поясов; I1 - длина средней секции
пролетного строения; I2 - длина концевой секции пролетного строения.
В качестве примера рассмотрим временный объездной мост через р. Черниговка на автодороге Хабаровск Владивосток «Уссури», который был собран и эксплуатировался в составе одного пролета длиной 32,6 м из
комплекта САРМ на период строительства постоянного моста. Были отмечены значительные провисы пролетных
строений временного моста величиной в пределах 130-150 мм в середине пролета, что вызвало беспокойство
организаторов строительства. При обследовании была установлена выработка всех штыревых соединений главных

393.

ферм в среднем на 2,5 мм сверх номинального 1 мм.
Таким образом смещение (подвижка) на одно соединение с0 = с1 + с2 = 1 + 2,5 = 3,5 мм, а так как в уровне
верхнего пояса в качестве связующего элемента применена продольная тяга с двумя отверстиями и двумя
расположенными последовательно штырями, то суммарное смещение, отнесенное к уровню нижнего пояса с = 3,5-3
= 10,5 мм.
Далее следуют вычисления по формулам (5) при а = 1,37 м; h = 7,0 м; I2 = 5,8 м.
а = arcsin 0,0105 = 0,205o; а = 2 • 0,205 = 0,41o; xi = 7,0 • sin 0,41 = 0,05 м;
2 2 • 1,47 1
2а = 2 • 0,41 = 0,82o; x2 = 5,8 • sin 0,82o = 0,083 м.
Полная величина прогиба f = Х1 + Х2 = 0,05 + 0,083 = 0,133 м, что вполне согласуется с фактически
замеренными величинами f.
Заключение по использованию упругопластического сдвигового компенсатора гасителя
сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения
временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих
деформаций пролетного строения, кроме упругопластического сдвигового
компенсатора, гасителя сдвиговых напряжений для быстрособираемых на
антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций
САРМ под современной автомобильной нагрузкой не обеспечено прочностью как
основного сечения секций, так и элементов штыревых соединений, а использование

394.

упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для
быстро собираемых на антисейсмических фрикционно-подвижных соединениях для
сборно–разборного железнодорожного армейского моста , все напряжения снимает
3. В металле элементов штыревых соединений при современной нагрузке
накапливаются пластические деформации, приводящие к выработке контактов
«штырь-проушина» и нарастанию общих деформаций (провисов), а упругопластический
сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на
антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует
многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на
антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние
продольного профиля ездового полотна, снижающее пропускную способность и
безопасность движения, упругопластический сдвиговой компенсатор гаситель сдвиговых
напряжений для быстро собираемых на антисейсмических фрикционно-подвижных
соединениях для сборно–разборного железнодорожного армейского моста сдвиговый
нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного
ведомства для мобильного и кратковременного применения и штыревые монтажные

395.

соединения в полной мере соответствуют такому назначению. При применении в
гражданском строительстве эту особенность следует учитывать в разработке
проектных решений, назначении и соблюдении режима эксплуатации, например путем
уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–
разборного железнодорожного армейского моста исключает обрушение
железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых
конструкций разборных мостов, разработке отвечающих современным требованиям
проектных решений вариантов поперечной и продольной компоновки пролетных
строений с использованием упругопластических , сдвиговых компенсатор, которые
гасят, сдвиговые напряжения для быстро собираемых, на антисейсмических
фрикционно-подвижных соединениях , для отечественного сборно–разборного
железнодорожного армейского моста «Уздина»
ЛИТЕРАТУРА
1. Кручинкин А.В. Сборно-разборные временные мосты. - М.: Транспорт, 1987. - 191 с.
2. Тыдень В.П., Малахов Д.Ю., Постников А.И. Реализация современных требований к переправочно-мостовым
средствам в концепции выгружаемого переправочно-десантного парома // Вестник Московского автомобильнодорожного государственного технического университета (МАДИ). - М.: Изд-во МАДИ(ГТУ), 2019. - Вып. 3 (58). - С.
69-74.
3. Томилов С.Н. О применении стальных пакетных конструкций в постоянных мостах // Научные чтения памяти
профессора М.П. Даниловского: материалы Восемнадцатой Национальной научно-практической конференции: в 2 т.
- Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - 2 т. - С. 360-363.
4. Mohamad Nabil Aklif Biro, Noor Zafirah Abu Bakar. Design and Analysis of Collapsible Scissor Bridge. MATEC Web of
Conferences. Vol. 152, 02013 (2018). DOI: https://doi.org/10.1051/matecconf/201815202013.
5. Дианов Н.П., Милородов Ю.С. Табельные автодорожные разборные мосты: учебное пособие. - М.: Изд-во МАДИ

396.

(ГТУ), 2009. - 236 с.
6. Adil Kadyrov, Aleksandr Ganyukov, Kyrmyzy Balabekova. Development of Constructions of Mobile Road Overpasses.
MATEC Web of Conferences. Vol. 108, 16002 (2017). DOI: https://doi.org/10.1051/matecconf/201710816002.
7. Бокарев С.А., Проценко Д.В. О предпосылках создания новых конструкций временных мостовых сооружений //
Интернет-журнал «Науковедение». 2014. № 5(24). URL: https://naukovedenie.ru/PDF/26KO514.pdf. - С. 1-11.
8. Проценко Д.В. Совершенствование конструктивно-технологических параметров системы несущих элементов и
элементов проезжей части универсального сборно- разборного пролетного строения с быстросъемными
шарнирными соединениями. Диссертация на соискание ученой степени кандидата технических наук / Сибирский
государственный университет путей сообщения (СГУПС). Новосибирск: 2018.
9. Матвеев А.В., Петров И.В., Квитко А.В. Оценка по теории инженерного прогнозирования новых образцов
мостового имущества МЛЖ-ВФ-ВТ и ИМЖ- 500 // Вестник гражданских инженеров. - СПб: Изд-во СанктПетербургского гос. арх.-строит. ун-та, 2018. Вып. 4 (69). - С. 138-142.
10. Томилов С.Н., Николаев А.Р. Применение комплекта разборного моста под современные нагрузки // Дальний
Восток. Автомобильные дороги и безопасность движения: международный сборник научных трудов (под. ред. А.И.
Ярмолинского). - Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - № 18. - С. 125-128.
11. Сухов И.С. Совершенствование конструктивно-технологических решений шарнирных соединений автодорожных
мостов. Автореферат диссертации на соискание ученой степени кандидата технических наук / Научноисследовательский институт транспортного строительства (ОАО ЦНИИС). М.: 2011.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

По вопросу внедрения изобретения «Армейский сборно-разборный
надвижной быстро возводимый железнодорожный мост» считаем
целесообразным обратиться в Министерство обороны Российской
Федерации с целью рассмотрения возможности открытия опытноконструкторской работы по данной тематике

409.

МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ
(МИНПРОМТОРГ РОССИИ)
Пресненская наб., д. 10, стр. 2, г. Москва, 125039
Мажиеву Х.Н.
[email protected]
Тел. (495) 539-21-66 Факс (495) 547-87-83 http://www.minpromtorg.gov.ru
от
19.10.2022 № ПГ-16-11925
На №
Уважаемый Хасан Нажоевич!
Департамент промышленности обычных вооружений, боеприпасов и спецхимии
Министерства промышленности и торговли Российской Федерации рассмотрел в рамках
своей компетенции Ваше обращение, представленное письмом Управления Президента
Российской Федерации по работе с обращениями граждан и организаций от 03.10.2022 №
А26-09-109432131-СО1, и сообщает.
По вопросу внедрения изобретения «Армейский сборноразборный надвижной быстро возводимый железнодорожный
мост» считаем целесообразным обратиться в Министерство
обороны Российской Федерации с целью рассмотрения
возможности открытия опытно-конструкторской работы по данной

410.

тематике.
Одновременно сообщаем, что в целях практической реализации инвестиционных проектов
в настоящее время созданы и действуют различные федеральные и региональные
инвестиционные фонды и иные структуры, которые призваны осуществлять поддержку
авторов в практической реализации их разработок:
- Фонд перспективных исследований, целью деятельности которого является содействие
осуществлению научных исследований и разработок в интересах обороны страны и
безопасности государства, связанных с высокой степенью риска достижения
качественно новых результатов в военно-технической, технологической и социальноэкономической сферах, разработки и создания инновационных технологий и производства
высокотехнологичной продукции военного, специального и двойного назначения (более
подробную информацию можно получить по ссылке www.fpi.gov.ru).
- Фонд развития промышленности, который способствует повышению доступности
займов для финансирования производственно-технологических проектов и создания новых
производств на базе принципов наилучших доступных технологий (более подробную
информацию можно получить по ссылке www.frprf.ru).
- Корпорацию МСП, которая осуществляет свою деятельность в качестве института
развития в сфере малого и среднего предпринимательства (МСП) в целях координации
оказания субъектам МСП поддержки, предусмотренной Федеральным законом от 24 июля
2007 г. № 209-ФЗ «О развитии малого и среднего предпринимательства в Российской
Федерации» (более подробную информацию можно получить по ссылке www.corpmsp.ru).
- Фонд «Сколково», миссия которого поддерживать стартапы сообщества и
технологические предпринимательства, содействовать развитию участников на российском
и международных рынках (более подробную информацию можно получить по ссылке

411.

https://sk.ru/).
1М6ЬИоЗлинник электронного документа, подписанного ЭП, хранился в системе
электронного документооборота С руЖбНИИ^истерства промышленности и торговли
Российской Федерации.
А.Г. Конуров
СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП
Заместитель директора Департ промышленности обычных во боеприпасов и спецхимии
Исп. Гуменников О.М.
Тел. (495) 870-29-21 доб. 2-16-24
Сертификат: 07D20E277D7B3F935EDF07CCDF1587E3 Кому выдан: КОНУРОВ АНДРЕЙ
ГЕННАДЬЕВИЧ Действителен: с 06.06.2022 до 30.08.2023

412.

413.

414.

415.

416.

417.

Гибридная FRP АЛЮМИНИЙ космическая система структуры связки была разработана
(предназначена) как модульный чрезвычайный мост с промежутком 12 м.
Мост имеет легкий вес только приблизительно 1.2 тоннами и содержит 8 структурных единиц,
которые составлены из алюминиевой палубы моста, поддержанной FRP trussed члены и связаны
мужскими кувшинами и женскими челюстями, основанными на пред сжатая связь зубов (PTTC)
техника.
В бумаге, концептуальный проект моста, собрание структурных единиц и монтажа моста описано
подробно. Чтобы понимать фактическое flexural поведение моста, 4 опытных образец, структурные
единицы были изготовлены и установлены как единственный промежуток просто поддержанная
структура и подвергнуты к изгибу с четырьмя пунктами, загружающему испытание. Структурные
вычислительные модели, включая два FE модели и упрощенная аналитическая плоская модель, были
построены и утверждены экспериментальными результатами. Результаты указали, что (1) экземпляр
показал линейное поведение под " окончательное государство(состояние) предела " загружающий
уровень, и и сила, и неподвижность удовлетворила требования проекта; (2) палуба моста показала
неожиданное сложное распределение напряжения, которое отличается от такового аналогичной
структуры; и (3) " луч - grillage " FE модель и упрощенная аналитическая плоская модель обеспечил
эффективные методы вычисления для предложенного моста.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия
воспринимаются вследствие сопротивления сил трения, возникающих по контактным плоскостям
соединяемых элементов от предварительного натяжения болтов.
Натяжение болта должно быть максимально большим, что достигается упрочнением стали, из
которой они изготовляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило
трудоемкость монтажных соеди-нений. Замена сварных монтажных соединений промышленных
зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает
надежность конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению
с другими типами болтовых соединений, а также сами высокопрочные болты имеют значительно более
высокую стоимость, чем обычные болты. Эти два фактора накладывают ограничения на область
применения фрикционных соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при
которых наиболее полно реализуются их положительные свойства — высокая надежность при
восприятии различного рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в
настоящее время, проблема повышения эффективности использования несущей способности
высокопрочных болтов, поиска новых конструктивных и технологических решений выполнения
фрикционных соединений является очень актуальной в сейсмоопасных районах.
За счет использования friction-bolt и фрикци-анкеровки, покрытых огнезащитными составами TAIKOR
FP TAIKORFP (TAIKORFPEpoxy, TAIKORFPGraphite, TAIKORFPAcrylic), выпускаемыми по СТО
72746455-3.6.17-2022 «Огнезащитные составы TAIKORFP», серийный выпуск, предназначенными для
сейсмоопасных районов с сейсмичностью более 9 баллов по шкале MSK-64 повышается надежность
конструкции (достигается путем обеспечения многокаскадного демпфирования при динамических
нагрузках, преимущественно при импульсных растягивающих нагрузках на сооружение).
maket soglasovanie protokol [email protected] 4959255575 ognezashitniy sostav TAIKOR TexnoNIKOL
[email protected] 63 str

464.

https://disk.yandex.ru/i/uUVJq_eFc9xiiA
maket soglasovanie protokol [email protected] 4959255575 ognezashitniy sostav TAIKOR
TexnoNIKOL [email protected] 63 str
https://ppt-online.org/1252189
maket soglasovanie protokol [email protected] 4959255575 ognezashitniy sostav TAIKOR TexnoNIKOL
[email protected] 63 str
https://studylib.ru/doc/6365635/maket-soglasovanie-protokol-info%40tn.ru-4959255575-ognezas...
https://mega.nz/file/mPQzTYgQ#80ftbJ24v7ZVMvZjWXDPDYSjL6o3_nEl5eVmIGFT6LU
https://mega.nz/file/rDoHxKYT#-15r7oP7ydY9PTiWD4S95XMVquMWpCXzc9rhJl0bfd4
A BREAKDOWN OF THE DIFFERENT STYLES OF UNISTRUT BEAM CLAMPS
When it comes to securing channel to existing structural steel, Unistrut beam clamps are an easy, cost-effective solution. Beam clamps provide you with a simple beamto-strut connection solution that doesn’t require welding or drilling.
Unistrut beam clamps come in a variety of styles to accommodate a range of beam styles, sizes, applications, and attachment preferences. This variety also means there
are several different styles of beam clamps that can affect how channel is attached and the total load that can be secured to the beam. Here are some of the more common
styles of beam clamps offered by Unistrut Service Company.
UNISTRUT FLANGE BEAM CLAMPS
HOW THEY WORK
Unistrut flange beam clamps, also known as Unistrut C style beam clamps, are named for their distinctive shape. Flange beam clamps are designed to secure channel to
beams by clamping down on the flanges of a beam with a set screw. Depending on the design of the flange beam clamp, the channel is either sandwiched between the
flange and the clamp or attached to the clamp with a threaded rod.
Examples
Unistrut PLF3037 thru PLF3075 Flange Clamps

465.

Unistrut P2675 Beam Clamp
UNISTRUT WINDOW STYLE BEAM CLAMPS
HOW THEY WORK
Unistrut window style beam clamps secure channel to existing beams using a ―window‖ cut out of a bent plate and a set screw. A pair of window style beam clamps are

466.

placed on both sides of a beam and a channel is fed through the windows. Once in place, the window style beam clamp is secured to the beam with the set screw, which
also holds the channel in place.
Example
Unistrut P1796S Window Beam Clamp
UNISTRUT U STYLE BEAM CLAMPS
HOW THEY WORK
Unistrut U style beam clamps feature a piece of bent plate and a u-bolt that is threaded on both sides to secure channel in place. The channel is fed through the u-bolt,
which is then tightened to secure both the plate to the beam and the channel to the plate. U style beam clamps can be used to secure channel to either the underside of the
beam or the inside of the beam, depending on the configuration of the clamp.
Examples

467.

Unistrut P2785 U-Bolt Beam Clamp
Unistrut P2868 U-Bolt Beam Clamp
UNISTRUT J STYLE BEAM CLAMPS

468.

HOW THEY WORK
Unistrut J style beam clamps feature a hook shaped like a ―J‖ to help them secure channel to existing beams. While other beam clamp styles are designed to use in pairs
to secure both sides of a beam, J style beam clamps are designed for use as a stand-alone clamp (unless indicated otherwise). This is possible as the hook secures the j
style beam clamp to the opposite side of the beam.
Examples
Unistrut P2867 J-Bolt Beam Clamp
Unistrut P2824 J-Bolt Beam Clamp

469.

UNISTRUT COLUMN INSERTS
HOW THEY WORK
Unistrut column inserts are used to secure channel between the flanges of a beam. The column inserts are attached to the interior walls of the flanges with set screws,
securing the channel between them for use.
Example
Unistrut P3087 Column Insert Beam Clamp

470.

ORDER THE RIGHT UNISTRUT BEAM CLAMPS
There are many ways to connect strut to beams, but it’s important to find the right option for your suspension needs. Connection style, load capabilities, and minimum
safety factors are all important aspects that play into which beam clamps are best way to attach for your channel to existing structures. Be sure to consult the engineering
catalog to determine load capacity of the clamp you are contemplating using for your project.
Unistrut Service Company can supply you with the right beam clamps for your suspension project. You can download the Unistrut Beam Clamp Catalog for details on
each product and order Unistrut beam clamps online through our website. If you need some assistance determining which clamps are right for your situation, you
can contact Unistrut to talk to one of our experts about the needs of your project.
Tags: flange clamps
c clamps
j-bolt clamps
u-bolt clamps
window clamps
hinged beam clamps
column inserts
Categories: Unistrut Beam Clamps
Connect with Unistrut
Tell us about your application’s needs, and we’ll suggest proven products, services and solutions to exceed your expectations.
По вопросу внедрения изобретения Армейский сборно-разборный надвижной быстро возводимый
железнодорожный мост считаем целесообразным обратиться в Министерство обороны Российской

471.

Федерации с целью рассмотрения возможности открытия опытно-конструкторской работы по данной
тематике.
Ответ на письмо инженерных войск от 10 октября 2022 № 567/Н/5499 на УГ -88073 от 29 сентября
2022 от ветерана боевых действий , инвалида первой группы Президента организации
"Сейсмофонд" при СПб ГАСУ Мажиевым Хасан Нажоевичем по вопросу представления
предложений по описанию конструкции, тактико-технических характеристик, схемы и анализ ранее
проведенных, в том числе за рубежом, разработок. До настоящего времени указанные материалы в
УНИВ ВС не поступали. Отсутствие данной информации не позволяет сделать вывод о
целесообразности реализации Вашего предложения. Поэтому организация "Сейсмофонд" при СПб
ГАСУ и представляет опыт Университета Монтана США , Китайское народной Республики,
Великобритании блока НАТО, по этому вопросу для разработки рабочих чертежей с учетом опыта
Университета Монтано США, Китай для отечественных быстровозводимого, быстро собираемого
железнодорожного моста из стальных конструкций, с применением замкнутых гнутосварных
профилей прямоугольного сечения для системы несущих элементов и элементов проезжей части
армейского сборно-разборного пролетного надвижного строения железнодорожного моста, с
быстросъемными упругопластичными компенсаторам, гасителем вибрационных напряжений от
динамических нагрузок с учетом опыта наших американских инженеров из штата Монтана ( река
Суон, США) из блока НАТО, США, Канады, Великобритании
Выводы Перспективы применения быстровозво-димых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической базы, задачи по быстрому временному
восстановлению
мостовых переходов будут невыполнимы. Это приведет к предсказуемым потерям

472.

Преодоление водных препятствий всегда было существенной проблемой для армии. Все
изменилось в начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который получил
патент № 1143895, 1168755, 1174616, 2550777 на сдвиговых болтовых соединениях, а инженер механик Андреев Борис Иванович получил патент № 165076 "Опора сейсмостойкая" и №
2010136746 "Способ защита здания и сооружений ", который спроектировал необычный сборноразборный армейский универсальный железнодорожный мост" с использование
антисейсмических фланцевых сдвиговых компенсаторов, пластический сдвиговой компенсатор
( Сдвиговая прочность при действии поперечной силы СП 16.13330.2011, Прочностные проверки
SCAD Закон Гука ) для сборно-разборного моста" , названный в честь его имени в честь русского
ученого, изобретателя "Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым
компенсатором проф дтн ПГУПС Уздина , пока на бумаге. Sborno-razborniy bistrosobiraemiy
universalniy most UZDINA PGUPS 453 str https://ppt-online.org/1162626
https://disk.yandex.ru/d/iCyG5b6MR568RA
Зато, западные партнеры из блока НАТО , уже внедрили похожие изобретения проф дтн ПГУПС
Уздина А М. по использованию сдвигового компенсатора под названием армейский Bailey bridge при
использовании сдвиговой нагрузки, по заявке на изобретение № 2022111669 от 27.04.2022
входящий ФИПС 024521 "Конструкция участка постоянного железобетонного моста неразрезной
системы" , № 2021134630 от 06.05.2022 "Фрикционно-демпфирующий компенсатор для
трубопроводов", а20210051 от 29 июля 2021 Минск "Спиральная сейсмоизолирующая опора с
упругими демпферами сухого терния" . № а 20210217 от 23 сентября 2021, Минск " Фланцевое
соединение растянутых элементов трубопровода со скошенными торцами"
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области при
форсировании реки Северский Донец российская армия потеряла много военнослужащих семьдесят
четвѐртой мотострелковой бригады из-за отсутствия на вооружение наплавных ложных мостов ,
согласно изобретениям № 185336, № 77618. Об этом сообщил американский Институт изучения войны.
"11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные мосты и плотно

473.

сконцентрированные вокруг них российские войска и технику, в результате чего, как сообщается,
погибло много русских солдат и было повреждено более 80 единиц техники», — отмечается в
публикации. По оценке института, войска РФ допустили значительные тактические ошибки при попытке
форсирования реки в районе Кременной, что привело к таким потерям. Ранее в Институте изучения
войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк, отказавшись от
плана крупномасштабного окружения ВСУ и выхода на административные границы Донецкой области
https://disk.yandex.ru/i/3ncRcfqDyBToqg
Administratsiya Armeyskie mosti uprugoplasticheskim sdvigovoy jestkostyu 176 str
https://ppt-online.org/1235168
Среди прочих мостов , в том числе и современных разборных конструкций мостов, особое место
занимает средний автомобильный разборный мост (САРМ), разработанный в 1968 г. и
модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода накопленных на хранении
комплектов САРМ в гражданский сектор строительства выяснилась значительная востребованность
этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность всеми
элементами моста, включая опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами
ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде. Паспортная грузоподъемность
обозначена как 40 т при однопутном проезде и 60 т при двухпутном проезде.
Так как по ряду геометрических и технических параметров конструкции САРМ не в полной мере
соответствуют требованиям современных норм для капитальных мостов, то применение их
ориентировано в основном как временных.
Следует отметить, что при незначительной доработке - постановке современных ограждений и
двухпутной поперечной компоновке секций для однополосного движения можно добиться
соответствия требуемым геометрическим параметрам ездового полотна и общей грузоподъемности
для мостов на дорогах общего пользования IV и V технической категории.

474.

В статье рассматривается конструктивная особенность штыревых монтажных соединений секций
разборного пролетного строения как фактор, определяющий грузоподъемность, характер общих
деформаций и в итоге влияющий на транспортно- эксплуатационные характеристики мостового
сооружения.
Целью настоящего исследования является анализ работы штыревых монтажных соединений
секций пролетного строения САРМ с оценкой напряженного состояния элементов узла соединения.
Новизной в рассмотрении вопроса полагаем оценку прочности элементов штыревых соединений и ее
влияние на общие деформации - прогибы главных балок.
NATO Protokol ispitaniya plasticheskix uprugix soedineniy zheleznodorozhnogo mosta SCAD 712 str
https://disk.yandex.ru/d/RpRXwJ6oTufK0g https://disk.yandex.ru/i/aktLRJmxB_GGlQ
NATO Protokol ispitaniya plasticheskix uprugix soedineniy zheleznodorozhnogo mosta SCAD 712 str
https://studylib.ru/doc/6370626/nato-protokol-ispitaniya-plasticheskix-uprugix-soedineniy...
https://mega.nz/file/qWpyxBRZ#gFCgcHoxjw0R6CtlfBxrtxjAuw_5a2pQ5Nu6ujhRIX8
https://mega.nz/file/zTJFzb5K#fggvAqfEDhnoDBQBI7m-kCx44t2phFlbU-JbUB8JB24
USA+KNR Minisota Montana reka Suon Protokol ispitaniya plasticheskix uprugix soedineniy
zheleznodorozhnogo mosta SCAD 466 str
https://ppt-online.org/1261643
A, ответ то бодрящий а удар народной армии в спину и нашему Президенту Владимиру Путину
и сражающимся в Киевской Руси за Русский мир: без « Армейского сборно-разборного
надвижного быстро возводимого железнодорожного ( автомобильного) моста» настоящий,

475.

подлый и гадкий рыночного ГК «Автодора» Минтраса РФ
ПРОКУРАТУРА РОССИЙСКОЙ ФЕДЕРАЦИИ ПРОКУРАТУРА САНКТ-ПЕТЕРБУРГА
ПРОКУРАТУРА ПРИМОРСКОГО РАЙОНА
Мажиеву Хасану Нажоевичу [email protected]
ул. Омская, д. 5, лит. А, Санкт-Петербург, Россия, 197343
На №
Ваши обращение № 7/3-р-34563-22/57566 от 17.10.2022, поступившие в прокуратуру Приморского
района из прокуратуры Санкт-Петербурга рассмотрено.
Разъясняю, что согласно общим правилам гражданского законодательства граждане и
юридические лица свободны в заключении договора (ст.421 ГК РФ).
Понуждение к заключению договора не допускается, за исключением случаев, когда обязанность
заключить договор предусмотрена Гражданским кодексом РФ (далее - ГК РФ), законом или
добровольно принятым обязательством.
Договор должен соответствовать обязательным для сторон правилам, установленным законом и
иными правовыми актами (императивным нормам), действующим в момент его заключения.
Условия договора определяются по усмотрению сторон, кроме случаев, когда содержание
соответствующего условия предписано законом или иными правовыми актами (статья 422 ГК РФ).
В свою очередь, согласно ч.2 ст.26 Федерального закона от 17.01.1992 №2202-1 «О прокуратуре
Российской Федерации» органы прокуратуры не вмешиваются в оперативно-хозяйственную
деятельность организаций.
Также органы прокуратуры осуществляют деятельность по территориальному принципу, однако
ни один из хозяйствующих субъектов, указанных в Ваших обращениях1 на территории Приморского
района не находится.

476.

Вместе с тем, копия Вашего обращения в соответствии с ч. 3 ст. 8 Федерального закона от
02.05.2006 № 59-ФЗ «О порядке рассмотрения обращении граждан Российской Федерации», п.п. 3.1, 3.5
Инструкции о порядке рассмотрения обращений и приема граждан в органах прокуратуры Российской
Федерации, утвержденной приказом Генерального прокурора Российской Федерации от 30.01,2013 №
45 направлена в Комитет по развитию транспортной инфраструктуры Санкт-Петербурга.
от
О результатах рассмотрения Вы будете уведомлены указанным выше органом.
В случае несогласия данный ответ Вы вправе обжаловать вышестоящему прокурору либо в суд.
Заместитель прокурора района советник юстиции
АЛ. Ярыжко, 4398540
АВТОДОР ГОСУДАРСТВЕННАЯ КОМПАНИЯ
ГОСУДАРСТВЕННАЯ КОМПАНИЯ
МАЖИЕВУ X
Н «РОССИЙСКИЕ АВТОМОБИЛЬНЫЕ ДОРОГИ» [email protected] (ГОСУДАРСТВЕННАЯ
КОМПАНИЯ «АВТОДОР»)
Страстной б-р, д. 9, Москва, 127006 тел.: (495) 727-11-95, факс: (495) 249-07-72 e-mail: [email protected]
www.ruhw.ru 21.10.2022 Nr 28128-12
№ на №
от
В ответ на Ваше обращение от 17 октября 2022 г. № 1165191, в соответствии с письмом Управления
Президента Российской Федерации по работе с обращениями граждан и организаций от 17 октября
2022 г. № А26-09-116519131-С01, направленным в Государственную компанию «Российские
автомобильные дороги» (далее - Государственная компания) письмом Минтранса России от 18
октября 2022 г. № М-15291 (вх. № М-5385 от 18 октября 2022 г.), сообщаем, что поскольку

477.

регулирование в сфере интеллектуальной собственности не относится к сфере деятельности
Государственной компании, установленной Федеральным законом от 17 июля 2009 г. № 145-ФЗ «О
государственной компании «Российские автомобильные дороги» и о внесении изменений в отдельные
законодательные акты Российской Федерации», Государственная компания не может представить
позицию относительно информации, касающейся интеллектуальной собственности, изложенной в
обращении.
Директор Юридического департамента V Е.В. Крылова
Вместе с тем относительно информации о возбуждении уголовного дела в отношении
Государственной компании сообщаем, что согласно положениям статьи 19 Уголовного кодекса
Российской Федерации Государственная компания не может быть привлечена к уголовной
ответственности, поскольку является юридическим лицом.
Коасари К.Э. тел. (495) 727-11-95
Izobretenie Armeyasky sborno-razborniy nadvizhnoy bistrovozvodimiy zheleznodorozhniy most 418
https://ppt-online.org/1257619

478.

Сборно-разборные быстро собираемые армейские переправы многократного применения из стальных
конструкций покрытий зданий https://ppt-online.org/1224875
Ljivie innovatsii Grigoriya Berezkina iz OAO ROSJILDORA po vnedreniyu sborno-razborni[ mostov 177 str
https://ppt-online.org/1242492
О предпосылках применения быстровозводимых переправ из стальных конструкций
https://ppt-online.org/1223499
https://pdsnpsr.ru/articles/11723-o-voennykh-dejstviyakh-naukraine_24022022
TS Texnicheskoe svidetelstvo avtomobilnogo bistrovozvodimogo sborno-razbornogo nadvijnogo30 str
https://studylib.ru/doc/6359480/ts-texnicheskoe-svidetelstvo-avtomobilnogo-bistrovozvodim...
8126947810 PODDUBNIY Perspektivi primeneneniya bistrovozvodimix mostov LDNR 498 str
https://studylib.ru/doc/6364525/8126947810-poddubniy-perspektivi-primeneneniya-bistrovozv...
https://vk.com/wall375418020
Сборно разборные армейский быстрособираемый надвижные железнодорожный мосты переправы
сдвиговым упругопластическом компенсатором гасителем напряжений на фрикционно-подвижных
болтовых соединениях
Ensuring the seismic reliability of antiseismic damping oblique compensators with movements on frictionmovable bolted joints
https://ok.ru/video/2020159654625
https://vk.com/wall441435402_2463
Сборно-разборные быстро собираемые армейские переправы многократного применения https://pptonline.org/1224871
На связи Терек ветеран боевых действий участник боя под Бамутом на Северном Кавказе 1994-1995г,
инвалид первой группы, военкор газеты "Земля РОССИИ", мл. сержант в/ч ВСО 597 г.Ханкала,
позывной "Терек " Хасан Мажиев президент организации «Сейсмофонд» при СПб ГАСУ ОГРН:
1022000000824, ИНН:2014000780. https://www.youtube.com/watch?v=56p_ni5WNCI

479.

https://diary.ru/~krestyaninformspbyandexru/p221257326_na-svyazi-terek-veteran-boevyh-dejstvij-uchastnikboya-pod-bamutom-na-severnom-kavkaze.htm
СБОРНО-РАЗБОРНЫЙ УНИВЕРСАЛЬНЫЙ МОСТ https://yandex.ru/patents/doc/RU156392U1_20151110
Испытания фрагменгов и узлов упругопластичных компенсаторов гасителей сдвиговых напряжений, с
учетом сдвиговой жесткости
https://ppt-online.org/1237988
Испытание демпфирующего компенсатора гасителя динамических колебаний в ПК SCAD
https://ppt-online.org/1228005
Редакция газеты «Земля России» №119
https://ppt-online.org/1155578
Сборно-разборные быстро собираемые армейские переправы многократного применения
https://ppt-online.org/1224871
Ваше обращение в адрес Правительства Российской Федерации поступило на почтовый сервер и будет
рассмотрено отделом по работе с обращениями граждан. Номер Вашего обращения 2024483.
Закрыть http://services.government.ru/letters/form/
Пожалуйста, проверьте правильность заполнения анкеты
Если всѐ верно, нажмите «Отправить письмо» ещѐ раз, в противном случае нажмите «Вернуться» для
редактирования формы.
Адресат
Президенту Российской Федерации
Фамилия, имя, отчество
Мажиев Хасан Нажоевич

480.

Адрес электронной почты
[email protected]
Телефон
89967982654
Прикреплѐнный файл
++A otvet bodryashiy Po voprosu vnedreniya izobreteniya Armeyskiy sborno razborniy nadvizhnoy
zheleznodorozhniy 5 str.docx
Текст
По вопросу внедрения изобретения Минтрансом РФ, Минстроем ЖКХ : "Армейский сборно-разборный
надвижной быстро возводимый железнодорожный мост " внедренный в 2017 г в штате Миннесота,
Монтана Министерством транспорта США и внедренные в КНР с использованием изобретений ,
изобретенных еще в СССР проф дтн ЛИИЖТ А.М.Уздиным №№ 1143895Ю 1168755Ю 1174616Ю
2550777, 165078, 2010136746 , через реку Суон в штате Монтана с использованием уворованных в СССР
изобретений - болтовых соединений для создания упругих и пластических стальных ферм -балок,
выдерживающих высокую нагрузку от железнодорожного транспорта за счет упругих демпфирующих
соединений , согласно научной теории проф дтн А.М.Уздина ПГУПС Научные публикации на
английском языке американских и китайских ученых прилагается к протоколу лабораторных испытания
фрагментов и сдвиговых узлов от 29 октября 2022 выполненных организацией "Сейсмофонд" при СПб
ГАСУ , что просил представить начальник инж войск А.Круглов от 10 октября 2022 № 565 Н 5499 , то
есть представить описание американских и китайских конструкций, тактико-технические
характеристики мостов построенных в США и КНР, схемы и анализ ранее проведенных лабораторных
испытаний узлов и фрагментов демпфирующего компенсатора , и чертежи зарубежных разработок
блоком НАТО , что с трудом удалось получить от Университета Монтана, Университет Миннесота ,
китайских мостовиков. Чертежи, расчеты, схемы, характеристики армейских мостов Bailey bridje блока
НАТО прилагаются на английском языке
http://letters.kremlin.ru/letters/send

481.

Большое спасибо!
Отправленное 30.10.2022 Вами письмо в электронной форме за номером ID=9581588 будет доставлено и
с момента поступления в Администрацию Президента Российской Федерации зарегистрировано в
течение трех дней.
Сохранить текст в электронной форме в файл формата *.docxСсылка на файл с Вашим обращением
доступна в течение 5 мин
Президенту Российской Федерации
:
Фамилия, имя, отчество: Мажиев Хасан Нажоеич
Организация: Организация "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН 2014000780
Адрес электронной почты: [email protected]
Телефон: 89967982654
Тип: обращение
Текст
По вопросу внедрения изобретения Минтрансом РФ, Минстроем ЖКХ : "Армейский сборноразборный надвижной быстро возводимый железнодорожный мост " внедренный в 2017 г в штате
Миннесота, Монтана Министерством транспорта США и внедренные в КНР с использованием
изобретений , изобретенных еще в СССР проф дтн ЛИИЖТ А.М.Уздиным №№ 1143895, 1168755,
1174616, 2550777, 165078, 2010136746 , через реку Суон в штате Монтана с использованием
уворованных в СССР изобретений - болтовых соединений для создания упругих и пластических
стальных ферм -балок, выдерживающих высокую нагрузку от железнодорожного транспорта за счет
упругих демпфирующих соединений , согласно научной теории проф дтн А.М.Уздина ПГУПС
Научные публикации на английском языке американских и китайских ученых прилагается к
протоколу лабораторных испытания фрагментов и сдвиговых узлов от 29 октября 2022 выполненных
организацией "Сейсмофонд" при СПб ГАСУ , что просил представить начальник инж войск

482.

А.Круглов от 10 октября 2022 № 565 Н 5499 , то есть представить описание американских и
китайских конструкций, тактико-технические характеристики мостов построенных в США и КНР,
схемы и анализ ранее проведенных лабораторных испытаний узлов и фрагментов демпфирующего
компенсатора , и чертежи зарубежных разработок блоком НАТО , что с трудом удалось получить от
Университета Монтана, Университет Миннесота , китайских мостовиков. Чертежи, расчеты, схемы,
характеристики армейских мостов Bailey bridje блока НАТО прилагаются на английском языке
Отправлено: 30 октября 2022 года, 00:23
English     Русский Правила