Похожие презентации:
Работа в Excel 2007
1.
1Работа в Excel 2007
1. Основы
2. Диаграммы
3. Численные методы
4. Статистика
5. Восстановление зависимостей
6. Моделирование
© К.Ю. Поляков, 2009-2012
2.
2Работа в Excel 2007
Тема 1. Основы
© К.Ю. Поляков, 2009-2012
3.
Электронные таблицыОсновная задача – автоматические вычисления
с данными в таблицах.
Кроме того:
• хранение данных в табличном виде
• представление данных в виде диаграмм
• анализ данных
• составление прогнозов
• поиск оптимальных решений
• подготовка и печать отчетов
Примеры:
• Microsoft Excel – файлы *.xls, *.xlsx
• OpenOffice Calc – файлы *.ods – бесплатно
3
4.
4Электронные таблицы
активная
ячейка
номера
строк
неактивна
я ячейка
строка
имена столбцов
• текст
• числа
• формулы
• время
• дата
столбец
5.
5Начало работы с Microsoft Excel
Программы – Microsoft Office – Excel 2007
Файлы:
*.xlsx (старая версия – *.xls)
Вася.xlsx рабочая книга
Лист 1
Лист 2
переходы
по листам
План
по валу
Вал
по плану
ЛКМ
ПКМ
новый
лист
6.
6Адреса
адрес активной
ячейки
диапазон
B2:С7
B2
ячейка
B2
Ссылки в формулах:
=B2+2*C3
=A2+2*СУММ(B2:C7)
! Формула всегда начинается знаком «=»!
С7
7.
7Ввод данных
адрес
активно
й ячейки
отменить
(Esc)
принять
(Enter)
строка
редактировани
я
ЛКМ
F2 – редактировать прямо в ячейке
8.
8Выделение данных
ячейка:
ЛКМ
диапазон:
+ЛКМ
– ЛКМ
строки:
ЛКМ
несвязанные диапазоны:
+Ctrl и выделять второй
столбцы:
ЛКМ
вся таблица:
ЛКМ
9.
Операции со строками и столбцамиразмеры
ширина
столбцо
в
высота
строк
добавление, удаление
ПКМ
9
10.
Перемещение и копирование10
перетащить
ЛКМ
за рамку (!)
+Ctrl = копирование
+Alt = на другой лист
перемещение со сдвигом (+Shift)
11.
11Типы ссылок
относительные (меняются так же, как и адрес формулы )
формула «переехала»
на один столбец
вправо и на одну
строку
вниз; на 1
имя столбца
номер строки на 1
абсолютные
(не меняются)
смешанные
(меняется только относительная часть)
12.
12Заполнение рядов
арифметическая прогрессия
копирование формул
маркер
заполнения
ЛКМ
даты
ЛКМ
время
списки
13.
13Оформление ячеек
размер
все свойства
направление
в несколько
строк
денежный
формат
количество знаков
в дробной части
14.
14Функции
ввод в строке
редактирования
изменение
диапазона
ввод в
ячейке
диапазон
мастер
функций
ячейка
! Можно мышкой!
15.
Электронные таблицыНекоторые функции
СУММ – сумма значений ячеек и диапазонов
СРЗНАЧ – среднее арифметическое числовых ячеек
МИН – минимальное значение
МАКС – максимальное значение
! Пустые и нечисловые ячейки не учитываются!
К. Поляков, 2011-2014
15
16.
Электронные таблицыНекоторые функции
Сумма значений нескольких диапазонов
(СУММ, СРЗНАЧ, МИН, МАКС)
К. Поляков, 2011-2014
16
17.
Электронные таблицыНекоторые функции
СУММПРОИЗВ – сумма произведений двух массивов
К. Поляков, 2011-2014
17
18.
Электронные таблицыНекоторые функции
СЧЁТ – количество числовых ячеек
СЧЁТЕСЛИ – количество ячеек, удовлетворяющих
заданному условию (2-ой параметр)
К. Поляков, 2011-2014
18
19.
19Электронные таблицы
Некоторые функции
СУММЕСЛИ – сумма ячеек диапазона,
удовлетворяющих условию, которое
накладывается на другой диапазон
Найти общий вес учащихся 9-А класса.
диапазон
для
проверки
условия
условие
диапазон
для
суммирован
ия
К. Поляков, 2011-2014
20.
20Функция ЕСЛИ
ЕСЛИ – выбор из двух вариантов
условие
если
«да»
если «нет»
=ЕСЛИ(B2="сдал";
ЕСЛИ(A2>80;
5; 4);
=ЕСЛИ(A2>=70; "сдал";
"не
сдал")"–")
21.
Логические операцииНЕ – обратное условие, НЕ(B2<10) B2>=10
?
И – одновременное выполнение всех условий
=ЕСЛИ( И(B2>1994;
C2>175);"да";"–")
21
22.
Логические операцииИЛИ – выполнение хотя бы одного из условий
=ЕСЛИ( ИЛИ(B2=100; C2=100;
B2+C2>=180);"да";"–")
22
23.
Подсчёт числовых значенийСЧЁТ – считает ячейки с числами или формулами,
которые дают числа
=A1+1
2
23
24.
24Подсчёт значений по условию
СЧЁТЕСЛИ – считает ячейки, удовлетворяющие
условию
2
3
2
1
25.
СортировкаСортировка – это расстановка
элементов в заданном порядке.
Сортировка одного столбца
25
26.
26Сортировка связанных данных
Почему нельзя
? сортировать
по
столбцу?
критерий
строки
или
столбцы
первая
строка – это
заголовки
27.
Многоуровневая сортировкаЗадача: расставить фамилии по
алфавиту, а людей с
одинаковыми фамилиями
расставить в алфавитном
порядке по именам.
ЛКМ
27
28.
Имена ячеек и диапазоновПрисвоить имя
ввести имя
Работа с именами
Имена в формулах
28
29.
29Работа в Excel 2007
Тема 2. Диаграммы
© К.Ю. Поляков, 2009-2012
30.
Общий подход• диаграммы строятся на основе данных
таблицы
• проще всего сначала выделить все нужные
данные, а потом…
• все данные, которые должны обновляться
автоматически, нужно выделить
• для выделения несвязанных диапазонов
используем +Ctrl
30
31.
Основные типы диаграммГистограмма (столбчатая диаграмма):
сравнение значений одного или
нескольких рядов данных
График: показывает изменение
процесса во времени
(равномерные отсчеты)
Круговая: доли в сумме
Точечная: связь между
парами значений (график
функции)
31
32.
32Элементы диаграмм
название
диаграммы
сетка
подписи
данных
легенда
ряды
данных
названия
осей
ось
33.
Настройка диаграммы и ее элементовКонструктор: общие свойства
Макет: настройка свойств отдельных элементов
Формат: оформление отдельных элементов
33
34.
34Графики функций
y x 2
Задача: построить график функции
5 x 5
для
Таблица значений функции: шаг 0,5
ЛКМ
ЛКМ
! Что зависит от шага?
.
35.
Графики функцийВставка диаграммы «Точечная»:
выделить данные
результат:
35
36.
36Работа в Excel 2007
Тема 3. Численные
методы
© К.Ю. Поляков, 2009-2012
37.
Решение уравненийx 2 5 cos x
Задача: найти все решения уравнения
на интервале [-5,5]
? Как решить математическими методами?
Методы решения уравнений:
• аналитические: решение в виде формулы
x ...
• численные: приближенное решение, число
x0
1) выбрать начальное приближение
«рядом» с
решением
? Как выбрать начальное приближение?
1) по некоторому алгоритму вычисляют первое
x0 x1 x2 ...
приближение, затем – второе и т.д.
2) вычисления прекращают, когда значение меняется
x0 ... x15 x16 x*
очень мало (метод сходится)
37
38.
382
x
5 cos x
Решение уравнения
1. Таблица значений функций на интервале [-5,5]
2. Графики функций (диаграмма «Точечная»)
2 решения:
начальные
приближения
x0 1,5
x0 1,5
39.
392
x
5 cos x
Решение уравнения
3. Подготовка данных
начальное
приближение
целевая
ячейка
Цель: H2=0
? Зачем нужна разность?
40.
402
x
5 cos x
Решение уравнения
4. Подбор параметра
ошибка
решение
уравнения
? Как найти второе решение?
? Почему
не нуль?
41.
ОптимизацияОптимизация – это поиск оптимального (наилучшего)
варианта в заданных условиях.
Оптимальное решение – такое, при котором
некоторая заданная функция (целевая функция)
достигает минимума или максимума.
Постановка задачи:
• целевая функция
f ( x) min (расходы, потери, ошибки)
f ( x) max (доходы, приобретения)
• ограничения, которые делают задачу
осмысленной
Задача без ограничений: построить дом
при минимальных затратах.
Решение: не строить дом вообще.
41
42.
42Оптимизация
f (x)
локальный
минимум
глобальны
йминимум
x
• обычно нужно найти глобальный минимум
• большинство численных методов находят только
локальный минимум
• минимум, который найдет Excel, зависит от
выбора начального приближения («шарик на горке
скатится в ближайшую ямку»)
43.
43Поиск минимума функции
y x 2 6 sin x 5 cos x
1. Строим график функции (диаграмма «Точечная»)
нужен
? Зачем
график?
начальное
приближение
x 2
0
2. Подготовка данных
начальное
приближени
е
целевая
ячейка
! Изменение E2 должно влиять на F2!
44.
44Поиск минимума функции
3. Надстройка «Поиск решения»
изменяемые
ячейки:
E2
D2:D6
D2:D6; C5:C8
ограничения
A1 <= 20
B2:B8 >= 5
A1 = целое
целевая
ячейка
45.
Параметры оптимизации45
46.
Оптимизация? Подбор параметра – это оптимизация?
Надстройка «Поиск решения» позволяет:
• искать минимум и максимум функции
• использовать несколько изменяемых ячеек и
диапазонов
• вводить ограничения (<=, >=, целое, двоичное)
? Как влияет ограничение «A1-целое» на
сложность решения задачи?
46
47.
47Работа в Excel 2007
Тема 4. Статистика
© К.Ю. Поляков, 2009-2012
48.
Ряд данных и его свойстваРяд данных – это упорядоченный набор
x1 , x2 , ..., xn
значений
Основные свойства (ряд A1:A20):
• количество элементов =СЧЕТ(A1:A20)
• количество элементов, удовлетворяющих
некоторому условию:
= СЧЕТЕСЛИ(A1:A20;"<5")
• минимальное значение =МИН(A1:A20)
• максимальное значение =МАКС(A1:A20)
• сумма элементов =СУММ(A1:A20)
• среднее значение =СРЗНАЧ(A1:A20)
48
49.
49Дисперсия
Для этих рядов одинаковы МИН, МАКС, СРЗНАЧ
? В чем различие?
Дисперсия («разброс») – это величина,
которая характеризует разброс данных
относительно среднего значения.
50.
50Дисперсия
n
2
(
x
x
)
i
( x1 x ) 2 ( x2 x ) 2 ( xn x ) 2 i 1
Dx
n
n
x1 x2 xn
x
среднее арифметическое
n
( x1 x )
Dx
2
квадрат
отклонени x1
я от
среднего
средний квадрат
отклонения от
среднего
значения
51.
51Дисперсия и СКВО
Стандартная функция
=ДИСПР(A1:A20)
Функции – Другие – Статистические
Что неудобно:
если xизмеряется в метрах,
то D–x в м2
В каких
? единицах
измеряется?
СКВО = среднеквадратическое отклонение
x Dx
=СТАНДОТКЛОНП(A1:A20)
52.
Взаимосвязь рядов данныхДва ряда одинаковой длины:
x1 , x2 , ..., xn
y1 , y2 , ..., yn
Вопросы:
• есть ли связь между этими рядами
( xi , yi ) ли пары
(соответствуют
какой-нибудь
y f (x)
зависимости
)
• насколько сильна эта связь?
52
53.
53Взаимосвязь рядов данных
Ковариация:
n
x x y y
K xy i 1
i
i
n
? Если x и y – один и тот же ряд? K D
xx
x
в среднем!
Как понимать это число?
y
• если K xy 0увеличение x приводит к увеличению
• если K xy 0увеличение x приводит к уменьшениюy
• если K xy 0 связь обнаружить не удалось
Что плохо?
• единицы измерения: если
x
K xy
y
в метрах,
в литрах,
x y
– в м л
зависит от абсолютных значений и ,
поэтому ничего не говорит о том, насколько
K xy
то
54.
54Взаимосвязь рядов данных
Коэффициент корреляции:
K xy
xy
x y
x , y – СКВО рядов x и y
? Какова размерность? безразмерный!
1 xy 1
Как понимать это число?
• если xy 0 : увеличениеx приводит к
увеличению
xy 0
x
• если xy 0 : увеличение приводит к
уменьшению
• если =КОРРЕЛ(A1:A20;B1:B20)
: связь обнаружить не удалось
y
y
55.
Взаимосвязь рядов данных55
Как понимать коэффициент корреляции?
0 xy 0,2 : очень слабая корреляция
0,2 xy 0,5 : слабая
0,5 xy 0,7 : средняя
0,7 xy 0,9 : сильная
0,9 xy 1 : очень сильная
xy 1 : линейная зависимость
y ax b, a 0
xy 1 : линейная зависимостьy ax b, a 0
? Если 0 , то связи нет?
xy
! Метод для определения линейной зависимости!
56.
56Работа в Excel 2007
Тема 5. Восстановление
зависимостей
© К.Ю. Поляков, 2009-2012
57.
Восстановление зависимостей57
Два ряда одинаковой длины:
x1 , x2 , ..., xn
y1 , y2 , ..., yn
задают некоторую неизвестную функциюy f (x )
Зачем:
• найти y в промежуточных точках
(интерполяция)
y f (x)
y2
y1
x1 x2
xn
• найти y вне
диапазона измерений
(экстраполяция,
прогнозирование)
58.
Какое решение нам нужно?y f 2 ( x)
y f1 ( x)
y2
y1
x1 x2
xn
Через заданный набор точек проходит
! бесконечно
много разных кривых!
Вывод: задача некорректна, поскольку
решение
неединственно.
58
59.
Восстановление зависимостейКорректная задача: найти функцию заданного вида,
которая лучше всего соответствует
данным.
Примеры:
•линейная y a x b
y f (x)
y2
•полиномиальная
y1
59
y a3 x 3 a2 x 2 a1 x a0
•степенная y a x b
•экспоненциальная
x1 x2
xn
График функции не
! обязательно
проходит
через заданные точки!
y a e bx
•логарифмическая
y a ln x b
? Как выбрать
функцию?
60.
Что значит «лучше всего соответствует»?Метод наименьших квадратов (МНК):
y f (x)
y2
y1
Y1
значений
Yi f ( xi )
Y2
x1 x2
( xi , yi ) заданные пары
n
( yi Yi ) 2 min
xn
i 1
? Зачем возведение в квадрат?
1) чтобы складывать положительные
значения
2) решение сводится к системе линейных
уравнений (просто решать!)
60
61.
61Электронные таблицы Excel
МНК для линейной функции
y f (x)
y2
y1
неизвестн
о!
Yi k xi
n
n
(k ) ( yi Yi ) ( yi kxi ) 2
Y1
i 1
Y2
n
i 1
n
n
i 1
i 1
k x k 2 xi yi yi2
2
xn
x1 x2
2
(k ) ak bk c min
К. Поляков, 2009-2012
2
k
*
k
i 1
2
i
a
-b
n
x y
b
*
k
i 1n
2a
i
2
x
i
i 1
i
c
62.
62Коэффициент достоверности
n
2
R 1
(y Y )
i 1
n
i
i
2
2
(
y
y
)
i
i 1
( xi , yi ) заданные пары
значений
Yi f ( xi )
y – среднее
значение
yi
Крайние случаи:
• если график проходит через точки:
2
R 1
• если считаем, что y не меняется иYi y :
R 2 0
! Фактически – метод наименьших квадратов!
63.
Восстановление зависимостейДиаграмма «График»:
ПКМ
63
64.
Восстановление зависимостейтип
функции
64
65.
Восстановление зависимостей65
? Что такое x ?
«График»
! Вx диаграмме
1
x 2 для первой точки,
для второй и т.д.
? Насколько хорошо выбрана функция?
66.
Восстановление зависимостей66
Сложные случаи (нестандартная функция):
f ( x) a sin kx b
? Что делать?
Алгоритм:
a, k , b
1) выделить ячейки для хранения
xi
2) построить рядYi f ( xi ) для тех же
yi Yиi
3) построить на одной диаграмме ряды
4) попытаться подобратьa, k , b
так, чтобы
два графика были близки
2
5) вычислитьR в отдельной ячейке
функции: СУММКВРАЗН – сумма квадратов разностей рядов
ДИСПР – дисперсия
6) Поиск решения: R
2
min
! Это задача оптимизации!
67.
67Работа в Excel 2007
Тема 6. Моделирование
(по материалам учебника Н.В. Макаровой)
© К.Ю. Поляков, 2009-2012
68.
68Модель деления
N
i
N 0– начальная численность
N 2 N 0
N1 2N 0 – после 1 цикла деления
N 2 2 N1 4 N 0 – после 2-х циклов
i
N0
N i 2 N i 1 2 N 0
Особенности модели:
1) не учитывается смертность
2) не учитывается влияние внешней среды
3) не учитывается влияние других видов
i
69.
69Рождаемость и смертность
N i N i 1 K p N i 1 K c N i 1
K p– коэффициент рождаемости
K c – коэффициент смертности N
N i K N i 1
N0
Коэффициент изменения
численности
K 1 K p K c
K 1
K 1
K 1
Особенности модели:
1) не учитывается влияние численности N и
внешней среды на K
2) не учитывается влияние других видов на K
i
70.
Влияние численности и внешней средыN i K N i 1 K A (1 B N i 1 )
A – коэффициент устойчивости вида
B – коэффициент среды обитания
Варианты:
• устанавливается
постоянная
численность
• постоянно меняется
(колебания)
• вымирание
70
71.
71Влияние других видов
Ni – численность белок, Mi – численность бурундуков
N i N i 1 (2 K1 N i 1 K 2 M i 1 )
M i M i 1 (2 K 3 M i 1 K 4 N i 1 )
Откуда видно
? влияние?
K2, K4 – взаимное влияние
если K2 >K1 или K4 >K3 – враждующие виды
72.
Моделирование двух популяцийN0
M0
N i N i 1 (2 K1 N i 1 K 2 M i 1 )
? Как скопировать формулы «вниз»?
72
73.
Конец фильма73