25.09M
Категория: СтроительствоСтроительство
Похожие презентации:

Сборник тезисов докладов аннотация для IV Бетанкуровского международного инженерного форума ПГУПС ОО "Сейсмофонд"

1.

Сборник тезисов докладов аннотация для IV Бетанкуровского международного инженерного форума ПГУПС ОО "Сейсмофонд" 11.01.23
Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро собираемого
китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых автомобилей, из
пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным бетонным настилом и
натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ

2.

УДК 693.98
РАСЧЕТ УПРУГОППЛАСТИЧЕСКОГО СТРУКТУРНОГО СБОРОНО-РАЗБОРОНОГО МОСТА НА ОСНОВЕ ТРЕХГРАННОЙ
МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими
перемещениями на предельное равновесие и приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных
полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для армейского быстро собираемого моста, для
чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро собираемого
китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство
моста для грузовых автомобилей, из пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку
Суон , в штате Монтана (США), со встроенным бетонным настилом и натяжными элементами верхнего и нижнего пояса стальной фермы со
значительной экономией строительных материалов.
Леоненко А.В. научный руководитель канд. техн. наук Деордиев С.В.
Сибирский федеральный университет
Древесина всегда была одним из наиболее распространѐнных материалов используемых для строительства на территории нашей
страны. Это обусловлено не только тем, что она всегда была и остаѐтся самым доступным и сравнительно недорогим
материалом, но и наличием целого ряда других преимуществ по сравнению с другими традиционными материалами. Древесина имеет
высокие прочностные характеристики при достаточно небольшой плотности, а значит и небольшом собственном весе, что в свою очередь
исключает необходимость сооружения массивных и дорогостоящих фундаментов. Кроме того к положительным свойствам древесины
как строительного материала относятся: низкая теплопроводность, способностью противостоять
климатическим воздействиям,
воздухопроницаемость, экологическая чистота, а также природной красота и декоративностью, что для современных строений
играет немаловажную роль.
Деревянные структуры обладают рядом преимуществ, правильное использование которых позволяет повысить экономическую
эффективность по сравнению с традиционными решениями. К преимуществам относятся: пространственность работы системы;
повышенная надѐжность от внезапных разрушений; возможность перекрытия больших пролѐтов; удобство проектирования подвесных
потолков; максимальная унификация узлов и элементов; существенное снижение транспортных затрат; возможность использования
совершенных методов монтажа-сборки на земле и подъѐма покрытия крупными блоками; архитектурная выразительность и возможность
применения для зданий различного назначения.
В качестве объекта исследования и компоновки структурного покрытия принята металлодеревянная блок-ферма пролетом 18 метров
(рис. 1). Конструкция блок-фермы представляет собой двускатную четырехпанельную пространственную ферму, верхний пояс которой
выполнен из однотипных клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных поставленных Vобразно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы
крайних и средних раскосов соединены между собой металлическим элементом нижнего пояса, средний элемент нижнего пояса выполнен

3.

из круглой стали, также в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и
напрямую соединяющие опорные узлы со средним стальным элементом нижнего пояса [1]
Рис. 1. Блок ферма пролетом 18м
Структурное покрытие представляет собой совокупность одиночных блок-ферм связанных между собой в узлах примыкания раскосов решетки к верхнему поясу и установки дополнительных затяжек между узлами раскосов, что позволяет
комбинировать структурные покрытия различных пролетов.
С помощью программного комплекса SCAD v.11.5, реализующий конечно-элементное моделирование были проведены расчеты различных вариантов структур пролетами 6, 9, 12, и 15 метров. Расчет структурной конструкции блок-фермы
проводился на основное сочетание нагрузок, состоящее из постоянных и кратковременных нагрузок. На основе полученных результатов расчета составлена сводная таблица усилий и напряжений различных элементов структурного покрытия (таблица
1).
Таблица 1 – Таблица усилий и напряжений
Пролет
структуры
Мах.сжимающие
Мах.растягивающее
усилие раскоса, усилие раскоса, кН
кН (напряжение
(напряжение МПа)
МПа)
Мах.усилие в затяжке, Мах.перемещение, мм
кН (напряжение МПа)
6
120,15 (7,68)
99,06 (6,34)
244,58 (240,4)
46,03
9
183,95 (11,16)
159,9 (10,23)
280,36 (275,58)
57,44
12
254,1 (15,56)
215,47 (12,73)
331,54 (325,88)
73,34
15
296,77 (18,99)
264,35 (13,79)
398,92 (392,12)
98,26

4.

Проведенный анализ структурных покрытия пролетами 6, 9, 12, 15 метров показывает, что более оптимально конструкция работает при относительно небольших пролетах. Увеличение пролета структуры приводит к увеличению напряжений и
деформаций конструкции. Использование структурных покрытий больших пролетов приводят к значительному повышению собственного веса конструкции и нерациональному использованию материала. Наиболее оптимальным вариантом
структурного покрытия является пролет структуры 18 х 9 метров (рис 2.).
Предлагаемая конструкция представляет собой структуру образованную посредством соединения отдельных блок-ферм, размерами в плане 18х9м, в единый конструктивный элемент покрытия шарнирно опертый по углам.
Рис. 2 Структурное покрытие размерами 18 х 9 метров
В настоящее время проводится работа по дальнейшему решению задачи применения металлодеревянных структурных покрытий в условиях повышенной сейсмической опасности.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Инжутов И.С.; Деордиев С.В.; Дмитриев П.А.; Енджиевский З.Л.; Чернышов С.А Патент на изобретение № 2136822 от 10.09.1999 г.
Испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18,
24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним
и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей
прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих

5.

элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими
коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве
переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году и испозования опыта
Китайских инженерорв из КНР, расчеты и испытание узлов структутрной фермы кторый прилагаются ниже
организаций "Сейсмофонд" при СПб ГАСУ

6.

7.

8.

9.

10.

11.

Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро собираемого
китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых автомобилей, из
пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным бетонным настилом и
натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2 228 415
(13)
C2
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(45) Опубликовано: 10.05.2004 Бюл. № 13
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,
Филиппов А.П.
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р //
Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1,
(73) Патентообладатель(и):
07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789 Красноярская государственная
A, 15.03.1985.
архитектурно-строительная академия
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический результат - повышение прочности и жесткости за счет предварительного
напряжения и создания “следящих” за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-

12.

образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий
резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов и других аналогичных объектов. Преднапряженная панель покрытия
представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней
решетки, нижнего пояса. Она снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного сечения выполнен из крупноразмерных плит, имеющих
каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель
из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой регулярного типа, выполненной из деревянных
раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными
ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и температурно-влажностных деформаций в древесине и
температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный
трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент
соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает
момент с обратным знаком, что в свою очередь ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов 3, образованный трубой 4 с
приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент
соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3 размещены две шайбы 9, выполненные из
швеллера, и между ними винтовая пружина 8.

13.

Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5, присоединяются раскосы 1, затем через 3 пропускается
металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь позволяет создать экономичную конструкцию за счет
повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными
сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий
резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина.

14.

15.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ 2188287
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

16.

RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 188 287
(13)
C2
(51) МПК
(12)
E04C 3/04 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 4 год с 28.06.2003 по 27.06.2004. Патент перешел в общественное
достояние.
(22) Заявка: 2000117116/03, 27.06.2000
Дата начала отсчета срока действия патента:
27.06.2000
Опубликовано: 27.08.2002 Бюл. № 24
(71) Заявитель(и):
Томский государственный архитектурно-строительный университет
(72) Автор(ы):
Копытов М.М.,
Ерохин К.А.,
Список документов, цитированных в отчете о поиске: RU 8716 U1, 16.12.1998. SU 727790 А,
29.04.1980. SU 1255697 А1, 07.09.1986. US 1959756 А, 22.06.1934. GB 898605 А, 14.06.1962.
ес для переписки:
634003, г.Томск, 3, пл. Соляная, 2, ТГАСУ, патентный отдел
Матвеев А.В.,
Мелехин Е.А.
(73) Патентообладатель(и):
Томский государственный архитектурно-строительный университет
(54) ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
(57) Реферат:
Изобретение относится к области строительства, а более конкретно к несущим металлическим конструкциям покрытия производственных и общественных зданий. Каждая отдельная трехгранная ферма покрытия состоит из двух
верхних коробчатых поясов и одного нижнего, также коробчатого пояса, соединенных между собой раскосной решеткой. Все коробчатые пояса имеют пентагональное сечение и выполнены каждый из жестко соединенных между собой
швеллера и уголка. Раскосная решетка выполнена из одиночных уголков, прикрепленных полкам и к полкам поясных уголков. Стенки швеллеров верхних поясов расположены вертикально, а стенка нижнего швеллера горизонтально.
Верхние пояса объединены по полкам швеллеров профнастилом. За счет вертикальной ориентации стенок швеллеров верхних поясов по вышается значение момента сопротивления и радиуса инерции пентагонального сечения.

17.

Технический
результат
изобретения
заключается
в
повышении
несущей
способности
трехгранной
фермы
и
сокращение
количества
элеме нтов
в
покрытии.
3
ил.
Изобретение относится к строительным металлическим конструкциям, а более конкретно к несущим
конструкциям покрытия производственных и общественных зданий, и может быть использовано для
подвески технологических устройств, а также в качестве перекрытий, элементов комбинированных систе м.
Известны устройства бесфасоночных покрытий из трехгранных ферм с поясами и наклонной решеткой из
круглых труб *1+. По верхним поясам этих ферм уложены прогоны, на которые опираются ограждающие
конструкции. Недостатком таких покрытий является большое количество прогонов и сложность выполнения
пространственных узлов сопряжении труб, что ведет к повышенному расходу металла и трудоемкости
изготовления. Известны также устройства беспрогонных покрытий из трехгранных ферм *2+ с коробчатым
сечением двух верхних поясов, образованных из состыкованных уголков и нижним поясом из одиночного
уголка, к которым с помощью фасонок прикреплены раскосы. Недостатком таких покрытий является
большое количество фасонок, необходимость делать вырезы в полках уголков для пропуска ф асонок, что
также ведет к повышенному расходу металла и трудоемкости изготовления.
Наиболее близким к заявляемому покрытию является складчатое покрытие из наклонных ферм *3+. Оно
состоит из непрерывной системы плоских ферм, наклоненных под углом 45 o к вертикальной плоскости.
Каждая смежная ферма имеет общий пояс: либо верхний, представляющий собой пятигранный профиль
сечения, образованный из состыкованного швеллера и уголка; либо нижний, образованный из одиночного
уголка, ориентированного обушком вверх. К поясам торцами приварены раскосы из одиночных уголков. Это
позволяет реализовать беспрогонное и бесфасоночное решение кровельного покрытия и является

18.

экономичней аналогов. Однако конструкция такого покрытия вынуждает ориентировать пятигранный
профиль сечения с горизонтально расположенной стенкой швеллера, что необходимо для образования
складчатой системы. Анализ показывает, что при такой ориентации поясов на 25...45% снижается прочность
сжато-изогнутого стержня верхнего пояса, т.к. момент сопротивления и радиус инерции сечения
оказываются меньше, чем при ортогональной ориентации этого же сечения. Кроме того, непрерывная
система складчатого покрытия требует большого количества наклонных ферм и необходимость выполнения
вручную большого объема работ на строительной площадке по укрупнительной сборке конструкции.
Раскосная решетка таких ферм слабо нагружена и имеет большой запас несущей способности, но без нее
невозможно образовать конструктивную форму складчатого покрытия. Все это сопровождается
повышенным расходом металла и большой трудоемкостью изготовления.
Задача изобретения состоит в том, чтобы снизить металлоемкость и трудоемкость изготовления покрытия
при сохранении его несущей способности.
Задача решается следующим образом. В покрытии из трехгранных ферм, объединенных профнастилом,
каждая из которых включает верхние коробчатые пояса пентагонального сечения из жестко соединенных
между собой швеллеров и уголков, нижний пояс, содержащий уголок, направленный обушком вверх, и
раскосную решетку, прикрепленную к полкам поясных уголков, согласно изобретению нижний пояс снабжен
швеллером, жестко соединенным с уголком и образующий с ним пентагональное сечение; при этом стенки
швеллеров верхних и нижнего пояса ориентированы ортогонально.
Таким образом, заявляемое устройство отличается от прототипа тем, что:
- нижний пояс снабжен швеллером, жестко соединенным с уголком и образующим с ним пентагональное
сечение;
- стенки швеллеров верхних и нижнего поясов распложены ортогонально.
Это говорит о "новизне" заявляемого устройства.

19.

Так как нижний пояс выполнен из пентагонального сечения, а полки швеллеров верхних и нижнего пояса
ориентированы ортогонально, это позволило увеличить площадь растянутого нижнего пояса с
одновременным увеличением моментов сопротивления и радиусов инерции сжато-изогнутых верхних
поясов, т.е. повысить несущую способность отдельной фермы. При этом большой запас несущей
способности раскосной решетки уменьшится и она станет работать эффективней, что и позволило
дискретизировать систему несущих конструкций покрытия из наклонных ферм. Благодаря качественному
изменению конструктивной формы непрерывная складчатая система покрытия превратилась в блочную,
состоящую из трехгранных ферм со свободным пространством между ними. Это позволяет существенно
сократить количество элементов в покрытии, повысить несущую способность поясов конструкции за счет
оптимальной ориентации их сечений и в совокупности существенно снизить трудоемкость изготовления,
металлоемкость и стоимость.
Предлагаемая конструкция позволяет осуществить полное заводское изготовление и сборку трехгранной
фермы, удобна при транспортировке и монтаже. Таким образом, при сохранении и соблюдении всех
необходимых рабочих параметров заявляемая конструкция требует в сравнении с прототипом меньше
металла, меньшего количества элементов, что в итоге приводит к снижению металлоемкости, трудоемкости
и стоимости при сохранении несущей способности покрытия.
На фигуре 1 изображен общий вид покрытия из трехгранных ферм; на фигуре 2 изображен общий вид
наклонной плоскости трехгранной фермы; на фигуре 3 - поперечный разрез трехгранной фермы.
Трехгранная ферма содержит два верхних пояса 1, нижний пояс 2 и раскосы 3. Верхний пояс 1 состоит из
состыкованного швеллера и уголка при вертикальной ориентации стенки швеллера; нижний п ояс 2 - то же
при горизонтальной ориентации стенки швеллера; раскосы 3 - из одиночных уголков. Стержни раскосов 3
прикреплены торцами к полкам поясных уголков (фиг.3) посредством сварки. Верхние пояса трехгранных
ферм в горизонтальной плоскости связаны сплошным профнастилом 4 (фиг.1), который завершает

20.

формирование покрытия из трехгранных ферм. Между смежными трехгранными фермами не требуется
размещения элементов 2 и 3 (фиг.1); достаточно перекрыть это свободное пространство настилом 4.
Изготовление покрытия из трехгранных ферм производят следующим образом: швеллер и уголок стыкуют
между собой продольными сварными швами и образуют элементы поясов 1 и 2 пятигранного профиля
сечения. Два верхних пояса 1 устанавливают с вертикальной ориентацией стенки швеллера (как показано на
фиг. 3); нижний пояс 2 - с горизонтальной ориентацией стенки швеллера. При этом полки швеллеров
верхних поясов служат опорами для настила, а наклон плоскостей поясных уголков пятигранных профилей 1
и 2 соответствует требуемым плоскостям элементов раскосной решетки 3. Элементы раскосной решетки 3,
выполненные из одиночных уголков, торцами приваривают к полкам поясных уголков соответственно
верхнего 1 и нижнего 2 поясов. Образуется бесфасоночная пространственная трехгранная ферма полной
заводской готовности. Эта ферма удобна при транспортировке: ее габариты и устройство позволяют
перевозить одновременно несколько ферм за счет их укладки "елочкой" в транспортное средство. На
монтажной площадке к верхним поясам пространственной фермы без прогонов устанавливается и крепится
профнастил 4 и образуется трехгранный блок покрытия. Он устанавливается в проектное положение.
Следующий блок покрытия устанавливается так, что между ними образуется свободное пространство, не
заполненное стержневыми элементами: достаточно перекрыть его лишь профнастилом 4, который
одновременно совмещает несущие и ограждающие функции. Это позволяет сократить количество элементов
в покрытии из трехгранных ферм, снизить металлоемкость, трудоемкость и стоимость. Конвейерная сборка и
блочный монтаж дополнительно упрощают процесс изготовления и монтажа, делают его технологичным и
менее трудоемким.
Покрытие из трехгранных ферм работает как пространственная стержневая система с неразрезными
поясами и примыкающими раскосами. Верхний пояс 1 работает как сжато-изогнутый стержень.
Максимальное значение изгибающего момента и радиуса инерции соответствует вертикальной плоскости,
поэтому вертикальной ориентацией стенки швеллера достигается максимальное значение момента

21.

сопротивления и радиус инерции, которые определяют прочность при сжатии с изгибом, т.е. достигается
максимальная несущая способность сжато-изогнутого пятигранного сечения, и оно работает с максимальной
эффективностью. Нижний пояс 2 работает как растянутый стержень; примыкающие рас косы работают в
условиях растяжения или сжатия. Профнастил работает на изгиб как однопролетная или многопролетная
гофрированная пластина. Покрытие из трехгранных ферм отличается повышенной пространственной
жесткостью как на стадии монтажа, так и в условиях эксплуатации и является индустриальной и
технологичной конструктивной формой.
Источники информации
1. Беленя Е.И. и др. Металлические конструкции. Специальный курс. - М.: 1982, с. 57...60.
2. Авт. св. СССР 1544921, М.кл. Е 04 С 3/04.
3. Свид. на полез модель 8716, МПК Е 04 С 3/04.
Формула изобретения
Покрытие из трехгранных ферм, объединенных профнастилом, каждая из которых включает верхние
коробчатые пояса пентагонального сечения, из жестко соединенных между собой швеллеров и уголков,
нижний пояс, содержащий уголок, направленный обушком вверх, и раскосную решетку, прикрепленную к
полкам поясных уголков, отличающееся тем, что нижний пояс снабжен швеллером, жестко соединенным с
уголком и образующим с ним пентагональное сечение, при этом стенки швеллеров верх них и нижнего
поясов размещены ортогонально.

22.

ТРЕХГРАННАЯ БЛОК-ФЕРМА 2 136822 ТРЕХГРАННАЯ БЛОК-ФЕРМА Красноярская государственная архитектурно строительная академия
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 136 822
(13)
C1
(51) МПК
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
E04C 3/17 (1995.01)
E04B 1/19 (1995.01)
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 3 год с 10.09.1999 по 09.09.2000. Патент перешел в общественное достояние.
(22) Заявка: 97115691/03,
09.09.1997
Дата начала отсчета срока действия
патента:
09.09.1997
(71) Заявитель(и):
Красноярская государственная
архитектурно-строительная
академия
(72) Автор(ы):
Инжутов И.С.,
Деордиев С.В.,

23.

Опубликовано: 10.09.1999
Список документов, цитированных
в отчете о поиске: Дмитриев П.А. и
др. Индустриальные
пространственные деревянные
конструкции. - НИСИ
им.В.В.Куйбышева, 1981, с. 88. SU
1281651 A, 07.01.87. FR 2551789 A,
15.03.85. SU 65455 A, 31.12.45. US
4389829 A, 28.06.83.
Дмитриев П.А.,
Енджиевский З.Л.,
Чернышов С.А.
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная
академия
ес для переписки:
660041, Красноярск, пр.Свободный
82, Ректору КрасГАСА Наделяеву
В.Д.
(54) ТРЕХГРАННАЯ БЛОК-ФЕРМА
(57) Реферат:
Трехгранная блок-ферма покрытия относится к строительству и может быть использована для соединения стержней пространственных конструкций здани й и сооружений. Технический результат изобретения заключается в достижении
наиболее эффективной работы верхнего пояса с нижним, экономии материалов. Блок-ферма покрытия, представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из одно типных
клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных пос тавленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы.
Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего по яса выполнен из круглой стали, в ферму введены крайние стальные стержни нижнего пояса,
имеющие по концам V-образное разветвление и напрямую соединяющие опорные узлы со средним стальным элементом нижнего пояса, 3 ил.
Изобретение относится к области строительства, а именно к конструкциям покрытия.
Известна панель покрытия треугольного очертания, образованная двумя плитами, шарнирно соединенными между собой в коньке и зат яжкой с V-образными разветвлениями по концам в уровне опорных узлов. Плиты подкреплены двумя сжатыми раскосами и двумя
растянутыми (с V-образным планом) раскосами. Поперечное сечение панели - треугольное. Плиты состоят из нижних (основных несущих) ребер, фанерной обшивки, поперечных ребер, размещенных на обшивке све рху, продольных элементов обрамления (см. SU 1281651 A,
07.01.87).

24.

Недостатком этой конструкции является большая материалоемкость плит, обусловленная развитой свободной длиной нижних ребер.
Наиболее близкой по техническому решению к предлагаемому изобретению (прототипом) является блок -ферма покрытия, представляющая собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из одно типных
взаимозаменяемых клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных поставленных V -образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних
и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круг лой стали (см. Дмитриев П.А. и др. "Индустриальные пространственные деревянные конструкции", НИСИ им. В.В. Куйбышева, 1981, с.
88).
Недостатком конструкции прототипа является неэффективная работа верхнего пояса с нижним, т.к. передача усилий с верхнего пояс а на нижний передается под большим углом к направлению волокон древесины, что определяет значительные деформации в узловом
сопряжении. Прочность древесины вдоль волокон существенно выше, чем поперек. Работа крайних раскосов на растяжение не позволя ет выполнить элементы решетки взаимозаменяемыми, что является причиной повышенной материалоемкости конструкции.
Целью изобретения является эффективная работа блок-фермы, экономия материалов.
Цель достигается тем, что в блок-ферме покрытия, представляющем собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного типа
выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса,
а средний элемент нижнего пояса выполнен из круглой стали, введены крайние стальные стержни ниж него пояса, имеющие по концам V-образное разветвление и соединяющие напрямую опорные узлы со средним стальным элементом нижнего пояса.
Благодаря введению крайних стальных стержней нижнего пояса, имеющих по концам V -образное разветвление, улучшилась работы блок-фермы за счет того, что усилие с нижнего на основные ребра верхнего пояса передается под небольшим углом к направлению
волокон древесины, что определяет незначительные деформации в узловом сопряжении, в связи с этим обусловлена возможность умен ьшить размеры поперечных сечений раскосов, а следовательно, достичь экономии древесины.
На фиг. 1 изображена блок-ферма покрытия; на фиг. 2 - совмещенные вид и разрез в плане; на фиг. 3 - совмещенный поперечный разрез.
Блок-ферма покрытия включает верхний пояс, состоящий из однотипных клеефанерных плит 1, имеющих каркас из основных нижних ребер 2, и прикрепленной к нему сверху шурупами обшивки 3 из плоских асбестоцементных листов. Между вспомогательными
дощатыми ребрами 4, расположенными вдоль пролета, на обшивку укладывается утеплитель 5 из полистирольного пенопласта марки ПСБ. Гидроизоляция устраивается из трех слоев рубероида по выра внивающему слою из стеклоткани. Диафрагмы 7 находятся между
основными нижними ребрами 2 в сечениях, совпадающих с узлами сопряжения верхнего пояса 1 конструкции с раскосами 8. Верхний пояс объединен с нижним пространственной решеткой регулярного типа, выпол ненной из деревянных поставленных V-образно
взаимозаменяемых раскосов 8 квадратного сечения. Нижние узлы 9 крайних и средних раско сов соединены между собой деревянным элементом 10 нижнего пояса. Средний элемент 11 нижнего пояса выполнен из круглой стали. Крайние стальные стержни 13 нижнего пояса
имеют по концам V-образное разветвление и напрямую соединяют опорные узлы со средним стальным элементом нижнего пояса 11. Разветвление расперто стержнем 12.
Сборка блок-фермы осуществляется на строительной площадке. В начале собирается верхний пояс из однотипных клеефанерных плит 1, затем плит ы стыкуются в коньковом узле. Дальше к плитам навешиваются деревянные взаимозаменяемые раскосы 8. После этого
следует выполнение узлов 9 нижнего пояса и в конце производится крепление крайних стальных стержней 13, имеющих по концам V -образное разветвление и соединяющих напрямую опорные узлы со средним стал ьным элементом нижнего пояса 11.
Положительные свойства разработанного технического решения заключаются в эффективной работе блок -фермы за счет введения крайних стальных стержней нижнего пояса, которые напрямую соединяют опорные узлы со средними стальными элементами нижнего
пояса. Вследствие этого при нагружениях по всему пролету возникают сжимающие усилия во всех раскосах. Усилие с нижнего пояса на основные ребра верхнего пояса передается под небольшим углом к направлению волокон древесины, что определяет незначительные
деформации в узловом сопряжении. В связи с этим обусловлена возможность сделать раскосы взаимозаменяемыми, уменьшить размер п оперечного сечения, а следовательно, достичь экономии древесины.
В сравнении с прототипом, данное техническое решение позволяет снизить расход материалов на 12 - 15%, улучшить условия работы верхнего пояса благодаря снижению величин изгибающих моментов и уменьшению угла между осью перед ачи продольного усилия и
направлением волокон древесины с нижнего пояса на основные работы верхнего.
Формула изобретения
Блок-ферма покрытия представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однот ипных клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных поставленных V-образно
взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы, нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояс а выполнен из
круглой стали, отличающаяся тем, что в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V -образное разветвление и напрямую соединяющие опорные узлы со средним стальным элементом нижнего пояса.

25.

СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ 2503783
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (11)
2 503 783
(13)
C1
(51) МПК
E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.12.2021)
Пошлина: учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(22) Заявка: 2012126474/03,
25.06.2012
Дата начала отсчета срока действия
патента:
25.06.2012
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
оритет(ы):
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Дата подачи заявки: 25.06.2012
Закрытое акционерное общество "Казанский
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром") (RU)
Опубликовано: 10.01.2014 Бюл. № 1
Список документов, цитированных
в отчете о поиске: RU 103115 U1,
27.03.2011. RU 2354789 C1,
10.05.2009. AU 568956 B2,
14.01.1988.
ес для переписки:
420043, РТ, г.Казань, ул. Зеленая, 1,
КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления фермы с нисходящими раскосами. Технический результат заключается в снижении трудоемкости изготовления. Ферму выполняют из прямых
коробчатых поясов с треугольной или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с поясами. Сначала по пр оекту изготавливают полуфермы. Укладывают верхний пояс, содержащий фланцевый монтажный
стык пояса и опорный узел полуфермы. Опорный узел состоит из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего п ояса. Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем
укладывают нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы. После чего к поясам встык приваривают стержни решетк и восходящего направления
полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм. Затем на узлы полуфермы накладыва ют внахлест стержни решетки нисходящего направления, выполняя их из двух параллельных неравнобоких уголков
или полос. Полосы преднапрягают, стягивая их в середине болтом. 4 ил.

26.

Изобретение относится к строительству и касается способа изготовления решетча тых ферм из прокатных профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной решетки с сечением из коробчатых профилей, заключающийся в соединении сваркой односрезных концов р аскосов с поясами в притык (см. Справочник
проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16, 7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими раскосами, выполняемой из прямого коробчатого пояса, заключающийся в соединении сваркой односрезных концов двух нисходящих раскосов с верхним
поясом (см. Альбом типовой серии на фермы из гнутосварных профилей. Серия 1.460.3 -23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления ферм с треугольной или раскосно й решеткой, т.к. ширина сходящихся в
узлах стержней решетки ферм и поясов выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости и зготовления фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении сваркой односрезных концов раскосов с поясами, согласно
изобретению, сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчачатого профиля, содержащий фланцев ый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении п лоскости
стенок верхнего пояса и приваренную перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шир иной равной верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык
приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм; за тем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух параллельных
неравнобоких уголков или полос, при этом полосы преднапрягают стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности изготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемых из коробчатых профилей равной ширины «b» (Фиг.1). Все восходящие раскосы фермы с тр еугольной или раскосой решеткой выполняют из коробчатых профилей 3
с шириной профиля равного щирине поясов (при этом толщина профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или полос (Фиг.1). Остальны е раскосы 5 фермы нисходящего направления изготавливают из двух
полос, которые накладывают на узлы фермы и приваривают (Фиг.1). Фер му в заводских условиях собирают в следующей последовательности. Сначала по проекту изготавливают полуфермы, для чего: уклады вают верхний пояс 1 из коробчатого профиля (Фиг.2), который
содержет фланцевый монтажный стык 6, и опорный узел полуфермы (Фиг.2), состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и приваренную перпендикуля рно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют
нижний пояс 2 фермы с шириной пояса 2 равного ширине верхнего пояса 1, ко торый содержит фланцевый монтажный стык 9 нижнего пояса 2 полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3, выполняя их
коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы накладывают внахлест раскосы 4 и 5 решетки нисходящего направления (Фиг.4), выполняя их из двух параллельных неравн обоких уголков 4 или полос 5, при этом полосы 5
преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в узле раскосов, кроме того при изготовлении нисходящих раскосов нахлестом на узлы полуферм происходит усиление стенок коробчатых профилей поясов
и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из коро бчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решетк ой, заключающийся в соединении сваркой односрезных концов раскосов с поясами, отличающийся тем, что сначала по проекту
изготавливают полуфермы: укладывают верхний пояс из коробчатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса, и приваренную
перпендикулярно фасонкам опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, которы й содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни решетки
восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм; затем на узлы полуфермы накла дывают внахлест стержни решетки нисходящего направления, выполняя их из двух параллельн ых неравнобоких уголков или полос,
при этом полосы преднапрягают, стягивая их в середине болтом.

27.

28.

29.

30.

31.

УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ 2228415
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2 228 415
(13)
C2
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,
Филиппов А.П.
(73) Патентообладатель(и):

32.

(45) Опубликовано: 10.05.2004 Бюл. № 13
Красноярская государственная
архитектурно-строительная академия
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р //
Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1,
07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789
A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический результат - повышение прочности и жесткости за счет предварительного
напряжения и создания “следящих” за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий
резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов и других аналогичных объектов. Преднапряженная панель покрытия
представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней
решетки, нижнего пояса. Она снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного сечения выполнен из крупноразмерных плит, имеющих
каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель
из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой регулярного типа, выполненной из деревянных
раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными
ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и температурно-влажностных деформаций в древесине и
температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный
трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент
соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.

33.

В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания “следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает
момент с обратным знаком, что в свою очередь ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов 3, образованный трубой 4 с
приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент
соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3 размещены две шайбы 9, выполненные из
швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5, присоединяются раскосы 1, затем через 3 пропускается
металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь позволяет создать экономичную конструкцию за счет
повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными
сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий
резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина.

34.

35.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ 2208103

36.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 208 103
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
(12)
E04C 3/10 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 13.0 8.2022)
Пошлина: Патент перешел в общественное достояние.
(22) Заявка: 2002121993/03, 12.08.2002
Дата начала отсчета срока действия патента:
12.08.2002
Опубликовано: 10.07.2003 Бюл. № 19
Список документов, цитированных в отчете о поиске: БЕЛЕНЯ Е.И.
Предварительно напряженные несущие металлические
конструкции. - М.: Стройиздат, 1975, с.250-252, (рис.V.21). SU
802479 A, 15.02.1981. SU 910985 A, 09.03.1982. GB 2174430 A,
(71) Заявитель(и):
Петербургский государственный университет путей сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный университет путей сообщения
05.11.1986. US 4353190 A1, 12.10.1982. SU 1308731 A1, 07.05.1987.
ес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный
отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпрен гельных блоков покрытия, применяемых в качестве несущих конструкций покрытий зданий и
сооружений и т. п. Технический результат - снижение трудоемкости монтажа предварительно напряженных шпренгельных блоков покрытия. Способ монтажа предварительно напряжен ного шпренгельного блока покрытия включает
крепление к концам элемента жесткости приопорных хомутов, объединенных затяжкой, и установку диафрагм шпренгеля. Приопорные хомуты пропускают в пет ли на концах затяжки. Затем направляющие на концах диафрагм шпренгеля
упирают в сегментообразные торцы стопоров затяжки. Ригели диа фрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их временной затяжкой, снабженной натяжн ым устройством, с помощью

37.

которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами криволинейных направ ляющих. После этого устанавливают фиксаторы и демонтируют временную затяжку. 8 ил.
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпрен гельных
блоков покрытия, применяемых в качестве несущих конструкций покрытий зданий и сооружений и т. п.
Известен способ предварительного напряжения шпренгельных балок, преимущественно большепролетных покрытий, включающий установк у рычагов,
присоединение к их средним частям концов затяжки и направляющей со стяжными приспособлениями, к которым прикрепляют одни концы рычагов,
подвижно соединенные с направляющей, при этом рычаги выполняют спаренными и соединяют другими концами с предварительно напряг аемой
балкой жесткости, а направляющую и концы затяжки размещают между ними, причем концы затяжки жестко закрепляют к рычагам *1+.
Недостатком известного технического решения является сложность и трудоемкость его осуществления, связанная с необходимостью м онтажа мощных
рычагов, направляющих, стяжных приспособлений, а также осуществления прикреплений в местах опирания рычагов на балку жесткости и жесткого
закрепления затяжки к рычагам. Кроме того, известное техническое решение предусматривает объединение затяжки при помощи встав ки, помещаемой
между спаренными рычагами, что также увеличивает трудоемкость процесса предварительного напряжения.
Также известен способ монтажа предварительно напряженной несущей конструкции, включающий монтаж элемента жесткости, прикрепле ние к его
торцам гибкой затяжки, установку средней стойки шпренгеля, после чего производится первый этап натяжения затяжки домкратами двойного действия,
закрепленными на концах гибкой затяжки, а второй этап предварительного натяжения производится посредством удлинения средней с тойки шпренгеля,
смонтированной на ней винтовой муфтой *2+ (принято за прототип).
Недостатком такого технического решения является повышенная трудоемкость, обусловленная необходимостью присоединения к гибкой затяжке и
средней стойке шпренгеля натяжных устройств (домкратов и стяжной муф ты), а также невозможностью демонтажа стяжной муфты, что, в конечном
счете, повышает трудоемкость монтажа конструкции в целом.
Задачей настоящего изобретения является снижение трудоемкости монтажа предварительно напряженных шпренгельных блоков покрытия .
Технический результат достигается тем, что в способе монтажа предварительно напряженного шпренгельного блока покрытия, включающ ем
крепление к концам элемента жесткости приопорных хомутов, объединенных затяжкой, и установку диафрагм шпренгеля, приопорные х омуты
пропускают в петли на концах затяжки, затем направляющие на концах диафрагм шпренгеля упирают в сегментообразные торцы стопор ов затяжки, а
ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их временной затяжк ой, снабженной натяжным
устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами криволинейных нап равляющих,
после чего устанавливают фиксаторы и демонтируют временную затяжку.
Предлагаемое техническое решение описывается следующими графическими материалами:
- на фиг. 1 приводится общий вид предварительно напряженного шпренгельнго блока (вид по 1 -1 на фиг. 2) после монтажа;

38.

- на фиг. 2 - план шпренгельного блока по фиг. 1;
- на фиг. 3 - поперечный разрез по 2-2 на фиг. 2;
- на фиг. 4 - узел А на фиг. 1;
- на фиг. 5 - общий вид предварительно напряженного шпренгельного блока на стадии монтажа;
- на фиг. 6 - узел Б на фиг. 5;
- на фиг. 7 - узел В на фиг. 5;
- на фиг. 8 - вид по 3 - 3 на фиг. 7.
Предлагаемый способ монтажа предварительно напряженного шпренгельного блока покрытия заключается в прикреплении к концам элемента
жесткости 1 приопорных хомутов 2, объединенных затяжкой усиления 3, и установке диафрагм 4 шпренгеля, для чего приопорные хом уты 2 пропускают
в петли 5 на концах затяжки усиления 3 и крепят их к концам элемента жесткости 1 (например, с помощью резьбовых концевиков с гайками), затем
направляющие 6 диафрагм 4 шпренгеля упирают в сегментообразные торцы стопоров 7 затяжки усиления 3, а ригели 8 диа фрагм 4 шпренгеля,
снабженные прорезями на концах, заводят в криволинейные направляющие 9 элемента жесткости 1 и объединяют их временной затяжко й 10 с
натяжным устройством 11 (например, стяжной муфтой), при помощи которого затем смещают ригели 8 диафрагм 4 шпренгеля навстречу друг другу до
касания с упорами 12 криволинейных направляющих 9, в результате чего диафрагмы 4 шпренгеля поворачиваются относительно точек упора
направляющих 6 диафрагм 4 шпренгеля в стопоры 7 затяжки 3, после чего в отверстия 13 криво линейных направляющих 9 устанавливают фиксаторы 14 и
демонтируют временную затяжку 10.
На концах затяжки 3 устроены петли 5 и стопоры 7, например, в виде спрессованных шайб.
Закрепление временной затяжки 10 к ригелям 8 диафрагм 4 шпренгеля осуществляется, например, с использованием торцевых анкеров.
При стягивании натяжным устройством 11 временной затяжки 10 она укорачивается, что приводит к перемещению ригелей 8 диафрагм 4 шпренгеля
навстречу друг другу (в направлении к середине пролета), при этом ригели 8 перемещаются в направляющих 9 (например, листового типа) вплоть до
касания с упорами 12.
При перемещении диафрагм 4 шпренгеля из начального наклонного положения в проектное расстояние между осями элемента жесткости 1 и затяжки
3 увеличивается, что приводит к появлению в затяжке 3 и приопорных хомутах 2 растягивающих усилий предварительного напряжения.
Стопоры 7 с сегментообразными торцами, смонтированные на затяжке 3, предотвращают смещение направляющих 6 диафрагм 4 шпренгел я и
соответственно нижних концов диафрагм 4 шпренгеля, фиксируя их положение в процессе напряжения временной затяжки 10 натяжным устройством 11.
При этом на стопоры 7 воздействуют усилия, возникающие из-за разности горизонтальных составляющих усилий в затяжке 3 и приопорных хомутах 2.
Торцы стопоров 7 затяжки 3, контактирующие с направляющими диафрагм 4 шпренгеля, выполнены сегментообразными, что позволяет обе спечить
поворот диафрагм 4 шпренгеля относительно их точек упора в стопоры 7 затяжки 3 и уменьшить необходимые усилия для перемещен ия ригелей 8
диафрагм 4 шпренгеля навстречу друг другу, что, как следствие, приводит к снижению трудоемкости монтажа.
Криволинейные направляющие 9 выполнены по кривым, радиус кривизны которых равен расстоянию от направляющей 6 диафрагмы 4 шпре нгеля в
месте пропуска затяжки 3 до прорезей ригеля 8 диафрагмы 4 шпренгеля, что позволяет уменьшить дополнительные усилия при перемещении ригеля 8

39.

диафрагмы 4 шпренгеля (повороте диафрагм 4 шпренгеля) по направляющим 9 элемента жесткости 1, и, как следствие, снизить т рудоемкость монтажа в
целом.
При натяжении временной затяжки 10 натяжным устройством 11 диафрагмы 4 шпренгеля поворачиваются и соответственно угол α между продольной
осью диафрагмы 4 и осью временной затяжки 10 увеличивается, следовательно, усилия во време нной затяжке 10 и натяжном устройстве 11,
необходимые для перемещения ригелей 8 диафрагмы 4 шпренгеля и равные F з=Fд•cosα (где F з - усилие натяжения во временной затяжке 10, F д - реакция
направляющих 9), уменьшаются, что приводит к снижению трудоемкости пр оцесса предварительного напряжения временной затяжки 10 натяжным
устройством 11 и, как следствие, к снижению трудоемкости монтажа всего шпренгельного блока покрытия в целом.
Кроме того, отпадает необходимость в стационарном натяжном устройстве (стяжной муф те и т. п.), которое остается на установленном
предварительно напряженном шпренгельном блоке покрытия и в дальнейшем не используется.
Демонтируемые временная затяжка 10 и натяжное устройство 11 являются инвентарными элементами многократного применения.
Использование предлагаемого изобретения позволит снизить трудоемкость монтажа предварительно напряженных шпренгельных блоков пок рытия на
10... 15%.
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ
1. Авторское свидетельство СССР 802479, Е 04 G 21/12; В 1/22. Исаев П.М. и др. Натяжно е устройство преимущественно для предварительного
напряжения шпренгельных балок большепролетных покрытий. - Бюл. 5. - 1981.
2. Беленя Е.И. Предварительно напряженные несущие металлические конструкции. -М.: Стройиздат, 1975. - с. 250...252 (рис. V.21).
Формула изобретения
Способ монтажа предварительно напряженного шпренгельного блока покрытия, включающий крепление к концам элемента жесткости при опорных
хомутов, объединенных затяжкой, и установку диафрагм шпренгеля, отличающийся тем, что приопорные хомуты про пускают в петли на концах затяжки,
затем направляющие на концах диафрагм шпренгеля упирают в сегментообразные торцы стопоров затяжки, а ригели диафрагм шпренгел я заводят в
криволинейные направляющие элемента жесткости и объединяют их временной затяжкой, сн абженной натяжным устройством, с помощью которого
смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами криволинейных направляющих, после чего устанавлив ают фиксаторы и
демонтируют временную затяжку.

40.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

41.

RU
(11)
2 188 915
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
C1
(51) МПК
(12)
E04C 3/10 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 17.07.2021)
Пошлина: учтена за 4 год с 17.07.2004 по 16.07.2005. Патент перешел в общественное
достояние.
(22) Заявка: 2001119753/03, 16.07.2001
Дата начала отсчета срока действия патента:
16.07.2001
Опубликовано: 10.09.2002 Бюл. № 25
(71) Заявитель(и):
Петербургский государственный университет путей
сообщения
(72) Автор(ы):
Егоров В.В.,
Список документов, цитированных в отчете о поиске: БЕЛЕНЯ
Алексашкин Е.Н.,
Е.И. и др. Металлические конструкции, -М.1982, с.95, рис.6.14
Забродин М.П.
ж. КИРСАНОВ Н.М. Висячие покрытия производственных
зданий. - М., 1990, с.8, рис.1.1. SU 910985 А, 09.03.1982. GB
2174430 А, 05.11.1986. US 4353190 А1, 12.10.1982. SU 1308731 А1,
07.05.1987.
(73) Патентообладатель(и):
Петербургский государственный университет путей
сообщения
ес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС,
патентный отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ШПРЕНГЕЛЬНОЙ РАМЫ
(57) Реферат:
Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть использовано при возведении несущих каркасов зданий и
сооружений, жестких поперечин электрифицированных железных дорог и т.п. Технический результат - упрощение монтажа предварительно напряженных шпренгельных рам и, как следствие, снижение его
трудоемкости. Для этого в способе монтажа предварительно напряженной шпренгельной рамы, включающем объединение колонн с фунда ментами и предварительно напряженным ригелем шпренгельного типа, к балке распорке ригеля прикрепляют стойки с вилкообразными наконечниками, а на ее концах устанавливают вилкообразные упоры, затем ба лку-распорку ригеля стропуют в средней ее части и выполняют промежуточный
подъем, спрессованные на затяжке шайбы заводят за вилкообразные упоры, и опускают ригель, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель перес троповывают и
устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом т ангенс угла наклона скошенных поверхностей торцевых башмаков и оголовков колонн

42.

при их совмещении равен отношению горизонтальных и вертикальных зазоров между ригелем и колоннами. 1 з.п.ф -лы, 9 ил.
Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть
использовано при возведении несущих каркасов зданий и сооружений, жестких поперечин электрифицированных железных дорог и т.п.
Известен способ монтажа рамы, заключающийся в предварительном монтаже колонн, ригеля и якорей (анкеров, погруженных в землю, например,
гравитационного типа, - бутовых, бетонных и т.п., - свайных и др.), к которым присоединяются гибкие ванты, объединяемые с ригелем подвесками,
после чего производится предварительное напряжение вантовой системы натяжными устройствами (например, стяжными муфтами и т.п.) [1].
Недостатком такого решения является его сложность, обусловленная, в частности, изготовлением и установкой на вантах специальн ых натяжных
устройств и проведением дополнительных операций, связанных с натяжением вант и регулированием усилий в вантовой системе.
Также известен способ монтажа рамы с предварительно напряженным ригелем, заключающийся: в предварительном монтаже колонн и эл емента
жесткости ригеля рамы; присоединении к нему стоек шпренгеля, снабженных на концах направляющими для пропуска гибких затяжек с закреплением их
на торцах элемента жесткости; закреплении на гибкой затяжке натяжных устройств; создание с их помощью в затяжке усилий предва рительного
напряжения и их регулирования [2] (принято за прототип).
Недостатком такого решения является его сложность, связанная, в частности, с необходимостью закрепления на гибких затяжках на тяжных устройств
[3], проведением операций по предварительному натяжению гибких затяжек и регулированию усилий в шпренгельной системе. Создание
предварительного напряжения в затяжках, кроме того, требует дополнительных трудозатрат на операции по контролю величины их на тяжения и на
устройство монтажных подмостей.
Задачей изобретения является упрощение монтажа предварительно напряженных шпренгельных рам и, как следствие, снижение его трудоемкости.
Технический результат достигается тем, что в способе монтажа предварительно напряженной шпренгельной рамы, включающем объедин ение колонн с
фундаментами и предварительно напряженным ригелем, к балке-распорке ригеля, до ее монтажа в проектное положение, прикрепляют стойки шпренгеля
с вилкообразными наконечниками, а на ее концах устанавливают вилкообразные упоры, затем балку -распорку ригеля стропуют в средней ее части и
выполняют промежуточный подъем, спрессованные на затяжке шайбы заводят за вилкообразные упоры и опускают ригель на временные опоры,
монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель перес троповывают и устанавливают на колонны с

43.

совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом тангенс угла наклона скошенных повер хностей
торцевых башмаков и оголовков колонн принимают равным отношению вертикальных и гор изонтальных зазоров между ригелем и колоннами.
Монтаж, включая предварительное напряжение шпренгельной рамы, производится в два этапа.
Первый этап - сборка и предварительное напряжение шпренгельного ригеля рамы. К балке-распорке крепят стойки шпренгеля с вилкообразными
наконечниками, а на ее концах устанавливают вилкообразные упоры. Балку -распорку ригеля стропуют в средней ее части и выполняют промежуточный
подъем. Затем к балке-распорке прикрепляют затяжку, вводя ее в вилкообразные наконечники стоек шпренг еля, а спрессованные на затяжке шайбы
заводят за вилкообразные упоры. Положение затяжек в вилкообразных упорах фиксируют замыкающими фиксаторами (например, шпилька ми, болтами и
т.п.). После чего шпренгельный ригель рамы, включающий балку-распорку, стойки шпренгеля и затяжку, опускают на временные опоры, размещенные
под концами балки-распорки.
Балка-распорка как элемент шпренгельного ригеля воспринимает в основном продольные сжимающие усилия и в связи с этим обладает невыс окой
изгибной жесткостью. При строповке в средней части ее длины и промежуточном подъеме балка-распорка деформируется по двухконсольной схеме, при
этом концы балки-распорки под действием собственной массы опускаются, а расстояние между вилкообразными упорами уменьшается, что позволяет
завести за них спрессованные шайбы затяжки. В местах крепления затяжки к вилкообразным упорам устанавливают замыкающие фиксаторы. П осле
установки ригеля на временные опоры, размещенные под концами балки-распорки, и его расстроповки балка-распорка распрямляется и растягивает
гибкую затяжку, создавая в ней усилия предварительного напряжения.
Второй этап - монтаж шпренгельного ригеля, включая предварительное напряжение колонн и дополнительное предварительное напряжение затяжки.
На концах балки-распорки шпренгельного ригеля устанавливают торцевые башмаки и прикрепляют к ним концевые упоры затяжки. Так как крепление
торцевых башмаков к балке-распорке выполнено с возможностью их перемещения вдоль оси балки-распорки (болты, прикрепляющие торцевые башмаки
к балке-распорке, установлены в овальные отверстия), то усилий в затяжке на участках между спрессованными шайбами и концевыми стопорами при
этом не возникает.
Шпренгельный ригель стропуют с размещением мест захвата строповочных устройств у его концов и производят подъем. При установке
шпренгельного ригеля на колонны, предварительно объединенные с фундаментами, совмещают скошенные поверхности торцевых башмако в и оголовков
колонн, при этом между опорными горизонтальными и вертикальными поверхностями торцевых башмаков и оголо вков колонн остаются зазоры Δ1 и
Δ2 соответственно. После расслабления строповочных устройств под действием собственной массы (сил гравитации) преодолеваются сил ы трения,
развивающиеся по контактным плоскостям скошенных поверхностей торцевых башмаков ригел я рамы и оголовков колонн, происходит
самопроизвольная осадка шпренгельного ригеля рамы в проектное положение (до полного касания опорных поверхностей - Δ1=0, Δ2=0), а торцевые
башмаки перемещаются вдоль скошенных поверхностей оголовков колонн. При этом на концевых участках затяжки (на участках между спрессованными
шайбами и концевыми стопорами) возникают дополнительные растягивающие усилия, горизонтальные составляющие которых направлены
перпендикулярно продольным осям колонн к центру рамы. Это вызывает в сечениях колонн усилия предварительного напряжения (начальные
изгибающие моменты). Таким образом, на втором этапе производится предварительное напряжение колонн и дополнительное напряжени е затяжки
ригеля (за счет донапряжения ее концевых участков).
Изобретение описывается следующими графическими материалами:
- на фиг.1 приводится общий вид предварительно напряженной шпренгельной рамы;
- на фиг.2 - узел "А" на фиг.1;
- на фиг.3 - вид по 1-1 на фиг.2;
- на фиг.4 - узел "Б" на фиг.1;
- на фиг.5 - вид по 2-2 на фиг.2;
- на фиг.6 - вид по 3-3 на фиг.2;
- на фиг.7 - вид по 4-4 на фиг.4;
- на фиг.8 - схема строповки балки-распорки на 1-м этапе монтажа;
- на фиг.9 - схема строповки шпренгельного ригеля на 2-м этапе монтажа.
Предлагаемый способ монтажа заключается в следующем. Колонны 1 шпренгельной рамы объединяются с фундаментами 2 и с предварительно
напряженным шпренгельным ригелем 3.

44.

На 1-м этапе монтажа к балке-распорке 4 шпренгельного ригеля 3 крепят стойки шпренгеля 5 с вилкообразными наконечниками 6, а на ее ко нцах
устанавливают вилкообразные упоры 7. Балку-распорку 4 шпренгельного ригеля 3 стропуют в средней ее части и выполняют промежуточный подъем.
Затем к балке-распорке 4 прикрепляют затяжку 8, вводя ее в вилкообразные наконечники 6 стоек шпренгеля 5, а спре ссованные на затяжке 8 шайбы 9
заводят за вилкообразные упоры 7. Положение затяжки 8 на концах фиксируют замыкающими фиксаторами 10. После чего шпренгельный ригель 3,
включающий балку-распорку 4, стойки шпренгеля 5 и затяжку 8, опускают на временные опоры 11, размещенные под концами балки-распорки 4.
На 2-м этапе монтажа на концах балки-распорки 4 шпренгельного ригеля 3 с помощью болтов 12 устанавливают торцевые башмаки 13 со скошенными
поверхностями 14. Концевые стопоры 15 затяжки 8 крепят к торцевым башма кам 13. Вследствие того что болты 12 проходят через овальные отверстия,
расположенные в торцевых башмаках 13, то возможно взаимное смещение торцевых башмаков 13 относительно балки -распорки 4 вдоль ее продольной
оси. При этом в затяжке 8 на участках между спрессованными шайбами 9 и концевыми стопорами 15 усилий не возникает.
Шпренгельный ригель 3 перестроповывают с размещением мест захвата строповочных устройств у его концов и производят его подъем .
При установке шпренгельного ригеля 3 на колонны 1 совмещают скошенные поверхности 14 торцевых башмаков 13 и оголовков 16 колонн 1, при этом
между опорными горизонтальными и вертикальными поверхностями торцевых башмаков 13 и оголовков 16 остаются зазоры Δ1 и Δ2 соответственно.
После расслабления строповочных устройств под действием собственной массы (сил гравитации) происходит самопроизвольная осадка шпренгельного
ригеля 3 рамы в проектное положение до полного касания опорных поверхностей ( Δ1=0, Δ2= 0), а торцевые башмаки 13 перемещаются вдоль скошенных
поверхностей 14. При этом тангенс угла наклона скошенных поверхностей 14 торцевых башмаков 13 и оголовков 16 колонн 1 принимают равным
отношению вертикальных (Δ1) и горизонтальных (Δ2) зазоров между шпренгельным ригелем 3 и колоннами 1.
Силы гравитации преодолевают силы трения, развивающиеся по контактным участкам скошенных поверхностей 14 торцевых башмаков 13
шпренгельного ригеля 3 и оголовков 16 колонн 1. При этом на концевых участках затяжек 8 (на участках между спрессованными шай бами 9 и
концевыми стопорами 15) возникают дополнительные растягивающие усилия, которые создают в местах контакта скошенных поверхностей 14 торцевых
башмаков 13 и оголовков 16 колонн 1 горизонтальные составляющие усилий, направленные к центру рамы перпендикулярно продольным осям колонн 1.
Это вызывает в сечениях колонн 1 усилия предварительного напряжения - начальные изгибающие моменты, а на концевых участках затяжки 8 дополнительные растягивающие усилия предварительного напряжения.
Балка-распорка 4 как элемент шпренгельного ригеля 3 обладает невысокой изгибной жесткостью. При ее строповке в средней части и промежуточном
подъеме балка-распорка 4 работает по двухконсольной схеме, при которой ее концы под действием собственной массы провисают, а расстояния меж ду
вилкообразными упорами 7 уменьшаются, что позволяет завести за них спрессованные на затяжке 8 шайбы 9. Строповка балки -распорки 4 в средней ее
части и промежуточный подъем по двухконсольной схеме увеличивает (в сравнении с другими схемами строповки) перемещения ее кон цов.
После установки шпренгельного ригеля 3 на временные опоры 11, размещенные под концами балки -распорки 4, и его расстроповки балка-распорка 4
распрямляется и растягивает гибкую затяжку 8, создавая в ней усилия предварительного напряжения. Шпренгельный ригель 3 станов ится
предварительно напряженным элементом. При этом для натяжения затяжки 8 не требуются специальные силовые устройства (например, домкраты,
грузы, натяжные устройства - стяжные муфты и т. п. ), так как деформирование балки-распорки 4 осуществляется за счет силы тяжести, возникающей от
ее собственной массы. Причем отпадает необходимость в контрольно-измерительной аппаратуре (например, динамометрах, тензометрах и т.п.), так как
расчетные усилия предварительного напряжения в затяжке 8 определяются ее длиной на уча стке между спрессованными шайбами 10. Процесс сборки
шпренгельного ригеля 3 совмещается с процессом его предварительного напряжения. Это приводит к упрощению его сборки и, как сл едствие, к
снижению трудоемкости монтажа шпренгельной рамы в целом.
При установке шпренгельного ригеля 3 на оголовки 16 колонн 1 происходит самопроизвольная осадка шпренгельного ригеля 3 в проектное поло жение
до полного касания опорных поверхностей (Δ1= 0, Δ2=0). При этом на концевых участках затяжки 8 (на участках между спрессованн ыми шайбами 9 и
концевыми стопорами 15) возникают дополнительные растягивающие усилия, под действием которых происходит изгиб колонн 1 вовнут рь рамы. Таким
образом, на втором этапе монтажа шпренгельной рамы создается предварительное напряжение колонн 1 и д ополнительное напряжение затяжки 8. При
этом процесс установки шпренгельного ригеля 3 в проектное положение совмещается с процедурой предварительного напряжения коло нн 1, что
приводит к упрощению их предварительного напряжения и, как следствие, к снижению трудоемкости монтажа шпренгельной рамы в целом.

45.

Назначение тангенса угла наклона скошенных поверхностей 14 торцевых башмаков 15 и оголовков 16 равным отношению вертикальных зазоров - Δ1 к
горизонтальным зазорам - Δ2 (
) обеспечивает одновременное и полное касание опорных поверхностей шпренгельного ригеля 3 и колонн 1 в
проектном положении (Δ1=0, Δ2=0).
Использование изобретения позволяет упростить монтаж рамы за счет совмещения процессов сборки шпренгельного ригеля и его уста новки в
проектное положение с предварительным напряжением шпренгельного ригеля и колонн рамы. При этом не требуется применение дополнительных
силовых устройств для натяжения затяжки и изгиба колонн, не требуется контроль за величиной усилий предварительного напряжени я в затяжке и
величинами смещения колонн, в связи с чем отпадает необходимость в специальной измерительной аппаратуре. В целом это приводит к сниж ению
трудоемкости монтажа до 12-18%.
Источники информации
1. Кирсанов Н.М. Висячие покрытия производственных зданий. - М.: Стройиздат, 1990. - 128 с. - (Наука - строительному производству). Рис. 1.1 на с. 8.
2. Металлические конструкции: Спец. курс. учеб. пособие для вузов /Е.И. Беленя, Н. Н. Стрелецкий и др.; Под общ. ред. Е.И. Бе леня. - 2-е изд. перераб.
и доп. - М.: Стройиздат, 1982. - 472с. Рис. 6.14, ж на с.95.
3. Руководство по применению стальных канатов и анкерных устройств в конструкциях зданий и сооружений. - М.: Стройиздат, 1978. - 94с.
Формула изобретения
1. Способ монтажа предварительно напряженной шпренгельной рамы, включающий объединение колонн с фундаментами и предварительно
напряженным ригелем шпренгельного типа, отличающийся тем, что на концах балки -распорки ригеля со стойками шпренгеля, имеющими вилкообразные
наконечники, устанавливают вилкообразные упоры, балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем, затем
спрессованные шайбы затяжки заводят за вилкообразные упоры, и опускают ригель на временные опоры, монтируют торцевые башмаки и крепят к ним
концевые стопоры затяжки, после чего ригель перестроповывают и устанавливают на колонны с совмещением скошенных поверхностей торцевых
башмаков ригеля и оголовков колонн.
2. Способ монтажа предварительно напряженной шпренгельной рамы по п. 1, отличающийся тем, что тангенс угла наклона скошенны х поверхностей
торцевых башмаков и оголовков колонн принимают равным отношению вертикальных и горизонтальных зазоров между ригелем и колонна ми.

46.

47.

48.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 172 372
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
E01D 22/00 (2000.01)
E01D 19/00 (2000.01)
E04C 3/10 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 4 год с 22.02.2003 по 21.02.2004. Патент перешел в общественное
достояние.
(22) Заявка: 2000104023/03, 21.02.2000
Дата начала отсчета срока действия патента:
21.02.2000
Опубликовано: 20.08.2001 Бюл. № 23
Список документов, цитированных в отчете о поиске: SU 1261998
A, 07.10.1986. RU 2117120 C1, 10.08.1998. SU 1090786 A,
07.05.1984. SU 1070248 A, 30.01.1984. SU 1744172 A1, 30.06.1992.
SU 1799944 A1, 07.03.1993. SU 1090784 A, 07.05.1984. DE 1258441
A, 11.01.1968. GB 1241681 A, 04.08.1971. US 4718209 A,
12.01.1988. WO 93/22521 A, 11.11.1993. ГЛИНКА Н.Н.,
ПОСПЕЛОВ Н.Д. Клееные пролетные строения мостов. - М.:
Транспорт, 1964, с.52-53. КУЛИШ В.И. Клееные деревянные
мосты с железобетонной плитой. - М.: Транспорт, 1979, с.43-50,
рис.III.2.
ес для переписки:
394006, г.Воронеж, ул. 20-летия Октября, 84, ВГАСА, патентноинформационный отдел
(71) Заявитель(и):
Воронежская государственная архитектурно-строительная
академия
(72) Автор(ы):
Накашидзе Б.В.
(73) Патентообладатель(и):
Воронежская государственная архитектурно-строительная
академия

49.

(54) БАЛКА
(57) Реферат:
Изобретение относится к мостостроению и может быть использовано для усиления балочных конструкций промышленных и гражда нских зданий, действующих мостовых конструкций, а также в строительных
предварительно напряженных конструкциях из разнородных материалов. Конструкция содержит усиленную продольными арматурными сте ржнями по нижней грани деревянную стенку и верхнюю железобетонную
плиту, объединенную со стенкой с помощью сдвиговоспринимающих устройств в виде наклонных тяг, установленных под острым углом в направлении торцов балки. Новым является то, что продольные арматурные
стержни снабжены на своих концевых участках устройствами компенсации реактивных сил в виде контактирующих с анкерами поперечных упоров, подпружиненных цилиндрических гильз, шарн ирно соединенных
посредством боковых накладок с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соотв етствующего торца к середине балки, при этом противоположные концы наклонных тяг также
соединены через боковые накладки с продольными ребровыми выступами железобетонной плиты с возможностью вращения, причем высту пы выполнены высотой не менее 1/3 высоты стенки из дерева. Технический
результат, достигаемый изобретением, состоит в создании и сохранении длительного эффекта преднапряжения, а также дополнительн ого разгружающего момента в балочной конструкции, варьировании жесткостью
сдвиговых связей с целью снижения деформаций между между железобетонной плитой и дощатоклееной стенкой, повышения степени поперечного обжатия для уменьшени я скалывающих напряжений. 10 ил.
Изобретение относится к области мостостроения и может быть использовано для усиления балочных кон струкций промышленных и гражданских
зданий, действующих мостовых конструкций, а также в строительных предварительно напряженных конструкциях из разнородных матер иалов.
Известны конструктивные решения по усилению пролетных мостовых балок из железобетона [1] . Однако такие технические решения не позволяют
сохранить длительно заданный эффект предварительного напряжения, а конструкции балок не обладают демпфирующими свойствами.
Наиболее близкой к изобретению по совокупности признаков является балка деревожелезо бетонного пролетного строения, преимущественно моста,
включающая стенку из дерева, усиленную продольными арматурными стержнями по нижней грани, и верхнюю железобетонную плиту, объ единенную со
стенкой посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных под острым углом в направлении торцов
балки [2].
В известном техническом решении продольные арматурные стержни и наклонные тяги позволяют создать эффект предварительного напр яжения, а
выполнение стенки из клееной древесины способствует образованию демпфирующих свойств в конструкции балок при действии подвижной нагрузки.
Однако использование такого технического решения не позволяет сохранить требуемый длительный эффект предварительного напряжен ия по причине
ползучести древесины и релаксации армирующего материала, не представляется возможным создание дополнительного разгружающего изгибающего
момента, противодействующего моменту от внешней нагрузки, а также усложняется конструктивное решение снижения сдвиговых дефор маций между
железобетонной плитой и дощатоклееной деревянной стенкой.
Задачей, на решение которой направлено изобретение, является создание и сохранение длительного эффекта преднапряжения, а такж е дополнительного
разгружающего момента в балочной конструкции, варьирование жесткостью сдвиговых связей с целью снижения деформаций между железобетонной
плитой и дощатоклееной деревянной стенкой, повышение степени поперечного обжатия для уменьшения скалывающих напряжений.
Технический результат достигается за счет взаимосвязи напрягаемых арматурных стержней с устройствами компенсации реактивных сил, а благодаря
наклонным тягам, угол наклона которых увеличивается по мере удаления от соответствующего торца к середине балки, появляется в озможность
варьирования деформациями между железобетонной плитой и клееной деревянной стенкой. Выполнение в железобетонной плите в плоскости сдвига
прерывистых продольных ребровых выступов высотой не менее 1/3 высоты стенки из дерева обеспечивает образование дополнительног о разгружающего
момента в составной деревожелезобетонной балке, а также способствует снижению деформаций сдвига и отрыва в плоскости сопряжения плиты и
стенки.
Сущность предлагаемого изобретения заключается в том, что балка, преимущественно моста, включающая стенку из дерева, усиле нную продольными
арматурными стержнями по нижней грани, и верхнюю железобетонную плиту, объединенную со стенкой посредством сдвиговоспринимающ их
устройств, выполненных в виде наклонных тяг, установленных относительно продольных арматурных стержней под остр ым углом в направлении торцов

50.

балки, отличается от прототипа тем, что расположенные под нижней гранью стенки продольные арматурные стержни снабжены установ ленными на
своих концевых участках устройствами компенсации реактивных сил в виде контактирующих с ан керами продольных арматурных стержней поперечных
упоров, подпружиненных относительно размещенных под нижней гранью стенки и охватывающих концевые участки упомянутых стержней
цилиндрических гильз, шарнирно соединенных посредством боковых накладок, попарно у становленных с противоположных сторон стенки, с
наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего торца к середине балки, при эт ом
противоположными своими концами наклонные тяги также через боковые накладки связ аны с возможностью вращения с прерывистыми продольными
ребровыми выступами верхней железобетонной плиты, выполненными высотой не менее 1/3 высоты стенки из дерева.
Выполнение конструктивной системы путем взаимосвязи напрягаемых арматурных стержней и устрой ств компенсации реактивных сил позволяет
создавать и длительно сохранять эффект предварительного напряжения, а также повысить степень обжатия всей комбинированно -армированной балки
как в продольном, так и в поперечном направлении; при этом наклонные тяги, связанные шарнирно с прерывистыми продольными ребровыми выступами
железобетонной плиты и продольными арматурными стержнями, создают не только эффект обратного выгиба, противоположного прогибу от внешней
нагрузки, но и дополнительный разгружающий момент от внутренних сил обжатия. Выполнение в плоскости сопряжения железобетонной плиты и
деревянной дощатоклееной стенки прерывистых ребровых выступов позволяет значительно увеличить жесткость и прочность сдвиговых связей и тем
самым повысить несущую способность всей балки. Благодаря устройству компенсации реактивных сил, шарнирно связанному с наклонными тягами и
продольными арматурными стержнями, обеспечивается надежный контроль и сохранение начально созданных напряжений в напрягаемой
конструктивной системе и тем самым длительно обеспечивается эффект преднапряжения в балке.
На фиг. 1 изображена балка пролетного строения, общий вид; на фиг. 2 - разрез 1-1 на фиг. 1; на фиг. 3 - разрез 2-2 на фиг. 1; на фиг. 4 изображен
фрагмент А на фиг. 1, крепление продольных арматурных стержней с наклонными сдвиговоспринимающими устройствами посредством компенсатора
реактивных сил; на фиг. 5 изображен фрагмент Б на фиг. 1, крепление наклонных сдвиговоспринимающих устройств с продольным реб ровым выступом
железобетонной плиты; на фиг. 6 - разрез 3-3 на фиг. 4; на фиг. 7 - фрагмент выполнения на концевых участках деревянной стенки ниш для ребровых
выступов железобетонной плиты; на фиг. 8 - общий вид балки пролетом более 9 м с концевыми и промежуточными сдвиговоспринимающими
устройствами; на фиг. 9 фрагмент выполнения в деревянной стенке промежуточной ниши для ребровых выступов железобетонной плиты; на фиг. 10 фрагмент создания дополнительного внутреннего момента, образующегося в плоскости сдвига ребровых выступов плиты и стенки.
Балка содержит деревянную дощатоклееную стенку 1, усиленную по нижней грани продольной арматурой 2, а по верхней - железобетонной плитой 3.
Периферийные элементы усиления 2 и 3 объединены совместно наклонными тягами 4 и боковыми накладками 5, шарнирно соединен ными одним концом
с цилиндрическими гильзами 6, а другим с прерывистыми продольными ребровыми выступами 7 железобетонной плиты 3. Цилиндрически е гильзы 6, по
крайней мере на одном конце балки, взаимодействуют с устройствами компенсации реактивных сил, напр имер, в виде пружин 8, ориентированных вдоль
цилиндрической гильзы 6 и концевого участка продольной арматуры 2. Пружины 8 закреплены одним концом к упорному столику 9, ус тановленному на
боковой грани цилиндрической гильзы 6, а другим концом к поперечному П - образному упору 10, сквозь который пропущен концевой участок
продольной арматуры 2, закрепленный при помощи концевого анкера 11. Наклонные тяги 4, имеющие на концах анкера 11, крепятся ш арнирно с
боковыми накладками 5 при помощи упорных столиков 9.
Сборку балки производят следующим образом. Первоначально в клееной дощатой деревянной стенке 1 выполняют ниши 12 на концевых учас тках (фиг.
7) на глубину не менее 1/3 высоты стенки 1, а для перекрываемых пролетов от 9 до 15 м выполняют дополнительно еще промеж уточные ниши 13 (фиг. 8,
9) на глубину не менее 1/3 высоты стенки, а для пролетов от 15 до 18 м вновь дополнительно выполняются промежуточные ниши 13 соответственно на
глубину не менее 1/3 высоты стенки 1. Шаг между нишами 12, 13 начиная от концов стенки 1 к ее серединной части принимается равным 1/4 - 1/7
перекрываемого пролета. Затем осуществляется омоноличивание верхней грани стенки 1 железобетоном таким образом, чтобы в образ овавшихся
продольных ребровых выступах плиты 3 выполнялось сквозное отверстие 14 для шарнирного крепления боковых накладок 5. С набором требуемой
прочности бетона осуществляется установка напрягаемой системы в виде продольных и наклонных арматурных стержней 2, 4, 5. Уста новка напрягаемой
системы осуществляется таким образом, чтобы угол наклона концевых тяг 4 и боковых накладок 5 в приопорной части балок был в пределах 30 45o относительно продольной оси арматуры 2, а для балок длиной от 9 до 15 м и для перекрываемых пролетов от 15 до 18 м, имеющих д ополнительные
промежуточные наклонные тяги 4 и боковые накладки 5, угол наклона которых принимается в пределах 50 - 60o относительно продольной оси арматуры
2. Перед установкой напрягаемой системы первоначально осуществляется подготовка продольной арматуры 2 к взаимосвязи с устройс твом компенсации
реактивных сил и наклонными тягами 4 с накладками 5. Конструктивное решение устройств компенсации реактивных сил имеет большо е разнообразие

51.

(см. Патент РФ N 2109894). Взаимосвязь продольной арматуры 2 и компенсатора реактивных сил 8 осуществляется следующим образом. Первоначально,
по крайней мере на одном конце продольной арматуры 2, устанавливается анкер 11, затем к нижней грани стенки 1 балки на концев ых участках
устанавливают цилиндрические гильзы 6, к которым шарнирно присоединены одним концом б оковые накладки 5, попарно устанавливаемые с
противоположных сторон стенки 1. Затем в сквозные отверстия 14 продольных ребровых выступов 7 плиты 3 вставляют оси 15, на ко торые крепится
шарнирно другая противоположная пара боковых накладок 5. После установк и боковых накладок 5 в уровне верхней и нижней грани стенки 1
осуществляют их взаимное соединение тягами 4, которые выполнены с концевыми анкерами 11. Продольный арматурный стержень 2 сво бодным (без
анкера 11) концом протягивают сквозь цилиндрические гильзы 6 и поперечный упор 10, а затем на свободный конец надевают анкер 11 и крепят к
домкрату двойного действия (не показан). Для создания дополнительных реактивных сил обжатия конструкции и их компенсации при потерях в период
ползучести материала основы конструкции и релаксации напрягаемой арматуры необходимо устанавливать компенсатор, например, в виде пружины 8
между поперечным упором 10 и цилиндрической гильзой 6. Таким образом, при действии домкрата пружина 8 сжимается, а продольная арматура 2
натягивается на требуемую расчетную величину и затем свободный ее конец анкеруется анкером 11.
Напрягаемая система балки работает следующим образом. Используемый домкрат работает по принципу двойного действия, в результа те при
натяжении продольной арматуры 2 компенсатор реактивных сил, например, пружины 8 и цилиндрические гильзы 6 сжимаются, а наклонные
сдвиговоспринимающие элементы в виде боковых накладок 5 и тяг 4 растягиваются. В результате внутреннего перераспределения сил от действия
домкрата и сдвиговоспринимающих элементов с компенсатором реактивных сил балка выгибается в сторону, противоположную прогибу от внешней
нагрузки и собственного веса. При действии внешней нагрузки на балку образуется погонное сдвигающее внутреннее усилие относит ельно нейтральной
оси балки, которое воспринимается, как правило, связями. Податливость связей зависит от их жесткости. Выполнение в плоскости сдвига ж/б плиты 3 и
деревянной дощатоклееной стенки 1 дополнительных связей в виде прерывистых продольных ребровых выступов 7 позволяет з начительно повысить
несущую способность составной деревобетонной балки благодаря снижению вероятности скалывания в плоскости сдвига, так как каса тельные
напряжения воспринимаются связями. При этом усилия от наклонных сдвиговоспринимающих элементов 4, 5, пе редаваемые на оси 15, способствуют
созданию дополнительного внутреннего разгружающего момента, противоположного по знаку моменту от внешней нагрузки. Разгружающ ий
дополнительный внутренний момент образуется следующим образом. При натяжении наклонных тяг 4 и боковых накладок 5 в условной точке сквозного
отверстия 14 от оси 15 в ребровом выступе плиты 3 происходит внутреннее разложение усилий вдоль оси балки, поперек и под соот ветствующим углом
вдоль оси сдвиговоспринимающих элементов 4, 5. Усилие, направленное вдоль, относительно нейтральной оси балки имеет эксцентриситет, который и
способствует созданию дополнительного внутреннего момента (фиг. 10).
Изобретение позволяет повысить степень обжатия и эффект предварительного напряжения в балке благодаря комбинир ованному функциональному
совмещению напрягаемой продольной арматуры, наклонных сдвиговоспринимающих элементов и устройств компенсации реактивных сил. Принятые
углы наклона сдвиговоспринимающих элементов позволяет варьировать деформациями сдвига и отрыва ж/ б плиты от дощатоклееной деревянной стенки,
а выполнение прерывистых продольных ребровых выступов в плите в плоскости сдвига способствует созданию дополнительного разгру жающего
момента от действия внешней нагрузки на балку, а также позволяет повысить жестк ость связей, воспринимающих сдвиг.
Таким образом, появилась большая надежность и возможность использования клееной древесины в комбинированных конструкциях из ж елезобетона,
полимербетона и металла, так как обеспечивается прочность от возможного раскалывани я древесины, являющейся наиболее уязвимым местом в
деревянных конструкциях. Совместная взаимосвязь продольной арматуры, наклонных сдвиговоспринимающих элементов и компенсатора потерь
реактивных сил позволяет не только создавать в балке противодействующий в нешней нагрузке изгибающий момент, длительно сохранять эффект
предварительного напряжения, значительно упростить процесс предварительного напряжения балки, но еще появилась возможность со здавать
дополнительный разгружающий момент от действия внешней нагрузки и гарантировать надежность составной балочной конструкции от скалывания при
действии касательных напряжений.
Изобретение может быть использовано для усиления балочных конструкций из традиционных материалов при действии как статической , так и
динамической либо пульсирующей нагрузки, а также при конструировании подкрановых балок и других изгибаемых конструкций составного сечени я с
разномодульными характеристиками составных зон и недостаточной жесткостью связей, воспринимающих их взаимный сдвиг относитель но продольной
оси.
Источники информации
1. RU, Патент РФ 2117120, кл. E 04 С 3/10.

52.

2. SU, авт. св. 1261998, кл. E 01 D 7/02.
Формула изобретения
Балка, включающая стенку из дерева, усиленную продольными арматурными стержнями по нижней грани и верхнюю железоб етонную плиту,
объединенную со стенкой посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных относител ьно
продольных арматурных стержней под острым углом в направлении торцов балки, отличающаяся тем, что расположенные под нижней гранью стенки
продольные арматурные стержни снабжены установленными на своих концевых участках устройствами компенсации реактивных сил в ви де
контактирующих с анкерами продольных арматурных стержней поперечных упоров, подпружиненных относительно размещенных под нижней гранью
стенки и охватывающих концевые участки упомянутых стержней цилиндрических гильз, шарнирно соединенных посредством боковых нак ладок,
попарно установленных с противоположных сторон стенки, с наклонными тягами, угол наклона кото рых увеличивается по мере удаления тяг от
соответствующего торца к середине балки, при этом противоположными своими концами наклонные тяги также через боковые накладки связаны с
возможностью вращения с прерывистыми продольными ребровыми выступами верхней ж елезобетонной плиты, выполненными высотой не менее 1/3
высоты стенки из дерева.

53.

54.

СТРОИТЕЛЬНАЯ ФЕРМА 2155259
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 155 259
(13)
C2
(51) МПК
E04C 3/11 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 5 год с 17.04.2000 по 16.04.2001. Патент перешел в общественное достояние.
(22) Заявка: 96107742/03,
16.04.1996
(71) Заявитель(и):
Государственный

55.

Дата начала отсчета срока действия
патента:
16.04.1996
Опубликовано: 27.08.2000 Бюл.
№ 24
Список документов, цитированных
в отчете о поиске: SU 781293 A,
23.11.1980. FR 2237030 A1,
07.02.1975. US 3541749 A,
24.11.1970.
гидрологический институт
(72) Автор(ы):
Миронов В.Е.
(73) Патентообладатель(и):
Государственный
гидрологический институт
ес для переписки:
199053, Санкт-Петербург, В.О., 2-я
линия 23, Государственный
гидрологический институт
(54) СТРОИТЕЛЬНАЯ ФЕРМА
(57) Реферат:
Изобретение относится к области строительства и может быть использовано в качестве несущей конструкции пролетного строения ре шетчатых гидрометрических мостов и как стропильная ферма в перекрыт иях зданий, сооружений.
Технический результат изобретения - повышение жесткости фермы. Строительная ферма содержит верхний сжатый и нижний растянутый непараллельные пояса, стержни раско сной решетки, стойки, а также дополнительные стойки и
подкосы. Каждая из дополнительных стоек одним концом прикреплена к раскосу вне узла, а другим концом к нижнему поясу, также вне узла, при этом длины панелей уменьшаются от середины пролета к опорам. Подкосы и
дополнительные стойки расположены только в средней части пролета фермы и имеют меньшее поперечное сечение, чем сопряженные с ними стержни фермы, при этом одна часть подкосов прикреплена к ст ойкам под углом 45° вне
узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем точки крепления к поясам подкосов и дополнительных стоек
отстоят от ближайших узлов на расстоянии 1/6 длины панели. 3 ил., 1 табл.
Изобретение относится к области гидрологии, а также строительства, в частности к гидрометрическим решетчатым мостам, в которых ферма может быть использована как несущая конструкция п ролетного строения и которые могут быть использованы на водных потоках с
устойчивыми руслами и берегами для выполнения гидрометрических измерений, с максимальной шириной по урезу в период горизонта высоких вод до 30 м и при перепаде уровня воды до 3 -4 м. В конструкциях перекрытий зданий и сооружений данное изобретение может
найти применение в качестве стропильной фермы, в том числе с местной загрузкой поясов.
Известна строительная ферма с неравными панелями, длина которых уменьшается от середины пролета к опорам, содержащая верхний сжатым и нижний растянутый пояса, стержни раскосной системы решетки с переменным направлением раскосов (т реугольной
системы решетки) и стойки. Такая ферма с местной загрузокй поясов считается наиболее экономичным решением в случае, когда дли на панелей фермы уменьшается от середины пролета к опорам *1+ (с. 250, фиг. 13).
Недостатком известной фермы является отсутствие единообразия в схемах узлов, которые по этой причине неудобны и трудоемки для конструирования. Это обстоятельство пр актически не позволяет запроектировать ферму, состоящую из сборных унифицированных
элементов, что является особенно важным при проектировании пролетных строений мостов различного назначения. Кроме того, при большой местной загрузке поясов в средней части п ролета фермы приходится значительно увеличивать сечения поясов, что приводит к
увеличению материалоемкости.
Известна равнопанельная строительная ферма с параллельными поясами, включающая верхний сжатый и нижний растянутый пояса, стержни треугольной решетки и стойки, а также дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне
узла, а другим концом - к нижнему растянутому поясу, также вне узла, в точке, отстоящей от него на расстоянии примерно 1/4 длины панели *2+. Такая конструкци я решетки позволяет снизить материалоемкость за счет уменьшения расчетной длины раскосов. Однако из -за
значительной длины дополнительных стоек достигаемый экономический эффект является небольшим.
Наиболее близким к изобретению по технической сущности является равнопанельная строительная ферма моста параболического очерт ания, содержащая параболический верхний сжатый и нижний растянутый пояса, нисходящие стержни раскосной системы решетки,
стойки и расположенные между всеми стойками подкосы, каждый из которых одним концом прикреплен к раскосу в средней точке, а д ругим концом - к нижнему растянутому поясу вне узла в точке, отстоящей от него на расстоянии примерно 1/7 длины панели *1+ (с. 802).
Известная строительная ферма моста параболического очертания принята за прототип.

56.

Недостатком прототипа является то, что его конструкция позволяет только немного снизить материалоемкость за счет умень шения расчетной длины раскосов, так как подкосы имеют значительную длину - половину длины раскосов. Кроме этого, снижению
материалоемкости не способствует то, что прототип является равнопанельной фермой.
Указанные недостатки в предлагаемой ферме сведены к минимуму. При создании изобретения были решены задачи снижения материалоемкости и повышения надежности устройства за счет доп олнения решетки фермы системой коротких стержней, позволяющих
значительно уменьшить расчетные длины стержней решетки, прогибы поясов от местной загрузки и повысить устойчивость сечения поясов при работе на изгиб.
В предлагаемой строительной ферме треугольного, параболического, полигонального или какого -либо другого очертания с непараллельными поясами, с длинами панелей, уменьшающимися от середины пролета к опорам, содержащей верхний сжатый и нижний
растянутый пояса, стержни раскосной системы решетки, стойки, а также подкосы и дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, сущность изобретения заключается в том, что
подкосы и дополнительные стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее поперечное сечен ие, чем сопряженные с ними стержни фермы, при этом в каждой панели одна часть подкосов прикреплена к стойкам под углом 45 o вне
узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем расстояния между точками крепления подкосов и дополнительных стоек к поясам и ближайшими
узлами (их геометрическими центрами) определяются исходя из приближенного расчета поясов на прочность от местной загрузки и р асчета раскосов на устойчивость при сжатии с учетом их предельной гибкости, устанавливаемой нормами *3+, и составляют примерно 1/6
длины панели.
Предлагаемая строительная ферма соответствует критерию "Новизна", так как она не известна из уровня техники, и соответствует критерию "Изобретательский уровень", так как для специалиста явным образом не следует из уровня техники.
На фиг. 1 приведена строительная ферма треугольного очертания с подкосами и дополнительными стойками в средней части пролета. На фиг. 2 - фрагмент строительной фермы треугольного очертания на фиг. 1 в средней части пролета. На фиг. 3 - расчетная схема балки
для определения площади поперечного сечения нижнего пояса, используемая для определения оптимального расстояния
которое соответствует минимальной материалоемкости строительной фермы и удовлетвор яет условиям прочности и устойчивости ее элементов.
Строительная ферма содержит верхний сжатый пояс 1, нижний растянутый пояс 2, раскосную решетку 3, стойки 4, дополнительные ст ойки 5 и подкосы 6, расположенные в средней части пролета фермы.
Устройство работает следующим образом.
При загрузке фермы (в том числе при местной загрузке поясов) верхний пояс 1 и раскосы 3 сжимаются, а нижний пояс 2 и стойки 4 растягиваются и, кроме того, от местной загрузки нижний пояс 2 изгибается и прогибается. Существенному ум еньшению изгиба и прогиба
нижнего пояса способствуют опорные закрепления подкоса 6 и дополнительной стойки 5, которые под воздействием подвижной нагруз ки P растягиваются и вовлекают в работу стойку 4, раскос 3 и посредством их верхний пояс 1. Кроме этого, опорные закрепления раскоса 3
посредством подкоса 6 у верхнего пояса 1 и дополнительной стойки 5 у нижнего пояса 2 уменьшают расчетную длину раскоса 3 при его сжатии и, таким образом, увеличивают устойчивость раскоса.
В целом благодаря наличию подкосов и дополнительных стоек в средней части пролета фермы значительно уменьшаются расчетные длины стержней решетки и местные прогибы нижнего пояса, а также повышается его устойчивость при работе на изгиб. Кроме этого,
повышается жесткость фермы в целом и в результате уменьшаются прогибы узлов фермы в середине пролета при действии эксплуатационных нагрузок.
Для определения оптимального расстояния
(см. фиг. 2) приведем обоснование расчетных формул и результаты расчета по ним в табличной форме.
Площади поперечных сечений подкосов и дополнительных стоек определяются исходя из расчета на устойчивость при сжатии по нормам *3+. При этом с уче том запаса гибкости подкосов и дополнительных стоек должны быть не более 150.
При определении площади поперечного сечения дополнительной стойки или подкоса предварительно определяется радиус инерции r g его поперечного сечения
где lg - длина дополнительной стойки или подкоса (расстояние между точками закрепления);
λ - гибкость дополнительной стойки или подкоса, принимаемая по нормам *3+, но не более 150.
Площадь Fg поперечного сечения дополнительной стойки или подкоса определяется по формуле
Fg = Ig /r g 2
где I g - момент инерции поперечного сечения дополнительной стойки или подкоса.
Оптимальное горизонтальное расстояние
между узлом фермы на нижнем поясе и точкой крепления дополнительной стойки (подкоса) к поясу может быть определено на основании расчета ча сти длины пояса между точками крепления дополнительной стойки и
подкоса как простой однопролетной балки, загруженной сосредоточенной силой P в середине пролета l п - 2aо, где lп - длина панели. Для выполнения этого расчета предварительно следует задаться некоторым расстоянием a о. На основании расчета для каждого заданного
значения a о определяются геометрические характеристики поперечного сечения нижнего пояса и затем объем материала нижнего пояса
Определяются длина подкоса и дополнительной стойки в зависимости от расстояния a о, площади поперечных сечений
дополнительной стойки и подкоса и затем также объемы материалов подкоса и дополни тельной стойки V' 2 и V'' 2 (см. расчетные формулы, константы и результаты расчетов в таблице). Объемы
aо соответствует объем материала V, включающий нижний пояс и сопряженные с ним дополнитель ную стойку и подкос.
Результаты расчетов для определения оптимального расстояния a о представлены в таблице.
Расчетные формулы
F1 = b•h;
Константы *)
lп = 300 см; P = 150 кгс; σ = 1600 кГc/cм 2 ; b = 0,4 см; F 2 = 1,46 см2; F' 2 = 1,94 см2 ; tgϕ = 0,857; cos 45o = 0,707.
В приведенных формулах и обозначениях констант:
M - изгибающий момент в середине пролета l п-2a о;
W - момент сопротивления площади поперечного сечения нижнего пояса;
σ - напряжение в крайних волокнах поперечного сечения нижнего пояса от изгиба;
h - высота поперечного сечения нижнего пояса в форме пластины шириною b;
V'2, V''2 суммируются. В результате каждому заданному значению

57.

F1 - площадь поперечного сечения нижнего пояса;
объем материала нижнего пояса в пределах длины панели l п;
V'2 - объем материала подкоса;
F2 - площадь поперечного сечения подкоса или дополнительной стойки при a о = 37,5 см;
F'2 - площадь поперечного сечения подкоса или дополнительной стойки при a о = 75,0 см;
V'' 2 - объем материала дополнительной стойки;
ϕ - угол между направлением раскоса и нижним поясом;
V - суммарный объем материала нижнего пояса, подкоса и дополнительной стойки.
Остальные обозначения были пояснены в тексте ранее.
*)
Площадь сечения F 2 соответствует площади сечения уголка 20х20х4, а площадь сечения F' 2 - площади сечения уголка 32х20х4.
Для определения оптимального значения
этой формулы оптимальное расстояние
соответствующего минимальному значению V, была применена интерполяционная формула Ньютона при равных разностях аргумента *4+. При этом начальное значение a о принималось равным 0. На основании применения
определялось по формуле
где V 1, V 2, V 3 - значения объема V, соответствующие первому, второму и третьему значениям аргумента a о ;
Δao - разность аргумента.
В рассматриваемом случае в соответствии с результатами расчета расстояния
по указанной формуле при Δao = 37,5 см равно 49.4 см. При l п = 300 см относительное расстояние
Аналогичным образом расстояние a п вдоль раскоса между узлом на верхнем поясе и точкой крепления к раскосу подкоса определяется по формуле
где l г - геометрическая длина раскоса (между центрами верхнего и нижнего узлов);
lр - расчетная длина раскоса (расстояние между опорными закреплениями).
Расчетная длина раскоса определяется по формуле
lp = r•λ п,
где r - радиус инерции поперечного сечения раскоса, принимаемого по результатам общего с татического расчета фермы без учета подкосов и дополнительных стоек;
λ п - предельная гибкость раскоса, принимаемая по нормам *3+.
Таким образом, результаты расчетов по приведенным формулам показывают, что оптимальное расстояние
составляет 1/6 длины панели lп . При этом удовлетворяются условия прочности и устойчивости элементов строительной фермы.
В заявляемом изобретении по сравнению с прототипом благодаря сочетанию неравнопанельной фермы с подкосами и дополнительными с тойками в средней части пролета снижение материалоемкости составляет ≈ 20%. Одновременно благодаря уменьшению прогиба
узлов фермы приблизительно на 30% повышается надежность устройства. Причем подкосы и дополнительные стойки не учитывались в о бщем статическом расчете фермы. Площади сечения подкосов и дополнительных стоек принимались с запасом исходя из расчетной
гибкости этих элементов при сжатии.
Источники информации
1. Деревянные конструкции. Справочник проектировщика промышленных сооружений. Л., ОНТИ, 1937 - 955 с.
2. Беккер Г.Н. Ферма с параллельными поясами. Авт. свид. СССР N 781293, кл. E 04 C 3/04.
3. Стальные конструкции. Глава СНиП П-23-81*. - М.: Стройиздат, 1990.
4. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Под редакцией д.т.н., проф. А.А. Уман ского. Госстройиздат.- М: 1960 - 1040 с.
Формула изобретения
Строительная ферма, содержащая верхний сжатый и нижний растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также подкосы и дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к
нижнему поясу, также вне узла, при этом длины панелей уменьшаются от середины пролета к опорам, отличающаяся тем, что подкосы и дополнительные стойки введены в решетку строительной фермы в средней части п ролета и имеют меньшее поперечное сечение, чем
сопряженные с ними стержни фермы, при этом одна часть подкосов прикреплена к стойкам под углом 45 o вне узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне
узла, причем точки крепления к поясам подкосов и дополнительных стоек отстоят от ближайших узлов на расстоянии 1/6 длины пане ли.

58.

УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ П РЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2247813
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ
ЗНАКАМ
2 247 813
(13)
C1
(51) МПК
E04C 3/00 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса:
02.07.2021)
Пошлина: учтена за 13 год с 26.08.2015 по 25.08.2016.
Возможность восстановления: нет.

59.

)(22) Заявка: 2003126076/03, 25.08.2003
) Дата начала отсчета срока действия патента:
25.08.2003
(72) Автор(ы):
Инжутов И.С. (RU),
Деордиев С.В. (RU),
Рожков А.Ф. (RU)
) Опубликовано: 10.03.2005 Бюл. № 7
(73) Патентообладатель(и):
) Список документов, цитированных в отчете о поиске: SU1638284 A1, 30.03.1991.
Красноярская государственная архитектурно-строительная академия
RU2228415 C2, 10.09.2001. RU2184819 C1, 10.07.2002.
(КрасГАСА) (RU)
рес для переписки:
660041, г.Красноярск, пр. Свободный, 82, НИС Красноярская государственная
архитектурно-строительная академия
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛ ЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ 2247813
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Достигаемый
технический результат изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения. Для решения поставленной задачи узлов ое сопряжение верхнего и нижнего поясов в
пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой закреплены посредством фиксаторов гибкие арки верхнего пояса и
нижний пояс-затяжка в виде тонкой полосы, согласно изобретению снабжено средством для сохранения усилия предварительного напряжения в виде рессор, связанных с нижним поясом,
установленным с возможностью перемещения, при этом на концах нижнего пояса вварены металлические стержни, которые пропущены ч ерез отверстия, выполненные в траверсе, и
оперты при помощи упорных шайб и гаек на рессоры, расположенные с наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены
совместно с установленными в них гибкими арками в прорезах, выполненных на концах нижнего пояса-затяжки. 5 ил.

60.

Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна пространственная предварительно напряженн ая металлическая блок-ферма, содержащая верхний и нижний гибкие пояса, составной по длине жесткий стержень,
соединенный с концами фермы при помощи траверс *Авт. свид. №421743, Е 04 С 3/04+.
Недостатком известной фермы является низкая ее эффективность из -за сложности создания предварительного напряжения путем распирания домкратами отдельных
частей жесткого стержня и установки в образовавшийся зазор вставки.
Наиболее близким по технической сущности к изобретению является узловое сопряжение верхнего и нижнего поясов в известной пространственной предварительно
напряженной ферме, принятой за прототип *Авт. свид. №1638284, Е 04 С 3/00+. Известная ферма состоит верхнего пояса, включающе го ребристые плиты с утеплителем и
кровлей, уложенные на гибкие арки, нижнего по яса-затяжки в виде тонкой полосы, установленных между ними вертикальных распорок, раскосов и поперечных траверс,
установленных по концам фермы, к которым прикреплены верхний и нижний пояса, причем поперечные траверсы снабжены наклонной по лкой, к которой на высокопрочных
ботах прикреплены концы нижнего пояса и фиксаторы -карманы с гибкими арками.
Недостатком прототипа являются потери усилия предварительного напряжения в нижнем поясе, обусловленные деформациями ползучест и и температурно-влажностными
деформациями в древесине ребер плит верхнего пояса, температурными деформациями металла нижнего пояса, и, как следствие, не в полной ме ре использование
прочностных свойств конструкции с жестким выполнением соединения верхнего и нижнего поясов.
Задача изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за деформ ациями
ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения.
Для решения поставленной задачи узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок -ферме, включающее траверсу с
ребрами жесткости, на которой закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс -затяжка в виде тонкой полосы, согласно изобретению

61.

снабжено средством для сохранения усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при
этом на концах нижнего пояса вварены металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек
на рессоры, расположенные с наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и располож ены совместно с установленными в
них гибкими арками в прорезах, выполненных на концах нижнего пояса -затяжки.
На фиг.1 изображено узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок -ферме; на фиг.2 - то же, вид сверху; на фиг.3
- то же, вид сбоку; на фиг.4 - вид в объеме с наружной стороны блок-фермы; на фиг.5 - вид в объеме с внутренней стороны блок-фермы.
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок -ферме включает траверсу 1 с ребрами жесткости 2 и 3,
расположенными с обеих сторон траверсы. К ребрам 2 приварены фиксаторы 4, в которых закреплены гибкие арки 5 верхнего пояса посредством болтовых соединений 6. С
наружной стороны траверсы на ребра 3 приварены рессоры 7, взаимодействующие с нижним поясом 8, выполненны м в виде металлической полосы. При этом на конце
нижнего пояса 8 выполнены прорези 9 под гибкие арки, по контуру приварены стержни 10, выступающие концы которых пропущены чер ез отверстия 11 в траверсе 1 и между
рессорами 7. Стержни 10 оперты на рессоры 7 ч ерез упорные шайбы 12, например, в виде швеллеров и гайки 13. С внутренней стороны траверсы 1 нижний пояс 8 установлен
с возможностью перемещения на скошенных ребрах 14 и закреплен на приваренной к ребрам 14 пластине 15 посредством болтовых сое динений 16, расположенных в пазах
17, выполненных в нижнем поясе 8.
В процессе эксплуатации конструкции рессоры будут регулировать усилие предварительного напряжения, сохраняя его, несмотря на ползучие и температурновлажностные деформации в древесине и температурные деформации металла.
Использование предлагаемого изобретения по сравнению с прототипом позволяет создавать и сохранять усилие предварительного нап ряжения в процессе эксплуатации,
тем самым сохраняя несущую способность и жесткость конструкции.
Такое решение дает более полное использование прочностных свойств конструкции, уменьшает потери преднапряжения, что приведет к сохранению н есущей способности
и жесткости.
Формула изобретения
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой
закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс -затяжка в виде тонкой полосы, отличающееся тем, что оно снабжено средством для
сохранения усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на концах ни жнего
пояса вварены металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных ш айб и гаек на рессоры,
расположенные с другой стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими
арками в прорезах, выполненных на концах нижнего пояса -затяжки.

62.

63.

64.

ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» при СПб ГАСУ [email protected] ИНН: 2014000780 [email protected], [email protected]
[email protected] [email protected] [email protected] (996) 798-26-54, (951) 644-16-48 462 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 [email protected] Мжиев Х.Н. 12.01. 2023
Всего : 375 стр
Специальные технические условия монтажных соединений упругоплатических стальных ферм , пролетного строения моста из стержневых структур, МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) с
большими перемещениями на предельное равновесие и приспособляемость ( А.Хейдари, В.В.Галишникова) [email protected] [email protected] [email protected]
[email protected]
[email protected]
Специальный репортаж газета Армия Защитников Отечества при СПб ГАСУ об использовании надвижного армейского моста дружбы для применения единственный способ спасти жизнь русских и украинцев , объедиение, покаяние, против
истинного врага жeлезнодорожников глобалистов № 7 (7) от 12.01.23 Тезисы, доклад, аннотация для публикации в сборнике ЛИИЖТа IV Бетанкуровского международного инженерного форума ПГУПС ОО "Сейсмофонд" при СПб ГАСУ
11.01.23 т (812) 694-78-10

65.

«Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru [email protected] с[email protected] [email protected] (994) 434-44-70, (996) 798-26-54, (921) 962-67-78

66.

(аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Система восстановление конструкции разрушенного участка железнодорожного большепролетного и автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций
Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами , имеет довольно широкую область применения в строительстве. Эта система позволяет перекрывать сооружения любого назначения с пролетами до 100 м
включительно . Это могут быть как конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций
Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и элитные масштабные сооружения типа музеев, выставочных зданий и крытых стадионов для тренировки футбольных команд, для складских, торговых и
специальных производственных помещений, покрытий машинных залов крупных гидроэлектростанций (Рис. 2. URL: http://www.sistems- marhi.ru/upload/medialibrary/efe/buria3.gif) [10].
На данный момент система имеет широкое распространение на территории РФ восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
Объектом исследования является структурная несущая конструкции большепролетного покрытия конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и культурно-развлекательного комплекса в городе Донецке.
Размеры перекрываемой части здания в плане составляют 68,4х42м. (Рис. 3). Шаг колонн различный в продольном и поперечном направлении. Отметка низа покрытия +12.2 м *3+.
В качестве покрытия используется структурная плита типа Восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых
структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и МАРХИ. Несущими элементами структурной плиты являются трубы, соединенные в узлах на болтах, с помощью
специальных узловых элементов (коннекторов). В качестве элементарной ячейки структуры базового варианта принята пирамида с основанием в виде прямоугольника 3х3,6 м (что соответствует шагу колонн вдоль и поперек здания) и ребрами
равными 3,6 м. Высота структурного покрытия составляет 2,73м, угол наклона ребра а = 49,4°+.
Все выбранные сечения труб были приняты по *19, 20+.
Система восстановления конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций
Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами, обладает множеством положительных качеств и является надежным и экономически выгодным вариантом покрытия *18+. Однако, существует определенный ряд
проблем, с которыми возможно столкновение при выборе в качестве покрытия системы Молодечное , Кисловодск и МАРХИ:
1) использование системы МАРХИ при нестандартных пролетах приводит к геометрическому изменению элементарной ячейки и соответственно нестандартного шага колонн;
2) из-за нетрадиционного соотношения размеров объекта в плане (для частного случая, рассматриваемого далее,68,4х42«1, 6:1) в узлах возникают большие усилия. И даже использование высокопрочных болтов из наиболее прочных марок стали,
применяющихся в данный момент в Украине - 40Х «селект», не позволяет решить эту проблему.
Некоторыми возможными способами регулировки усилий в элементах покрытия является:
1) изменение локальных геометрических параметров (в данном случае изменение элементарной ячейки по высоте);
2) изменение общей геометрии покрытия путем «вспарушивания» (перехода от плоской геометрии к криволинейной).
2. Обзор литературы

67.

Выполненный обзор литературы подчинен решению основной задачи, рассматриваемой в данной статье, а именно: установлению таких геометрических параметров проектируемой конструкции на нетиповом плане, которые обеспечили бы
возможность использования типовых элементов системы МАРХИ (стержней и вставок-коннекторов).
Из множества трудов отечественных и зарубежных авторов, посвященных расчету, проектированию и эксплуатации структурных покрытий, прежде всего, следует выделить работы посвященные:
- нормативному обеспечению процесса проектирования *1,19,20+,
- изложению общих принципов компоновки, расчета и проектирования рассматриваемых конструкций *2,4,8,10,13,14,17,23+,
- численному исследованию особенностей напряженно-деформированного состояния большепролетных структурных конструкций, в том числе на нетиповом плане, с учетом геометрических несовершенств и других значимых факторов
[3,7,9,11,12,21,24,25],
- разработке аналитических принципов расчета, базирующихся на теории изгиба тонких плит *5,15,16,22+
- типизации и унификации конструктивных элементов структурных покрытий *6,16,18+.
Выполненный обзор и анализ проведенных ранее исследований позволил сформулировать основную
задачу исследования, результаты которого представлены в данной статье, а именно: отыскание таких геометрических параметров типовой ячейки покрытия, которые могли бы удовлетворять
максимальной несущей способности высокопрочного болта 40Х «селект» (100 т), являющегося одним из основных типовых конструктивных элементов системы МАРХИ, регламентирующего его несущую способность
3. Основная часть
Для достижения этой цели, в работе используется как аналитический, так и численный расчет напряженно-деформированного состояния конструкций.
Аналитический метод расчета основывается на приближенном методе расчета изгибаемых тонких плит и выполняется в соответствии с методикой, предложенной в изученных нами отечественных работах *16+ и зарубежных *15, 22+. Однако в
качестве фундаментальных работ в этом направлении, конечно следует считать работу А.Г. Трущева *5+.
Численные исследования в данном исследовании были выполнены с помощью программного комплекса «SCAD» - вычислительного комплекса для прочностного анализа конструкций методом конечных элементов *7+. Единая графическая среда
синтеза расчетной схемы и анализа результатов обеспечивает неограниченные возможности моделирования расчетных схем от самых простых до самых сложных конструкций *25+.
4. Заключение
1. Необходимо использовать для восстановления разрушенных мостов автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с
высокими геометрическими жесткостными параметрами
2. При переходе от плоской схемы к пространственной в виде пологой оболочки, требуемое значение начальной стрелы выгиба составляет f/l=1/27, при которой обеспечивается возможность использования стандартных элементов типа МАРХИ, для
пологой оболочки неподвижно закрепленной по контуру.
4. Сопоставление результатов аналитических и численных исследований показывают их удовлетворительность сходимости в пределах 15%. для восстановление конструкции разрушенного участка железобетонного большепролетного
автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
5. Результаты исследования НДС конструкции, полученные путем «вспарушивания», показали, что «вспарушивание» является эффективным методом регулирования параметров НДС при условии «жесткого защемления» конструкции при
восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно,
Кисловодск с высокими геометрическими жесткостными параметрами

68.

"Влияние монтажных соединений секций разборного железнодорожного моста на его напряженно-деформируемое состояние с использованием сдвигового компенсатора проф дтн ПГУПС А.М.Уздина на фрикционно- подвижных ботовых
соединениях для обеспечения сейсмостойкого строительства сборно-разборных железнодорожных мостов с антисейсмическими сдвиговыми компенсаторами
на фланцевых фрикционных соединениях, согласно прилагаемых патентов и изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2770777, 858604 , 165076, 154506 , 2010136746 и технические условия по
изготовлению упругопластической стальной ферм пролетного строения армейского моста, пролетами 25 метров с использованием опыта КНР, c большими перемещениями на предельное равновесие и приспособляемость , для автомобильного
моста, шириной 3,2 метра, грузоподъемностью 2 тонн , сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С
ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от
27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от 02.06.2022 ) на болтовых соединениях с
демпфирующей способностью при импульсных растягивающих нагрузках, при многокаскадном демпфировании из пластинчатых балок, с применением гнутосварных прямоугольного сечения профилей многоугольного сечения типа «Молодечно»
(серия 1.460.3-14 ГПИ «Ленпроектстальконструкция») с использованием изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895, 1168755, 1174616, 2550777, 2010136746, 165076,
154506
"Влияние монтажных соединений секций разборного железнодорожного моста на его напряженно-деформируемое состояние с использованием сдвигового компенсатора проф дтн ПГУПС А.М.Уздина на
фрикционно- подвижных ботовых соединениях для обеспечения сейсмостойкого строительства сборно-разборных железнодорожных мостов с антисейсмическими сдвиговыми компенсаторами
на фланцевых фрикционных соединениях, согласно прилагаемых патентов и изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2770777, 858604 , 165076, 154506 , 2010136746

69.

Специальные технические условия по изготовлению упругопластической стальной ферм пролетного строения армейского моста, пролетами 25 метров с использованием опыта КНР, c большими перемещениями на предельное равновесие и
приспособляемость , для автомобильного моста, шириной 3,2 метра, грузоподъемностью 2 тонн , сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА
НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от
02.06.2022 ) на болтовых соединениях с демпфирующей способностью при импульсных растягивающих нагрузках, при многокаскадном демпфировании из пластинчатых балок, с применением гнутосварных прямоугольного сечения профилей
многоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция») с использованием изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895,
1168755, 1174616, 2550777, 2010136746, 165076, 154506

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Справки по тел ( 951) 644-16-48, (921) 962-67-78, (996) 798-26-54 [email protected] [email protected] [email protected]
Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru
с[email protected] , (996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов).
(812) 694-78-10, (921) 962-67-78 https://innodor.ru
Санкт -Петербургское городское отделение Всероссийской общественной организации ветеранов "Профсоюз Ветеранов Боевых Действий"
Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного
армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей разборки конструкций, однако при этом являются причиной увеличения общих
деформаций пролетного строения, кроме упругопластического сдвигового компенсатора, гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного сечения секций, так и элементов штыревых соединений, а использование
упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения
снимает
3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина» и нарастанию общих деформаций (провисов), а упругопластический
сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной динамической нагрузкой и не гасит сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность движения, упругопластический сдвиговой компенсатор гаситель
сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные соединения в полной мере соответствуют такому назначению. При
применении в гражданском строительстве эту особенность следует учитывать в разработке проектных решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в

91.

поперечной компоновке, а использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста исключает обрушение железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных решений вариантов поперечной и продольной компоновки пролетных
строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного
железнодорожного армейского моста «Уздина»
Выводы Перспективы применения быстровозводимых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической базы, задачи по быстрому временному восстановлению
мостовых переходов будут невыполнимы. Это приведет к предсказуемым потерям
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который получил патент № 1143895, 1168755, 1174616, 2550777 на сдвиговых
болтовых соединениях, а инженер -механик Андреев Борис Иванович получил патент № 165076 "Опора сейсмостойкая" и № 2010136746 "Способ защита здания и сооружений ", который спроектировал необычный сборно-разборный армейский
универсальный железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов, пластический сдвиговой компенсатор ( Сдвиговая прочность при действии поперечной силы СП 16.13330.2011, Прочностные
проверки SCAD Закон Гука ) для сборно-разборного моста" , названный в честь его имени в честь русского ученого, изобретателя "Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн ПГУПС Уздина ,
пока на бумаге. Sborno-razborniy bistrosobiraemiy universalniy most UZDINA PGUPS 453 str https://ppt-online.org/1162626 https://disk.yandex.ru/d/iCyG5b6MR568RA
Зато, западные партнеры из блока НАТО , уже внедрили похожие изобретения проф дтн ПГУПС Уздина А М. по использованию сдвигового компенсатора под названием армейский Bailey bridge при использовании сдвиговой нагрузки, по заявке на
изобретение № 2022111669 от 27.04.2022 входящий ФИПС 024521 "Конструкция участка постоянного железобетонного моста неразрезной системы" , № 2021134630 от 06.05.2022 "Фрикционно-демпфирующий компенсатор для трубопроводов",
а20210051 от 29 июля 2021 Минск "Спиральная сейсмоизолирующая опора с упругими демпферами сухого терния" . № а 20210217 от 23 сентября 2021, Минск " Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами"
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области при форсировании реки Северский Донец российская армия потеряла много военнослужащих семьдесят четвёртой мотострелковой бригады из-за
отсутствия на вооружение наплавных ложных мостов , согласно изобретениям № 185336, № 77618. Об этом сообщил американский Институт изучения войны. "11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные мосты
и плотно сконцентрированные вокруг них российские войска и технику, в результате чего, как сообщается, погибло много русских солдат и было повреждено более 80 единиц техники», — отмечается в публикации. По оценке института, войска РФ
допустили значительные тактические ошибки при попытке форсирования реки в районе Кременной, что привело к таким потерям. Ранее в Институте изучения войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк,
отказавшись от плана крупномасштабного окружения ВСУ и выхода на административные границы Донецкой области https://disk.yandex.ru/i/3ncRcfqDyBToqg
Administratsiya Armeyskie mosti uprugoplasticheskim sdvigovoy jestkostyu 176 str
https://ppt-online.org/1235168
Среди прочих мостов , в том числе и современных разборных конструкций мостов, особое место занимает средний автомобильный разборный мост (САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В
процессе вывода накопленных на хранении комплектов САРМ в гражданский сектор строительства выяснилась значительная востребованность этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность всеми
элементами моста, включая опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде. Паспортная грузоподъемность обозначена как 40 т при однопутном
проезде и 60 т при двухпутном проезде.
Так как по ряду геометрических и технических параметров конструкции САРМ не в полной мере соответствуют требованиям современных норм для капитальных мостов, то применение их ориентировано в основном как временных.
Следует отметить, что при незначительной доработке - постановке современных ограждений и двухпутной поперечной компоновке секций для однополосного движения можно добиться соответствия требуемым геометрическим параметрам
ездового полотна и общей грузоподъемности для мостов на дорогах общего пользования IV и V технической категории.
В статье рассматривается конструктивная особенность штыревых монтажных соединений секций разборного пролетного строения как фактор, определяющий грузоподъемность, характер общих деформаций и в итоге влияющий на транспортноэксплуатационные характеристики мостового сооружения.

92.

Целью настоящего исследования является анализ работы штыревых монтажных соединений секций пролетного строения САРМ с оценкой напряженного состояния элементов узла соединения. Новизной в рассмотрении вопроса полагаем оценку
прочности элементов штыревых соединений и ее влияние на общие деформации - прогибы главных балок.
Ключевые слова: пролетное строение; нижний пояс; верхний пояс; штыревое соединение; проушина; прочность; прогиб, методом оптимизации и идентификации статических задач теории устойчивости надвижного армейского моста (жесткостью)
при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании.
Введение
Наряду с постоянными, капитальными мостами на автомобильных дорогах общего пользования востребованы сооружения на дорогах временных, объездных, внутрихозяйственных с приоритетом сборно-разборности и мобильности конструкций
надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании методом
оптимизации и идентификации статических задач теории устойчивости надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом
сдвиговой прочности при математическом моделировании.
.
Прокладка новых дорог, а также ремонты и реконструкции существующих неизбежно сопровождаются временными мостами, первоначально пропускающими движение основной магистрали или решающими технологические задачи строящихся
сооружений. Подобные сооружения могут быть пионерными в развитии транспортных сетей регионов с решением освоения удаленных сырьевых районов.
В книге А.В. Кручинкина «Сборно-разборные временные мосты» *1+ сборно-разборные мосты классифицированы как временные с меньшим, чем у постоянных мостов сроком службы, обусловленным продолжительностью выполнения конкретных
задач. Так, для пропуска основного движения и обеспечения технологических нужд при строительстве нового или ремонте (реконструкции) существующего моста срок службы временного определен от нескольких месяцев до нескольких лет. Для
транспортного обеспечения лесоразработок, разработки и добычи полезных ископаемых с ограниченными запасами временные мосты могут служить до 10-20 лет *1+. Временные мосты применяют также для обеспечения транспортного сообщения
сезонного характера и для разовых транспортных операций.
Особая роль отводится временным мостам в чрезвычайных ситуациях, когда решающее значение имеют мобильность и быстрота возведения для срочного восстановления прерванного движения транспорта.
В силу особенностей применения к временным мостам как отдельной ветви мостостроения уделяется достаточно много внимания и, несмотря на развитие сети дорог, повышение технического уровня и надежности постоянных сооружений, задача
совершенствования временных средств обеспечения переправ остается актуальной *2+.
Что касается материала временных мостов, то традиционно применялась древесина как широко распространенный и достаточно доступный природный ресурс. В настоящее время сталь, конкурируя с железобетоном, активно расширяет свое
применение в сфере мостостроения становясь все более доступным и обладающим лучшим показателем «прочность-масса» материалом. Давно проявилась тенденция проектирования и строительства стальных пролетных строений постоянных
мостов даже средних и малых, особенно в удаленных территориях с недостаточной транспортной доступностью и слабо развитой
инфраструктурой. Разумеется, для мобильных и быстровозводимых временных мостов сталь - давно признанный и практически единственно возможный материал.
Конструктивное развитие временных мостов можно разделить на следующие направления:
• цельноперевозимые конструкции максимальной заводской готовности, как например «пакетные» пролетные строения, полностью готовые для пропуска транспорта после их установки на опоры *3+;
• складные пролетные строения, способные трансформироваться для уменьшения габаритов при их перевозке1 *4+;
• сборно-разборные2 *5; 6+.

93.

Разборность конструкций обусловлена необходимостью в перекрытии пролетов длиной, превышающей габаритные возможности транспортировки, отсюда и большое разнообразие исполнения временных мостов такого типа. Членение пролетного
строения на возможно меньшие части с целью ускорения и удобства сборки наиболее удачно реализовано в Российской разработке «Тайпан» (патент РФ 1375583) или демпфирующий упругопластичный компенсатор гаситель сдвиговых
напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1- антисейсмическое фланцевое фрикционно-подвижное соединение) для сборно-разборного быстрособираемого армейского моста из стальных
конструкций покрытий производственных здании пролетами 18, 24 и 30 м. с применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих
элементов и элементов проезжей части армейского сборно-разборного пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей прочностью,
согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция",
стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755, 1174616, 2550777, 2010136746, 165076, 858604, 154506, в которой отдельные «модули»
не только упрощают сборку-разборку без привлечения тяжелой техники, но и являются универсальными монтажными марками, позволяющими собирать мосты разных габаритов и грузоподъемности *7; 8+.
Основные параметры некоторых инвентарных сборно-разборных мостов
Ожидаемо, что сборно-разборные мобильные мостовые конструкции приоритетным образом разрабатывались и выпускались для нужд военного ведомства и с течением времени неизбежно попадали в гражданский сектор мостостроения. Обзор
некоторых подобных конструкций приведен в ссылке
ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ
СОСТОЯНИЕ
ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ 1
1 ФГБОУ ВО «Тихоокеанский государственный университет», Хабаровск Россия
https://elibrary.ru/item.asp?id=43813437
Временные мосты необходимы для обеспечения движения при возведении или ремонте (реконструкции) капитальных мостовых сооружений, оперативной связи прерванных путей в различных аварийных ситуациях, для разовых или сезонных
транспортных сообщений.
В мостах такого назначения целесообразны мобильные быстровозводимые конструкции многократного применения. Инвентарные комплекты сборно-разборных мостов разрабатывались и производились прежде всего в интересах военного
ведомства, но в настоящее время широко востребованы и применяются в гражданском секторе мостостроения в силу их экономичности, мобильности, доступности в транспортировке. Среди прочих, в том числе и современных разборных конструкций
мостов, особое место занимает средний автомобильный разборный мост (САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода накопленных на хранении комплектов САРМ в гражданский
сектор строительства выяснилась значительная востребованность этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность всеми элементами моста, включая опоры; возможность перекрытия пролетов 18,6,
25,6, 32,6 м с габаритами ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде...
Однако, смотрите ссылку антисейсмический сдвиговой фрикционно-демпфирующий компенсатор, фрикци-болт с гильзой, для соединений секций разборного моста https://ppt-online.org/1187144
Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Несмотря на наличие современных разработок *7; 8+, инвентарные комплекты сборно-разборных мостов в процессе вывода их из мобилизационного резерва широко востребованы в гражданском секторе мостостроения в силу их экономичности,
мобильности, доступности в транспортировке и многократности применения *9; 10+.
Среди описанных в таблице 1 инвентарных комплектов мостов особое место занимает САРМ (средний автомобильный разборный мост) 4 . Разработанный в 1968 г. и модернизированный в 1982 г. инвентарный комплект позволяет перекрывать
пролеты 18,6, 25,6 и 32,6 м с габаритом ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде (рисунок 1). Удобный и эффективный в применении комплект САРМ в процессе вывода накопленных на хранении конструкций в
гражданский сектор строительства показал значительную востребованность, обусловленную, кроме отмеченных выше преимуществ также и полную укомплектованность всеми элементами моста, включая опоры. Факт широкого применения

94.

конструкций САРМ в гражданском мостостроении отмечен тем, что федеральное дорожное агентство «Росавтодор» в 2013 году выпустило нормативный документ ОДМ 218.2.029 - 20135, специально разработанный для применения этого
инвентарного комплекта.
К недостаткам проекта САРМ следует отнести несоответствия некоторых его геометрических и конструктивных параметров действующим нормам проектирования: габариты ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде,
также штатные инвентарные ограждения (колесоотбои) не соответствуют требованиям действующих норм СП 35.1333.20116, ГОСТ Р 52607-20067, ГОСТ 26804-20128. Выполнение требований указанных выше норм может быть обеспечено
ограничением двухсекционной поперечной компоновки однопутным проездом с установкой добавочных ограждений *10+ или нештатной поперечной компоновкой в виде трех и более секций, рекомендуемой нормами ОДМ 218.2.029
20135.
Пролетное строение среднего автомобильного разборного моста (САРМ) в продольном направлении набирается из средних и концевых секций расчетной длиной 7,0 и 5,8 м соответственно. Количество средних секций (1, 2 или 3) определяет
требуемую в каждом конкретном случае длину пролета 18,6, 25,6, 32,6 м (рисунок 1).
Объединение секций в продольном направлении в сечениях 3 (рисунок 1) выполняется с помощью штырей, вставляемых в отверстия (проушины) верхнего и нижнего поясов секций. В поперечном направлении в стыке одной секции расположены два
штыревых соединения в уровне верхнего и два - в уровне нижнего пояса (рисунок 2).
4 Средний автодорожный разборный мост. Техническое описание и инструкция по эксплуатации / Министерство обороны СССР. -М.: Военное изд-во мин. обороны СССР, 1982. - 137 с.
5 Методические рекомендации по использованию комплекта среднего автодорожного разборного моста (САРМ) на автомобильных дорогах в ходе капитального ремонта и реконструкции капитальных искусственных сооружений: Отраслевой
дорожный методический документ ОДМ 218.2.029 - 2013. - М.: Федеральное дорожное агентство (РОСАВТОДОР), 2013. - 57 с.
6 Свод правил. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84* (с Изменениями № 1, 2) / ОАО ЦНИИС. - М.: Стандартинформ, 2019.
7 ГОСТ Р 52607-2006. Технические средства организации дорожного движения. Ограждения дорожные удерживающие боковые для автомобилей. Общие технические требования / ФДА Минтранса РФ, ФГУП РосдорНИИ, Российский технический
центр безопасности дорожного движения, ОАО СоюздорНИИ, МАДИ (ГТУ), ДО БДД МВД России, НИЦ БДДМВД России. - М.: Стандартинформ, 2007, - 21 с.
8 ГОСТ 26804-2012. Ограждения дорожные металлические барьерного типа. Технические условия / ЗАО СоюздорНИИ, ФГУП РосдорНИИ, ООО НПП «СК Мост». - М.: Стандартинформ, 2014, - 24 с.
Страница 4 из 14
25SATS220
1 - концевая секция; 2 - средняя секция; 3 - сечения штыревых соединений секций
Рисунок : Томилова Сергей Николаевича вставлен

95.

Рисунок 1. Фасад пролетного строения разборного моста САРМ с вариантами длины 18,6 м (а), 25,6 м (б), 32,6 м (в) (разработано автором)
Каждое соединение верхнего пояса секций включает тягу в виде пластины с двумя отверстиями и два вертикальных штыря, а соединение нижнего пояса выполнено одним горизонтальным штырем через проушины смежных секций (рисунок 4).
Таким образом, продольная сборка пролетного строения осуществляется путем выгрузки и проектного расположения секций, совмещения проушин смежных секций и постановки штырей.
1 - штыревые соединения верхнего пояса; 2 - штыревые соединения нижнего пояса; а - расстояние между осями штыревых соединений

96.

Рисунок 2. Двухсекционная компоновка поперечного сечения пролетного строения (разработано автором)
Постановка задачи
Штыревое соединение секций пролетных строений позволяет значительно сократить время выполнения работ, но это обстоятельство оборачивается и недостатком - невозможностью обеспечения плотного соединения при работе его на сдвиг.
Номинальный диаметр соединительных штырей составляет 79 мм, а отверстий под них и проушин - 80 мм.
Разница в 1 мм необходима для возможности постановки штырей при сборке пролетных строений.
Цель настоящего исследования - оценить напряженное состояние узла штыревого соединения, сравнить возникающие в материале элементов соединения напряжения смятия и среза с прочностными параметрами стали, возможность проявления
пластических деформаций штыря и проушин и как следствие - их влияние на общие деформации пролетного строения.
Штыревые соединения как концентраторы напряжений в конструкциях мостов уже привлекали внимание исследователей *11+ и также отмечался характерный для транспортных сооружений фактор длительного циклического воздействия *8+.
Изначально неплотное соединение «штырь-проушина» и дальнейшая его выработка создает концентрацию напряжения до 20 % против равномерного распределения *11+, что может привести к ускорению износа, особенно с учетом цикличного и
динамического воздействия подвижной автотранспортной нагрузки.
В настоящей статье рассмотрены напряжения смятия и деформации в штыревых соединениях и как их следствие - общие деформации (прогибы) пролетного строения. Оценка напряженного состояния в соединении выполнена исходя из гипотезы
равномерного распределения усилий по расчетным сечениям.
Сравнительный расчет выполним для распространенного пролета 32,6 м в следующей последовательности: прочность основного сечения одной секции при изгибе; прочность штыревого соединения по смятию металла проушин; прочность металла
штыря на срез.
Паспортная (проектная) грузоподъемность при двухсекционной поперечной компоновке и двухпутном ездовом полотне - временные вертикальные нагрузки Н-13, НГ-60 по нормам СН 200-621. Так как конструкции САРМ запроектированы на
нагрузки, уступающие современным, то для обеспечения приемлемой грузоподъемности можно использовать резервы в компоновке - например двухсекционная поперечная компоновка будет пропускать только одну полосу движения, что на
практике зачастую не организовано и транспорт движется двумя встречными полосами. Рассмотрим именно такой случай и в качестве полосной автомобильной нагрузки примем А11 по СП 35.1333.20116, хотя и меньшую, чем принятая для нового
проектирования А14, но в полной мере отражающую состав транспортных средств регулярного поточного движения. При постоянстве поперечного сечения по длине пролета и исходя из опыта проектирования для оценочного усилия выбираем
изгибающий момент.
В работе основного сечения одной секции при изгибе участвуют продольные элементы верхнего и нижнего пояса: верхним поясом являются лист настила шириной 3,0 м, продольные швеллеры и двутавры № 12; нижним поясом являются два
двутавра № 23Ш2 (рисунок 3).

97.

Предельный момент, воспринимаемый основным сечением секции (рисунок 3)
где Ry = 295 МПа - расчетное сопротивление стали 15ХСНД; I - момент инерции сечения секции относительно оси изгиба; - максимальная ордината расчетного сечения относительно оси изгиба.
1 - лист настила толщиной 0,006м; 2 - швеллер № 12 по ГОСТ 8239; 3 - двутавр № 12 по ГОСТ 8240; 4 - двутавр № 23Ш2 по ТУ 14-2-24-72
Рисунок 3. Поперечное сечение секции пролетного строения САРМ с выделением продольных элементов с функциями верхнего и нижнего пояса при изгибе (разработано автором)
Данные расчета по (1) приведены в таблице 2.
Расчет предельного изгибающего момента основного сечения секции САРМ
Расчет предельного изгибающего момента основного сечения секции САРМ
Для сравнительной оценки несущей способности основного сечения секции (предельный изгибающий момент, таблица 2) представим расчетный изгибающий момент от временной нагрузки А11 для двухпутного проезда, а именно 1 полоса А11 на 1 секцию в поперечном направлении.
Для выделения полезной части грузоподъемности из предельного удерживается изгибающий момент от постоянной нагрузки. Расчетными сечениями по длине пролета принимаем его середину и сечение штыревого соединения, ближайшее к
середине пролета. Результаты расчета путем загружения линий влияния изгибающего момента в выбранных сечениях приведены в таблице 3.

98.

Как видно, предельный изгибающий момент основного сечения секции (3894,9 кН-м) только на 59,4 % обеспечивает восприятие момента (1134,5 + 5418,6 = 6553,1 кН-м) от суммы постоянной и временной А11 расчетных нагрузок.
Оценить напряженное состояние металла проушин по смятию штырем можно по схеме контакта штыря с внутренней поверхностью проушин, где усилие N с плечом a составляет внутренний момент, уравновешивающий внешний, обусловленный
нагрузкой на пролет (рисунок 4).
Рисунок 5. Схема штыревого соединения нижнего пояса, вид сверху (разработано автором). Но , есть упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных
соединениях для сборно–разбороного железнодорожного армейского моста и он надежнее
1 - одинарная проушина; 2 - двойная проушина; 3 - штырь
Сравним полученные в (3) и (4) результаты с прочностными характеристиками стали 15ХСНД, из которой изготовлены несущие элементы моста САРМ, таблица 4.
Следует определить суммарный расчетный изгибающий момент М от постоянной Мпост и временной Мвр (А11) нагрузок для сечения ближайшего к середине пролета стыка по данным таблицы 3.
M = Mпост + Mвр = 1081,2 + 5195,3 = 6276,5 кН- м.
1 - вертикальный штырь верхнего пояса; 2 - горизонтальный штырь нижнего пояса
Рисунок 4. Схема стыка секций пролетного строения
При суммарной толщине элементов проушины нижнего пояса, сминаемых в одном направлении, 0,06 м и диаметре штыря 0,079 м площадь смятия составит А = 0,06-0,079 = 0,0047 м2 на один контакт (рисунок 5). При наличии двух контактов
нижнего пояса в секции напряжение смятия металла проушины составит

99.

Для расчета сечения штыря на срез следует учесть, что каждый из двух контактов на секцию имеет две плоскости среза (рисунок 5), тогда напряжение сдвига
Примечание:расчетные сопротивления стали смятию и сдвигу определены по таблице 8.3 СП 35.13330.20116 (составлено автором)
Сравнение полученных от воздействия нагрузки А11 напряжений с характеристиками прочности стали 15ХСНД
Напряжение сдвига в штыре превосходит расчетное сопротивление стали, а напряжение смятия в контакте штырь-проушина превосходит как расчетное сопротивление, так и предел текучести, что означает невыполнение условия прочности, выход
металла за предел упругости и накопление пластических деформаций при регулярном и неорганизованном воздействии временной нагрузки А11.
Практическое наблюдение
В организациях, применяющих многократно использованные конструкции САРМ, отмечают значительные провисы (прогибы в незагруженном состоянии) пролетных строений, величина которых для длин 32,6 м доходит до 0,10-0,15 м. Это создает
искажение продольного профиля ездового полотна и негативно влияет на пропускную способность и безопасность движения. При этом визуально по линии прогиба отчетливо наблюдаются переломы в узлах штыревых соединений секций. При
освидетельствовании таких пролетных строений отмечается повышенный зазор между штырем и отверстием (рисунок 6).
Рисунок 6. Повышенный зазор в штыревом соединении секций пролетного строения САРМ (разработано автором)
Смещения в штыревых соединениях, обусловленные пластическими деформациями перенапряженного металла, определяют величину общих деформаций (прогибов) пролетных строений (рисунок 7).

100.

Рисунок 7. Схема общих деформаций вследствие смещения в штыревых соединениях (разработано автором)
Полное смещение (подвижка) на одно соединение с0 = с + с2, где с1 = 1 мм - исходное конструктивное; с2 - добавленное за счет смятия в соединении (рисунок 7).
Вертикальное перемещение f (прогиб) в середине пролета для рассмотренного примера будет суммой xi и Х2 (рисунок 7).
f = Xi + Х2.
Величины x1 и x2 можно определить, зная углы а и 2а, которые вычисляются через угол
где а - расстояние между осями штыревых соединений верхнего и нижнего поясов; I1 - длина средней секции пролетного строения; I2 - длина концевой секции пролетного строения.
В качестве примера рассмотрим временный объездной мост через р. Черниговка на автодороге Хабаровск - Владивосток «Уссури», который был собран и эксплуатировался в составе одного пролета длиной 32,6 м из комплекта САРМ на период
строительства постоянного моста. Были отмечены значительные провисы пролетных строений временного моста величиной в пределах 130-150 мм в середине пролета, что вызвало беспокойство организаторов строительства. При обследовании была
установлена выработка всех штыревых соединений главных ферм в среднем на 2,5 мм сверх номинального 1 мм.
Таким образом смещение (подвижка) на одно соединение с0 = с1 + с2 = 1 + 2,5 = 3,5 мм, а так как в уровне верхнего пояса в качестве связующего элемента применена продольная тяга с двумя отверстиями и двумя расположенными
последовательно штырями, то суммарное смещение, отнесенное к уровню нижнего пояса с = 3,5-3 = 10,5 мм.
Далее следуют вычисления по формулам (5) при а = 1,37 м; h = 7,0 м; I2 = 5,8 м.
а = arcsin 0,0105 = 0,205o; а = 2 • 0,205 = 0,41o; xi = 7,0 • sin 0,41 = 0,05 м;

101.

2
2 • 1,47
1
2а = 2 • 0,41 = 0,82o; x2 = 5,8 • sin 0,82o = 0,083 м.
Полная величина прогиба f = Х1 + Х2 = 0,05 + 0,083 = 0,133 м, что вполне согласуется с фактически замеренными величинами f.
Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного
армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей разборки конструкций, однако при этом являются причиной увеличения общих
деформаций пролетного строения, кроме упругопластического сдвигового компенсатора, гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного сечения секций, так и элементов штыревых соединений, а использование
упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения
снимает
3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина» и нарастанию общих деформаций (провисов), а упругопластический
сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной динамической нагрузкой и не гасит сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность движения, упругопластический сдвиговой компенсатор гаситель
сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные соединения в полной мере соответствуют такому назначению. При
применении в гражданском строительстве эту особенность следует учитывать в разработке проектных решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в
поперечной компоновке, а использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста исключает обрушение железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных решений вариантов поперечной и продольной компоновки пролетных
строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного
железнодорожного армейского моста «Уздина»
ЛИТЕРАТУРА

102.

1. Кручинкин А.В. Сборно-разборные временные мосты. - М.: Транспорт, 1987. - 191 с.
2. Тыдень В.П., Малахов Д.Ю., Постников А.И. Реализация современных требований к переправочно-мостовым средствам в концепции выгружаемого переправочно-десантного парома // Вестник Московского автомобильно- дорожного
государственного технического университета (МАДИ). - М.: Изд-во МАДИ(ГТУ), 2019. - Вып. 3 (58). - С. 69-74.
3. Томилов С.Н. О применении стальных пакетных конструкций в постоянных мостах // Научные чтения памяти профессора М.П. Даниловского: материалы Восемнадцатой Национальной научно-практической конференции: в 2 т. - Хабаровск: Изд-во
Тихоокеан. гос. ун-та, 2018. - 2 т. - С. 360-363.
4. Mohamad Nabil Aklif Biro, Noor Zafirah Abu Bakar. Design and Analysis of Collapsible Scissor Bridge. MATEC Web of Conferences. Vol. 152, 02013 (2018). DOI: https://doi.org/10.1051/matecconf/201815202013.
5. Дианов Н.П., Милородов Ю.С. Табельные автодорожные разборные мосты: учебное пособие. - М.: Изд-во МАДИ (ГТУ), 2009. - 236 с.
6. Adil Kadyrov, Aleksandr Ganyukov, Kyrmyzy Balabekova. Development of Constructions of Mobile Road Overpasses. MATEC Web of Conferences. Vol. 108, 16002 (2017). DOI: https://doi.org/10.1051/matecconf/201710816002.
7. Бокарев С.А., Проценко Д.В. О предпосылках создания новых конструкций временных мостовых сооружений // Интернет-журнал «Науковедение». 2014. № 5(24). URL: https://naukovedenie.ru/PDF/26KO514.pdf. - С. 1-11.
8. Проценко Д.В. Совершенствование конструктивно-технологических параметров системы несущих элементов и элементов проезжей части универсального сборно- разборного пролетного строения с быстросъемными шарнирными соединениями.
Диссертация на соискание ученой степени кандидата технических наук / Сибирский государственный университет путей сообщения (СГУПС). Новосибирск: 2018.
9. Матвеев А.В., Петров И.В., Квитко А.В. Оценка по теории инженерного прогнозирования новых образцов мостового имущества МЛЖ-ВФ-ВТ и ИМЖ- 500 // Вестник гражданских инженеров. - СПб: Изд-во Санкт-Петербургского гос. арх.-строит. ун-та,
2018. Вып. 4 (69). - С. 138-142.
10. Томилов С.Н., Николаев А.Р. Применение комплекта разборного моста под современные нагрузки // Дальний Восток. Автомобильные дороги и безопасность движения: международный сборник научных трудов (под. ред. А.И. Ярмолинского). Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - № 18. - С. 125-128.
11. Сухов И.С. Совершенствование конструктивно-технологических решений шарнирных соединений автодорожных мостов. Автореферат диссертации на соискание ученой степени кандидата технических наук / Научно- исследовательский институт
транспортного строительства (ОАО ЦНИИС). М.: 2011.

103.

104.

Сейсмические требования к стальному каркасу в США STAR SEISMIC USA или новые конструктивные решения антисейсмических демпфирующих связей Кагановского
СЕЙСМИЧЕСКАЯ ЗАЩИТА КАРКАСОВ RC С ИСПОЛЬЗОВАНИЕМ фланцевых фрикционных компенсаторов США
Seismic demands on steel braced frame bu Seismic_demands_on_steel_braced_frame_bu https://ru.scribd.com/document/489003023/Seismic-Demands-on-Steel-Braced-Frame-Bu-1
https://ppt-online.org/846004 https://yadi.sk/i/D6zwaIimCrT5JQ http://www.elektron2000.com/article/1404.html https://ppt-online.org/827045 https://ppt-online.org/821532

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Надвижка пролетного строения из стержневых пространсвенных структур с использованием рамных сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно" (серия 1.460.314 ГПИ "Ленпроектсталь-конструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных мостов в
Киевской Руси Организация - Фонд поддержки и развития сейсмостойкого строительства "Защита и безопасность городов» - «Сейсмофонд» ИНН – 2014000780 при СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015 (911) 175-84-65 , т/ф (812) 694-7810 [email protected]
Восстановление скоростным способом железнодорожных мостов в Киевской Руси пролетом 9, 18, 24 метра с применением замкнутых гнутосварных, прямоугольного сечения профилей типа "Молодечно" (серия 1.460.3.14 ) с использованием
опыта модельных испытаний студентов США, и опыта блока НАТО по восстановления мостов в Ираке, Афганистане, с применением комбинированных стержневых структурных пространственных конструкций "Молодечно", "Кисловодск" , МАРХИ
с высокими геометрическими жесткостными параметрами, при восстановлении разрушенных мостов в Киевской Руси с использованием опыта восстановление мостов блоком НАТО в Северном Вьетнаме, Югославии, Афганистане, Ираке по
восстановлению разрушенных железнодорожных и железобетонных мостов во время боевых действий и их восстановление , согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№1143895, 1168755, 1174616, 165076, 154506, 2010136746, для
доставки гуманитарной помощи в ДНР, ЛНР ( Новороссию) Киевской Руси. Докладчик редактор газеты "Земля РОССИИ", президента организации "Сейсмофонд" при СПб ГАСУ ИНН :2014000780, ОГРН: 1022000000824 Мажиев Х Н seismofond@list.
https://disk.yandex.ru/d/F-tJehKQHKcf_A https://ppt-online.org/1142357
Редакция газеты "Земля России "прилагаем положительный ответ из МЧС РФ
Информация принята к сведению МЧС России проводит постоянную работу по анализу и внедрению современных методов и технологий, направленных на обеспечение безопасности населения и территории.
В настоящее время в Российской Федерации содействие в реализации инновационных проектов и технологий оказывают такие организации, как Фонд «ВЭБ Инновации», ОАО «Банк поддержки малого и среднего предпринимательства», ОАО
«Российская Венчурная Компания», ОАО «РОСНАНО», Фонд развития инновационного Центра «Сколково», ФГБУ «Фонд содействия развитию малых форм предприятий в научно-технической сфере», ФГАУ «Российский фонд технологического
развития», которые на сегодняшний день успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами изделия «огнестойкий компенсатор гаситель температурных напряжений на фрикционно-подвижных болтовых соединениях» обратиться в вышеуказанные организации.
Сайдулаеву К.М. [email protected]
а так же предлагаем принять участие в научных мероприятиях МЧС России, где Вы сможете поделиться своими технологиями и услышать мнение экспертов. Информацию о мероприятиях можно получить на официальном сайте МЧС России
(mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов ведомственных периодических изданий МЧС России (газета «Спасатель МЧС России», журналы «Пожарное дело», «Гражданская защита» и «Основы безопасности
жизнедеятельности»), в которых публикуется актуальная информация о перспективных технологиях и основных тенденциях развития в области гражданской обороны, защиты населения и территорий от чрезвычайных ситуаций, обеспечения
пожарной безопасности, а также обеспечения безопасности людей на водных объектах. Благодарим Вас за активную жизненную позицию и стремление оказать содействие в области защиты населения и территории от чрезвычайных ситуаций

135.

Директор Департамента образовательной и научно-технической деятельности А.И. Бондар Оригинал ссылки: https://disk.yandex.ru/i/RgKHNzwg3_4wyw https://ppt-online.org/1133763
https://disk.yandex.ru/d/F-tJehKQHKcf_A https://ppt-online.org/1142357 https://ppt-online.org/1141400
https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

Фигуры к заявке на изобретение полезная модель Сейсмостойкая фрикционно- демпфирующая опора Е04Н 9/02

152.

153.

154.

155.

156.

Реферат: Сбороно- разборный железнодорожный мост
Изобретение относится к области мостостроения и, в частности, к временным сборно-разборным низководным мостам, используемым для пропуска железнодорожного подвижного состава и скоростной наводки совмещенных железнодорожных и
автодорожных мостовых переправ через широкие и неглубокие водные преграды на период разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и
техногенного характера. Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а
также уменьшает время на его возведение с использованием бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов, железнодорожных шпал и рельс. Сборно-разборный железнодорожный мост состоит из
рамных плоских опор, башенных опор, установленных непосредственно на грунт и пролетных строений, рамные плоские опоры и башенные опоры выполнены из списанных бывших в употреблении железнодорожных полувагонов с
демонтированными рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении железобетонных шпал. В промежутках между шпалами засыпан щебень и вертикально установлены трубы, верх которых выступает
для подачи в них цементно-песчаного раствора. Трубы выполнены с равномерно расположенными по высоте отверстиями для обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры. Пролетные
строения выполнены из рамных надвижных экскаватором по опорным каткам рамным конструкциям выполненные из стальных конструкций с применением серии 1.460.3-14 ГПИ «Ленпроектстальконструкция» с применением гнутосварных
профилей прямоугольного сечения типа «Молодечно», «Кисловодск» МАРХИ ПСПК с устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с определенным шагом и выполненных из металлических рам от
цистерн. По верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения автомобильной и гусеничной техники, и для передвижения личного состава. По краям пролетного строения
установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал. , 6 ил.https://www.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/758/302/%D0%98%D0%97-0275830200001/00000001.jpg

157.

Фиг 1

158.

Фиг 2

159.

Фиг 3

160.

161.

Фиг 4
Фиг 5

162.

Фиг 6

163.

Фиг 7

164.

Фиг 8

165.

Фиг 10

166.

167.

Фиг 11

168.

Фиг 13
Фиг 12

169.

ф

170.

Фиг 14

171.

Фиг 15

172.

173.

Фиг 16

174.

175.

Фигуры заявка на изобретение от СПб ГАСУ Сборно – разборный железнодорожный мост

176.

E 01 D 15 /12 , аналог RU 2 758 302 «Сборно –разборный мост железнодорожный мост»

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

АННОТАЦИЯ
В статье рассмотрены возможности восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных,
пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами прямоугольных в плане большепролетных покрытий с нестандартным соотношением сторон с помощью структурной системы
Кисловодск , Молодечно, МАРХИ. Приведены основные сведения типизации основных конструктивных элементов системы МАРХИ для стержней и узловых вставок- коннекторов. Предложены подходы для регулирования основных параметров
напряженно- деформированного состояния (НДС) проектируемой системы, реализация которых позволяет использовать для перекрытия нестандартных пролетов типовые конструктивные элементы рассматриваемой системы. Предложены
аналитические зависимости для назначения основных параметров изменения параметров НДС проектируемого покрытия в зависимости от изменения параметров проектирования.
1. Введение
Восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно,
Кисловодск с высокими геометрическими жесткостными параметрами , представляет собой принципиально новый способ проектирования и строительства, основанный на тесном взаимодействии вопросов расчета, изготовления, транспортировки и
монтажа составных элементов конструкции и формирования объемно-пространственной конструктивной "оболочки" разрушенного участка железнодорожного моста и сооружений. Эта система отвечает всестороннему качественному анализу
функционально- технологических, архитектурно-художественных, строительно-технических и экономических задач.
Структурные конструкции обладают рядом достоинств: благодаря большой пространственной жесткости структурными покрытиями можно перекрывать значительные пролеты при разнообразных опорных контурах или сетках колонн для
восстановления конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно,
Кисловодск с высокими геометрическими жесткостными параметрами . Применяемая при этом сравнительно небольшая строительная высота позволяет получить выразительное архитектурное решение, а также экономию на объеме здания и
ограждающих стеновых конструкциях. Регулярность строения конструкции позволяет собирать из одних стандартных элементов покрытия разных пролетов и конфигураций в плане, а многосвязность системы повышает степень ее надежности при
внезапных локальных разрушениях.

188.

К недостаткам структурных систем относится повышенная трудоемкость их изготовления и сборки, что является следствием отступления от принципа концентрации материала. Этот недостаток в определенной мере компенсируется однородностью
операции при изготовлении и сборке, что создает условия для поточного производства стандартных конструктивных элементов. .
Перекрестно-стержневые пространственные конструкции (ПСПК) системы МАРХИ, Кисловодск, Молодечно обладают большими формообразующими возможностями. Собираемые из отдельных трубчатых стержней и многогранных узловых
элементов при помощи одноболтового соединения, ПСПК системы МАРХИ представляют собой регулярные структуры, в основе которых лежат правильные многогранники, обладающие важнейшим свойством — плотным заполнением пространства и
единой длиной модульного стержня в пределах проектируемой конструкции

189.

Унифицированный сортамент системы МАРХИ был создан на основе оптимизации по весу ограниченного числа стержневых и узловых элементов, выбор которых основывается на трех основных аспектах:
1. Определение градаций несущих способностей стержневых и узловых элементов сортамента, используемых для комплектации практически неограниченного количества монтажных схем пространственных конструкций;
2. Определение рационального числа типоразмеров стержневых и узловых элементов в большом диапазоне несущей способности от 1 до 1000 кН;
3. Стандартизация основных геометрических размеров стержневых и узловых элементов и их соединений, а также применение конструктивных материалов высокой прочности, обеспечивающих оптимальную экономику монтажных марок системы .

190.

191.

192.

193.

194.

Рис. 2. Показаны стержневые пространственные конструкции для восстановления конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных
стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
Система восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций
Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами , имеет довольно широкую область применения в строительстве. Эта система позволяет перекрывать сооружения любого назначения с пролетами до 100 м
включительно . Это могут быть как конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций

195.

Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и элитные масштабные сооружения типа музеев, выставочных зданий и крытых стадионов для тренировки футбольных команд, для складских, торговых и
специальных производственных помещений, покрытий машинных залов крупных гидроэлектростанций (Рис. 2. URL: http://www.sistems- marhi.ru/upload/medialibrary/efe/buria3.gif) [10].
На данный момент система имеет широкое распространение на территории РФ восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
Объектом исследования является структурная несущая конструкции большепролетного покрытия конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением
комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и культурно-развлекательного комплекса в городе Донецке.
Размеры перекрываемой части здания в плане составляют 68,4х42м. (Рис. 3). Шаг колонн различный в продольном и поперечном направлении. Отметка низа покрытия +12.2 м *3+.
В качестве покрытия используется структурная плита типа Восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых
структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами и МАРХИ. Несущими элементами структурной плиты являются трубы, соединенные в узлах на болтах, с помощью
специальных узловых элементов (коннекторов). В качестве элементарной ячейки структуры базового варианта принята пирамида с основанием в виде прямоугольника 3х3,6 м (что соответствует шагу колонн вдоль и поперек здания) и ребрами
равными 3,6 м. Высота структурного покрытия составляет 2,73м, угол наклона ребра а = 49,4°+.
Все выбранные сечения труб были приняты по *19, 20+.
Система восстановления конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций
Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами, обладает множеством положительных качеств и является надежным и экономически выгодным вариантом покрытия *18+. Однако, существует определенный ряд
проблем, с которыми возможно столкновение при выборе в качестве покрытия системы Молодечное , Кисловодск и МАРХИ:
1) использование системы МАРХИ при нестандартных пролетах приводит к геометрическому изменению элементарной ячейки и соответственно нестандартного шага колонн;
2) из-за нетрадиционного соотношения размеров объекта в плане (для частного случая, рассматриваемого далее,68,4х42«1, 6:1) в узлах возникают большие усилия. И даже использование высокопрочных болтов из наиболее прочных марок стали,
применяющихся в данный момент в Украине - 40Х «селект», не позволяет решить эту проблему.
Некоторыми возможными способами регулировки усилий в элементах покрытия является:
1) изменение локальных геометрических параметров (в данном случае изменение элементарной ячейки по высоте);
2) изменение общей геометрии покрытия путем «вспарушивания» (перехода от плоской геометрии к криволинейной).
2. Обзор литературы
Выполненный обзор литературы подчинен решению основной задачи, рассматриваемой в данной статье, а именно: установлению таких геометрических параметров проектируемой конструкции на нетиповом плане, которые обеспечили бы
возможность использования типовых элементов системы МАРХИ (стержней и вставок-коннекторов).
Из множества трудов отечественных и зарубежных авторов, посвященных расчету, проектированию и эксплуатации структурных покрытий, прежде всего, следует выделить работы посвященные:
- нормативному обеспечению процесса проектирования *1,19,20+,
- изложению общих принципов компоновки, расчета и проектирования рассматриваемых конструкций *2,4,8,10,13,14,17,23+,
- численному исследованию особенностей напряженно-деформированного состояния большепролетных структурных конструкций, в том числе на нетиповом плане, с учетом геометрических несовершенств и других значимых факторов
[3,7,9,11,12,21,24,25],
- разработке аналитических принципов расчета, базирующихся на теории изгиба тонких плит *5,15,16,22+
- типизации и унификации конструктивных элементов структурных покрытий *6,16,18+.

196.

Выполненный обзор и анализ проведенных ранее исследований позволил сформулировать основную
задачу исследования, результаты которого представлены в данной статье, а именно: отыскание таких геометрических параметров типовой ячейки покрытия, которые могли бы удовлетворять
максимальной несущей способности высокопрочного болта 40Х «селект» (100 т), являющегося одним из основных типовых конструктивных элементов системы МАРХИ, регламентирующего его несущую способность
3. Основная часть
Для достижения этой цели, в работе используется как аналитический, так и численный расчет напряженно-деформированного состояния конструкций.
Аналитический метод расчета основывается на приближенном методе расчета изгибаемых тонких плит и выполняется в соответствии с методикой, предложенной в изученных нами отечественных работах *16+ и зарубежных *15, 22+. Однако в
качестве фундаментальных работ в этом направлении, конечно следует считать работу А.Г. Трущева *5+.
Численные исследования в данном исследовании были выполнены с помощью программного комплекса «SCAD» - вычислительного комплекса для прочностного анализа конструкций методом конечных элементов *7+. Единая графическая среда
синтеза расчетной схемы и анализа результатов обеспечивает неограниченные возможности моделирования расчетных схем от самых простых до самых сложных конструкций *25+.
4. Заключение
1. Необходимо использовать для восстановления разрушенных мостов автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с
высокими геометрическими жесткостными параметрами
2. При переходе от плоской схемы к пространственной в виде пологой оболочки, требуемое значение начальной стрелы выгиба составляет f/l=1/27, при которой обеспечивается возможность использования стандартных элементов типа МАРХИ, для
пологой оболочки неподвижно закрепленной по контуру.
4. Сопоставление результатов аналитических и численных исследований показывают их удовлетворительность сходимости в пределах 15%. для восстановление конструкции разрушенного участка железобетонного большепролетного
автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно, Кисловодск с высокими геометрическими жесткостными параметрами
5. Результаты исследования НДС конструкции, полученные путем «вспарушивания», показали, что «вспарушивание» является эффективным методом регулирования параметров НДС при условии «жесткого защемления» конструкции при
восстановление конструкции разрушенного участка железобетонного большепролетного автодорожного моста, скоростным способом с применением комбинированных стержневых структурных, пространственных конструкций Молодечно,
Кисловодск с высокими геометрическими жесткостными параметрами
Более подробно об можно ознакомится в журналах и газетах
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»,
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости».
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»,
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы»
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления –
дом на грунте. Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» – Фонда «Защита и безопасность городов» в области реформы ЖКХ.

197.

13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» ко.
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных
издания и
журналах за 1994- 2004 гг.
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные
С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
Фигуры к заявке на изобртение КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные
конструкции покрытий производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного
Фиг 1
Фиг 2

198.

Фиг 3
Фиг 5
Фиг 4

199.

Фиг 8
Фиг 6

200.

Фиг 9

201.

Фиг 11

202.

Фиг 12

203.

204.

Фиг 13
ф
Фиг 14

205.

206.

Фиг 16
Реферат КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные конструкции покрытий
производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного
Полезная модель относится к области строительства, в частности - восстановления мостов на военно-автомобильных дорогах в Киевской Руси, ДНР, ЛНР , и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени
для скоростного восстановления на старой оси автодорожных железобетонных мостов неразрезной системы. Технической задачей полезной модели является использование сохранившихся консолей разрушенного неразрезного пролетного строения
постоянного железобетонного моста для его восстановления на старой оси, снижение при этом материально-технических затрат и значительное повышение темпов восстановления. Указанная техническая задача решается за счет того, что в
предлагаемой конструкции большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся консолях разрушенного неразрезного пролетного строения постоянного
железобетонного моста, при этом свободные концы консолей опираются на жестко закрепленные в русле реки поддерживающие опоры. Предложенное решение позволит использовать сохранившиеся консоли разрушенного неразрезного
пролетного строения постоянного железобетонного моста для его восстановления на старой оси. Это позволит сократить трудоемкость восстановления постоянных железобетонных мостов неразрезной системы на старой оси на 20%, в 1,5...2 раза
повысить темпы восстановления таких мостов и на 25...35% снизить себестоимость восстановительных работ.
Описание изобретения КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные
конструкции покрытий производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного сечения типа "Молодечно" Чертежи КМ E01D 12/00 , аналог изобретения № № 69 086, 68 528
Полезная модель относится к области строительства, в частности - восстановления мостов на военно-автомобильных дорогах, и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени для скоростного
восстановления на старой оси автодорожных железобетонных мостов неразрезной системы.
Известны конструкции неразрезных мостов, восстановленных на обходе способом строительства высоководного моста с использованием местных материалов и комплектов табельных автодорожных разборных мостов (АРМ), и восстановленных на
старой оси с подъемкой или заменой обрушенных пролетных строений (Н.И.Иваненко. Восстановление и эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.13...14).
Недостатками данных конструкций являются: высокая стоимость и трудоемкость выполнения работ, необходимость привлечения большого количества трудовых и материальных ресурсов, высокие требования к квалификации исполнителей и
значительные (3 и более суток) сроки проведения восстановительных работ, приводящие к недопустимым перерывам движения на военно-автомобильных дорогах.
Наиболее близкой к полезной модели является конструкция участка железобетонного автодорожного моста разрезной системы, восстановленного на старой оси методом замены разрушенных элементов (Н.И.Иваненко. Восстановление и
эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.123).
Такая конструкция предусматривает возведение новых элементов из местных материалов на месте разрушенных пролетов и опор, и по существу является новым участком высоководного моста.
Недостатками данной конструкции являются:
необходимость расчистки русла реки от обломков;
необходимость удаления поврежденных консолей;
обязательное использование специальной мостостроительной техники, вспомогательных плавсредств и мощных грузоподъемных механизмов;
сложность инженерных расчетов при выработке конструктивно-технического решения на восстановление моста и высокие требования к квалификации исполнителей работ;
большие трудовые, материальные и временные затраты, недопустимые в условиях экстренного восстановления.

207.

Технической задачей полезной модели является использование сохранившихся консолей разрушенного неразрезного пролетного строения постоянного железобетонного моста для его восстановления на старой оси, снижение при этом материальнотехнических затрат и значительное повышение темпов восстановления.
Указанная техническая задача решается за счет того, что в предлагаемой конструкции большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся консолях разрушенного
неразрезного пролетного строения постоянного железобетонного моста, при этом свободные концы консолей опираются на жестко закрепленные в русле реки поддерживающие опоры и использования типовых структурных серии 1.460.3-14 ГПИ
Ленпроектстальконструкция, стальные конструкции покрытий производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного сечения типа "Молодечно" Чертежи КМ E01D 12/00 , аналог
изобретения № № 69 086, 68 528
На фиг.1 показана предлагаемая конструкция участка постоянного железобетонного моста неразрезной системы, восстановленного с применением большого автодорожного разборного моста, где обозначены:
поз.1 - разрушенное неразрезное пролетное строение постоянного железобетонного моста с согласно аналога изобретения № 69 086 Академии А.В.Хрулева
поз.2 - сохранившиеся консоли разрушенного неразрезного пролетного строения постоянного железобетонного моста рисунок с изобртения № 68 528 , где поз.3 - опора постоянного железобетонного моста;
поз.4 - подвижный узел опирания;
поз.5 - неподвижный узел опирания;
поз.6 - большой автодорожный разборный мост;
поз.7 - поддерживающая опора.
Фигура из изобретет № 69 082
На фиг.1 изобретение № 68 525 показана предлагаемая конструкция участка железобетонного автодорожного моста неразрезной системы, восстановленного скоростным способом с использованием САРМ, где обозначены:
поз.1 - пролетное строение САРМ;
поз.2 - сохранившиеся элементы железобетонного моста;
поз.3 - сохранившиеся опоры железобетонного моста;
поз.4 - брешь;
поз.5 - узел опирания;
поз.6 - проезжая часть САРМ;
поз.7 - проезжая часть железобетонного моста;
поз.8 - эстакадная часть;
поз.9 - колейные блоки;

208.

поз.10 - вспомогательная опора;
поз.11 - выруб в полотне проезжей части железобетонного моста;
Фигура и з Изобретение № 68 528
На фиг 3 показана зарубежная комбинированная -пространственная структура для восстановления с использованием тяговой и тормозной лебедки
На фиг 4 показана усиления тросовой тягой пролетного строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки
На фиг 5 показана усиления тросовой тягой пролетного строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки
На фиг 6 показана усиления тросовой тягой пролетного строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки
На фиг 7 показана структура МАРХИ ПСПК (патент 80471 ) усиления тросовой тягой пролетного строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки
На фиг 8 показана пролетные строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки МАРХИ ПСПК и зарубежные аналоги США, Японии
На фиг 9 показана пролетные строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки МАРХИ ПСПК (МГСУ )и зарубежные аналоги США, Японии
На фиг 10 показана пролетные строения пространственной структуры для восстановления с использованием тяговой и тормозной лебедки МАРХИ ПСПК и зарубежные аналоги США, Японии
На фиг 11 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов в Киевской Руси, ДНР, ЛНР с использованием тяговой и тормозной лебедки
согласно зарубежного опыта войны стан НАТО, США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии

209.

На фиг 12 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов Ленпромстальконструкция чертеж, серия 1.460.3-14 КЬ в Киевской Руси, ДНР,
ЛНР с использованием тяговой и тормозной лебедки согласно зарубежного опыта войны США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии, Камбодже, Германии (1944)
На фиг 13 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов Ленпромстальконструкция и чертеж, серия ЦНИИЭП им В.Б.Мезенцева серия
1.263ю44 10 КМ для Киевской Руси, ДНР, ЛНР с использованием тяговой и тормозной лебедки согласно зарубежного опыта войны США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии, Камбодже, Германии
(1944)
На фиг 14 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов в Киевской Руси, ДНР, ЛНР с использованием тяговой и тормозной лебедки
согласно зарубежного опыта войны США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии, Камбодже, Германии (1944), приложены чертежи МГСУ , ЛенЗНИЭпа
На фиг 15 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов в Киевской Руси, ДНР, ЛНР с использованием тяговой и тормозной лебедки
согласно зарубежного опыта войны США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии, Камбодже, Германии (1944), приложены чертежи МГСУ, ЛенЗНИЭпа
На фиг 16 показана пролетные строения перекрестно -стержневых пространственных легких конструкций , сборной структуры для восстановления разрушенных мостов в Киевской Руси, ДНР, ЛНР с использованием тяговой и тормозной лебедки
согласно зарубежного опыта войны США во Вьетнаме, Северной Кореи, Афганистане, Ираке, Лаосе, Югославии, Сербии, Японии, Камбодже, Германии (1944), приложены чертежи МГСУ , ЛенЗНИЭпа
показана зарубежная комбинированная -пространственная структура для восстановления с использованием тяговой и тормозной лебедки
Сборка (монтаж) конструкции производится путем продольной надвижки пролетного строения большого автодорожного разборного моста 6 в образовавшуюся брешь непосредственно по разрушенному неразрезному пролетному строению
постоянного железобетонного моста 1 с помощью тяговых и тормозных лебедок.
При этом подвижный 4 и неподвижный 5 узлы опирания большого автодорожного разборного моста 6 устанавливаются на сохранившихся консолях 2 разрушенного неразрезного пролетного строения постоянного железобетонного моста, под
которые для усиления предварительно подводятся снизу поддерживающие опоры 7, удерживающие конструкцию от обрушения при пропуске по восстановленному мосту тяжелой техники.
В результате применения предложенной конструкции представляется возможным использование сохранившихся консолей разрушенного неразрезного пролетного строения постоянного железобетонного моста для его восстановления на старой оси.
При этом отпадает необходимость в удалении консолей и дальнейшей расчистке русла реки от обрушенных элементов, что позволяет сократить трудоемкость восстановления постоянных железобетонных мостов неразрезной системы на старой оси
на 20%, в 1,5...2 раза повысить темпы восстановления таких мостов и на 25...35% снизить себестоимость восстановительных работ.
Формула полезной модели КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные
конструкции покрытий производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного

210.

Конструкция участка постоянного железобетонного моста неразрезной системы, восстановленного с применением большого автодорожного разборного моста, содержащая опоры и разрушенное неразрезное пролетное строение постоянного
железобетонного моста, отличающаяся тем, что большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся опорах или консолях разрушенного неразрезного пролетного
строения постоянного железобетонного моста, при этом свободные концы консолей опираются на жестко закрепленные в русле реки без поддерживающих опор
п.1 . Конструкция участка железобетонного автодорожного моста неразрезной системы, восстановленного скоростным способом, содержащая пролетное строение среднего автодорожного разборного моста , сохранившиеся элементы и опоры
железобетонного моста, эстакадные части, узлы опирания, а также проезжие части и железобетонного моста, отличающаяся тем, что брешь перекрыта пролетным строением , узлы опирания которого не заведены, а установлены рядом с осями
сохранившихся опор железобетонного моста, при этом сопряжение проезжих частей и железобетонного моста выполнено в виде эстакадных частей и отличатся использованием перекрестно-стержневой пространственной конструкции
комбинированных структур с применением замкнутых гнутосварных профилей прямоугольного и трубчатого сечения типа "Молодечна" и типовых структурных серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные конструкции покрытий
производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых, гнутых профилей прямоугольного, а также использования прострнаственных конструкций МАРХИ ПСПК, Брестского государственного технического университета на
основании изобретения RU № 80471 "КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ", учреждение образования "Брестский государственный технический университет" (BY), уложенных на вспомогательные опоры или без
вспомогательных опор ( по расчет в ПК SCAD ), основания которых закреплены с помощью нескольких омоноличенных вырубов глубиной 15...20 см в полотне проезжей части железобетонного моста и с использованием опта инженерных войск блока
НАТО, по восстановлении разрушенных мостов США в Северном Вьетнаме, Афганистане, Ираке, Югославии, Анголе.
КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
80 471
(13)
U1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
E04B 1/58 (2006.01)
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина:учтена за 3 год с 29.04.2010 по 28.04.2011. Патент перешел в общественное достояние.
(72) Автор(ы):
Драган Вячеслав Игнатьевич (BY),
Мухин Анатолий Викторович (BY),
(21)(22) Заявка: 2008116753/22, 28.04.2008
Зинкевич Игорь Владимирович (BY),
(24) Дата начала отсчета срока действия патента:
Головко Леонид Григорьевич (BY),
Лебедь Виталий Алексеевич (BY),
28.04.2008
Шурин Андрей Брониславович (BY),
(45) Опубликовано: 10.02.2009 Бюл. № 4
Люстибер Вадим Викторович (BY),
Мигель Александр Владимирович (BY),
Адрес для переписки:
224017, Республика Беларусь, г.Брест, ул. Московская, 267, УО БрГТУ Пчелин Вячеслав Николаевич (BY)
(73) Патентообладатель(и):
Учреждение образования "Брестский государственный технический университет" (BY)
(54) КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ
(57) Реферат:

211.

Полезная модель относится к строительству и может быть использована при возведении пространственных стержневых конструкций. Задача полезной модели - снизить материалоемкость покрытия, повысить его жесткость и расширить область
применения. Это достигается тем, что известное комбинированное пространственное структурное покрытие, содержащее пространственный каркас (ПК) 1 из соединенных в узлах (У) 2 стержней поясов 3 и раскосов 4 и размещенные в средней части
ПК 1 вдоль пролета, жестко прикрепленные к У 2 нижнего пояса ПК 1 нижние 6 и расположенные над ПК 1 верхние 8 пролетные, установленные на опоры 5 подкрепляющие элементы (ПЭ), снабжено установленными на опоры 5 и расположенными
вдоль пролета жестко прикрепленными к У 2 нижнего пояса нижними 7 и монтированными над ПК 1 верхними 9 контурными ПЭ, причем верхние контурные 9 и пролетные 8 ПЭ жестко прикреплены к узлам 2 верхнего пояса ПК 1. Нижние пролетные 6
и контурные 7 ПЭ жестко прикреплены посредством крестового монтажного столика 10 к У 2 нижнего пояса ПК 1, а верхние 8, 9 - к У 2 нижнего пояса, соответственно При сборке покрытия вначале монтируются опираемые на опоры 5 нижние 6, 7 и
верхние 8, 9 пролетные 6, 8 и контурные 7, 9 ПЭ с крестовыми монтажными столиками 10. После чего собирается нижний пояс ПК 1 из стержней 3 нижнего пояса и У 2 с узловыми элементами в виде полых шаров 13, при этом У 2 жестко прикрепляются
посредством электросварки к монтажным столикам 10 нижних пролетных 6 и контурных 7 ПЭ. Затем монтируются стержни раскосов 4 и У 2 верхнего пояса. На заключительном этапе монтируются стержни 3 верхнего пояса и выполняется жесткое
крепление У 2 верхнего пояса посредством электросварки к монтажным столикам 10 верхних пролетных 8 и контурных 9 ПЭ. Снабжение комбинированного покрытия установленными на опоры 5 и расположенными вдоль пролета нижними 7 и
верхними 9 контурными ПЭ и жесткое прикрепление контурных 7, 9 и пролетных 6, 8 ПЭ к У 2 ПК 1 позволяет повысить жесткость покрытия, а также избежать необходимости в установке опор 5 для опирания ПК 1, горизонтальных и вертикальных
связей, подвесок, что существенно снижает материалоемкость покрытия. Отсутствие опор 5 вдоль контурных ПЭ 7, 9 комбинированного покрытия расширяет также область его применения, например, при строительстве авиационных ангаров, цехов,
покрытий зрелищных сооружений и т.д. 5 ил.
Полезная модель относится к строительству и может быть использована при возведении пространственных стержневых конструкций.
Известно пространственное структурное покрытие, содержащее установленный по контуру на опоры пространственный каркас из соединенных в узлах стержней поясов и раскосов *1+.
Недостатком пространственного структурного покрытия является наличие по контуру покрытия большого количества опор, на которые производится установка пространственного каркаса, и возникновение в стержнях поясов и раскосов при больших
пролетах значительных усилий, что, в совокупности, обуславливает высокую материалоемкость конструкции. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения,
например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Известно также комбинированное пространственное структурное покрытие, содержащее опираемый по контуру на опоры пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части
пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, причем верхние пролетные
подкрепляющие элементы соединены между собой посредством горизонтальных и вертикальных связей, а с нижними подкрепляющими элементами - посредством вертикальных подвесок *2+.
Снабжение комбинированного пространственного структурного покрытия размещенные в средней части пространственного каркаса вдоль пролета жестко прикрепленными к узлам нижнего пояса пространственного каркаса нижними и
расположенными над каркасом верхними пролетными подкрепляющими элементами, установленными на опоры, позволяет существенно разгрузить элементы пространственного каркаса, и, тем самым, в некоторой степени снизить
материалоемкость конструкции покрытия.
Однако известное комбинированное пространственное структурное покрытие по-прежнему характеризуется повышенной материалоемкостью вследствие наличия по контуру покрытия большого количества опор, на которые устанавливается
пространственный каркас. Повышенной материалоемкости способствует также необходимость установки большого количества горизонтальных и вертикальных связей, подвесок между
нижними и верхними пролетными подкрепляющими элементами. Соединение между собой верхних и нижних пролетных подкрепляющих элементов только вертикальными подвесками снижает жесткость покрытия в направлении,
перпендикулярном подкрепляющим элементам. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения, например, при строительстве авиационных ангаров, цехов,
покрытий зрелищных сооружений и т.д.
Задача, на решение которой направлена предлагаемая полезная модель, состоит в том, чтобы снизить материалоемкость комбинированного пространственного структурного покрытия, повысить его жесткость и расширить область применения.
Решение поставленной задачи достигается тем, что известное комбинированное пространственное структурное покрытие, содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части
пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, снабжено установленными на опоры
и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы
жестко прикреплены к узлам верхнего пояса пространственного каркаса.
Снабжение комбинированного пространственного структурного покрытия установленными на опоры и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними
контурными подкрепляющими элементами и жесткое прикрепление верхних контурных и пролетных подкрепляющих элементов к узлам верхнего пояса пространственного каркаса позволяет избежать необходимости в установке опор для опирания
пространственного каркаса, горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах стержни поясов и раскосов пространственного каркаса. Исключение же из конструкции комбинированного покрытия
опор для опирания пространственного каркаса, связей и подвесок обуславливает существенное снижение материалоемкости покрытия. Соединение между собой верхних и нижних пролетных подкрепляющих элементов выполняющими функции
связей и собранными в узлах стержнями поясов и раскосов существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам. Отсутствие опор вдоль контурных поддерживающих элементов
комбинированного пространственного структурного покрытия расширяет также
область его применения, например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Полезная модель поясняется чертежами, где на фиг.1 изображен общий узел комбинированного пространственного структурного покрытия в плане; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - разрез Б-Б на фиг.1; на фиг.4 - узел «1» на фиг.3; на фиг.5 разрез В-В на фиг.4. Обозначения: 1 - пространственный каркас; 2 - узлы системы БрГТУ; 3 - стержни поясов; 4 - стержни раскосов; 5 - опоры; 6 - нижние пролетные подкрепляющие элементы; 7 - нижние контурные подкрепляющие элементы; 8 верхние пролетные подкрепляющие элементы; 9 - верхние контурные подкрепляющие элементы; 10 - крестовой монтажный столик; 11 - электросварной шов; 12 - гайки; 13 - полые шары; 14 - крепежные болты; 15 - внутренние шайбы; 16-наружные
шайбы; 17 - силовые гайки; 18 - стопорные гайки.

212.

Комбинированное пространственное структурное покрытие содержит пространственный каркас 1 из соединенных в узлах 2 системы БрГТУ стержней 3, 4 поясов и раскосов, соответственно, и установленные на опоры 5 нижние 6, 7 и расположенные
над каркасом 1 верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы.
Подкрепляющие элементы 6-9 могут быть выполнены из труб (фиг.1-5) или любого другого стального профиля (на чертежах не показано).
Нижние пролетные 6 и контурные 7 подкрепляющие элементы жестко прикреплены посредством крестового монтажного столика 10 к узлам 2 нижнего пояса пространственного каркаса 1, а верхние 8, 9 - к узлам 2 нижнего пояса, соответственно
(фиг.2-5).
Пролетные подкрепляющие элементы 6, 8 размещены в средней части пространственного каркаса 1 вдоль пролета симметрично относительно оси пространственного каркаса 1 вдоль его большего размера, а контурные подкрепляющие элементы 7, 9
- параллельно подкрепляющим элементам 6, 8 по контуру пространственного каркаса 1 (фиг.1, 2).
Узлы соединения полых стержней 3, 4 поясов и раскосов, оголовки которых снабжены жестко установленными в их полостях гайками 12, пространственного каркаса 1 системы БрГТУ содержат узловые элементы верхнего и нижнего поясов в виде
полых шаров 13 с отверстиями в стенках, через которые пропущены со стороны полости шаров 13 с возможностью вкручивания в гайки 12 стержней 3, 4 болты 14 с внутренними 15 и наружными 16 шайбами и силовыми 17 и стопорными 18 гайками
(фиг.4, 5)
Силовые 17 и стопорные 18 гайки размещены между шаром 13 и гайками 12 стержней 3, 4. В проектном положении стопорная гайка 18 стопорит болт 14 относительно гайки 12, а силовая 17 - болт 12 относительно шара 13 (фиг.4, 5).
Внутренние 15 и наружные 16 шайбы выполнены со сферическими, обращенными к шару 13 поверхностями, и установлены между головками болтов 14 и внутренней поверхностью шара 13 и наружной поверхностью шара 13 и силовыми гайками 17,
соответственно.
Сборка пространственного каркаса производится в следующем порядке.
Вначале монтируются опираемые на опоры 5 нижние 6, 7 и верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы с крестовыми монтажными столиками 10. После чего собирается нижний пояс пространственного каркаса 1 из
стержней 3 нижнего пояса и узлов 2 с узловыми элементами в виде полых шаров 13, при этом узлы 2 жестко прикрепляются посредством электросварки к монтажным столикам подкрепляющих нижних пролетных 6 и контурных 7 элементов. Затем
монтируются стержни раскосов 4 и узлы 2 верхнего пояса. На заключительном этапе монтируются стержни 3 верхнего пояса и выполняется жесткое крепление узлов 2 верхнего пояса посредством электросварки к монтажным столикам верхних
подкрепляющих пролетных 8 и контурных 9 элементов.
При сборке узлов нижнего и верхнего поясов из стержней 3, 4 и узловых элементов в виде полых шаров 13 силовые 17 и стопорные 18 гайки болтов 14 устанавливаются рядом друг с другом и стопорятся относительно друг друга и болтов 14, при этом
расстояние от торца каждого из болтов 14 до гайки 12 стержней 3, 4 должно быть равно расстоянию от головки болта 14 до внутренней шайбы 15 в положении прижатия силовой 17 и стопорной 18 гаек с наружной шайбой 16 и внутренней шайбы 15 к
полому шару 13. Стопорение гаек 17, 18 осуществляется посредством их поворота с затягиванием навстречу друг другу. Затем, путем вращения застопоренных гаек 17, 18 с болтом 14, последний ввинчивается в гайку 12 стержней 1 или 2 до упора гаек
18 в гайку 12, при этом головка болта 14 с шайбой 15 опирается на внутреннюю поверхность шара 13. На заключительном этапе силовая гайка 17 вращается в обратную сторону, при застопоренных гайках 12, 18, до момента ее опирания в наружную
шайбу 16 и производится стопорение болта 14 относительно полого шара 13 путем затягивания силовой гайки 17 (фиг.4, 5).
Снабжение комбинированного пространственного структурного покрытия установленными на опоры 5 и расположенными вдоль пролета жестко прикрепленными к узлам 2 нижнего пояса нижними 7 и монтированными над каркасом 1 верхними 9
контурными подкрепляющими элементами и жесткое прикрепление верхних контурных 9 и пролетных 8 подкрепляющих элементов к узлам 2 верхнего пояса пространственного каркаса 1 позволяет избежать необходимости в установке опор 5 для
опирания пространственного каркаса 1, горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах 2 стержни поясов 3 и раскосов 4 пространственного
каркаса 1. Исключение же из конструкции комбинированного покрытия опор 5 для опирания пространственного каркаса 1, связей и подвесок обуславливает существенное снижение материалоемкости покрытия. Соединение между собой верхних 8 и
нижних 6 пролетных подкрепляющих элементов выполняющими функции связей и собранными в узлах 2 стержнями поясов 3 и раскосов 4 существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам 69. Отсутствие опор 5 вдоль контурных поддерживающих элементов 7, 9 комбинированного пространственного структурного покрытия расширяет также область его применения, например, при строительстве авиационных ангаров, цехов, покрытий
зрелищных сооружений и т.д.
Источники информации:
1. Патент РБ №2489 U, МКИ Е04В 1/58. Узел соединения полых стержней пространственного каркаса // Официальный бюллетень. - 2006.02.28, №1, с.193-194.
2. Драган В.И., Шурин А.Б. Конструкции арок комбинированного покрытия универсального спортивного комплекса в г.Бресте // Вестник БрГТУ. - 2006. - №1(37): Строительство и архитектура. - с.87-91.
Формула полезной модели
Комбинированное пространственное структурное покрытие, содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части пространственного каркаса вдоль пролета жестко
прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, отличающееся тем, что оно снабжено установленными на опоры и расположенными

213.

вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы жестко
прикреплены к узлам верхнего пояса пространственного каркаса.
Перекрестно-стержневые пространственные конструкции (ПСПК) системы МАРХИ
Перекрестно-стержневые пространственные конструкции (ПСПК) системы МАРХИ состоят из унифицированных стержней и узловых элементов, путем взаимного соединения (рис.1)
которых происходит формирование одно-, двух- и многопоясных каркасов на квадратных, прямоугольных, треугольных и других планах (рис. 2).

214.

Область применения ПСПК
отапливаемые и неотапливаемые здания и сооружения промышленного, гражданского и сельскохозяйственного назначения для районов РФ с расчетной температурой наружного воздуха до минус 40°С; с рулонной и мастичной кровлей; со стальными
и железобетонными колоннами; с неагрессивными и слабоагрессивными средами;
производственные здания и сооружения с подвесными кранбалками грузоподъемностью до 5 тс и мостовыми кранами до 50 тс;
здания и сооружения одноцелевого использования с повторным использованием в новом строительстве или утилизацией в виде вторичного сырья;
здания и сооружения, проектируемые для труднодоступных районов РФ и районов с расчетной сейсмичностью до 9 баллов включительно при соблюдении требований СНиП II-7-81 с изменениями.
Объекты с применением МАРХИ
КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
(19)
RU

215.

(11)
80 471
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ U1
СОБСТВЕННОСТИ,
(51) МПК
ПАТЕНТАМ И ТОВАРНЫМ
E04B 1/58 (2006.01)
ЗНАКАМ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
Пошлина:
не действует (последнее изменение статуса: 02.07.2021)
учтена за 3 год с 29.04.2010 по 28.04.2011. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2008116753/22,
28.04.2008
(24) Дата начала отсчета срока
действия патента:
28.04.2008
(45)
Опубликовано: 10.02.2009 Бюл.
№4
Адрес для переписки:
224017, Республика Беларусь,
г.Брест, ул. Московская, 267,
УО БрГТУ
(72) Автор(ы):
Драган Вячеслав Игнатьевич (BY),
Мухин Анатолий Викторович (BY),
Зинкевич Игорь Владимирович (BY),
Головко Леонид Григорьевич (BY),
Лебедь Виталий Алексеевич (BY),
Шурин Андрей Брониславович (BY),
Люстибер Вадим Викторович (BY),
Мигель Александр Владимирович (BY),
Пчелин Вячеслав Николаевич (BY)
(73) Патентообладатель(и):
Учреждение образования "Брестский государственный
технический университет" (BY)
(54) КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ
(57) Реферат:
Полезная модель относится к строительству и может быть использована при возведении пространственных стержневых конструкций. Задача полезной модели - снизить материалоемкость покрытия, повысить его жесткость и расширить область
применения. Это достигается тем, что известное комбинированное пространственное структурное покрытие, содержащее пространственный каркас (ПК) 1 из соединенных в узлах (У) 2 стержней поясов 3 и раскосов 4 и размещенные в средней части
ПК 1 вдоль пролета, жестко прикрепленные к У 2 нижнего пояса ПК 1 нижние 6 и расположенные над ПК 1 верхние 8 пролетные, установленные на опоры 5 подкрепляющие элементы (ПЭ), снабжено установленными на опоры 5 и расположенными
вдоль пролета жестко прикрепленными к У 2 нижнего пояса нижними 7 и монтированными над ПК 1 верхними 9 контурными ПЭ, причем верхние контурные 9 и пролетные 8 ПЭ жестко прикреплены к узлам 2 верхнего пояса ПК 1. Нижние пролетные 6
и контурные 7 ПЭ жестко прикреплены посредством крестового монтажного столика 10 к У 2 нижнего пояса ПК 1, а верхние 8, 9 - к У 2 нижнего пояса, соответственно При сборке покрытия вначале монтируются опираемые на опоры 5 нижние 6, 7 и
верхние 8, 9 пролетные 6, 8 и контурные 7, 9 ПЭ с крестовыми монтажными столиками 10. После чего собирается нижний пояс ПК 1 из стержней 3 нижнего пояса и У 2 с узловыми элементами в виде полых шаров 13, при этом У 2 жестко прикрепляются
посредством электросварки к монтажным столикам 10 нижних пролетных 6 и контурных 7 ПЭ. Затем монтируются стержни раскосов 4 и У 2 верхнего пояса. На заключительном этапе монтируются стержни 3 верхнего пояса и выполняется жесткое
крепление У 2 верхнего пояса посредством электросварки к монтажным столикам 10 верхних пролетных 8 и контурных 9 ПЭ. Снабжение комбинированного покрытия установленными на опоры 5 и расположенными вдоль пролета нижними 7 и
верхними 9 контурными ПЭ и жесткое прикрепление контурных 7, 9 и пролетных 6, 8 ПЭ к У 2 ПК 1 позволяет повысить жесткость покрытия, а также избежать необходимости в установке опор 5 для опирания ПК 1, горизонтальных и вертикальных
связей, подвесок, что существенно снижает материалоемкость покрытия. Отсутствие опор 5 вдоль контурных ПЭ 7, 9 комбинированного покрытия расширяет также область его применения, например, при строительстве авиационных ангаров, цехов,
покрытий зрелищных сооружений и т.д. 5 ил.

216.

Полезная модель относится к строительству и может быть использована при возведении пространственных стержневых конструкций.
Известно пространственное структурное покрытие, содержащее установленный по контуру на опоры пространственный каркас из соединенных в узлах стержней поясов и раскосов *1+.
Недостатком пространственного структурного покрытия является наличие по контуру покрытия большого количества опор, на которые производится установка пространственного каркаса, и возникновение в стержнях поясов и раскосов при больших
пролетах значительных усилий, что, в совокупности, обуславливает высокую материалоемкость конструкции. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения,
например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Известно также комбинированное пространственное структурное покрытие, содержащее опираемый по контуру на опоры пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части
пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, причем верхние пролетные
подкрепляющие элементы соединены между собой посредством горизонтальных и вертикальных связей, а с нижними подкрепляющими элементами - посредством вертикальных подвесок *2+.
Снабжение комбинированного пространственного структурного покрытия размещенные в средней части пространственного каркаса вдоль пролета жестко прикрепленными к узлам нижнего пояса пространственного каркаса нижними и
расположенными над каркасом верхними пролетными подкрепляющими элементами, установленными на опоры, позволяет существенно разгрузить элементы пространственного каркаса, и, тем самым, в некоторой степени снизить
материалоемкость конструкции покрытия.
Однако известное комбинированное пространственное структурное покрытие по-прежнему характеризуется повышенной материалоемкостью вследствие наличия по контуру покрытия большого количества опор, на которые устанавливается
пространственный каркас. Повышенной материалоемкости способствует также необходимость установки большого количества горизонтальных и вертикальных связей, подвесок между
нижними и верхними пролетными подкрепляющими элементами. Соединение между собой верхних и нижних пролетных подкрепляющих элементов только вертикальными подвесками снижает жесткость покрытия в направлении,
перпендикулярном подкрепляющим элементам. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения, например, при строительстве авиационных ангаров, цехов,
покрытий зрелищных сооружений и т.д.
Задача, на решение которой направлена предлагаемая полезная модель, состоит в том, чтобы снизить материалоемкость комбинированного пространственного структурного покрытия, повысить его жесткость и расширить область применения.
Решение поставленной задачи достигается тем, что известное комбинированное пространственное структурное покрытие, содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части
пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, снабжено установленными на опоры
и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы
жестко прикреплены к узлам верхнего пояса пространственного каркаса.
Снабжение комбинированного пространственного структурного покрытия установленными на опоры и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними
контурными подкрепляющими элементами и жесткое прикрепление верхних контурных и пролетных подкрепляющих элементов к узлам верхнего пояса пространственного каркаса позволяет избежать необходимости в установке опор для опирания
пространственного каркаса, горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах стержни поясов и раскосов пространственного каркаса. Исключение же из конструкции комбинированного покрытия
опор для опирания пространственного каркаса, связей и подвесок обуславливает существенное снижение материалоемкости покрытия. Соединение между собой верхних и нижних пролетных подкрепляющих элементов выполняющими функции
связей и собранными в узлах стержнями поясов и раскосов существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам. Отсутствие опор вдоль контурных поддерживающих элементов
комбинированного пространственного структурного покрытия расширяет также
область его применения, например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Полезная модель поясняется чертежами, где на фиг.1 изображен общий узел комбинированного пространственного структурного покрытия в плане; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - разрез Б-Б на фиг.1; на фиг.4 - узел «1» на фиг.3; на фиг.5 разрез В-В на фиг.4. Обозначения: 1 - пространственный каркас; 2 - узлы системы БрГТУ; 3 - стержни поясов; 4 - стержни раскосов; 5 - опоры; 6 - нижние пролетные подкрепляющие элементы; 7 - нижние контурные подкрепляющие элементы; 8 верхние пролетные подкрепляющие элементы; 9 - верхние контурные подкрепляющие элементы; 10 - крестовой монтажный столик; 11 - электросварной шов; 12 - гайки; 13 - полые шары; 14 - крепежные болты; 15 - внутренние шайбы; 16-наружные
шайбы; 17 - силовые гайки; 18 - стопорные гайки.
Комбинированное пространственное структурное покрытие содержит пространственный каркас 1 из соединенных в узлах 2 системы БрГТУ стержней 3, 4 поясов и раскосов, соответственно, и установленные на опоры 5 нижние 6, 7 и расположенные
над каркасом 1 верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы.
Подкрепляющие элементы 6-9 могут быть выполнены из труб (фиг.1-5) или любого другого стального профиля (на чертежах не показано).
Нижние пролетные 6 и контурные 7 подкрепляющие элементы жестко прикреплены посредством крестового монтажного столика 10 к узлам 2 нижнего пояса пространственного каркаса 1, а верхние 8, 9 - к узлам 2 нижнего пояса, соответственно
(фиг.2-5).
Пролетные подкрепляющие элементы 6, 8 размещены в средней части пространственного каркаса 1 вдоль пролета симметрично относительно оси пространственного каркаса 1 вдоль его большего размера, а контурные подкрепляющие элементы 7, 9
- параллельно подкрепляющим элементам 6, 8 по контуру пространственного каркаса 1 (фиг.1, 2).

217.

Узлы соединения полых стержней 3, 4 поясов и раскосов, оголовки которых снабжены жестко установленными в их полостях гайками 12, пространственного каркаса 1 системы БрГТУ содержат узловые элементы верхнего и нижнего поясов в виде
полых шаров 13 с отверстиями в стенках, через которые пропущены со стороны полости шаров 13 с возможностью вкручивания в гайки 12 стержней 3, 4 болты 14 с внутренними 15 и наружными 16 шайбами и силовыми 17 и стопорными 18 гайками
(фиг.4, 5)
Силовые 17 и стопорные 18 гайки размещены между шаром 13 и гайками 12 стержней 3, 4. В проектном положении стопорная гайка 18 стопорит болт 14 относительно гайки 12, а силовая 17 - болт 12 относительно шара 13 (фиг.4, 5).
Внутренние 15 и наружные 16 шайбы выполнены со сферическими, обращенными к шару 13 поверхностями, и установлены между головками болтов 14 и внутренней поверхностью шара 13 и наружной поверхностью шара 13 и силовыми гайками 17,
соответственно.
Сборка пространственного каркаса производится в следующем порядке.
Вначале монтируются опираемые на опоры 5 нижние 6, 7 и верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы с крестовыми монтажными столиками 10. После чего собирается нижний пояс пространственного каркаса 1 из
стержней 3 нижнего пояса и узлов 2 с узловыми элементами в виде полых шаров 13, при этом узлы 2 жестко прикрепляются посредством электросварки к монтажным столикам подкрепляющих нижних пролетных 6 и контурных 7 элементов. Затем
монтируются стержни раскосов 4 и узлы 2 верхнего пояса. На заключительном этапе монтируются стержни 3 верхнего пояса и выполняется жесткое крепление узлов 2 верхнего пояса посредством электросварки к монтажным столикам верхних
подкрепляющих пролетных 8 и контурных 9 элементов.
При сборке узлов нижнего и верхнего поясов из стержней 3, 4 и узловых элементов в виде полых шаров 13 силовые 17 и стопорные 18 гайки болтов 14 устанавливаются рядом друг с другом и стопорятся относительно друг друга и болтов 14, при этом
расстояние от торца каждого из болтов 14 до гайки 12 стержней 3, 4 должно быть равно расстоянию от головки болта 14 до внутренней шайбы 15 в положении прижатия силовой 17 и стопорной 18 гаек с наружной шайбой 16 и внутренней шайбы 15 к
полому шару 13. Стопорение гаек 17, 18 осуществляется посредством их поворота с затягиванием навстречу друг другу. Затем, путем вращения застопоренных гаек 17, 18 с болтом 14, последний ввинчивается в гайку 12 стержней 1 или 2 до упора гаек
18 в гайку 12, при этом головка болта 14 с шайбой 15 опирается на внутреннюю поверхность шара 13. На заключительном этапе силовая гайка 17 вращается в обратную сторону, при застопоренных гайках 12, 18, до момента ее опирания в наружную
шайбу 16 и производится стопорение болта 14 относительно полого шара 13 путем затягивания силовой гайки 17 (фиг.4, 5).
Снабжение комбинированного пространственного структурного покрытия установленными на опоры 5 и расположенными вдоль пролета жестко прикрепленными к узлам 2 нижнего пояса нижними 7 и монтированными над каркасом 1 верхними 9
контурными подкрепляющими элементами и жесткое прикрепление верхних контурных 9 и пролетных 8 подкрепляющих элементов к узлам 2 верхнего пояса пространственного каркаса 1 позволяет избежать необходимости в установке опор 5 для
опирания пространственного каркаса 1, горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах 2 стержни поясов 3 и раскосов 4 пространственного
каркаса 1. Исключение же из конструкции комбинированного покрытия опор 5 для опирания пространственного каркаса 1, связей и подвесок обуславливает существенное снижение материалоемкости покрытия. Соединение между собой верхних 8 и
нижних 6 пролетных подкрепляющих элементов выполняющими функции связей и собранными в узлах 2 стержнями поясов 3 и раскосов 4 существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам 69. Отсутствие опор 5 вдоль контурных поддерживающих элементов 7, 9 комбинированного пространственного структурного покрытия расширяет также область его применения, например, при строительстве авиационных ангаров, цехов, покрытий
зрелищных сооружений и т.д.
Источники информации:
1. Патент РБ №2489 U, МКИ Е04В 1/58. Узел соединения полых стержней пространственного каркаса // Официальный бюллетень. - 2006.02.28, №1, с.193-194.
2. Драган В.И., Шурин А.Б. Конструкции арок комбинированного покрытия универсального спортивного комплекса в г.Бресте // Вестник БрГТУ. - 2006. - №1(37): Строительство и архитектура. - с.87-91.
Формула полезной модели
Комбинированное пространственное структурное покрытие, содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части пространственного каркаса вдоль пролета жестко
прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, отличающееся тем, что оно снабжено установленными на опоры и расположенными
вдоль пролета жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы жестко
прикреплены к узлам верхнего пояса пространственного каркаса.

218.

MM1K Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 29.04.2011
КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ БОЛЬШОГО АВТОДОРОЖНОГО РАЗБОРНОГО МОСТА
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19)
RU
(11)
69 082
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ (13)
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ
ЗНАКАМ
U1
(51) МПК
E01D 12/00 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
Пошлина:
не действует (последнее изменение статуса: 02.07.2021)
Патент перешел в общественное достояние.
(21)(22) Заявка: 2007100261/22, 09.01.2007
(24) Дата начала отсчета срока действия
патента:
09.01.2007
(45) Опубликовано: 10.12.2007 Бюл. № 34
Адрес для переписки:
199034, Санкт-Петербург, наб. адмирала
Макарова, 8, ВАТТ им. генерала армии
А.В. Хрулева, НИО
(72) Автор(ы):
Андрушко Сергей Борисович (RU),
Квитко Александр Владимирович (RU),
Мячин Валерий Николаевич (RU),
Недоварков Сергей Алексеевич (RU),
Нитецкий Игорь Владимирович (RU),
Озорнин Андрей Анатольевич (RU),
Сухой Леонид Григорьевич (RU)
(73) Патентообладатель(и):
Военная академия тыла и транспорта им.
генерала армии А.В. Хрулева (RU)
(54) КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ БОЛЬШОГО АВТОДОРОЖНОГО РАЗБОРНОГО МОСТА
(57) Реферат:
Полезная модель относится к области строительства, в частности - восстановления мостов на военно-автомобильных дорогах, и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени для скоростного
восстановления на старой оси автодорожных железобетонных мостов неразрезной системы. Технической задачей полезной модели является использование сохранившихся консолей разрушенного неразрезного пролетного строения постоянного

219.

железобетонного моста для его восстановления на старой оси, снижение при этом материально-технических затрат и значительное повышение темпов восстановления. Указанная техническая задача решается за счет того, что в предлагаемой
конструкции большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся консолях разрушенного неразрезного пролетного строения постоянного железобетонного моста, при
этом свободные концы консолей опираются на жестко закрепленные в русле реки поддерживающие опоры. Предложенное решение позволит использовать сохранившиеся консоли разрушенного неразрезного пролетного строения постоянного
железобетонного моста для его восстановления на старой оси. Это позволит сократить трудоемкость восстановления постоянных железобетонных мостов неразрезной системы на старой оси на 20%, в 1,5...2 раза повысить темпы восстановления таких
мостов и на 25...35% снизить себестоимость восстановительных работ.
Полезная модель относится к области строительства, в частности - восстановления мостов на военно-автомобильных дорогах, и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени для скоростного
восстановления на старой оси автодорожных железобетонных мостов неразрезной системы.
Известны конструкции неразрезных мостов, восстановленных на обходе способом строительства высоководного моста с использованием местных материалов и комплектов табельных автодорожных разборных мостов (АРМ), и восстановленных на
старой оси с подъемкой или заменой обрушенных пролетных строений (Н.И.Иваненко. Восстановление и эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.13...14).
Недостатками данных конструкций являются: высокая стоимость и трудоемкость выполнения работ, необходимость привлечения большого количества трудовых и материальных ресурсов, высокие требования к квалификации исполнителей и
значительные (3 и более суток) сроки проведения восстановительных работ, приводящие к недопустимым перерывам движения на военно-автомобильных дорогах.
Наиболее близкой к полезной модели является конструкция участка железобетонного автодорожного моста разрезной системы, восстановленного на старой оси методом замены разрушенных элементов (Н.И.Иваненко. Восстановление и
эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.123). Такая конструкция предусматривает возведение новых элементов из местных материалов на месте разрушенных пролетов и опор, и по существу
является новым участком высоководного моста.
Недостатками данной конструкции являются:
необходимость расчистки русла реки от обломков;
необходимость удаления поврежденных консолей;
обязательное использование специальной мостостроительной техники, вспомогательных плавсредств и мощных грузоподъемных механизмов;
сложность инженерных расчетов при выработке конструктивно-технического решения на восстановление моста и высокие требования к квалификации исполнителей работ;
большие трудовые, материальные и временные затраты, недопустимые в условиях экстренного восстановления.
Технической задачей полезной модели является использование сохранившихся консолей разрушенного неразрезного пролетного строения постоянного железобетонного моста для его восстановления на старой оси, снижение при этом материальнотехнических затрат и значительное повышение темпов восстановления.
Указанная техническая задача решается за счет того, что в предлагаемой конструкции большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся консолях разрушенного
неразрезного пролетного строения постоянного железобетонного моста, при этом свободные концы консолей опираются на жестко закрепленные в русле реки поддерживающие опоры.
На фиг.1 показана предлагаемая конструкция участка постоянного железобетонного моста неразрезной системы, восстановленного с применением большого автодорожного разборного моста, где обозначены:
поз.1 - разрушенное неразрезное пролетное строение постоянного железобетонного моста;
поз.2 - сохранившиеся консоли разрушенного неразрезного пролетного строения постоянного железобетонного моста;
поз.3 - опора постоянного железобетонного моста;
поз.4 - подвижный узел опирания;
поз.5 - неподвижный узел опирания;
поз.6 - большой автодорожный разборный мост;
поз.7 - поддерживающая опора.
Сборка (монтаж) конструкции производится путем продольной надвижки пролетного строения большого автодорожного разборного моста 6 в
образовавшуюся брешь непосредственно по разрушенному неразрезному пролетному строению постоянного железобетонного моста 1 с помощью тяговых и тормозных лебедок. При этом подвижный 4 и неподвижный 5 узлы опирания большого
автодорожного разборного моста 6 устанавливаются на сохранившихся консолях 2 разрушенного неразрезного пролетного строения постоянного железобетонного моста, под которые для усиления предварительно подводятся снизу
поддерживающие опоры 7, удерживающие конструкцию от обрушения при пропуске по восстановленному мосту тяжелой техники.
В результате применения предложенной конструкции представляется возможным использование сохранившихся консолей разрушенного неразрезного пролетного строения постоянного железобетонного моста для его восстановления на старой оси.

220.

При этом отпадает необходимость в удалении консолей и дальнейшей расчистке русла реки от обрушенных элементов, что позволяет сократить трудоемкость восстановления постоянных железобетонных мостов неразрезной системы на старой оси
на 20%, в 1,5...2 раза повысить темпы восстановления таких мостов и на 25...35% снизить себестоимость восстановительных работ.
Формула полезной модели
Конструкция участка постоянного железобетонного моста неразрезной системы, восстановленного с применением большого автодорожного разборного моста, содержащая опоры и разрушенное неразрезное пролетное строение постоянного
железобетонного моста, отличающаяся тем, что большой автодорожный разборный мост установлен на подвижный и неподвижный узлы опирания, закрепленные на сохранившихся консолях разрушенного неразрезного пролетного строения
постоянного железобетонного моста, при этом свободные концы консолей опираются на жестко закрепленные в русле реки поддерживающие опоры.
КОНСТРУКЦИЯ УЧАСТКА ЖЕЛЕЗОБЕТОННОГО АВТОДОРОЖНОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО СКОРОСТНЫМ СПОСОБОМ
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19)
RU
(11)
68 528
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ (13)
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ
ЗНАКАМ
U1
(51) МПК
E01D 22/00 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)

221.

Пошлина:
Патент перешел в общественное достояние.
(21)(22) Заявка: 2006123232/22,
29.06.2006
(24) Дата начала отсчета срока
действия патента:
29.06.2006
(45)
Опубликовано: 27.11.2007 Бюл.
№ 33
Адрес для переписки:
199034, Санкт-Петербург, наб.
Адмирала Макарова, 8, ВАТТ
им. генерала армии А.В.
Хрулева, НИО
(72) Автор(ы):
Андрушко Сергей Борисович (RU),
Квитко Александр Владимирович (RU),
Мячин Валерий Николаевич (RU),
Недоварков Сергей Алексеевич (RU),
Нитецкий Игорь Владимирович (RU),
Озорнин Андрей Анатольевич (RU),
Сухой Леонид Григорьевич (RU)
(73) Патентообладатель(и):
Военная академия тыла и транспорта им.
генерала армии А.В. Хрулева (RU)
(54) КОНСТРУКЦИЯ УЧАСТКА ЖЕЛЕЗОБЕТОННОГО АВТОДОРОЖНОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО СКОРОСТНЫМ СПОСОБОМ
(57) Реферат:
Полезная модель относится к области строительства и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени для скоростного восстановления на старой оси железобетонных автодорожных мостов неразрезной
системы. Технической задачей полезной модели является снижение материально-технических затрат на восстановление разрушенных железобетонных автодорожных мостов неразрезной системы на старой оси в условиях экстренного
восстановления, и значительное (в 3...5 раз) повышение при этом темпов восстановления таких мостов. Указанная техническая задача решается за счет того, что в предлагаемой конструкции брешь перекрыта пролетным строением среднего
автодорожного разборного моста (САРМ) методом продольной надвижки, при этом узлы опирания пролетного строения САРМ не заведены, а установлены рядом с осями сохранившихся опор железобетонного моста, при этом сопряжение проезжих
частей САРМ и железобетонного моста выполнено в виде эстакадных частей из колейных блоков, уложенных на вспомогательные опоры, основания которых закреплены при помощи нескольких омоноличенных вырубов в полотне проезжей части
железобетонного моста. В результате применения предложенной конструкции темп восстановления на старой оси железобетонных автодорожных мостов неразрезной системы возрастает в 3...5 раз. трудоемкость восстановления каждого моста
сокращается в 3...4 раза и на 45...50% снижается себестоимость восстановительных работ.
Полезная модель относится к области строительства, в частности - восстановления мостов на военно-автомобильных дорогах, и может быть использована при чрезвычайных ситуациях в условиях острого дефицита времени для скоростного
восстановления железобетонных автодорожных мостов неразрезной системы на старой оси.
Известны конструкции неразрезных мостов, восстановленных на обходе способом строительства высоководного моста с использованием местных материалов и комплектов табельных автодорожных разборных мостов (АРМ), и восстановленных на
старой оси с подъемкой или заменой обрушенных пролетных строений (Н.И.Иваненко. Восстановление и эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.13...14).
Недостатками данных конструкций являются: высокая стоимость и трудоемкость выполнения работ, необходимость привлечения большого количества трудовых и материальных ресурсов, высокие требования к квалификации исполнителей и
значительные (3 и более суток) сроки проведения восстановительных работ, приводящие к недопустимым перерывам движения на военно-автомобильных дорогах.
Наиболее близкой к полезной модели является конструкция участка железобетонного автодорожного моста разрезной системы, восстановленного на старой оси методом замены разрушенных элементов (Н.И.Иваненко. Восстановление и
эксплуатация мостов на военно-автомобильных дорогах. М. «Военное издательство». 1988, с.123). Такая конструкция предусматривает возведение новых элементов из местных материалов на месте разрушенных пролетов и опор, и по существу
является новым участком высоководного моста.
Недостатками данной конструкции являются:
необходимость возведения промежуточных опор и расчистки русла реки от обломков;
необходимость восстановления (усиления) поврежденных элементов и арматуры железобетонного моста, а в случае невозможности выполнения данного
требования - обязательное удаление поврежденных элементов (обычно обрушением при помощи взрыва, с последующей расчисткой русла от обломков);
обязательное использование специальной мостостроительной техники, вспомогательных плавсредств и мощных грузоподъемных механизмов;
сложность инженерных расчетов при выработке конструктивно-технического решения на восстановление моста и высокие требования к квалификации исполнителей работ;

222.

большие трудовые, материальные и временные затраты, недопустимые в условиях экстренного восстановления.
Технической задачей полезной модели является снижение материально-технических затрат на восстановление железобетонных автодорожных мостов неразрезной системы на старой оси в условиях экстренного восстановления, например, в ходе
вооруженных конфликтов, при ликвидации последствий стихийных бедствий и в других чрезвычайных ситуациях, и значительное (в 3...5 раз) повышение при этом темпов восстановления таких мостов.
Указанная техническая задача решается за счет того, что в предлагаемой конструкции брешь перекрыта пролетным строением САРМ, узлы опирания которого не заведены, а установлены рядом с осями сохранившихся опор железобетонного моста,
при этом сопряжение проезжих частей САРМ и железобетонного моста выполнено в виде эстакадных частей из колейных блоков, уложенных на вспомогательные опоры, основания которых закреплены с помощью нескольких омоноличенных
вырубов глубиной 15...20 см в полотне проезжей части железобетонного моста.
На фиг.1 показана предлагаемая конструкция участка железобетонного автодорожного моста неразрезной системы, восстановленного скоростным способом с использованием САРМ, где обозначены:
поз.1 - пролетное строение САРМ;
поз.2 - сохранившиеся элементы железобетонного моста;
поз.3 - сохранившиеся опоры железобетонного моста;
поз.4 - брешь;
поз.5 - узел опирания;
поз.6 - проезжая часть САРМ;
поз.7 - проезжая часть железобетонного моста;
поз.8 - эстакадная часть;
поз.9 - колейные блоки;
поз.10 - вспомогательная опора;
поз.11 - выруб в полотне проезжей части железобетонного моста;
Сборка (монтаж) конструкции производится путем продольной надвижки пролетного строения САРМ 1 в образовавшуюся брешь 4 непосредственно по сохранившимся элементам 2 железобетонного моста без возведения промежуточных опор,
расчистки русла реки и применения специальной мостостроительной техники. При этом узлы опирания 5 пролетного строения САРМ 1 требуется устанавливать не далее 1 м со стороны бреши от осей сохранившихся опор 3 железобетонного моста.
Сопряжение проезжей части САРМ 6 с проезжей частью железобетонного моста 7 выполняется в виде эстакадных частей 8 из колейных блоков 9, уложенных на вспомогательные опоры 10. Крепление узлов опирания 5 и вспомогательных опор 10 к
проезжей части железобетонного моста 7 осуществляется с помощью омоноличивания, для чего предварительно выполняются вырубы 11 в полотне проезжей части железобетонного моста на глубину 15...20 см под размер оснований
вспомогательных опор 10 и узлов опирания 5.
В результате применения предложенной конструкции темп восстановления на старой оси железобетонных автодорожных мостов неразрезной системы возрастает в 3...5 раз, при этом на 80-90% снижаются объемы земляных работ, отпадает
необходимость в возведении промежуточных опор и расчистке русла реки от обрушенных элементов. Перечисленные преимущества позволяют сократить трудоемкость восстановления моста в 3...4 раза и на 45...50% снизить себестоимость
восстановительных работ.
Формула полезной модели
Конструкция участка железобетонного автодорожного моста неразрезной системы, восстановленного скоростным способом, содержащая пролетное строение среднего автодорожного разборного моста (САРМ), сохранившиеся элементы и опоры
железобетонного моста, эстакадные части, узлы опирания, а также проезжие части САРМ и железобетонного моста, отличающаяся тем, что брешь перекрыта пролетным строением САРМ, узлы опирания которого не заведены, а установлены рядом с

223.

осями сохранившихся опор железобетонного моста, при этом сопряжение проезжих частей САРМ и железобетонного моста выполнено в виде эстакадных частей из копейных блоков, уложенных на вспомогательные опоры, основания которых
закреплены с помощью нескольких омоноличенных вырубов глубиной 15...20 см в полотне проезжей части железобетонного моста.
Сборно разборный железнодорожный мост 2758302
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 758 302
(13)
C1
(51) МПК
E01D 15/12 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(52) СПК
E01D 15/12 (2021.05)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: действует (последнее изменение статуса: 10.11.2021)
Пошлина:Установленный срок для уплаты пошлины за 3 год: с 05.02.2022 по 04.02.2023. При уплате пошлины за 3 год в дополнительный 6-месячный срок с 05.02.2023 по 04.08.2023 размер пошлины увеличивается на 50%.
(21)(22) Заявка: 2021102635, 04.02.2021
(24) Дата начала отсчета срока действия патента:
04.02.2021
Дата регистрации:
(72) Автор(ы):
Пищалов Юрий Вячеславович (RU),
Демьянов Алексей Анатольевич (RU),
Бирюков Юрий Александрович (RU),
Бирюков Дмитрий Владимирович (RU),
Гановичев Даниил Алексеевич (RU),

224.

28.10.2021
Бутин Илья Павлович (RU)
Приоритет(ы):
(73) Патентообладатель(и):
Федеральное государственное казённое военное образовательное учреждение высшего образования
"Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева"
Министерства обороны Российской Федерации (RU)
(22) Дата подачи заявки: 04.02.2021
(45) Опубликовано: 28.10.2021 Бюл. № 31
(56) Список документов, цитированных в отчете о поиске: ГАСТЕВ В.А., Восстановление мостов, Руководство для транспортных ВТУЗОВ. М.Л., ОГИЗ-ГОСТРАНСИЗДАТ, 1932, с.26-28, 38-43. RU 2280122 C1, 20.07.2006. RU 2005837 C1, 15.01.1994. CN 108842597 A, 20.11.2018. RU
2158331 C1, 27.10.2000. GB 1119981 A, 17.07.1968. Методические рекомендации по проектированию опор мостов, Всесоюзное научнотехническое
общество железнодорожников и транспортных строителей Дорожное правление научно-технического общества ордена Ленина
Октябрьской железной дороги, Ленинград, 1988, раздел 3.2.2., рис. 3.6.
Адрес для переписки:
191123, Санкт-Петербург, ул. Захарьевская, 22, Военный институт (инженерно-технический) ФГКВОУВО ВА МТО им. генерала армии А.В.
Хрулева, Бюро по изобретательству и рационализации
(54) Сборно-разборный железнодорожный мост
(57) Реферат:
Изобретение относится к области мостостроения и, в частности, к временным сборно-разборным низководным мостам, используемым для пропуска железнодорожного подвижного состава и скоростной наводки совмещенных железнодорожных и
автодорожных мостовых переправ через широкие и неглубокие водные преграды на период разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и
техногенного характера. Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а
также уменьшает время на его возведение с использованием бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов, железнодорожных шпал и рельс. Сборно-разборный железнодорожный мост состоит из
рамных плоских опор, башенных опор, установленных непосредственно на грунт и пролетных строений, рамные плоские опоры и башенные опоры выполнены из списанных бывших в употреблении железнодорожных полувагонов с
демонтированными рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении железобетонных шпал. В промежутках между шпалами засыпан щебень и вертикально установлены трубы, верх которых выступает
для подачи в них цементно-песчаного раствора. Трубы выполнены с равномерно расположенными по высоте отверстиями для обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры. Пролетные
строения выполнены из списанных бывших в употреблении рам фитинговых платформ с устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с определенным шагом и выполненных из металлических рам от
цистерн. По верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения автомобильной и гусеничной техники, и для передвижения личного состава. По краям пролетного строения
установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал. 1 з.п. ф-лы, 4 ил.

225.

Изобретение относится к области мостостроения и в частности к временным сборно-разборным низководным мостам, используемым для пропуска железнодорожного подвижного состава и скоростной наводки совмещенных железнодорожных и
автодорожных мостовых переправ через широкие и не глубокие водные преграды на период разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и
техногенного характера.
Заявленное техническое решение относится к низководным мостам и может быть использовано для оперативного возведения переправы для автомобилей, гусеничной техники и железнодорожных составов.
Известна «Средняя секция наводочной балки пролетного строения» по патенту на изобретение RU 2717445 С1 от 23.05.2019, МПК E01D 15/12 *1+, которая выполнена из углепластика в виде полой балки с прямоугольным сечением и разъемными
межсекционными соединениями, а межсекционное соединение из полой вставки прямоугольного сечения на болтах. На нижних болтовых соединениях двух смежных секций наводочной балки установлены две силовые тяги, выполненные из титана.
Недостатком «Средней секции наводочной балки пролетного строения» является значительное время на доставку секции к месту устройства моста и высокая стоимость из-за применения дорогих материалов углепластика и титана.
Известна «Опора из массивных блоков и способ ее сооружения» по патенту на изобретение RU 94027969 от 18.07.1994, МПК E01D 19/02 (1995.01) *2+, которая может быть использована при временном восстановлении или сооружении опор
железнодорожных мостов. Опора возводится из массивных блоков с усеченной четвертью, имеющих на своих гранях штыри и гнезда, противоположно расположенные на примыкающих гранях соседних блоков, а монтаж опоры осуществляется таким
образом, чтобы внутренние блоки нижнего яруса усеченной частью образовывали пространство, по всему объему равное объему массивного элемента, а внешние блоки своей целой гранью вплотную примыкали к целым граням внутренних.
Недостатком «Опоры из массивных блоков и способа ее сооружения» является значительное время на доставку конструкций к месту устройства моста, сложность и трудозатратность при производстве массивных блоков. Массивные блоки из-за своих
габаритов сложны в доставке и монтаже.
Известна «Мостовая секция» по патенту на изобретение RU 92008311 от 25. 11. 1992, МПК E01D 15/12 (1995. 01) *3+, которая содержит балки, с колесоотбоями, стыковыми узлами, шарнирно соединенные с балками межколейной панели в виде
силовой балки и угловыми распорками. При этом межколейная панель и балки имеют в поперечном сечении треугольную форму, а боковая наружная сторона колесоотбоев выполнена скошенной в сторону межколейной панели под углом,
обеспечивающим в транспортном положении параллельность ее поверхности верхней плоскости панели.
Недостатком «Мостовой секции» является значительное время на доставку конструкций к месту устройства моста, сложность и трудозатратность при производстве мостовых секций, которые из-за своих габаритов сложны в доставке и монтаже.
Известен «Складной блок моста» по патенту на изобретение RU 94 025 034 от 04. 07. 1994, МПК E01D 15/12 (1995. 01) *4+, который включает две нижние и две верхние полубалки, соединенные продольными шарнирами с верхней и нижней плитами
проезжей части, расположенными в транспортном положении одна на другой, плиты проезжей части с одного транца соединены поперечными шарнирами, а на другом имеют прорезь, в которую в транспортном положении входит киль платформы
транспортного автомобиля.
Недостатком «складного блока моста» является сложность и высокая металлоемкость конструкции. Элементы мостового перехода требуют время на доставку к месту установки.

226.

Известен «Двухколейный механизированный мост» по патенту на изобретение RU 2267572 от 12.04.2004, МПК T01D 15/12 (2006.01) *5+, включающий соединенные межколейными стяжками две колеи, каждая из которых состоит из двух шарнирно
связанных секций, выполненных в виде каркасных коробчатых ферм сварной конструкции, содержащих верхний и нижний настилы, боковые стенки, поперечные диафрагмы, элементы крепления механизма раскрывания моста, детали механизма
установки моста, имеющего увеличенную длину мостовой конструкции, сниженную массу моста, повышенный запас прочности и устойчивости без уменьшения грузоподъемности моста.
Недостатком «двухколейного механизированного моста» является значительное время на доставку конструкций к месту устройства моста, сложность и трудозатратность при производстве мостовых секций, которые из-за своих габаритов сложны в
доставке и монтаже.
Известен «Способ сооружения фундамента временной опоры моста и опалубка для его реализации» по патенту на изобретение RU 94027085 от 18.07.1994, МПК E01D 19/02 (1995.01) *6+, при котором опалубка изготавливается из секций потопов и
погружается на дно путем заполнения понтона водой, бетонируется и при наборе соответствующей прочности снимается подачей в понтоны воздуха.
Недостатком «способ сооружения фундамента временной опоры моста и опалубка для его реализации» является значительное время на доставку конструкций к месту устройства моста и впоследствии вывозу с места работ, получаемые фундаменты
материалоемки и трудозатраты.
Известен инвентарный мост - сборно-разборная металлическая эстакада РЭМ-500 *7+, выбранный в качестве прототипа, состоящий из пролетных строений, рамных (плоских) опор, башенных опор, установленных непосредственно на грунт,
предназначенная для быстрого устройства мостовых переходов через широкие, неглубокие водотоки. Рамы состоят из стоек, ригелей, башмаков, горизонтальных распорок и талрепов.
Недостатками конструкции сборно-разборной металлической эстакады РЭМ-500 являются то, что при сборке моста требуется высококвалифицированный личный состав, значительное время на доставку и сборку конструкций, при этом необходимы
значительные материальные и трудовые затраты. При слабых грунтах речного дна эстакаду использовать нельзя.
Недостатки прототипа и аналогов ставят задачу создания «сборно-разборного железнодорожного моста» для пропуска железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или реконструкции капитальных мостов
через водные преграды простой конструкции, позволяющей наводиться переправе за короткое время с использованием незначительных материальных и трудовых затрат.
Ограничительные признаки заявленного технического решения общие с устройством прототипа следующие: сборно-разборный мост, состоящий из рамных плоских опор, башенных опор, установленных непосредственно на грунт, пролетных строений,
предназначенный для быстрого устройства мостовых переходов через широкие, неглубокие водотоки.
Предполагается, что заявленный «Сборно-разборный железнодорожный мост» можно использовать при устройстве переправы для пропуска железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или
реконструкции капитальных мостов через неглубокие несудоходные водные преграды.
При этом для его реализации предполагается применить:
- рамные плоские опоры и башенные опоры выполнены из списанных, бывших в употреблении, железнодорожных полувагонов с демонтированными рамами и тележками, заполненных блоками, собранными из списанных, бывших в употреблении,
железобетонных шпал, при этом в промежутках между шпалами засыпан щебень и вертикально установлены трубы, верх которых выступает для подачи в них цементно-песчаного раствора, причем трубы снабжены равномерно выполненными по
высоте отверстиями для обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры.
- пролетные строения выполнены из списанных, бывших в употреблении рам фитинговых платформ с устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с определенным шагом и выполненных из
металлических рам от цистерн, по верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения автомобильной и гусеничной техники, и для передвижения личного состава, по краям
пролетного строения установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал.
Сущность заявленного технического решения заключается в том, что сборно-разборный железнодорожный мост формируется из опор и пролетных строений. При этом опоры собираются из списанных бывших в употреблении - полувагонов и шпал.
Пролетные строения формируются из металлических рам от фитинговых платформ.
Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на
его возведение с использованием бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов, железнодорожных шпал и рельс.
Бывшие в употреблении списанные вагоны и рельсы переплавляются (утилизируются) и используются для изготовления новых металлических конструкций. Процесс утилизации и изготовления новых конструкций влечет значительные трудовые,
материальные и энергетические затраты, которых можно избежать, используя списанные материалы железнодорожной инфраструктуры для устройства «сборно-разборного железнодорожного моста». Ежегодно списывается значительное количество
материалов, в 2020 году планировалось списать 8 тыс. фитинговых платформ *8+, в 2018 году РЖД заменило 2 тысяч километров железнодорожных путей *9+, в 2017 году списано 10380 цистерн *10+.
В настоящее время в России насчитывается более 10 тыс. железнодорожных мостов. Значительное количество из них мосты через неглубокие водные преграды, и они требуют прикрытия на случай разрушения во время ведения боевых действий или
возникновения чрезвычайной ситуации. Для обеспечения непрерывности движения через широкие и неглубокие водные преграды имеется парк временных мостов, по количество их ограничено, и они требуют значительного времени на доставку и
сборку.
Использование материалов железнодорожной инфраструктуры в конкретном месте позволяет заблаговременно определить необходимые для устройства моста материалы и конструкции. При этом значительно сокращается время возведения, т.к.
хранение сборно-разборного железнодорожного моста на берегу у места его возведения сокращает время возведения до минимума. Заблаговременно монтируются и подъездные пути из бывших в употреблении, списанных рельс и шпал.
Использование бывших в употреблении, списанных материалов железнодорожной инфраструктуры позволяет значительно снизить материальные и трудовые затраты на устройство переправы.
Заявленное техническое решение иллюстрируется чертежами:
На фиг. 1а) изображен вариант реализации заявленного «сборно-разборного железнодорожного моста» для пропуска железнодорожного состава, а на фиг. 1б) - разрез пролетного строения по А-А.
На фиг. 2а) - изображен блок из железобетонных шпал, а на фиг. 2б) - разрез блока из железобетонных шпал по Б-Б.

227.

На фиг. 3а) представлен вид сверху полувагона, заполненного уплотненной обратной засыпкой с армирующими элементами, а на фиг. 3б) - разрез полувагона по В-В.
На фиг. 4 представлено изображение реализации второго этапа - предварительных работ по устройству «сборно-разборного железнодорожного моста».
Дополнительно на фигурах 1…4 обозначены: 1 - локомотив; 2 - железобетонные шпалы; 3 - скрутки из отожженной проволоки для скрепления железобетонных шпал (2); 4 - петли для монтажа блоков (6) из отожженной проволоки;;ил 5 железнодорожный полувагон; 6 - блок из железобетонных шпал (2), расположенных крест-накрест, в два ряда и соединенными между собой скрутками (3) из отожженной проволоки; 7 - пролетное строение из рам фитинговых платформ; 8 рельсовый пучь; 9 - обратная засыпка из щебня; 10 - металлические шпалы из рам цистерн; 11 - трубы с отверстиями; 12 - ограждение пролетного строения; 13 - настил из деревянных шпал; 14 - колесоотбойник из деревянных шпал.
Порядок возведения сборно-разборного железнодорожного моста
На нервом этапе выбирается место посадки сборно-разборного железнодорожного моста, определяются его габариты в зависимости от рельефа прибрежной зоны и глубин водной преграды, составляется проект, заготавливаются необходимые
материалы из бывших в употреблении вагонов и элементов пути металлических рам цистерн, рам фитинговых платформ (7), рельс (8), полувагонов (5), железобетонных шпал (2) и деревянных шпал (13).
На втором этапе выполняются предварительные работы (фиг. 4), в ходе которых разрабатываются котлованы под полувагоны (5), монтируются первая и вторая (от берега) опоры пролетных строений из полувагонов (5), заполненных блоками из
железобетонных шпал (6). В промежутки между шпалами вертикально устанавливаются трубы с отверстиями (11) и засыпают щебень (9), который вытесняя воду, заполняет пазухи. В трубы с отверстиями (11) подается цементно-песчаный раствор и
формируется монолитная железобетонная конструкция опоры.
Пролетное строение из рам фитинговых платформ (7) устанавливают на опоры из полувагонов (5) возвышающиеся над водной поверхностью. По верху рамы устраивается настил из металлических шпал, установленных с определенным шагом,
выполненных из металлических рам от цистерн под рельсы пути. По верху металлических шпал устраивается деревянный настил из бывших в употреблении, списанных деревянных шпал для движения автомобильной и гусеничной техники, а также
для передвижения личного состава. По краям пролетного строения устраивается ограждение, выполненное из лестниц от железнодорожных цистерн (12) и устанавливаются колесоотбойники (14).
Далее, на большей глубине, превышающей высоту полувагона, устанавливаются спаренные опоры из полувагонов (5) для устройства нижней части опоры. Спаренные опоры из полувагонов (5) объединяются сваркой или болтами в единую
конструкцию с заполнением внутреннего объема так же, как и для рассмотренных выше опор. Для монтажа в проектное положение разрабатывается котлован под полувагоны. Полувагоны, смонтированные на втором этапе, устанавливаются в
проектное положение заблаговременно и могут находиться в воде продолжительное время, поэтому выполняется их защита от коррозии, о даже в случае полного разрушения от ржавления металла полувагона, конструкция опоры обеспечит
целостность за счет объединения блоков из железобетонных шпал в единую монолитную, железобетонную конструкцию.
На третьем, завершающем этапе, который наступает после выхода из строя основного моста, на смонтированные ранее спаренные опоры устанавливаются верхние части опор пролетных строений из полувагонов (5), заполненных блоками из
железобетонных шпал (6) с заполнением внутреннего объема так же, как и для рассмотренных выше опор. Пролетное строение из рам фитинговых платформ (7) устанавливают на опоры из полувагонов (5) возвышающиеся над водной поверхностью.
Рамы сплачивают между собой и с опорой болтовыми соединениями. По верху рамы устраивается настил из металлических шпал, установленных с определенным шагом, выполненных из металлических рам от цистерн под рельсы пути. По верху
металлических шпал устраивается деревянный настил из бывших в употреблении, списанных деревянных шпал для движения автомобильной и гусеничной техники, а также для передвижения личного состава. По краям пролетного строения
устраивается ограждение, выполненное из лестниц от железнодорожных цистерн (12) и устанавливаются колесоотбойники (14).
При заблаговременном устройстве сборно-разборного железнодорожного моста устраиваются подъездные пути и 1 и 2-я (при пологом дне и последующие) опоры с пролетными строениями между ними. В мирное время для обеспечения надзора и в
целях маскировки, полученные конструкции можно использовать для причаливания катеров и небольших судов.
Таким образом, использование предложенной схемы позволяет возвести в сжатые сроки сборно-разборный железнодорожный мост, не требующий значительных трудовых и материальных затрат с использованием списанных, бывших в
употреблении элементов железнодорожного пути - металлических рам цистерн и фитинговых платформ, рельсов и шпал.
При данном способе устройства сборно-разборного железнодорожного моста получаем гидротехническое сооружение, не требующее для возведения специально изготовленных заводских конструкций, что важно в условиях возникновения
чрезвычайных ситуаций и снабжении войск при ведении боевых действий.
Предлагаемое решение сборно-разборного железнодорожного моста проверено расчетом на прочность и несущую способность. Расчеты показали, что пролетное строение из фитинговой платформы и опоры из полувагонов заполненных
железобетоном обладают требуемой прочность и несущую способность на нагрузку от железнодорожного состава.
Значительная экономия средств в мирное время достигается за счет использования списанных, бывшие в употреблении, железнодорожных полувагонов и железобетонных шпал, а в случае войны и изъятых у железной дороги или получивших
повреждения в ходе боевых действий.
Предлагаемое техническое решение конструкции направлено на решение логистических задач при возникновении чрезвычайных ситуаций и при ведении боевых действий и соответствует критерию «новизна».
Вышеприведенная совокупность отличительных признаков не известна на данном уровне развития техники и не следует из общеизвестных правил конструирования сборно-разборных железнодорожных мостов, что доказывает соответствие критерию
«изобретательский уровень».
Конструктивная реализация заявляемого технического решения с указанной совокупностью существенных признаков не представляет никаких конструктивно-технических и технологических трудностей, откуда следует соответствие критерию
«промышленная применимость».
Литература
1. Патент на изобретение RU 2717445 С1 от 23.05.2019, МПК E01D 15/12 - «Средняя секция наводочной балки пролетного строения».
2. Патент на изобретение RU 94027969 С1 от 18.07.1994, МПК E01D 19/02 - «Опора из массивных блоков и способ се сооружения».

228.

3. Патент на изобретение RU 92008311 C от 25.11.1992, МПК E01D 15/12 - «Мостовая секция».
4. Патент на изобретение RU 94025034 С1 от 04.07.1994, МПК E01D 15/12 - «Складной блок моста».
5. Патент на изобретение RU 2267572 С1 от 12.04.2004, МПК E01D 15/12 - «Двухколейный механизированный мост».
6. Патент на изобретение RU 94027085 С1 от 18.07.1994, МПК E01D 19/02 - «Способ сооружения фундамента временной опоры моста и опалубка для его реализации».
7. Металлическая эстакада РЭМ-500. Техническое описание и инструкции но монтажу, перевозке, хранению и эксплуатации. ГУЖДВ, 1976 г., Воениздат. - прототип.
8. https://www.rzd-partner.ru/zhd-transport/opinions/spisanie-spelsializirovannogo-podvizhnogo-sostava-dolzhno-kompensirovalsya-v-blizhayshie-4-goda/.
9. https://vgudok.com/lcnta/rclsy-rclsy-cifry-cifry-rzhd-otchityvayutsya-o-zakupkah-putevyh-materialov-no-umalchivayut.
10. https://vgudok.com/lenta/podvizhnyy-sostav-vypusk-spisanie-stoimost-stavki-obzor-parka-ps-na-seti-rzhd.
Формула изобретения
1. Сборно-разборный железнодорожный мост, состоящий из рамных плоских опор, башенных опор, установленных непосредственно на грунт, и пролетных строений, отличающийся тем, что рамные плоские опоры и башенные опоры выполнены из
списанных бывших в употреблении железнодорожных полувагонов с демонтированными рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении железобетонных шпал, при этом в промежутках между
шпалами засыпан щебень и вертикально установлены трубы, верх которых выступает для подачи в них цементно-песчаного раствора, причем трубы снабжены равномерно выполненными по высоте отверстиями для обеспечения возможности
формирования цементно-песчаным раствором монолитной конструкции опоры.
2. Сборно-разборный железнодорожный мост по п. 1, отличающийся тем, что пролетные строения выполнены из списанных бывших в употреблении рам фитинговых платформ с устроенным по верху рам настилом под рельсы пути из металлических
шпал, установленных с определенным шагом и выполненных из металлических рам от цистерн, по верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения автомобильной и
гусеничной техники, и для передвижения личного состава, по краям пролетного строения установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал.

229.

230.

Наплавной железнодорожный мост
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 755 794

231.

(13)
C1
(51) МПК
E01D 15/14 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (52) СПК
E01D 15/14 (2021.05)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: действует (последнее изменение статуса: 27.09.2021)
Пошлина:Установленный срок для уплаты пошлины за 3 год: с 05.02.2022 по 04.02.2023. При уплате пошлины за 3 год в дополнительный 6-месячный срок с 05.02.2023 по 04.08.2023 размер пошлины увеличивается на 50%.
(21)(22) Заявка: 2021102706, 04.02.2021
(24) Дата начала отсчета срока действия патента:
04.02.2021
Дата регистрации:
21.09.2021
Приоритет(ы):
(22) Дата подачи заявки: 04.02.2021
(45) Опубликовано: 21.09.2021 Бюл. № 27
(72) Автор(ы):
Пищалов Юрий Вячеславович (RU),
Демьянов Алексей Анатольевич (RU),
Бирюков Юрий Александрович (RU),
Бирюков Дмитрий Владимирович (RU),
Савчук Николай Александрович (RU),
Гановичев Даниил Алексеевич (RU),
Бутин Илья Павлович (RU)
(56) Список документов, цитированных в отчете о поиске: ГАСТЕВ В.А. Восстановление мостов, Руководства для транспортных ВТУЗОВ. (73) Патентообладатель(и):
Москва-Ленинград ОГИЗ- ГОСТРАНСИЗДАТ, 1932, с.26-28, 38-43. RU 2158331 C1, 27.10.2000 . DE 1024995 B, 27.02.1958. GB 1287632 A, Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная
академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны
06.09.1972. RU 44331 U1, 10.03.2005.
Российской Федерации (RU)
Адрес для переписки:
191123, Санкт-Петербург, ул. Захарьевская, 22, Военный институт (инженерно-технический) ФГКВОУВО ВА МТО им. генерала армии
А.В. Хрулева, Бюро по изобретательству и рационализации
(54) Наплавной железнодорожный мост
(57) Реферат:
Изобретение относится к области мостостроения и, в частности, к наплавным мостам, используемым для скоростной наводки совмещенных железнодорожных и автодорожных мостовых переправ через широкие и глубокие водные преграды на
период восстановления разрушенных капитальных мостов, ликвидации последствий чрезвычайных ситуаций природного и техногенного характера. Технический результат - создание упрощенной конструкции временной речной железнодорожной
переправы вблизи неисправного железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на его возведение с использованием бывших в употреблении списанных элементов
железнодорожной инфраструктуры - вагонов и железнодорожных шпал и рельс. Наплавной железнодорожный мост, по длине выполненный из переходных частей, речной части и береговых частей, включающий понтоны, скрепленные между собой в
продольном направлении сцепными устройствами и рельсами железнодорожной колеи. В качестве понтонов речной и переходной части использованы понтоны, собранные из бывших в употреблении железнодорожных цистерн, их рам и хомутов,
рам фитинговых платформ, при этом цистерны закреплены к рамам цистерн посредством хомутов на сварке с образованием секций, соединенных при помощи рам цистерн и рам фитинговых платформ на сварке в понтоны береговых и речной частей,
которые объединены в ленту посредством сплачивающих балок, рельс и сцепных устройств в виде автоматических сцепных устройств на рамах цистер. Каждый из понтонов состоит из трех пар цистерн, объединенных сверху по длине моста при
помощи пяти рам цистерн и хомутов. Поверх пяти рам цистерн перпендикулярно расположению последних закреплены четыре рамы фитинговых платформ, на которых сверху по длине моста установлены: по центру понтона рельсы для
железнодорожного состава, а по краям понтона колеи из рельс для колесного и гусеничного транспорта. Каждый из понтонов содержит два элемента для обеспечения жесткости сопряжения смежных понтонов, в виде пакета из металлических балок
от рам фитинговых платформ, закрепленных кронштейнами и сдвигаемых лебедкой на соседний понтон, формируя, таким образом, неразрезную ленту наплавного моста. В качестве элементов продольного закрепления моста использованы
автоматические сцепные устройства, имеющиеся на обеих сторонах пяти рам цистерн. При этом каждый из понтонов содержит перила, выполненные из лестниц железнодорожных цистерн и в качестве береговой части использованы устроенные

232.

заблаговременно или возведенные временные причалы с инвентарными подходами из заблаговременно возведенных железнодорожных путей, собранных из списанных, бывших в употреблении, железнодорожных рельсов и шпал. 6 з.п. ф-лы, 13 ил.
Изобретение относится к области мостостроения и в частности к наплавным мостам, используемым для пропуска железнодорожного подвижного состава и скоростной наводки совмещенных железнодорожных и автодорожных мостовых переправ
через широкие и глубокие водные преграды на период разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного характера.
Заявленное техническое решение относится к наплавным мостам и может быть использовано для оперативного возведения переправы для автомобилей, боевой техники и железнодорожных составов.
Известен ППС-84 (Понтонный Парк Специальный) *1+ состоящий из речных и береговых звеньев, выстилки и буксирно-моторных катеров. Речная часть моста состоит из мостовых понтонов с межпонтонными устройствам и механизмами. Береговое
звено для оборудования Переходов между наплавной частью моста и берегом. В состав берегового звена входят: понтоны, сходни, межпонтонные механизмы и устройства. Выстилка предназначена для укрепления въездов на мост при слабых
грунтах.
Недостатками конструкции ППС-84 являются то, что при сборке моста требуется высококвалифицированный личный состав, значительное время на доставку и сборку конструкций, при этом необходимы значительные материальные и трудовые
затраты.
Известен наплавной железнодорожный мост НЖМ-56 *2+ с раздельным автомобильным и железнодорожным проездами. Наплавной мост состоит из речной части, двух переходных и двух береговых частей. Речная часть моста состоит из мостовых
понтонов с шарнирным соединением. Береговое пролетное строение собирается их трех монтажных блоков. Переходная часть обеспечивает плавный проезд подвижного состава с береговой на речную часть.
Недостатки конструкции моста НЖМ-56 в том, что такой мост требует значительное время для установки и больших трудовых и материальных затрат. Глубина воды в местах установки понтонов должна быть не менее 1,2 м при скальных грунтах и не
менее 1 м при мягких. Дно у берега, сложенное песчаными грунтами, требуется очистить от предметов, способных проколоть обшивку понтона при его погружении под железнодорожным составом, а также большое количество болтов при сборке,
ненадежность поперечного закрепления моста и отсутствие инвентарных конструкций для связи с берегом.

233.

Известен "Наплавной железнодорожный мост" *3+, выбранный в качестве прототипа, включающий в себя понтоны, скрепленные между собой в продольном направлении и рельсы железнодорожной колеи, по длине выполненный из переходных
частей, речной части и береговых частей моста, речную часть, состоящую из понтонов, с элементами поперечного закрепления, береговые части, состоящие из двух башенных подъемных рамно-винтовых опор, переходных понтонов с рельсами,
элементов продольного закрепления моста и инвентарных подходов к нему. Понтоны соединяются днищевыми и палубными поперечными замковыми устройствами. На крайних понтонах имеются якоря.
По аналогии с рассмотренным решением в настоящее время принят на вооружение наплавной мост МЯЖ-ВФ-ВТ *6+.
Недостатки наплавного железнодорожного моста в том, что такой мост требует значительное время для транспортировки конструкций к месту установки, время для монтажа и демонтажа, больших трудовых и материальных затрат.
Известно «Звено плавучего сооружения» по авторскому свидетельству RU 186018 от 05.10.2017 г., МПК В63В 35/36, E01D 15/14, СПК В63В 35/36 - *4+, содержащее понтон с межпонтонными стыковыми устройствами, расположенными на палубе и
днище, при этом днищевые межпонтонные стыковые устройства выполнены в виде уха и вилки с запорным штырем, имеющего возможность складывания с соседним звеном, снабженное якорным устройством с лебедкой, имеющее проезжую и
пешеходные палубы с разделением леерами и отбойниками.
Недостатки «Звена плавучего сооружения» заключаются в том, что в целом конструкция трудозатратная и материалоемкая, сложна в сборке и требует квалифицированного персонала для установки. Также наличие большого количества сложных
разъемов затрудняет процесс сборки и демонтажа моста.
Известно «Речное звено наплавного железнодорожного моста», по авторскому свидетельству RU 2575293 от 09.10.2014 г., МПК E01D 15/14 - *5+, включающее понтоны, скрепленные между собой в продольном и поперечном направлениях палубными
и днищевыми сцепными устройствами и рельсы железнодорожной колеи, с понтонами речного звена с вмонтированными между их поперечными шпангоутами тремя рамками с водонепроницаемыми стенками, образующими на всю ширину речного
звена водопропускные каналы.
Недостатками «Речного звена наплавного железнодорожного моста» являются недостаточная надежность работы сцепленных звеньев из-за несовершенства привода запорного штыря, высокая материалоемкость и трудозатратнось конструкций,
также звено требует значительное время для транспортировки конструкций к месту установки, время для монтажа и демонтажа.
Недостатки прототипа и аналогов ставят задачу создания «наплавного железнодорожного моста» для пропуска железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или реконструкции капитальных мостов через
широкие и глубокие водные преграды простой конструкции, позволяющей наводиться переправе за короткое время с использованием незначительных материальных затрат.
Ограничительные признаки заявленного технического решения общие с устройством прототипа следующие: наплавной железнодорожный мост, по длине выполненный из переходных частей, речной части и береговых частей, включающий понтоны,
скрепленные между собой в продольном направлении сцепными устройствами и рельсами железнодорожной колеи.
Предполагается заявленный «Наплавной железнодорожный мост» использовать при устройстве наплавного моста для пропускания железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или реконструкции
капитальных мостов через широкие и глубокие водные преграды.
При этом для его реализации предполагается применить:
- в качестве речного звена, состоящего из понтонов - понтоны, собранные из списанных, бывших в употреблении, железнодорожных цистерн, металлических рам от цистерн, рам фитинговых платформ и рельс;
- в качестве элементов продольного закрепления - автоматическое сцепное устройство, имеющееся на металлических рамах цистерн, бывших в употреблении, а также металлические балки, изготовленные из списанных рам фитинговых платформ и
рельс;
- в качестве железнодорожной колеи - бывшие в употреблении, списанные рельсы.
Сущность заявленного технического решения заключается в том, что наплавной железнодорожный мост формируется из переходных и речных звеньев, состоящих из понтонов. При этом понтоны собираются из списанных, бывших в употреблении
железнодорожных цистерн, металлических рам от цистерн и фитинговых платформ и рельс. Скрепление частей моста выполняется с использованием автоматического сцепного устройство имеющегося на металлических рамах цистерн.
Технический результат - создание упрощенной конструкции временной речной железнодорожной переправы вблизи неисправного железнодорожного моста, исключающего транспортировку известных стандартных МЛЖ-ВФ-ВТ или НЖМ-56 к месту
его установки, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на его возведение и разборку за счет использования бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов
и железнодорожных шпал и рельс.
Бывшие в употреблении списанные вагоны и рельсы переплавляются (утилизируются) и используются для изготовления новых металлических конструкций. Процесс утилизации и изготовления новых конструкций влечет значительные трудовые,
материальные и энергетические затраты, которые можно избежать, используя списанные материалы железнодорожной инфраструктуры для устройства наплавного моста. Ежегодно списывается значительное количество материалов, в 2017 году
списано 10380 цистерн *4+, в 2018 году РЖД заменило 2 тысяч километров железнодорожных путей *5+.
В настоящее время в России насчитывается более 10 тыс. железнодорожных мостов. Значительное количество из них мосты через широкие и глубокие водные преграды, и они требуют прикрытия на случай разрушения во время ведения боевых
действий или возникновения чрезвычайной ситуации. Для обеспечения непрерывности движения через широкие и глубокие водные преграды имеется парк наплавных мостов, но количество их ограничено, и они требуют значительного времени на
доставку и сборку.
Использование материалов железнодорожной инфраструктуры в конкретном месте позволяет заблаговременно определить необходимые для устройства моста материалы и конструкции. При этом значительно сокращаются время возведения, а в
следствии хранения наплавного моста на берегу у места его возведения, сокращаются трудовые и материальные затраты.
Заявленное техническое решение иллюстрируется чертежами:
На фиг. 1 а) представлен вид сверху переходного и речного звеньев наплавного железнодорожного моста, причал, а на фиг. 1 б) - разрез переходного и речного звеньев наплавного железнодорожного моста с причалом по а-а.

234.

На фиг. 2 а) представлен вариант использования наплавного железнодорожного моста для пропуска железнодорожного состава, на фиг. 2 б) вариант с использованием наплавного железнодорожного моста для пропуска автотранспорта в две полосы.
На фиг. 3 а) представлен вид сверху понтона речной части, на фиг. 3 б) - разрез понтона речной части по б-б, а на фиг. 3 в) - разрез понтона речной части по в-в.
На фиг. 4 а) представлен вид сверху речного звена, на фиг. 4 б) - поперечный разрез речного звена по г-г, а на фиг. 4 в) - продольный разрез речного звена понтона речной части по д-д.
На фиг. 5 представлено автосцепка для первичного соединения понтонов при сборке моста.
На фиг. 6 представлено штатный хомут крепления цистерны к раме вагона.
На фиг. 7 представлены исходные конструкции для сборки наплавного моста - железнодорожная цистерна.
На фиг. 8 представлена исходная конструкция для сборки наплавного моста - фитинговая платформа.
На фиг. 9 представлено звено речного понтона для сборки наплавного моста.
На фиг. 10 представлена сборка понтона из 2-х звеньев.
На фиг. 11 представлено устройство настила из рам фитинговых платформ.
На фиг. 12 представлен готовый к укрупнительной сборке понтон.
На фиг. 13 представлена готовый к пропуску автомобильного и железнодорожного транспорта наплавной железнодорожный мост.
Дополнительно на фигурах 1…4, 9…12 обозначены: 1 - переходной понтон; 2 - понтон речной части; 3 - причал; 4 - локомотив; 5 - рельс; 6 - цистерны; 7 - рама цистерны, 8 - рама фитинговой платформы; 9 - автосцепка, 10 - опора переходного понтона
на причал; 11 - сплачивающая балка, 12 - штатный хомут, 13 - настил для проезда автотранспорта, 14 - ограждение понтона.
Для устройства переходного понтона (1) и понтона речной части (2) наплавного железнодорожного моста (фиг. 1 и фиг. 2) применены списанные, бывших в употреблении железнодорожные цистерны (6), металлические рамы цистерн (7), штатные
хомуты (12), рамы фитинговых платформ (8), сплачивающие балки (11) из металлических рам фитинговых платформ и рельсов (5). Береговая часть выполняется в виде причала (3) с опорой для переходного понтона (10). По наплавному
железнодорожному мосту может передвигаться локомотив (4) или автотранспорт.
Порядок возведения наплавного железнодорожного моста.
На первом этапе выбирается место посадки наплавного железнодорожного моста, определяются его габариты в зависимости от рельефа прибрежной зоны и глубин водной преграды, составляется проект, заготавливаются необходимые материалы из
бывших в употреблении вагонов и элементов пути - металлических рам цистерн (7), фитинговых платформ (8), рельсов (5), железнодорожных цистерн (б) штатных хомутов (12). Все имеющиеся в цистерне (6) технологические отверстия
герметизируются.
На втором этапе устраиваются причалы (3) с двух сторон водной преграды с подъездными железнодорожными путями, которые могут выполняться как заблаговременно, так и в ходе устройства наплавного железнодорожного моста. Параллельно
собираются секции понтонов (фиг. 4 и фиг. 9), которые объединяются в переходные понтоны (1) (фиг. 12) и понтоны речной части (2) (фиг. 1 и фиг. 3). Крепление цистерны (6) к раме цистерны (7) выполняется при помощи штатного хомута (12) на сварке
(фиг. 9). Полученные секции (фиг. 4 и фиг. 9) объединяются при помощи рамы цистерны (7) (фиг. 10) и рам фитинговой платформы (8) (фиг. 11) на сварке в понтоны береговой (1) и речной части (2) (фиг. 3 и фиг. 12).
На плаву, катерами, понтоны (1, 2) (фиг. 12) при помощи автосцепок (9), сплачивающих балок (11) и рельсовых путей (5) на болтовых соединениях, объединяются в ленту, которую крепят к опоре (10) причала (3), по понтонам устраивается настил для
пешеходов, выполненный из стенок крытых вагонов, на сварке. По краям понтонов устраивается ограждение, выполненное из лестниц от железнодорожных цистерн (14).
На заключительном этапе лента наплавного железнодорожного моста (фиг. 13) ставится на якоря для поперечного раскрепления от давления воды и ветра. После окончания эксплуатации разборка наплавного железнодорожного моста выполняется в
обратной последовательности.
Таким образом, использование предложенной схемы позволяет возвести в сжатые сроки наплавной железнодорожный мост, не требующий значительных трудовых и материальных затрат с использованием списанных, бывших в употреблении
элементов железнодорожного пути - металлических рам цистерн и фитинговых платформ, железнодорожных цистерн, рельсов и шпал.
При данном способе устройства наплавного железнодорожного моста получаем сооружение, не требующее для возведения дорогостоящих материалов и конструкций, что важно в условиях возникновения чрезвычайных ситуаций и снабжении войск
при ведении боевых действий.
Значительное уменьшение материальных затрат средств достигается за счет использования списанных, бывших в употреблении вагонов (фиг. 7 и фиг. 8) и элементов пути - металлических рам цистерн и фитинговых платформ, рельс, емкостей
железнодорожных цистерн, а с случае войны и изъятых у железной дороги.
Предлагаемое решение наплавного железнодорожного моста проверено расчетом на плавучесть и остойчивость. Расчеты показали, что понтон при пропуске железнодорожного состава обладает требуемой плавучестью и остойчивостью.
Предлагаемое техническое решение конструкции направлено на решение логистических задач при возникновении чрезвычайных ситуаций и при ведении боевых действий.
Таким образом, устройство наплавного железнодорожного моста в совокупности с признаками формулы изобретения (сущностью изобретения) является новым для наплавных мостовых сооружении, следовательно, соответствует критерию
«новизна».

235.

Вышеприведенная совокупность отличительных признаков не известна на данном уровне развития техники и не следует из общеизвестных правил конструирования наплавных железнодорожных мостов, что доказывает соответствие критерию
«изобретательский уровень».
Конструктивная реализация заявляемого технического решения с указанной совокупностью существенных признаков е представляет никаких конструктивно-технических и технологических трудностей, откуда следует соответствие критерию
«промышленная применимость».
Литература:
1. Понтонный парк специальный ППС-84. Книга 1. Материальная часть парка. Москва. Воениздат.1990 г.
2. Наплавной железнодорожный мост НЖМ-56. Техническое описание и инструкция по монтажу, перевозке, хранению и эксплуатации - М.: Воениздат, 1977.
3. Патент на изобретение RU 2158331 С1 от 17.04.2000, МПК E01D 15/14 - «Наплавной железнодорожный мост». – прототип.
6. Использование наплавного моста МЛЖ-ВФ-ВТ при ликвидации последствий кризисных ситуаций. - Киров, Издательство АНО ДПО «Межрегиональный центр инновационных технологии в образовании», 2019.
Формула изобретения
1. Наплавной железнодорожный мост, по длине выполненный из переходных частей, речной части и береговых частей, включающий понтоны, скрепленные между собой в продольном направлении сцепными устройствами и рельсами
железнодорожной колеи, отличающийся тем, что в качестве понтонов речной и переходной части использованы понтоны, собранные из бывших в употреблении железнодорожных цистерн, их рам и хомутов, рам фитинговых платформ, при этом
цистерны закреплены к рамам цистерн посредством хомутов на сварке с образованием секций, соединенных при помощи рам цистерн и рам фитинговых платформ на сварке в понтоны береговых и речной частей, которые объединены в ленту
посредством сплачивающих балок, рельс и сцепных устройств в виде автоматических сцепных устройств на рамах цистерн.
2. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов состоит из трех пар цистерн, объединенных сверху по длине моста при помощи пяти рам цистерн и хомутов.
3. Наплавной железнодорожный мост по п. 2, отличающийся тем, что поверх пяти рам цистерн перпендикулярно расположению последних закреплены четыре рамы фитинговых платформ, на которых сверху по длине моста установлены: по центру
понтона рельсы для железнодорожного состава, а по краям понтона колеи из рельс для колесного и гусеничного транспорта.
4. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов содержит по два элемента для обеспечения жесткости сопряжения смежных понтонов, в виде пакета из металлических балок от рам фитинговых платформ,
закрепленных кронштейнами и сдвигаемых лебедкой на соседний понтон, формируя, таким образом, неразрезную ленту наплавного моста.
5. Наплавной железнодорожный мост по п. 1, отличающийся тем, что в качестве элементов продольного закрепления моста использованы автоматические сцепные устройства, имеющиеся на обеих сторонах пяти рам цистерн.
6. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов содержит перила, выполненные из лестниц железнодорожных цистерн.
7. Наплавной железнодорожный мост по п. 1, отличающийся тем, что в качестве береговой части использованы устроенные заблаговременно или вновь возведенные временные причалы с инвентарными подходами и заблаговременно возведенными
железнодорожными путями, собранными из списанных, бывших в употреблении, железнодорожных рельсов и шпал.

236.

237.

238.

239.

Приложение к реферату КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ об использовании комбинированных типовых структурных пространственных
перекрестно - стержневых конструкций МАРХИ ПСПК МПК E01D 12/00 ( аналог № № 69 082, 68 528 )

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

ВЫВОДЫ по испытанию математических моделей испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году и исптание опоры скользящей и использование
изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895,
1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office.
Испытания математических моделей опор скользящих для испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3
метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году. с использованием изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная" , серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий и сооружений как более новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения
количественной характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD. Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм, обеспечивающий
высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности земле-трясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для оценки и уменьшения возможного
уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящей и испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3
метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году. и других изобретенийЮ напрмер "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с антисейсмическими косых компенсаторов (
изобретение № 887748 « Стыковое соединение растянутых элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, оценено влияние продолжительности колебаний на сейсмическую
интенсивность. За полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность испытания математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция инструментальных
данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих опор с использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления трубопровода , предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого использования сейсмоизоляции для трубопроводов и использования ФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения и испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на
болтовых и соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" (
серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели
конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году.
соединенного с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более 9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить переме-щение зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла крепления опор скользящих для системы
противопожарной защиты использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом
сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях (описание в таблице).

250.

Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного фрикционно-подвижного соединения на
двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр 34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.298, ГОСТ 30546.3-98, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5 «Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330. 2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях
мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627, 2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий
согласно ГОСТ 6249-52 «Шкала для определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе,
амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения для опоры скользящей для системы противопожарной защиты использование изобретение
"Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных
овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", со строительными конструкциями, трубопроводами, предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для системы противопожарной защиты использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная" ,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры скользящей и трубопровода делается вывод
Использование изобретения "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина:
№№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", для системы противопожарной защиты, предназначенные для сейсмоопас-ных районов с сейсмичностью более 9 баллов,
серийный выпуск, с трубопроводами, соединенными между собой с помощью демпфиру-ющих компенсаторов на фланцевых фрикционно–подвижных соединениях (ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных отверстиях для обеспечения многокаскадного
демпфирования при динамических нагрузках (преимуществен-но при импульсных растягивающих нагрузках в узлах соединения), выполненных согласно изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова,
согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98
(при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ
24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и
соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году. при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м
етров ) через реку Суон в штате Монтана в 2017 году в ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–
гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, и использование изобретение "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения
надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий",
165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", для системы противопожарной защиты, при испытаниях в ПК SCAD и при испытаниях узлов крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с сейсмичностью
более 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И. Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. - № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc. of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.

251.

3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1.
2.
3.
4.
Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.: Стройиздат, 1977. - С. 93-110.
Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл. 04.01.1990; опубл. 23.01.1992, Бюл. № 3.
Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувос- тшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588; заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
5. Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл. 26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5. - С. 96-98
Библиографический список
.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13
«Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и идентификации в механике деформируемых сред и конструкций физическим и математическим моделирование в ПК SCAD,предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобетон
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
Одельский_ Гидравлический расчёт трубопроводов_1967.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр =
Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.903-10_л1_Тепловые сети. Детали трубопроводов.djvu
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм
труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1
Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчёт трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu

252.

Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением. Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК SCAD использование изобретение "Огнестойкий
компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ
защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная"
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2 Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu

253.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26

254.

5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка контактных поверхностей элементов и методы контроля
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с грунтовкой
ВЖС 83-02-87
6.4.2
47
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
6.5
46
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51

255.

Более подробно о внедрении в сейсмоопасных районах демпфирующих опор ЛИСИ , для системы противопожарной защиты трубопроводов на Аляске, изобретенных в СССР №№ 1143895 US , 1168755 US, 1174616 US дтн
ЛИИЖТ А.М.Уздиным внедренных в Армении
Introduction to Pipe Supports Types of Pipe Supports Pipe Supports for Critical Piping Systems. This video explains the basics of pipe supports, pipe support types, functions, requirements, and supporting guidelines.Pipe Support Types of Pipe
Supports Primary and Secondary pipe Supports Piping Mantra https://ok.ru/video/3306247162582 https://www.youtube.com/watch?v=U4aUmrOeVbc
https://disk.yandex.ru/i/6fYbE0M9Z1_F8Q https://ok.ru/video/3306263022294 https://disk.yandex.ru/i/TttSRnFkHfIX9g Fire Sprinkler Installation - BCA- Singapore
https://ok.ru/video/3306312764118 https://disk.yandex.ru/i/PcwhOMxy4yD6cQ
Eaton-s TOLCO Seismic Bracing OSHPD Pre-approval(1)

256.

https://ok.ru/video/editor/3306401696470
How to Install Cable Sway Bracing - 4-Way Brace https://ok.ru/video/3306431122134
SB 4 Seismic Bracing Value Proposition https://ok.ru/video/3306475031254
Seismic Cable Bracing Systems - Product Focus https://ok.ru/video/3306504981206
Understanding Pipe Supports Webinar https://ok.ru/video/3306548628182
https://www.youtube.com/watch?v=ygg1X5qI-0w
PIPING THERMAL EXPANSION PIPING FLEXIBILITY - ANCHOR LOCATION PIPING MANTRA WITH EXAMPLES https://ok.ru/video/editor/3306596797142
How to select spring hanger - for piping engineers https://ok.ru/video/3306645424854
piping support typeisometric pipe drawing support symbolspipe fitter training in hindi
https://ok.ru/video/3306633235158 Организация «Сейсмофонд» при СПб ГАСУ ОГРН : 1022000000824 ИНН ; 2014000780 Президент организации Мажиев Х.Н [email protected] [email protected]
[email protected] (911) 175-84-65, (996) 798-26-54, (921) 962-67-78
Более подробно об использовании изобретений проф дтн ЛИИЖТа А.М.Уздина за рубежом
https://ppt-online.org/1045087 https://ppt-online.org/1045088
https://ppt-online.org/1045089 https://ppt-online.org/1014767
https://ppt-online.org/1045091 https://ppt-online.org/1045092
https://ppt-online.org/1045090
см. зарубежный опыт использования демпфирующего компенсатора для трубопроводов : https://www.manualslib.com/manual/794138/Man-BAndw-S80meC7.html?page=131
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions/tolco-seismic-update.html
http://itpny.net/products-seismic-attachments.html https www eaton.com/us/en-us/products/support-systems/fire-protection-solutions/tolco-seismic-update.html
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions.html
https://www.eaton.com/us/en-us/products/support-systems/bl-transition.html
https://www.eaton.com/us/en-us/products/support-systems.html
https://www.eaton.com/us/en-us/products/support-systems/seismic-bracing/seismic-bracing-and-fire-protection-resources.html
http://itpny.net/products.html http://www.swillistonsales.com/manufacturers/eaton-b-line-series
http://itpny.net/products-seismic-attachments.html https://www.eaton.com/us/en-us/products/support-systems/seismic-bracing/fig--3000.html
https://www.rilco.com/products/vibration-control-sway-braces
http itpny.net/products-seismic-attachments.html http www swillistonsales.com/manufacturers/eaton-b-line-series

257.

Испытание на сейсмостойкость в ПК SCAD демпфирующего компенсатора для трубопроводов https://piter.tv/video_clip/19686/
https://disk.yandex.ru/d/m-e--HxD_oNWqw
https://ppt-online.org/1044577
При испытаниях узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК
SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году и использвались Рекомендации : .

258.

259.

260.

261.

262.

Более подробно об использовании фрикционно -подвижных болтовых соединений для испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18,
24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм
соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф
дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими
организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм
американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, на

263.

фрикционно-подвижных соединениях сери ФПС-2015- Сейсмофонд, с использованием изобретения Андреева Борис Александровича № 165076 «Опора сейсмостойкая»
и патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической энергии» и патент № 154506 «Панель противовзрывная» для г Грозный
оставшихся двух пятиэтажек у памятника Ленина
Более подробно о ФФПС и ЛСК смотрите внедренные изобртения организации "Сейсмофонд" при СПб ГАСУ Японо-Американской фирмой RUBBER BEARING FRICTION
DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде
вставной резины, которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим шарниром,
трубчатого в вида
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption

264.

DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВСН 144-76
-----------------------------Минтрансстрой, МПС
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ
ИНСТРУКЦИЯ
ПО ПРОЕКТИРОВАНИЮ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
Дата введения 1977-01-01
РАЗРАБОТАНА Всесоюзным научно-исследовательским институтом транспортного строительства (ЦНИИС) - авторы К.П.Большаков, В.А.Зубков - и Научно-исследовательским институтом мостов Ленинградского института инженеров железнодорожного транспорта (НИИмостов ЛИИЖТ) - авторы
В.Н.Савельев, Р.Г.Хусид - взамен действовавших ранее "Указаний по применению высокопрочных болтов в стальных конструкциях мостов" (ВСН 144-68) в отношении норм проектирования (в отношении норм и правил выполнения соединений на высокопрочных болтах ВСН 144-68 были ранее заменены
ВСН 163-69 - ”Инструкцией по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов”) и п.7.24. ”Указаний по проектированию вспомогательных сооружений и устройств для строительства мостов” (ВСН 136-67).
При разработке ВСН 144-76 был учтен отечественный и зарубежный опыт в области исследования, проектирования, строительства и эксплуатации пролетных строений с соединениями на высокопрочных болтах и использованы результаты последних научно-исследовательских работ ЦНИИС и
НИИмостов ЛИИЖТ по нормам вероятностного расчета фрикционных соединений (авторы-составители настоящей Инструкции), по клеефрикционным (М.Л.Лобков), фланцевым (В.Н.Савельев, А.А.Ровный) соединениям и фрикционным соединениям с консервацией контактных поверхностей специальным
грунтом (Б.П.Кругман, А.Н.Потапов) и др.
Инструкция разработана в развитие действующих нормативных документов по проектированию мостов. В Инструкции учтены требования действующих государственных и отраслевых стандартов.
ВНЕСЕНА ЦНИИС Минтрансстроя и НИИмостов ЛИИЖТ МПС
УТВЕРЖДЕНА распоряжением Минтрансстроя и МПС от 8 октября 1976 года N А-1470/П-30621
ВЗАМЕН ВСН 144-68 и п.7.24 ВСН 136-67

265.

МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СВОД ПРАВИЛ
СП 16.13330.2011
СТАЛЬНЫЕ КОНСТРУКЦИИ
Актуализированная редакция
СНиП II-23-81* Москва 2011
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах с контролируемым натяжением) СП 16.13330.2011
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:

266.

в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh
Rbh Abn
h
,
(1)
где Rbh
– расчетное сопротивление растяжению высокопрочного болта, определяемое
согласно требованиям;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения, распределение
этой силы между болтами следует принимать равномерным. В этом случае количество
болтов в соединении следует определять по формуле
n
N
,
Qbh k b c
где Qbh
(2)
– расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не найден.;
k
– количество плоскостей трения соединяемых элементов;
γс
– коэффициент условий работы, принимаемый по таблице 1;
γb
– коэффициент условий работы фрикционного соединения, зависящий от
количества п болтов, необходимых для восприятия расчетного усилия, и принимаемый равным:
0,8 при п < 5;
0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям СП 16.13330.2011
Т а б л и ц а 42
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
номинальных
Способ обработки
Коэффици
диаметров отверстий и болтов
(очистки)
ент
δ, мм, при нагрузке
соединяемых
трения μ
поверхностей
динамической δ = 3 –
динамической δ = 1;
6;
статической δ = 1 – 4
статической δ = 5 – 6
1 Дробемѐтный
0,58
1,35
1,12
или
дробеструйный
двух
поверхностей без
консервации

267.

2 Газопламенный 0,42
1,35
1,12
двух
3 поверхностей
Стальными без 0,35
1,35
1,17
консервации
щетками
4 двух
Без обработки
0,25
1,70
1,30
поверхностей
без
Примечани
е – При контроле натяжения болтов по углу поворота гайки
консервации
значения γh
следует умножать на 0,9.
2) Несущую способность по местной устойчивости сжатых пластин на участках между крепежными деталями следует определять в соответствии с ТКП EN 1993-1-1, принимая расчетную длину
равной 0,6р-|. Расчет на местную устойчивость не требуется, если отношение p-i/f меньше 9в. Расстояние до края элемента поперек усилия не должно превышать значений для свободных свесов
сжатых элементов согласно ТКП EN 1993-1-1. Эти требования не распространяются на расстояния до края элемента вдоль усилия.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов крепления в виде болтовых соединений с изолирующими трубами и амортизирующими элементами широк
используются в США , Канаде на Алскинском нефтепроводе ( см Канадские изобретения ) для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64),
серийный выпуск, закрепленных на основании фундамента с помощью фрикционно-подвижных соединений (ФПС) и демпфирующих узлов крепления (ДУК), выполненных согласно
ТКП 45-5.04-274-2012 (02250), п.10.3.2 и изобретениям №№ 1143895,1174616, 1168755 SU, 4094111US, TW201400676
Наименование
изделия
Шпилька
Нормативная
документация
ГОСТ 9066-75
Шпилька
полнорезьбовая
Гайка
DIN 976-1
Шайба
ГОСТ 9065-75
Шайба
ГОСТ 6402-70
Болт
ГОСТ 7798-70
ГОСТ 9064-75
Заклѐпка
вытяжная
Саморезы
Хомут
БОЛТЫ
АТК-25.000.000
Применение
Фланцевое соединение по ГОСТ
12815-80
Для крепления транспортировочных
брусков
Фланцевое соединение по ГОСТ
12815-80
Фланцевое соединение по ГОСТ
12815-80
Фланцевое соединение по ГОСТ
12815-80
Фланцевое соединение по ГОСТ
12815-80
Установка доборного элемента
Закрепления
металоосайдинга/сэндвича и
дополнительного оборудования к
блок – боксу
Фиксация трубопровода
ИСПОЛЬЗОВАНИЕ ЛЕГКО СБРАСЫВАЕМЫХ КОНСТРУКЦИЙ ДЛЯ ПОВЫШЕНИЯ СЕЙСМОСТОЙКОСТИ СООРУЖЕНИЙ
Андреев Б.А., инж.
инж, Коваленко А.И.,инж.,. (ОО «Сейсмофонд»),

268.

Долгая А.А., к.т.н. , (ОАО «Трансмост»)
Предложено использовать легкосбрасываемые конструкции для повышения сейсмостойкости сооружений. В процессе резонансных колебаний предусматривается возможность падения отдельных
элементов сооружения, например панелей перекрытия или части стеновых панелей. В результате собственные частоты колебаний сооружения меняются и система отстраивается от резонанса.
Приведен пример такого решения для одноэтажного сельскохозяйственного здания.
Ключевые слова: легко-сбрасываемые конструкции, сейсмостойкость
Адаптивные системы сейсмозащиты являются эффективными для снижения сейсмических нагрузок на здания и сооружения. В литературе большое внимание уделяется адаптивной сейсмоизоляции *1,2+. Между тем, такие системы могут быть
эффективными при любом изменении жесткости в процессе сейсмических колебаний. Это связано с тем, что для сооружения опасны резонансные колебания. Отстройка частоты колебаний системы от резонанса в любую сторону должна снижать
сейсмические нагрузки. Даже если после отстройки от одной частоты сооружение попадет на другую резонансную частоту, что маловероятно, у системы будет мало времени на раскачку до опасных значений смещений и ускорений. Сказанное
иллюстрируется простым примером проектирования коровника в высокосейсмичном районе на Камчатке. Для повышения сейсмостойкости сооружения предложено использовать легкосбрасываемые плиты перекрытий, применяемые во
взрывоопасных производствах. При сбрасывании плиты масса системы уменьшается, частота собственных колебаний увеличивается, а сейсмические нагрузки падают.
Устройство предлагаемой панели перекрытия показано на рис.1.
Панель состоит из опорной плиты 1, жестко соединенной с каркасом здания и имеющей проем 2. На опорной плите размещается сбрасываемая панель 4, прикрепленная к плите крепежными элементами 3 (саморежущими шурупами),
имеющими ослабленное резьбовое сечение. Панель соединена с опорной плитой тросом 5. Ослабленное поперечное сечение резьбовой части образовано лысками, выполненными с двух сторон по всей длине резьбы. Ослабленная резьбовая часть в
совокупности с обычным резьбовым отверстием в опорной плите, образует ослабленное резьбовое соединение, разрушаемое при сильном землетрясении. Разрушение должно происходить при вертикальных и горизонтальных сейсмических
нагрузках. Панель целесообразно использовать для устройства перекрытия и верхней части стен. После падения панель зависает на крепежном тросе 6.
На рис. 2 показаны фото ослабленных болтов и петли крепления сбрасываемой панели.
Для оценки работы здания с предлагаемыми панелями проведены расчеты сейсмических колебаний сооружения. В качестве модели воздействия принят временной процесс, предложенный в [3], детально описанный в [4] и
регламентированный в Рекомендациях [5]. Расчет выполнен в соответствии с общими принципами современного сейсмостойкого строительства на действие относительно слабого с повторяемостью раз в 100 лет (проектное землетрясение, или ПЗ) и
сильного с повторяемостью раз в 500 лет (максимальное расчетное землетрясение или МРЗ) землетрясений [6,7]. Большие повторяемости ПЗ и МРЗ связаны с малой ответственностью объекта.
Рис.1. Схема устройства сбрасываемой панели

269.

Рис.2. Внешний вид крепежной петли и ослабленных крепежных шурупов
Расчет пиковых ускорений МРЗ выполнен по методике [8]. В соответствии с [3-5] велосиграмма V(t) включает три гармоники.
3
V A i e i t sin i t
(1)
i 1
Частота первой гармоники совпадает с собственной частотой сооружения при закрепленных панелях. Частота второй гармоники настроена на частоту здания со сброшенными панелями. Числовые значения параметров приведены в таблице 1. На
рис.3 представлена сгенерированная велосиграмма V(t), а на рис.4 – соответствующая ей акселерограмма W(t).
Таблица 1
Значения параметров сгенерированного воздействия
i
1
2
3
Ai
0.038
-0.106
0.02
i
0.11
0.21
0.1
Рис.3. Расчетная велосиграмма, построенная по Рекомендациям [5].

270.

Рис.4. Расчетная акселерограмма, построенная по Рекомендациям [5].
На рис. 4 приведена сейсмограмма в уровне крыши здания при жестком креплении панелей. На рисунке ясно видно, что здание «выбирает» из воздействия опасную частоту и совершает опасные резонансные колебания, достигая амплитуды
16.1 см. .
Рис.5. Сейсмограмма колебаний конструкции в уровне крыши при жестком закреплении панелей (точкой отмечен момент для срыва шурупов)
Опасным для здания в целом является смещение 6.5 см, а разрушающим – 11 см. В связи с этим крепление панелей сделано так, что при достижении опасных перемещений происходит сброс панелей и изменение собственной частоты объекта.
Смещения сброса с некоторым запасом приняты равными 5 см. Точка сброса отмечена на рис.5 зеленым кружком. Она имеет место при t=1.31 с.
Рис.6. Сейсмограмма колебаний конструкции в уровне крыши при сбросе панелей при t=1.31 c
Сейсмограмма в уровне крыши с учетом сброса панелей приведена на рис. 5. Как видно из приведенных результатов расчета предлагаемое решение позволяет снизить смещения сооружение более, чем в 1.5 раза с 16.1 см до 10.5 см.
Выполненные исследования показывают, что принципы адаптации можно использовать, как понижая, так и повышая жесткость системы в процессе колебаний с целью ее отстройки от резонанса.

271.

Материалы хранятся
Литература
1.Айзенберг Я.М., Нейман А.И., Абакаров А.Д., Деглина М.М., Чачуа Т.Л. Адаптивные системы сейсмической защиты сооружения.- М.:-Наука.-1978.-246
2.Айзенберг Я.М. Сооружения с выключающимися связями для сейсмических районов.М.:Стройиздат.-1976.-229 с.
3.Долгая А.А. Моделирование сейсмического воздействия коротким временным процессом. // Э-И. ВНИИНТПИ. Сер. “Сейсмостойкое строительство”, Вып. 5-6., 1994, с.56-63
4.Уздин А.М., Елизаров С.В., Белаш Т.А. Сейсмостойкие конструкции транспортных зданий и сооружений. Учебное пособие. ФГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2012-500 с.
5.Рекомендации по заданию сейсмических воздействий для расчета зданий разной степени ответственности. - С.-Петербург - Петропавловск-Камчатский, КамЦентр, 1996, 12с.
6.Уздин А.М. Задание сейсмического воздействия. Взгляд инженера-строителя. Сейсмостойкое строительство. Безопасность сооружений. 2005, №1, с. 27-31
7.Уздин А.М. Что скрывается за линейно-спектральной теорией сейсмостойкости. Сейсмостойкое строительство. Безопасность сооружений. 2009, №2, с. 18-23
8.Сахаров О.А. К вопросу задания сейсмического воздействия при многоуровневом проектировании сейсмостойких конструкций Сейсмостойкое строительство. Безопасность сооружений, № 4, 2004 г. С.7-9
9.

272.

273.

274.

275.

276.

277.

ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционно-подвижных соединений контролируемых натяжением и растяжные соединения описаны
в СП 16. 13330.2011 . Стальные конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на болтах с контролируемым натяжением) и ТКП 45-05.
04-274-2012 (02250). Стальные конструкции (правила расчета). Минск. 2013 г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям 5.6.

278.

Расчетную несущую способность фланцевого фрикционно -подвижного соединения (ФФПС) или фланцевого демпфирующего узла крепления (ФДУК) двух или четырех
бандажных стальных колец на сдвиг поверхностей трения, стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9, следует определять по
формуле

279.

, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым натяжением, в соответствии со ссылочными
стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица 3.6 — Значения ks
Описание
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно продольной оси отверстия 0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4

280.

C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 2 — Классификация
поверхностей трения при любом другом способе обработки должна быть основана на результатах испытаний образцов поверхностей по процедуре,
изложенной в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных
стандартах группы 7 (см. 1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Вместо упруго пластичного материала для внутренней трубы виброизолирующих материал гофрированные бы или Виброфлекс а болт обматываетсмя медной мягкой
лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое соединение Епишев А П , Клепцов И.П
Можно использовать в демпфирующем болтовом соединении используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой проволоки
В заключение необходимо сказать о соединении работающим на растяжение при контролируемом натяжении может обеспечить не разрушаемость сухого или
сварного стыка при импульсных растягивающих нагрузках и многокаскадном демпфировании магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу за бесценок , внедряются за рубежом на аляскинском нефтепроводе в США, патентуются в
Канаде, США

281.

Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895
При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

282.

RU
(11)
2010 136 746
ФЕДЕРАЛЬНАЯ СЛУЖБА
(13)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
A
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(22) Дата подачи заявки: 01.09.2010
Акифьев Александр Анатольевич (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Адрес для переписки:
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант" Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях
при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под действием взрывного
давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких
стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115
мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определить величину горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую
способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008,
Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные
перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике
разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».

283.

(19)
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2 148 805
(13)
C1
ФЕДЕРАЛЬНАЯ СЛУЖБА
(51) МПК
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
G01L 5/24 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович
(RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062
Миролюбов Ю.П.(RU)
A, 30.01.83. EP 0170068 A'', 05.02.86.
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович
(RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения. Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения
болта на его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других отраслях строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов.

284.

При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М.
, 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют
динамометрические ключи. Этими ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k
кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения
на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для
контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного (до пяти лет)
срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой пары
приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами.
Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для назначения этого момента необходимы знания
фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. ,
Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого
к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции
резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания.
Затягивание гайки на заданную величину угла ее поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения болта
определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α

285.

o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по
окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого
соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки,
соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный угол в
области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций,
так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в конкретных условиях эксплуатации соединений, что повышает точность полученных результатов
испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий натяжения болтов в период обследования конструкций, так при назначении величины момента для
подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i

286.

- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
ФЕДЕРАЛЬНАЯ СЛУЖБА
(51) МПК
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
F16B 31/02 (2006.01)
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
G01N 3/00 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1, 07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами
включает приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной технологии, соединяют высокопрочным болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и
затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью

287.

соединения его с неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала. В результате
повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использовано для определения фактического напряженно-деформированного состояния болтовых
соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов высокопрочными метизами
осуществляется только силами трения по контактным плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по
формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный
коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и нормативный
коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие
натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов.
Этот вопрос приобретает особую актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования высокопрочных болтов. В качестве
нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия
сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до степени Sa 2,5 и
шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации
могут приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на
изобретение «Антикоррозионное покрытие и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных конструкций
на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие
«Контакт» в районе установки захватов повреждается. На строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом воздухе
обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных
центров требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению
качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному
климату (У1), а также циклических сдвиговых нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки фактической надежности работы фрикционного соединения с высокопрочными болтами перед
монтажом, для обеспечения надежности при их эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин

288.

Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и инструментальной базы, способствующей повышению эффективности реновационных и ремонтных
работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных
соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов, характера
действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого
усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного положения с замером значения момента закручивания в
области упругих деформаций и определения приращения момента затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°)
от исходного положения производят после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала
или заранее оттарированной шкалы динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в процессе их
эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1
и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего
соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск:
Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали, применяемых и собираемых конструкциях.
Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от величины отклонения осуществляют меры по повышению надежности работы
металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может
меняться и по другим причинам как климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие сдвига нельзя с
достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки
металлоконструкции может не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить
надежность монтажа и эксплуатации металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент
металлоконструкции и накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают
устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины
отклонения осуществляют необходимые действия, внесены изменения, а именно:

289.

- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения
усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют
натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения
болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при
значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает
нормативную величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены
фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между
выступом рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной
стали, образец-свидетель состоит из металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное для
крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая
поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки, контактирующие
поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной величине.
Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом,
чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7
фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции
дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности
конструкции, диаметров крепежных болтов и методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка несущей
способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в отрасли.

290.

Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство
для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под
нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при
монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
Адреса американских и немецких фирм, организация занимающихся проектированием, изготовлением монтажом
гасителей динамических
колебаний для применения испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, при импульсных растягивающих нагрузках с
использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы
латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616
При испытании узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК
SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, с применением фрикционно-подвижных, для сдвига болтовых соединений для обеспечения сейсмостойкости
конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
в США , Германии, Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1-800-585-TAPS (8277)
Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919 20th Avenue SE • Suite 100 • Bothell, WA 98021
425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map] Toll Free: 800.426.9341 Local: 425.951.6200
425.951.620 Website address: www.romac.com
Fax:
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite 1019, Wayne, PA 19087
Telephone: (610) 971-4850
Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
Wayne, PA 19087-1866 610.971.4850 (USA)

291.

WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40 540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Subsidiary Berlin Breitenbachstra?e 7 – 9 13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Gummiteknik A/S Finlandsgade 29 4690 Haslev
Denmark www.willbrandt.dk www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук А.С. П латонов, канд. техн. наук И.Б . Ройзм ан, инж . А.В. К ру чинки н, канд. техн. наук М.Л. Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября 1997 г. № МО-233
3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации «Трансстрой», Главным управлением пути Министерства путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов»
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755, 1174616, № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРО-ВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано 20.01.2013 , № 165076 RU E 04H 9/02 «Опора сейсмостойкая»,
опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка", E04 Н 9 /02, заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 "Антисейсмическое фланцевое фрикционноподвижное соединение для трубопро-водов" F 16L 23/02 , заявки на изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на изобретение № 20190028 "Виброизолирующая опора E04 Н 9 /02 для
лабораторного испытание на взрывостойкость и взрывопожаростойкость сейсмостойкость фрагментов крепления на ФФПС).
:1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжение болта осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на
высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .

292.

Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с записью диаграммы
сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прикладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть воспринято каждой поверхностью трения соединяемых элеме нтов, стянутых одним высокопрочным
болтом (одним болтоконтактом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследовательской организаций.
Приложение М (информационное) Библиография
*1 + . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
*2 + . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. Госгортехнадзор СССР, 1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
*4 + . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко воспламеняющихся и взрывоопасных грузов. Оргт рансст рой, 1978 г.
* 5 + . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93 Российской Федерации.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

ОПОРА СЕЙСМОСТОЙКАЯ165 076
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
(19)
RU
(11)
ФЕДЕРАЛЬНАЯ
СЛУЖБА
ПО
ИНТЕЛЛЕКТУАЛЬНОЙ (13)
СОБСТВЕННОСТИ
U1
(51) МПК
E04H
9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
165 076

306.

Статус:
прекратил действие, но может быть восстановлен (последнее
изменение статуса: 07.06.2017)
)(22) Заявка: 2016102130/03,
22.01.2016
) Дата начала отсчета срока
действия патента:
22.01.2016
иоритет(ы):
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
) Дата подачи заявки: 22.01.2016
) Опубликовано: 10.10.2016 Бюл.
№ 28
рес для переписки:
197371, Санкт-Петербург,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ 165 076
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования фрикцион но податливы х соединений. Опора состоит из корпуса в
котором выполнено вертикальное отверстие охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия в которых
установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая превышает дли ну <Н> от торца корпуса до нижней точки паза,
выполненного в штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отве рстием корпуса при этом паз штока совмещают с
поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки приводит к уменьшению
зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических воздействий за счет использования фрик ционно податливых
соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно, например Б олтовое соединение плоских деталей встык по Патенту RU 1174616,
F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладка х выполнены овальные отверстия через которые пропущены
болты, объединяющие листы, прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением нагрузки
происходит взаимное проскальзывание листов или прокладок относительно накладок контакта лис тов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в
края овальных отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края ова льных отверстий, соединение начинает работать упруго, а
затем происходит разрушение соединения за счет смятия листов и среза болтов. Недостатками известного являются: ограничение де мпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также Устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое
основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнен ы продольные пазы. Трение демпфирования создается
между пластинами и наружными поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементы - болты, которые фиксируют
сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через блок поддержки, две пластины, чер ез паз сегмента и фиксируют конструкцию в заданном
положении. Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения, при этом сохраняет конструкцию без разрушения.

307.

Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за наличия большого количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а
также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней - корпуса, закрепленного на фундаменте и верхней - штока,
установленного с возможностью перемещения вдоль общей оси и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия (перпендикулярные к централь ной оси) в которые устанавливают
запирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность деформироваться в радиальном
направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого соответствует диаметру запирающего элемента (б олта), а длина соответствует заданному перемещению
штока. Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают возможность деформации корпуса и «переход» сопряжения из
состояния возможного перемещения в состояние «запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от торца
корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б
(фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое охватывает цилиндр ическую поверхность штока 2 например по подвижной
посадке H7/f7. В стенке корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси отверстия
корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца корпу са до нижней точки паза «Н». В нижней части корпуса 1 выполнен
фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым объек том. Сборка опоры заключается в том, что шток 2
сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя пов ерхность паза штока контактирует с поверхностью болта (высота
опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки гайки ( болта) приводит к деформации корпуса и уменьшению
зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корп уса - цилиндр штока. Величина усилия
трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в со пряжении корпус-шток, происходит сдвиг штока, в
пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено центральное
вертикальное отверстие, сопряженное с цилиндрической поверхностью штока, при этом шток зафиксирован запорным элементом, выпол ненным в виде калиброванного болта, проходящего
через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно центральной оси,
выполнено два открытых паза, длина которых, от торца корпуса, больше расстояния до нижней точки паза штока.

308.

309.

310.

311.

312.

(19)
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)

313.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович
(RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
(45) Опубликовано: 10.05.2000 Бюл. № 13
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062
Миролюбов Ю.П.(RU)
A, 30.01.83. EP 0170068 A'', 05.02.86.
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович
(RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную
величину угла ее поворота от исходного положения. Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций. Определяют приращение момента закручивания.
Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения
болта на его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других отраслях строительства и эксплуатации
металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М.
, 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют
динамометрические ключи. Этими ключами измеряют момент закручивания Mз, которым затянуты гайки.

314.

Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ, поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k
кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения
на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные усилия в болтах с помощью динамометрических
ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для
контроля усилий затяжки резьбовых соединений (Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в случае сравнительно непродолжительного (до пяти лет)
срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой пары
приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами.
Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента закручивания для подтяжки болтов. Для назначения этого момента необходимы знания
фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. ,
Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого
к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции
резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с гайкой в пакете. Все это ставит под сомнение
достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания.
Затягивание гайки на заданную величину угла ее поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания. При этом приращение усилия натяжения болта
определяют по формуле
ΔN = Ai/A22•ai/a22•α
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.

315.

Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по
окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого
соединения, на стабильность приращения усилия натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки,
соответствует равное приращение усилий натяжения болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно, поворот гайки на определенный угол в
области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций,
так и погрешностью регистрации требуемых параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в конкретных условиях эксплуатации соединений, что повышает точность полученных результатов
испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий натяжения болтов в период обследования конструкций, так при назначении величины момента для
подтяжки болтов, в которых по результатам обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении
производят затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания гайки в области упругих деформаций и
определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU

316.

(11)
2 413 098
(13)
C1
ФЕДЕРАЛЬНАЯ СЛУЖБА
(51) МПК
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
F16B 31/02 (2006.01)
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
G01N 3/00 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1, 07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами
включает приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной технологии, соединяют высокопрочным болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и
затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью
соединения его с неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала. В результате
повышается надежность соединения. 1 з.п. ф-лы, 1 ил.

317.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использовано для определения фактического напряженно-деформированного состояния болтовых
соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов высокопрочными метизами
осуществляется только силами трения по контактным плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по
формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный
коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и нормативный
коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие
натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов.
Этот вопрос приобретает особую актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования высокопрочных болтов. В качестве
нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия
сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до степени Sa 2,5 и
шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации
могут приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на
изобретение «Антикоррозионное покрытие и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных конструкций
на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие
«Контакт» в районе установки захватов повреждается. На строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом воздухе
обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных
центров требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению
качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному
климату (У1), а также циклических сдвиговых нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки фактической надежности работы фрикционного соединения с высокопрочными болтами перед
монтажом, для обеспечения надежности при их эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и инструментальной базы, способствующей повышению эффективности реновационных и ремонтных
работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных
соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов, характера
действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).

318.

Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого
усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного положения с замером значения момента закручивания в
области упругих деформаций и определения приращения момента затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°)
от исходного положения производят после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала
или заранее оттарированной шкалы динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в процессе их
эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1
и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего
соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск:
Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали, применяемых и собираемых конструкциях.
Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от величины отклонения осуществляют меры по повышению надежности работы
металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может
меняться и по другим причинам как климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие сдвига нельзя с
достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки
металлоконструкции может не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить
надежность монтажа и эксплуатации металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент
металлоконструкции и накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают
устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины
отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения
усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют
натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения
болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при

319.

значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает
нормативную величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены
фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между
выступом рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной
стали, образец-свидетель состоит из металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное для
крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая
поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки, контактирующие
поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной величине.
Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом,
чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7
фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции
дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности
конструкции, диаметров крепежных болтов и методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка несущей
способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство
для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под
нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при
монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.

320.

СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются сверлением,
заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е болта осуществляется
динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание несущей
способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на
пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прик ладывается
диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.

321.

Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть воспринято каждой п
о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом
из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов А.И.Коваленко
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых кранов и трубопровода от
возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным
клином позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс свинффцовые шайбы с двух
сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за счет использования фрикционноеподатливых соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое
соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных растягивающих нагрузках при многокаскадном
демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также устройство для фрикционного демпфирования и антисейсмических
воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин
создает демпфирование

322.

Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при возникновении динамических,
импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества сопрягаемых трущихся поверхностей и
надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикци- болтовых демпфирующих податливых креплений для
шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный обожженный
клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет
деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб) поглотителями сейсмической и
взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора
при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за
счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.315.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься стопорный обожженный медный,
установленных на стержнях фрикци- болтов Медный обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный обожженный клин .

323.

Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с энергопоглощением забитого
медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими выступами . При этом промежуток
между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на чертеже не показаны), которые
служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим элементом при многокаскадном
демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с одинаковым усилием медный
обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие свинцовые шайбы , повышающие
надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание соединения гайками с контролируемым
натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину, обеспечивающую рабочее состояние медного
обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость соответствовала расчетной,
обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность его работы в тяжелых условиях
вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных колебаний вибрирующего
трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и энергопоглощающие со стороны одного из
фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой или
гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью
расширения области использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м медым
обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких
шайб , установленного между цилиндрическими выступами фланцев, а крепежные элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .

324.

2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие свинцовые или обожженные медные
шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6

325.

Фиг 7
Фиг 8
Фиг 9

326.

327.

328.

329.

Прилагаются фотографиии испытания в СПб ГАСУ узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году.

330.

331.

Рис На рисунке показан узел гасителе динамических колебаний для применения испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и
соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году. , при импульсных растягивающих нагрузках с
использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы
латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых соединений для обеспечения сейсмостойкости конструкций здания: масса здания
уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает

332.

333.

334.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2010 136 746
(13)
A
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(51) МПК 2010 136 746
E04C 2/00 (2006.01)

335.

(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
(21)(22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(22) Дата подачи заявки: 01.09.2010
Акифьев Александр Анатольевич (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2 Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Адрес для переписки:
Гусев Михаил Владимирович (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант" Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях
при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под действием взрывного
давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких
стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115
мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определить величину горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую
способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва
прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008,
Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные
перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике
разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)

336.

C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1, 07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами
включает приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной технологии, соединяют высокопрочным болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и
затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта. Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью
соединения его с неподвижной частью устройства, и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала. В результате
повышается надежность соединения. 1 з.п. ф-лы, 1 ил.

337.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть использовано для определения фактического напряженно-деформированного состояния болтовых
соединений в различных конструкциях, в частности стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов высокопрочными метизами
осуществляется только силами трения по контактным плоскостям усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по
формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный
коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и нормативный
коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие
натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов.
Этот вопрос приобретает особую актуальность в случае сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования высокопрочных болтов. В качестве
нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия
сдвигоустойчивости, и оно соответствует исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным методом с чистотой очистки до степени Sa 2,5 и
шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации
могут приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на
изобретение «Антикоррозионное покрытие и способ его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных поверхностей мостовых пролетных конструкций
на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие
«Контакт» в районе установки захватов повреждается. На строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной эксплуатации на открытом воздухе
обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных
центров требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению
качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному
климату (У1), а также циклических сдвиговых нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время обработка металлических поверхностей
металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки фактической надежности работы фрикционного соединения с высокопрочными болтами перед
монтажом, для обеспечения надежности при их эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и инструментальной базы, способствующей повышению эффективности реновационных и ремонтных
работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных
соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f коэффициент трения по соприкасающимся поверхностям соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами отверстий и болтов, характера
действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).

338.

Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого
усилия натяжения болта на его диаметр. Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного положения с замером значения момента закручивания в
области упругих деформаций и определения приращения момента затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°)
от исходного положения производят после предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения усилий в болтах как при затяжке, так и при
эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала
или заранее оттарированной шкалы динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном монтаже металлоконструкций, так и в процессе их
эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1
и 2 прикладывают усилие нагружения и определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением усилия нагружения, при этом величину смещения
определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего
соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск:
Системные технологии, 2008 г., с.35-36). Сущность способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали, применяемых и собираемых конструкциях.
Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от величины отклонения осуществляют меры по повышению надежности работы
металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может
меняться и по другим причинам как климатического, так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому фактическое усилие сдвига нельзя с
достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки
металлоконструкции может не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить
надежность монтажа и эксплуатации металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент
металлоконструкции и накладку, контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают
устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины
отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения
усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют
натяжение болта и/или проводят дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения
болта отличается от оптимального в пределах 0,50-0,54. Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки контактирующих поверхностей, т.к. при

339.

значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает
нормативную величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух стоек, торцевые поверхности которых скреплены
фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между
выступом рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной
стали, образец-свидетель состоит из металлической накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое соединение 13, предназначенное для
крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая
поверхность пластины обрабатывается дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед монтажом, то берут две тестовых накладки, контактирующие
поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной величине.
Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом,
чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7
фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную величину момента сдвига (Мсд) с расчетной
величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции
дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности
конструкции, диаметров крепежных болтов и методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся устройством при сопоставимых условиях, оценка несущей
способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент металлоконструкции устройство
для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под
нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при
монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.

340.

Материалы лабораторных испытаний фрагментов , узлов . чертежей испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина
проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм
американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, в программном комплексе SCAD
Office, с демпфирующих узлами крепления на фрикционно-подвижных болтовых соединениях, для восприятия усилий -за счет трения, при термически растягивающих нагрузках , на сдвиг
трубопровода в программном комплексе SCAD Office, со скощенными торцами, согласно изобретения №№ 2423820, 887743, демпфирующих компенсаторов на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при землетрясением растягивающих нагрузках в ферме ,трубопроводах и предназначенного для сейсмоопасных районов с
сейсмичностью до 9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше для трубопроводов необходимо использование сейсмостойких телескопических опор, а для соединения трубопроводов - фланцевых фрикционноподвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device и
согласно изобретения «Опора сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от 10.10.2016, хранятся на кафедре теоретическая механика по адресу: ПГУПС 190031, СПб, Московский пр 9 , кафедра теоретической механики проф дтн
А.М.Уздин
(921) 962-67-78, (996) 798-26-54, (951) 644-16-48 [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Материалы хранятся на Кафедре металлических и деревянных конструкций 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и деревянных конструкций , дтн проф ЧЕРНЫХ Александр
Григорьевич строительный факультет
Альбом Специальные технические условия (СТУ) по изготовлению и монтажу энергопоглощающего демпфирующего компенсатора для испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6
, 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей
прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими
коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году для трубопроводов, демпфирующей сейсмоизолирующей опоры, демпфирующие соединения , альбом ШИФР 1.010.1-1-2с.94 , выпуск 0-2 , 0-3 можно заказать по [email protected] [email protected] [email protected]
(921) 962-67-78, (966) 798-26-54 т/ф (812) 694-78-10 Карта Сбербанка № 2202 2007 8669 7605
Таже ждя МЧС РФ Более подробно об использовании Специальные технические условия по применения огнестойкого компенсатора -гасителя температурных напряжений , для обеспечения сдвиговой прочности и сейсмостойкости
строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ , с использованием изобретения Андреева Борис Александровича № 165076 «Опора сейсмостойкая»
и патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической
энергии» и патент № 154506 «Панель противовзрывная» для разработки и испытания на сейсмостойкость по применению изобретения; "Огнестойкого компенсатора -гасителя температурных напряжений" ( отправлено в ФИПС, Москва,
от 14.02.2022 , для получения патента на применение огнестойкого компенсатора -гасителя температурных напряжений , для обеспечения сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9
баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ
Более подробно о применения огнестойкого компенсатора -гасителя температурных напряжений ,смотрите внедренные изобретения организации "Сейсмофонд" при СПб ГАСУ Японо-Американской фирмой RUBBER BEARING FRICTION
DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD https://www.damptech.com/for-buildings-cover
https://www.youtube.com/watch?v=r7q5D6516qg https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf

341.

Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде
вставной резины, которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим шарниром,
трубчатого в вида Seismic resistance GD Damper https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic
Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake Protection Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek QuakeTek https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact
absorption DamptechDK https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ https://www.youtube.com/watch?v=NRmHBla1m8A
Материалы специальных технических условий (СТУ) по испытанию огнестойкого компенсатор - гасителя температурных напряжений в ПК SCAD (ОКГТН -СПб ГАСУ) согласно заявки на изобретение от 14.02.2022 : "Огнестойкого
компенсатора -гасителя температурных напряжений" , для обеспечения сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ:
Cпециальные технические условия (СТУ), альбомы , чертежи, лабораторные испытания : о применения огнестойкого компенсатора -гасителя температурных напряжений , для обеспечения сдвиговой прочности !!! и сейсмостойкости
строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ, новых огнестойких компенсаторов -гасителей температурных напряжений, которые
используются в США, Канаде фирмой STAR SEIMIC , на основе изобретений проф дтн ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая», 154505 «Панель противовзрывная», № 2010136746 «Способ защиты
зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений , использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» , хранятся на
Кафедре технологии строительных материалов и метрологии КТСМиМ 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ, у проф. дтн Юрий Михайловича Тихонова в ауд 305 С. Тема докторской диссертации дтн проф
Тихонова Ю.М " Аэрированные легкие и тепло-огнезащитные бетоны и растворы с применением вспученного вермикулита и перлита и изделия на их основе" [email protected] [email protected] [email protected] (921) 962-67-78, ( 996)
535-47-29, (911) 175-84-65 https://disk.yandex.ru/d/_ssJ0XTztfc_kg https://ppt-online.org/1100738 https://ppt-online.org/1068549 https://ppt-online.org/1064840
PGUPS Antonovskiy most opit USA Momtana reka Suon uskorennogo varianta vosstanovleniya mosta cherez Dnepr 478
str
https://ppt-online.org/1267573?ysclid=lbzk5d72kf455761516
Seismofond [email protected] opit bloka NATO USA Antonovskiy most Texnologiya uskorennogo vosstanovleniya mosta chreez reku Dnepr 457 str
https://ppt-online.org/1266985
Появилось видео разрушенного Антоновского моста через
Днепр
https://ria.ru/20221111/most-1830910643.html
Вероятно, он был подорван». Что произошло с Антоновским мостом
Российские военкоры сообщили о подрыве Антоновского моста в Херсоне
https://www.gazeta.ru/army/2022/11/11/15766321.shtml
USA chertezhi Bailey bridge [email protected] O predposilkax cozdaniya novix konsruktiy vremennikh 410 str
https://ppt-online.org/1264806
Сборно-разборные быстро собираемые армейские переправы многократного применения
https://ppt-online.org/1224871
STU Spets tex usloviya Opit Universiteta Montakha USA bistro vozvodimikh zheleznodorozhnikh mostov Bloka NATO 405 str
https://ppt-online.org/1258617
USA+KNR Minisota Montana reka Suon Protokol ispitaniya plasticheskix uprugix soedineniy zheleznodorozhnogo mosta SCAD 466 str
https://ppt-online.org/1261643

342.

[email protected] Opit Universiteta Montakha USA bistro vozvodimikh zheleznodorozhnikh mostov Bloka NATO 589 str
https://studylib.ru/doc/6368836/s.tyktyk81%40mail.ru-opit-universiteta-montakha-usa-bistro-...
Прямой упругопластический расчет стальных ...
https://miit.ru/content/Диссертация.pdf?id_wm=722242
https://cyberleninka.ru/article/n/raschet-predvaritelno-napryazhennyh-zhelezobetonnyh-ferm-metodom-konechnyh-elementov-s-uchetom-fizicheskoy-nelineynosti
https://elib.sfu-kras.ru/bitstream/handle/2311/147987/pz_buganov.pdf?sequence=1
Затяжка высокопрочных болтов во фланцевых соединениях нижних поясов ферм
https://forum.dwg.ru/showthread.php?t=143391
https://stroim-domik.ru/article/167-mostostroenie-metalliceskie-mosty/mosty-so-skvoznymi-fermami
Стыковое болтовое соединение растянутых
поясов ферм на косых фланцах
https://3dstroyproekt.ru/useful-inventions/stykovoe-soedinenie-poiasov-ferm

343.

344.

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ
ИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ
КАФЕДРА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ
«К защите допускается»: Заведующий
кафедрой к.т.н., доцент
Галишникова В.В.
«__ »_____________2014 г.

345.

диссертации на соискание ученой степени кандидата технических наук
Прямой упругопластический расчет стальных
пространственных ферм на предельную нагрузку и
приспособляемость с учетом больших перемещений
(название)
Выполнил
Аспирант Хейдари Алиреза Ф.И.О.
(подпись)
Научный руководитель Галишникова Вера Владимировна Ф.И.О.
к.т.н., доцент (подпись)
(ученая степень, звание)
Москва, 2014

346.

347.

348.

349.

350.

351.

Спец военный Вестник газеты "Земля
РОССИИ" и ИА "КрестьянИнформ" № 35
Свидетельство регистрации Северо –Западном региональном управлении государственного Комитет РФ по печати (г.СПб) номер П 0931 от 16.05.94. Газета перерегистрирована 19.06.1998, в связи со
сменой учредителей , добавлен. иностран языков. ОО «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780, ОГРН : 1022000000824 09 марта 2022 Карта СБЕР : 2202 2006 4085 5233 Счет
получателя: 40817810455030402987 [email protected] [email protected] с6947810yandex.ru (996) 798-26-54, (921) 962-67-78, (951) 644-16-48
190005, СПб, 2-я Красноармейская
Киевская Русь: Генералу МО РФ Александру Владимированчу Дворникову
Заявка на изобртение: КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных
серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные
конструкции покрытий производственных зданий пролетами 18, 24 и
30 метров с применением замкнутых, гнутых профилей
прямоугольного сечения типа "Молодечно" Чертежи КМ E01D 12/00
, аналог изобретения № № 69 086, 68 528
Ввиду невозможности проведения 21 апреля 2022 на улицах города в Ленинграде и
запрета властей, Сталинский комитет Ленинграда приглашает Вас на торжественное
собрание, посвященное дню рождения В.И.Ленина организатора, идеолога Марксизма и
руководителя Великой Октябрьской Социалистической революции. Ждем Вас 21 апреля
2022 , в 18.00. (четверг) в зале горкома КПРФ - метро «Обводный канал», Лиговский
проспект. 207 б. Справки по телефону 8-904-03-82-14. Иван Метелица.
Мероприятие было анонсировано до объявления модной болезни, и отменено быть не
может. Однако, идя на встречу- требованиям властей , мы намерены соблюдать
ограничения по численности и рассадке, а также просим участников иметь СИЗ. просим
ознакомится с тезисами доклада : Специальные инженерные решения по
восстановлению разрушенных железнодорожных мостов на территории Киевской Руси
, для Генерала МО РФ Александра Владимировича Дворникова " КОНСТРУКЦИЯ
УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ
СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных
серии 1.460.3-14 ГПИ Ленпроектстальконструкция, стальные конструкции
покрытий производственных зданий пролетами 18, 24 и 30 метров, с применением
замкнутых, гнутых профилей прямоугольного сечения типа "Молодечно", согласно
серии 1.460.3-14 ГПИ Ленпроектстаьконструкция E01D 12/00 , аналог изобретения
№ № 69 086, 68 528, на основе изобретений проф дтн ПГУПС А.М.Уздина №№1143895,
1168755, 1174616, 165076, 154506, 2010136746 и изобретений Военной академии тыла и
транспорта им. А.В Хрулева и Военного институт (инженерно-технический ) им.
генерала армии А.В.Хрулева, для доставки гуманитарной помощи на территорию
Киевской Руси, ДНР, ЛНР ( с 18.04.22- 09.05.22 " Свидетельство регистрации Северо –
Западном региональном управлении государственного Комитет РФ по печати (г.СПб)
номер П 0931 от 16.05.94. Газета перерегистрирована 19.06.1998, в связи со сменой
учредителей , добавлен. иностран языков. Учредитель газеты : организация
«Сейсмофонд» при СПб ГАСУ ИНН: 2014000780, ОГРН : 1022000000824
Карта
СБЕР : 2202 2006 4085 5233 Счет получателя: 40817810455030402987
[email protected] [email protected] с6947810yandex.ru (996) 798-26-54, (921)
962-67-78, (951) 644-16-48 190005, СПб, 2-я Красноармейская ул. д 4 [email protected]
[email protected] Докладчик : Президент организации «Сейсмофонд» при СПб ГАСУ
Х.Н. Мажиев, позывной "Терек" https://ppt-online.org/1140453
https://disk.yandex.ru/d/hZJTS72fXRbfEg
1
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

352.

УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

353.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка контактных поверхностей элементов и методы контроля
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с грунтовкой
ВЖС 83-02-87
6.4.2
47
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
6.5
46
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51

354.

2.
Общество с ограниченной ответственностью «С К С Т Р О Й К О М П Л Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812-705-00-65 E-mail: stanislav@stroycomplex-5. ru http://www. stroycomplex-5. ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ МОСТОВЫХ СООРУЖЕНИЙ
У
1. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в оголовке опоры и диафрагме железобетонного пролетного строения или отверстий в металле металлического или
сталежелезобетонного пролетного строения с составлением схемы (шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к опоре и к пролетному строению в элементах амортизатора по шаблонам и, при необходимости, райберовка или рассверловка новых
отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж амортизатора и пространства для его установки на опоре (под диафрагмой). При необходимости, срубка выступающих частей бетона или
устройство подливки на оголовке опоры.
1.5. Устройство подмостей в уровне площадки, на которую устанавливается амортизатор.
2. Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может быть двух видов:
6. болты расположены внутри основания и при полностью смонтированном амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы фундаментных болтов выступают над поверхностью площадки, на
которой монтируется амортизатор;
7. болты расположены внутри основания и оканчиваются резьбовыми втулками, верхние торцы которых расположены заподлицо с бетонной поверхностью;
8. болты расположены у края основания, которое совмещено с корпусом упора, и после монтажа амортизатора доступ к болтам возможен, при этом концы фундаментных болтов выступают над поверхностью
площадки;

355.

4) болты расположены у края основания и оканчиваются резьбовыми втулками, как и во втором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для крепления амортизатора с фундаментными болтами, опускание основания на площадку, затяжка фундаментных болтов, при необходимости
срезка выступающих над гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на подмости в уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения отверстий под штифты и резьбовые отверстия под болты в основании с соответствующими отверстиями в упоре, забивка штифтов в отверстия,
затяжка и законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в резьбовые отверстия втулок анкерных болтов на диафрагме пролетного строения. Если зазор между верхней плитой и нижней плоскостью
диафрагмы менее 5мм, производится затяжка болтов. Если зазор более 5 мм, устанавливается опалубка по контуру верхней плиты, бетонируется или инъектирует- ся зазор, после набора прочности бетоном или раствором
производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от операций первого случая только тем, что основание амортизатора поднимается на подмости в уровне площадки, на которой монтируется
амортизатор и надвигается до совпадения резьбовых отверстий во втулках фундаментных болтов с отверстиями под болты в основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.

356.

в) Снятие транспортных креплений.
г) Надвижка амортизатора в проектное положение до совпадения отверстий для его крепления с фундаментными болтами, опускание амортизатора на площадку, затяжка фундаментных болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от операций для третьего случая только тем, что амортизатор поднимается на подмости в уровень площадки, на которой он монтируется и
надвигается до совпадения отверстий в амортизаторе с резьбовыми отверстиями во втулках.
2.2. Установка амортизаторов с верхним расположением ФПС (под металлические пролетные строения)
2.2.1. Последовательность и содержание операций по установке на опоры амортизаторов как с верхним, так и с нижним расположением ФПС одинаковы.
2.2.2. К металлическому пролетному строению амортизатор прикрепляется посредством горизонтального упора. После прикрепления амортизатора к опоре выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к конструкциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются вильчатые прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.3. Подъемка амортизатора на подмости в уровне площадки, на которой он будет смонтирован.
2.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Согласовано:
Главный инженер проекта
ОАО «Трансмост»
Главный инженер проекта ОАО «Трансмост»
И.В. Совершаев
И.А. Мурох
Л.А. Ушакова

357.

Главный инженер проекта
В.Л. Бобровский
При испытаниях узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК
SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году, и использовался альбом "Шарнирные узлы" .

358.

Более подробно о внедрении в сейсмоопасных районах демпфирующих опор ЛИСИ , для системы противопожарной защиты трубопроводов на Аляске, изобретенных в СССР №№ 1143895 US , 1168755 US, 1174616 US дтн
ЛИИЖТ А.М.Уздиным внедренных в Армении
Introduction to Pipe Supports Types of Pipe Supports Pipe Supports for Critical Piping Systems. This video explains the basics of pipe supports, pipe support types, functions, requirements, and supporting guidelines.Pipe Support Types of Pipe
Supports Primary and Secondary pipe Supports Piping Mantra https://ok.ru/video/3306247162582 https://www.youtube.com/watch?v=U4aUmrOeVbc
https://disk.yandex.ru/i/6fYbE0M9Z1_F8Q https://ok.ru/video/3306263022294 https://disk.yandex.ru/i/TttSRnFkHfIX9g Fire Sprinkler Installation - BCA- Singapore
https://ok.ru/video/3306312764118 https://disk.yandex.ru/i/PcwhOMxy4yD6cQ
Eaton-s TOLCO Seismic Bracing OSHPD Pre-approval(1)
https://ok.ru/video/editor/3306401696470
How to Install Cable Sway Bracing - 4-Way Brace https://ok.ru/video/3306431122134
SB 4 Seismic Bracing Value Proposition https://ok.ru/video/3306475031254
Seismic Cable Bracing Systems - Product Focus https://ok.ru/video/3306504981206
Understanding Pipe Supports Webinar https://ok.ru/video/3306548628182
https://www.youtube.com/watch?v=ygg1X5qI-0w
PIPING THERMAL EXPANSION PIPING FLEXIBILITY - ANCHOR LOCATION PIPING MANTRA WITH EXAMPLES https://ok.ru/video/editor/3306596797142
How to select spring hanger - for piping engineers https://ok.ru/video/3306645424854
piping support typeisometric pipe drawing support symbolspipe fitter training in hindi
https://ok.ru/video/3306633235158 Организация «Сейсмофонд» при СПб ГАСУ ОГРН : 1022000000824 ИНН ; 2014000780 Президент организации Мажиев Х.Н [email protected] [email protected]
[email protected] (911) 175-84-65, (996) 798-26-54, (921) 962-67-78
Более подробно об использовании изобретений проф дтн ЛИИЖТа А.М.Уздина за рубежом
https://ppt-online.org/1045087 https://ppt-online.org/1045088
https://ppt-online.org/1045089 https://ppt-online.org/1014767
https://ppt-online.org/1045091 https://ppt-online.org/1045092
https://ppt-online.org/1045090
см. зарубежный опыт использования демпфирующего компенсатора для трубопроводов : https://www.manualslib.com/manual/794138/Man-BAndw-S80meC7.html?page=131
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions/tolco-seismic-update.html
http://itpny.net/products-seismic-attachments.html https www eaton.com/us/en-us/products/support-systems/fire-protection-solutions/tolco-seismic-update.html
https://www.eaton.com/us/en-us/products/support-systems/fire-protection-solutions.html
https://www.eaton.com/us/en-us/products/support-systems/bl-transition.html

359.

https://www.eaton.com/us/en-us/products/support-systems.html
https://www.eaton.com/us/en-us/products/support-systems/seismic-bracing/seismic-bracing-and-fire-protection-resources.html
http://itpny.net/products.html http://www.swillistonsales.com/manufacturers/eaton-b-line-series
http://itpny.net/products-seismic-attachments.html https://www.eaton.com/us/en-us/products/support-systems/seismic-bracing/fig--3000.html
https://www.rilco.com/products/vibration-control-sway-braces
http itpny.net/products-seismic-attachments.html http www swillistonsales.com/manufacturers/eaton-b-line-series
Испытание на сейсмостойкость в ПК SCAD демпфирующего компенсатора для трубопроводов https://piter.tv/video_clip/19686/
https://disk.yandex.ru/d/m-e--HxD_oNWqw
https://ppt-online.org/1044577
При испытаниях узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК
SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году и использвались Рекомендации : .
РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября 1988 г.
Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75 и СНиП 3.03.01-87. С изданием настоящих рекомендаций отменяется "Руководство по проектированию, изготовлению и сборке
монтажных фланцевых соединений стропильных ферм с поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя базы данных.
Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид болтовых монтажных соединений, их применение в конструкциях одно- и многоэтажных зданий и сооружений позволяет
существенно повысить производительность труда и сократить сроки монтажа конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных болтов, основные положения по конструированию и расчету фланцевых соединений, особенности технологии изготовления и монтажа
конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических исследований, выполненных во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им. Мельникова, а также другие
отечественные и зарубежные материалы по исследованиям фланцевых соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук, А.Г.Соскин; ЦНИИПроектстальконструкцией им. Мельникова (канд. техн. наук
И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).

360.

1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в части изготовления и СНиП 3.03.01-87 в части монтажа конструкций, а также в дополнение к ОСТ 36-72-82 "Конструкции
строительные стальные. Монтажные соединения на высокопрочных болтах. Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке фланцевых соединений (ФС) несущих стальных строительных конструкций производственных зданий и сооружений, возводимых в
районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:
эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие подвижные, вибрационные или другого вида нагрузки с количеством циклов 10
напряжений в соединяемых элементах
.
и более при коэффициенте асимметрии
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует выполнять только с предварительно напряженными высокопрочными болтами. Такие соединения могут
воспринимать местные поперечные усилия за счет сопротивления сил трения между контактирующими поверхностями фланцев от предварительного натяжения болтов и наличия "рычажных усилий".
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию сжатия с изгибом при однозначной эпюре сжимающих напряжений в соединяемых элементах (в дальнейшем ФС сжатых
элементов), следует выполнять на высокопрочных болтах без предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения могут воспринимать сдвигающие усилия за счет сопротивления сил
трения между контактирующими поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля - широкополочные двутавры и тавры, парные уголки, замкнутого профиля - круглые трубы, изгибаемых элементов из
широкополочных двутавров, которые следует, как правило, применять при проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в соответствии с требованиями, изложенными в разделе 6 настоящих рекомендаций, а также с учетом положительного опыта
освоенной технологии изготовления ФС Белгородским, Кулебакским, Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским заводом металлоконструкций (г.Назарово) Минэнерго СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических исследований, выполненных в 1981-1987 гг. во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им. Мельникова и
ВНИИКТИСтальконструкции. В рекомендациях отражен опыт внедрения ФС, выполненных в соответствии с "Руководством по проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с требованиями главы СНиП II-23-81*, постановления Государственного строительного комитета СССР от 21 ноября 1986 г. N 28 о
сокращенном сортаменте металлопроката в строительных стальных конструкциях и приказа Министерства монтажных и специальных строительных работ СССР от 28 января 1987 г. N 34 "О мерах, связанных с утверждением
сокращенного сортамента металлопроката для применения в строительных стальных конструкциях".
Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ 8509-72, балки двутавровые по ГОСТ 8239-72* , балки с параллельными гранями полок по ГОСТ 26020-83, швеллер
горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные прямошовные трубы по ГОСТ 10704-76 и
горячедеформированные трубы по ГОСТ 8732-78* (для сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ 10704-91, соответственно. - Примечание изготовителя базы данных.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует применять листовую сталь по ГОСТ 19903-74* марок 09Г2С-15 по ГОСТ 19282-73
14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
и
На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. - Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей, предназначенных для строительных стальных конструкций по ГОСТ 19282-73, при этом сталь должна удовлетворять следующим
требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
категория качества стали - 12;
относительное сужение стали в направлении толщины проката
%, минимальное для одного из трех образцов
%.
Проверку механических свойств стали в направлении толщины проката осуществляет завод строительных стальных конструкций по методике, изложенной в приложении 8.

361.

2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.) должно удовлетворять требованиям, указанным в табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Допустимая
частота
дефекта
Площадь дефекта, см
минимального
учитываемого
Максимальная
допустимая
длина дефекта
Минимальное
допустимое
расстояние между
дефектами
максимального
допустимого
см
Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0

4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности минимального из них, оцениваются как один дефект.
2. По усмотрению завода строительных стальных конструкций разрешается дефектоскопический контроль материала фланцев производить только после приварки их к элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод строительных стальных конструкций.
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект" климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а также высокопрочные гайки и
шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок. Геометрические и механические характеристики таких болтов должны отвечать требованиям ГОСТ 22353-77, ГОСТ 22356-77 - для
болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 22356-77. Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по ГОСТ 2246-70 или порошковую проволоку ПП-АН8 по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же марок, что и основные соединяемые профили.
3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и коэффициенты условий работы следует принимать в соответствии с указаниями главы СНиП II-23-81*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:

362.

,
где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков, подверженных воздействию растяжения или сжатия. Растянутые участки фланцев передают внешние усилия через предварительно
натянутые пакеты "фланец-болт", сжатые - через плотное касание фланцев.
4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты диаметром 24 мм (М24); использование болтов М20 и М27 следует допускать в тех случаях, когда постановка болтов М24 невозможна
или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных стенками (полками профиля, ребрами жесткости) с двух и более сторон, и болты наружных зон, ограниченных с одной стороны
(рис.1); характер работы и расчет ФС в этих зонах различны.

363.

Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по контуру и как можно ближе к элементам присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
- ширина фланца, приходящаяся на
-ый болт наружной зоны;
- катет углового шва.
Если по конструктивным особенностям ФС
, то в расчетах на прочность ФС (раздел 5) величину
принимают равной
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального растяжения, болты следует располагать безмоментно относительно центра тяжести присоединяемого профиля с учетом неравномерности
распределения внешних усилий между болтами наружной и внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.) должна обеспечивать возможность свободной установки и натяжения болтов, в том числе выполнения контроля усилий натяжения
болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна для передачи внешних силовых воздействий или необходимо повысить несущую способность растянутых участков ФС без
увеличения числа болтов или толщины фланцев, последние следует усиливать ребрами жесткости (рис.1 и 2).

364.

Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля, длина должна быть не менее 200 мм. Ребра жесткости следует располагать так, чтобы концентрация напряжений в сечении
основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта и т.п.
4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность ФС должна удовлетворять суммарному усилию в узле, а не усилию в смежной панели пояса.
4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует строго соблюдать требования точности изготовления и монтажа ФС, изложенные в разделах 6 и 7 настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
на сжатых участках устанавливать дополнительное количество болтов с предварительным их натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не предусмотрены, расчетные рамные моменты следует снижать до 15%.
4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый сортамент ФС этого типа
(приложение 1) с фланцами толщиной 25-40 мм включает в себя профили от 20Ш1 до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН (163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального растяжения, следует выполнять с фасонками для обеспечения необходимой несущей способности сварных швов. Рекомендуемый
сортамент ФС этого типа (приложение 2) с фланцами толщиной 20-40 мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый сортамент ФС этого типа
(приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3, расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения, следует выполнять, как правило, со сплошными фланцами и ребрами жесткости в количестве не менее 3 шт. Ширина ребер
определяется разностью радиусов фланцев и труб, длина - не менее 1,5 диаметра трубы (см. рис.2).
Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные прямошовные и горячедеформированные трубы размерами от 114х2,5 до 377х10, расчетные продольные усилия 630-3532 кН (64-360
тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными сопротивлениями
МПа, болты высокопрочные М20, М24 и М27.

365.

Для ФС элементов из круглых труб, выполненных из малоуглеродистой стали, допустимо применение сплошных фланцев без ребер жесткости при условии выполнения сварных швов равнопрочными этим элементам и
экспериментальной проверки натурных ФС данного типа.
4.16. ФС элементов из гнутосварных профилей прямоугольного или квадратного сечений, подверженных воздействию центрального растяжения, следует выполнять со сплошными фланцами и ребрами жесткости,
расположенными, как правило, вдоль углов профиля (см. рис.2). Ширина ребер определяется размерами фланца и профиля, длина - не менее 1,5 высоты меньшей стороны профиля.
Если между ребрами жесткости будет размещено более двух болтов или ребра жесткости будут установлены не только вдоль углов профиля, то ФС элементов из гнутосварных профилей данного типа могут быть применены
только после экспериментальной проверки натурных соединений данного типа.
4.17. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных воздействию изгиба, следует выполнять, как правило, со сплошными фланцами с постановкой ребра жесткости на растянутом поясе
в плоскости стенки двутавра. При необходимости увеличения количества болтов и ширины фланцев соответствующее уширение поясов двутавров следует осуществлять за счет приварки дополнительных фасонок (рис.3, а).
Рис.3. Схемы фланцевых соединений изгибаемых элементов из прокатных или сварных двутавров
Рекомендуемый сортамент ФС этого типа (приложение 5) включает в себя профили от 26Б1 до 100Б2 и от 23Ш1 до 70Ш2 с несущей способностью 127-2538 кН·м (13-259 тс·м). Несущая способность ФС на изгиб для данного
типа соединения и данного типоразмера двутавра определена из условия прочности фланца, болтов и сварных швов соединения, воспринимающих данный изгибающий момент.
Для этого типа соединений предусмотрено применение высокопрочных болтов М24 и М27.
4.18. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных воздействию изгиба, возможно выполнять со сплошными фланцами, высота которых не превышает высоты двутавра (см. рис.3, б).
Такие соединения следует применять, если расчетный момент в рамных соединениях ниже несущей способности двутавров на изгиб.
При необходимости уменьшения количества болтов или увеличения жесткости растянутых участков ФС допустимо применять составные фланцы, увеличивая их толщину на растянутом участке до 36-40 мм (см. рис.3, в).
Если изгибающий момент в рамных соединениях превышает несущую способность двутавра на изгиб, следует предусматривать устройство вутов (см. рис.3, г).
ФС указанных типов следует проектировать в соответствии с указаниями настоящих рекомендаций.
4.19. Для ФС элементов, подверженных воздействию сжатия, когда непредусмотренные проектом (КМ) эксцентриситеты передачи продольных усилий недопустимы, необходимо строго выполнять требования по точности
изготовления и монтажа ФС, изложенные в разделах 6 и 7 настоящих рекомендаций. В таких соединениях следует предусматривать также установку болтов с суммарным предварительным натяжением, равным расчетному усилию
сжатия в соединяемых элементах.
4.20. ФС элементов, подверженных центральному растяжению, следует, как правило, применять для передачи усилий (кН), не превышающих для элементов из:
парных уголков - 3000;

366.

одиночных уголков - 1900;
широкополочных двутавров и круглых труб - 3500;
широкополочных тавров и прямоугольных труб - 2500.
ФС сварных или прокатных двутавров, подверженных изгибу или совместному действию изгиба и растяжения, следует, как правило, применять, если суммарное растягивающее усилие, воспринимаемое ФС от растянутой
зоны присоединяемого элемента, не превышает 3000 кН.
5. РАСЧЕТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
5.1. ФС элементов стальных конструкций следует проверять расчетами на:
прочность болтов;
прочность фланцев на изгиб;
прочность соединений на сдвиг;
прочность сварных швов соединения фланца с элементом конструкции.
5.2. Методы расчета следует применять только для ФС, конструктивная форма которых отвечает требованиям раздела 4.
5.3. Предельное состояние ФС определяют следующие yсловия:
усилие в наиболее нагруженном болте, определенное с учетом совместной работы болтов соединения, не должно превышать расчетного усилия растяжения болта;
изгибные напряжения во фланце не должны превышать расчетных сопротивлений стали фланца по пределу текучести.
5.4. Расчет прочности ФС элементов открытого профиля, подверженных центральному растяжению.
Количество болтов внутренней зоны
определяет конструктивная форма соединения. Количество болтов наружной зоны предварительно назначают из условия:
,
где
- внешняя нагрузка на соединение;
- предельное внешнее усилие на один болт внутренней зоны, равное 0,9
- предельное внешнее усилие на один болт наружной зоны, равное
;
;
- коэффициент, учитывающий неравномерное распределение внешней нагрузки между болтами внутренней и наружной зон, определяемый по табл.2.
Таблица 2
Диаметр болта
Толщина фланца, мм
Соотношение внешних усилий на один болт внутренней и
наружной зон
М20
16
2,5
(1)

367.

М24
М27
20
1,7
25
1,4
30
1,2
20
2,6
25
1,8
30
1,5
40
1,1
25
2,1
30
1,7
40
1,2
Прочность фланца и болтов, относящихся к внутренней зоне, следует считать обеспеченной, если: болты расположены в соответствии с указаниями п.4.6, толщина фланца составляет 20 мм и выше, а
усилие на болт от действия внешней нагрузки не превышает величины
.
5.5. При расчете на прочность болтов и фланца, относящихся к наружной зоне, выделяют отдельные участки фланцев, которые рассматривают как Т-образные (см. рис.1) шириной
.
Прочность ФС следует считать обеспеченной, если
,
где
- расчетное усилие растяжения, воспринимаемое ФС, определяемое по формулам
если
если
где
(2)
,
(3)
,
(4)
,
(5)
;
;
,
,
- расчетное усилие на болт, определяемое из условия прочности соединения по болтам;
- расчетное усилие на болт, определяемое из условия прочности фланца на изгиб.
где
- коэффициент, зависящий от безразмерного параметра жесткости болта
, определяемый по табл.3 или по формуле:
;
(6)

368.

;
(7)
,
где
,
(8)
,
- параметр, определяемый по табл.4 или из уравнения
,
где
(9)
- толщина фланца;
- ширина фланца, приходящаяся на один болт наружной зоны
- расстояние от оси болта до края сварного шва
-го Т-образного участка фланца;
-го Т-образного участка фланца.
Таблица 3
0,02
0,04
0,06 0,08
0,1
0,2
0,4
0,6
0,8
1,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
8,0
10
15
0,907 0,836 0,79 0,767 0,744 0,67 0,602 0,561 0,53 0,509 0,467 0,438 0,41 0,396 0,367 0,34 0,325 0,296 0,27 0,232
6
3
2
5
4
3
Таблица 4
Параметр
при
1,4
1,6
1,8
2,0
2,2
2,4
2,7
3,0
4,0
5,0
0,02
3,252
2,593
2,221
1,986
1,826
1,710
1,586
1,499
1,333
1,250
0,06
2,960
2,481
2,171
1,962
1,812
1,702
1,582
1,497
1,333
1,250
0,1
2,782
2,398
2,130
1,939
1,799
1,694
1,578
1,494
1,332
1,249
0,5
2,186
2,036
1,908
1,776
1,711
1,636
1,545
1,475
1,327
1,248
1,0
1,949
1,860
1,780
1,707
1,643
1,586
1,514
1,454
1,321
1,246
2,0
1,757
1,704
1,653
1,607
1,564
1,524
1,470
1,424
1,312
1,242
3,0
1,660
1,621
1,584
1,548
1,515
1,483
1,440
1,402
1,303
1,238
4,0
1,599
1,568
1,537
1,508
1,480
1,454
1,417
1,384
1,296
1,235

369.

5,0
1,555
1,529
1,503
1,478
1,454
1,431
1,399
1,370
1,289
1,232
6,0
1,522
1,498
1,476
1,454
1,433
1,413
1,384
1,357
1,283
1,230
8,0
1,473
1,454
1,436
1,418
1,401
1,384
1,360
1,337
1,273
1,224
10
1,438
1,422
1,406
1,391
1,377
1,362
1,341
1,322
1,264
1,219
15
1,381
1,369
1,358
1,346
1,335
1,324
1,308
1,293
1,247
1,210
Примеры расчета и проектирования соединений элементов, подверженных растяжению, приведены в приложении 6.
5.6. Расчет ФС элементов открытого профиля, подверженных изгибу и совместному действию изгиба и растяжения.
Максимальные и минимальные значения нормальных напряжений в присоединяемом профиле
где
и
от действия изгиба и продольных сил определяют в плоскости его соединения с фланцем по формуле*:
,
(10)
,
(11)
- изгибающий момент и продольное усилие, воспринимаемые ФС;
- момент сопротивления сечения присоединяемого профиля;
- площадь поперечного сечения присоединяемого профиля.
_______________
* При расчете
с целью упрощения наличием ребер, ужесточающих фланец, можно пренебречь.
Усилия в поясах присоединяемого профиля
где
- площадь поперечного сечения пояса
определяют по формуле
или
(рис.4);
- площадь поперечного сечения участка стенки в зоне болтов растянутого пояса;
;
;
- толщина стенки, полок и высота присоединяемого профиля; остальные обозначения приведены на рис.4.

370.

Рис.4. Схема к расчету фланцевых соединений изгибаемых элементов из двутавров
Усилия в растянутой части стенки присоединяемого профиля определяют по формуле
при
при
где
,
.
Прочность ФС считается обеспеченной, если:
,
,
,
;
(12)

371.

при
,
(13)
;
при
,
(14)
,
где
- расчетное усилие, воспринимаемое болтами растянутого пояса
при наличии ребра жесткости (см. рис.4)
, равное:
;
(15)
при симметричном расположении болтов относительно пояса
;
(16)
;
(17)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
(18)
- расчетное усилие, воспринимаемое болтами растянутой части стенки, равное:
;
- расчетное усилие, воспринимаемое болтами растянутого пояса
(19)
, равное:
при наличии ребра жесткости
;
(20)

372.

при отсутствии ребра жесткости
;
(21)
при отсутствии болтов ряда
;
- расчетное усилие на болт наружной зоны
(22)
-го Т-образного участка фланца растянутого пояса или стенки, определяемое по формулам (2)-(9) в соответствии с указаниями п.5.5;
- число болтов наружной зоны растянутого пояса
;
- число болтов наружной зоны растянутого пояса
;
- число рядов болтов растянутой части стенки;
;
;
;
;
;
- коэффициент, равный 0,8 для
400 мм, 0,9 для
мм, в остальных случаях 1,0.
Пример расчета фланцевого соединения изгибаемых элементов приведен в приложении 7.
5.7. Расчет прочности ФС элементов замкнутого профиля, подверженных центральному растяжению.
Прочность соединения, конструктивная форма которого отвечает требованиям раздела 4, следует считать обеспеченной, если
,
где
мм,
(23)
- количество болтов в соединении;
- коэффициент, значение которого следует принимать по табл.5.
Таблица 5
Диаметр болта, мм
Толщина фланца, мм
М20
0,85
М24
0,8
0,85
М27
0,8
0,85

373.

5.8. Прочность ФС растянутых элементов открытого и замкнутого профилей на действие местной поперечной силы
следует проверять по формуле
,
где
(24)
- количество болтов наружной зоны для ФС элементов открытого профиля и количество болтов для ФС элементов замкнутого профиля;
- контактные усилия, принимаемые равными 0,1
для ФС элементов замкнутого профиля, а для элементов открытого профиля определяемые по формуле
;
(25)
- расчетное усилие на болт, определяемое по формуле (5) в соответствии с указаниями п.5.5;
- коэффициент трения соединяемых поверхностей фланцев, принимаемый в соответствии с указаниями п.11.13* главы СНиП II-23-81*.
При отсутствии местной поперечной силы в расчет вводится условное значение
.
5.9. Прочность ФС сжатых элементов открытого и замкнутого профилей, а также ФС изгибаемых элементов открытого профиля на действие сдвигающих сил
следует проверять по формуле
,
где
(26)
- усилие сжатия в ФС от действия внешней нагрузки, для ФС изгибаемых элементов определяемое по формуле
,
(27)
где
- усилие растяжения или сжатия в присоединяемом элементе от действия внешней нагрузки.
5.10. Расчет прочности сварных швов соединения фланца с элементом конструкции следует выполнять в соответствии с требованиями главы СНиП II-23-81* с учетом глубины проплавления корня шва на 2 мм по трем
сечениям (рис.5):
Рис.5. Схемы расчетных сечений сварного соединения (сварка механизированная):
1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления с профилем; 3 - сечение по металлу границы сплавления с фланцем
по металлу шва (сечение 1)
;
по металлу границы сплавления с профилем (сечение 2)
(28)

374.

;
(29)
по металлу границы сплавления с фланцем в направлении толщины проката (сечение 3)
,
где
(30)
- расчетная длина шва, принимаемая меньше его полной длины на 10 мм;
- коэффициенты:
=0,7;
принимается по табл.34* главы СНиП II-23-81*;
- коэффициенты условий работы шва;
- коэффициент условий работы сварного соединения,
=1,0;
- расчетные сопротивления угловых швов срезу (условному) по металлу шва и металлу границы сплавления с профилем соответственно, принимаются по табл.3 главы СНиП II-23-81*;
- расчетное сопротивление растяжению стали в направлении толщины фланца, принимается по табл.1* главы СНиП II-23-81*.
6. ИЗГОТОВЛЕНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
Материал и обработка деталей ФС
6.1. Качество проката, применяемого для изготовления фланцев в соответствии с требованиями п.2.2, должно быть гарантировано сертификатом завода - поставщика проката.
Завод строительных стальных конструкций (в дальнейшем завод-изготовитель) обязан маркировать каждый фланец с указанием марки стали, номера сертификата завода - поставщика проката, номера плавки, номера
приемного акта завода - изготовителя конструкций.
Маркировку следует выполнять металлическими клеймами на поверхности фланца в месте, доступном для осмотра после монтажа конструкций. Глубина клеймения не должна превышать 0,5 мм. Место для клейма должно
быть указано в чертежах КМ.
6.2. При входном контроле проката, применяемого для изготовления фланцев, следует проверить соответствие данных сертификата требованиям, предъявляемым к качеству этого проката. При отсутствии сертификата заводизготовитель должен проводить испытания проката с целью определения требуемых механических свойств и химического состава, определяющих качество проката. При этом проверку механических свойств стали в направлении
толщины проката следует проводить по методике, приведенной в приложении 8. Контроль качества стали фланцев методами ультразвуковой дефектоскопии следует выполнять в соответствии с указаниями п.2.4.
6.3. Заготовку фланцев следует выполнять машинной термической резкой.
6.4. Заготовку элементов, присоединяемых к фланцам, следует выполнять машинной термической резкой или механическим способом (пилы, отрезные станки). При применении ручной термической резки торцы элементов
должны быть затем обработаны механическим способом (например, фрезеровкой).
6.5. Отклонения размеров фланцев, отверстий под болты и элементов, соединяемых с фланцем, должны удовлетворять требованиям, изложенным в табл.6.
Таблица 6
Контролируемый параметр
Предельное отклонение
1. Отклонения торца присоединяемого к
фланцу элемента
0,002
, где
- высота и ширина сечения элемента. Максимальный зазор между
фланцем и торцом присоединяемого элемента не должен превышать 2 мм

375.

2. Шероховатость торцевой поверхности
элемента, присоединяемой к фланцу
320, допускаются отдельные "выхваты" глубиной не более 1 мм в количестве 1
шт. на длине 100 мм
3. Отклонение габаритных размеров фланца
±2,0 мм
4. Разность диагоналей фланца
±3,0 мм
5. Отклонение центров отверстий в пределах
группы
±1,5 мм
6. Отклонение диаметра отверстия
+0,5 мм
6.6. Отверстия во фланцах следует выполнять сверлением. Заусенцы после сверления должны быть удалены.
Сборка и сварка ФС
6.7. Сборку элементов конструкций с фланцевыми соединениями следует производить только в кондукторах.
6.8. В кондукторе фланец следует фиксировать и крепить к базовой поверхности не менее чем двумя пробками и двумя сборочными болтами.
6.9. Базовые поверхности кондукторов должны быть фрезерованы. Отклонение тангенса угла их наклона не должно превышать 0,0007 в каждой из двух плоскостей.
6.10. ФС следует сваривать только после проверки правильности их сборки. Сварные швы следует выполнять механизированным способом с применением материалов, указанных в п.2.7, и проплавлением корня шва не менее
2 мм.
6.11. Технология сварки должна обеспечивать минимальные сварочные деформации фланцев.
6.12. После выполнения сварных швов ФС сварщик должен поставить свое клеймо, место расположения которого должно быть указано в чертежах КМ.
6.13. После выполнения сварки внешние поверхности фланцев должны быть отфрезерованы. Толщина фланцев после фрезеровки должна быть не менее указанной в чертежах КМД.
Запрещается осуществлять наклон соединяемых элементов за счет изменения толщины фланца (клиновидности).
6.14. Точность изготовления отправочных элементов конструкций с ФС должна соответствовать требованиям, изложенным в табл.7.
Таблица 7
Контролируемый параметр
1. Тангенс угла отклонения фрезерованной поверхности фланцев
Предельное отклонение
Не более 0,0007
2. Зазор между внешней плоскостью фланца и ребром стальной
линейки
0,3 мм
3. Отклонение толщины фланца (при механической обработке
торцевых поверхностей)
±0,02
4. Смещение фланца от проектного положения относительно осей
сечения присоединяемого элемента
±1,5 мм
5. Отклонение длины элемента с ФС
0; -5,0 мм

376.

6. Совпадение отверстий в соединяемых фланцах при контрольной
сборке
Калибр диаметром, равным номинальному диаметру болта,
должен пройти в 100% отверстий
Грунтование и окраска
6.15. При отсутствии специальных указаний в чертежах КМ фланцы должны быть огрунтованы и окрашены теми же материалами и способами, что и конструкция в целом.
Контроль качества ФС
6.16. Контрольную сборку элементов конструкций с ФС следует проводить в объеме не менее 10% общего количества, но не менее 4 шт. взаимно соединяемых элементов.
Обязательной контрольной сборке подлежат первые и последние номера элементов в соответствии с порядковым номером изготовления.
6.17. В процессе выполнения работ по сварке ФС следует контролировать:
квалификацию сварщиков в соответствии с правилами предприятия, изготавливающего конструкции;
качество сварочных материалов в соответствии с действующими стандартами и паспортами изделий;
качество подготовки и сборки деталей под сварку в соответствии с главой СНиП III-18-75, раздел 1 и настоящими рекомендациями;
качество сварных швов в соответствии со СНиП III-18-75: в соединениях сжатых элементов по поз.1.2 табл.3 раздела 1, в соединениях растянутых и изгибаемых элементов категории швов сварных соединений 1 по поз.3
табл.41 и поз.1, 2, 3 табл.42 разд.9; а также в соответствии с ГОСТ 14771-76 и требованиями пп.6.10 и 6.11 настоящих рекомендаций.
6.18. 100-процентному контролю следует подвергать параметры, указанные в пп.1, 2 табл.6 и пп.1-6 табл.7 настоящих рекомендаций, а также наличие и правильность маркировки и клейма сварщиков на фланце.
6.19. Фланцы после их приварки к соединяемым элементам следует подвергать 100-процентному контролю ультразвуковой дефектоскопией. Результаты контроля должны удовлетворять требованиям п.2.5 настоящих
рекомендаций.
6.20. При отправке конструкций с ФС завод-изготовитель кроме документации, предусмотренной п.1.22 главы СНиП 3.03.01-87, должен представить копию сертификата, удостоверяющего качество стали фланцев, а также
документы о контроле качества сварных соединений. Если фланцы изготовлены из марок стали, отличных от указанных в п.2.2, завод-изготовитель должен представить документы о качестве проката, применяемого для фланцев в
соответствии с указаниями пп.2.3 и 2.4 настоящих рекомендаций.
7. МОНТАЖНАЯ СБОРКА ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
7.1. Проекты производства работ (ППР) по монтажу конструкций должны содержать технологические карты, предусматривающие выполнение ФС в конкретных условиях монтируемого объекта в соответствии с указаниями
"Рекомендаций по сборке фланцевых монтажных соединений стальных строительных конструкций" (ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкция. - М.: ЦБНТИ Минмонтажспецстроя СССР, 1986).
7.2. Подготовку и сборку ФС следует проводить под руководством лица (мастера, прораба), назначенного приказом по монтажной организации ответственным за выполнение этого вида соединений на объекте.
7.3. Технологический процесс выполнения ФС включает:
подготовительные работы;
сборку соединений;
контроль натяжения высокопрочных болтов;
огрунтование и окраску соединений.
7.4. Высокопрочные болты, гайки и шайбы к ним должны быть подготовлены в соответствии с п.4.25 главы СНиП 3.03.01-87, пп.3.1.2-3.1.8 ОСТ 36-72-82.
7.5. Подготовку контактных поверхностей фланцев следует осуществлять в соответствии с указаниями чертежей КМ и КМД по ОСТ 36-72-82. При отсутствии таких указаний контактные поверхности очищают стальными или
механическими щетками от грязи, наплывов грунтовки и краски, рыхлой ржавчины, снега и льда.
7.6. Применение временных болтов в качестве сборочных запрещается.
7.7. Под головки и гайки высокопрочных болтов необходимо ставить только по одной шайбе.

377.

Выступающая за пределы гайки часть стержня болта должна иметь не менее одной нитки резьбы.
7.8. Натяжение высокопрочных болтов ФС необходимо выполнять от наиболее жесткой зоны (жестких зон) к его краям.
7.9. Натяжение высокопрочных болтов ФС следует осуществлять только по моменту закручивания.
7.10. Натяжение высокопрочных болтов на заданное усилие следует производить закручиванием гаек до величины момента закручивания
, который определяют по формуле
,
(31)
где - коэффициент, принимаемый равным: 1,06 - при натяжении высокопрочных болтов; 1,0 - при контроле усилия натяжения болтов;
- среднее значение коэффициента закручивания для каждой партии болтов по сертификату или принимаемое равным 0,18 при отсутствии таких значений в сертификате;
- усилие натяжения болта, Н;
- номинальный диаметр резьбы болта, м.
Отклонение фактического момента закручивания от момента, определяемого по формуле (31), не должно превышать 0; +10%.
7.11. После натяжения болтов гайки ничем дополнительно не закрепляются.
7.12. После выполнения ФС монтажник обязан поставить на соединение личное клеймо (набор цифр) в месте, предусмотренном в чертежах конструкций КМ или КМД, и предъявить собранное соединение ответственному
лицу.
7.13. Качество выполнения ФС на высокопрочных болтах ответственное лицо проверяет путем пооперационного контроля. Контролю подлежат: качество обработки (расконсервации) болтов; качество подготовки контактных
поверхностей фланцев; соответствие устанавливаемых болтов, гаек и шайб требованиям ГОСТ 22353-77 - ГОСТ 22356-77, а также требованиям, указанным в чертежах КМ и КМД; наличие шайб под головками болтов и гайками;
длина части болта, выступающей над гайкой; наличие клейма монтажника, осуществляющего сборку соединения; выполнение требований табл.8.
Таблица 8
Наименование отклонения
Допускаемое
отклонение, мм
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
линии стенок и полок профиля
0,2
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
краям фланцев:
для фланцев толщиной не более 25 мм
0,6
для фланцев толщиной более 32 мм
1,0
Примечание. Щуп толщиной 0,1 мм не должен проникать в зону радиусом 40 мм от оси болта
7.14. Контроль усилия натяжения следует осуществлять во всех установленных высокопрочных болтах тарированными динамометрическими ключами. Контроль усилия натяжения следует производить не ранее чем через 8 ч
после выполнения натяжения всех болтов в соединении, при этом усилия в болтах соединения должны соответствовать значениям, указанным в п.3.3 или табл.9.

378.

Таблица 9
Усилие натяжения болтов (контролируемое), кН (тс)
М20
М24
М27
167(17)
239(24,4)
312(31,8)
7.15. Отклонение фактического момента закручивания от расчетного не должно превышать 0; +10%. Если при контроле обнаружатся болты, не отвечающие этому условию, то усилие натяжения этих болтов должно быть
доведено до требуемого значения.
7.16. Документация, предъявляемая при приемке готового объекта, кроме предусмотренной п.1.22 главы СНиП 3.03.01-87, должна содержать сертификаты или документы завода-изготовителя, удостоверяющие качество стали
фланцев, болтов, гаек и шайб, документы завода-изготовителя о контроле качества сварных соединений фланцев с присоединяемыми элементами, журнал контроля за выполнением монтажных фланцевых соединений на
высокопрочных болтах.
Приложение 1
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ШИРОКОПОЛОЧНЫХ ДВУТАВРОВ
N
Схема фланцевого соединения
Марка профиля
,
кН
(тс)
, мм
2
3
4
5
6
7
20Ш1
1593
(163)
25
8
6
20К1
1626
(166)
25
9
6
20К2
1879
(192)
40
10
6
п
/
п
1
1
, мм
, мм

379.

2
23Ш1
1608
(164)
25
9
6
3
23К1
2237
(228)
30
9
6
23K2
2274
(232)
30
10
6
26Ш1
1913
(195)
30
10
7
26Ш2
1937
(197)
30
11
6
26К1
2815
(287)
30
10
6
26K2
2933
(299)
30
12
8
4
5

380.

6
7
30К1
3306
(337)
30
12
8
30К2
4032
(411)
40
12
8
30Ш1
2197
(224)
30
10
7
30Ш2
2668
(272)
40
12
7
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Болты М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4 тс).
4. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
5. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь сечения двутавра;
- максимальное расчетное сопротивление стали двутавра растяжению по пределу текучести);
- толщина фланцев;
- катеты угловых сварных швов стенки и полки двутавра соответственно.
Приложение 2
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ПАРНЫХ РАВНОПОЛОЧНЫХ УГОЛКОВ
N
п
/
п
Схема фланцевого соединения
Сечение элемента, мм
мм
, кН (тс)
, мм

381.

1
2
3
4
5
1
100
7
957
(97,6)
20
2
100
8
1224 (124,8)
25
110
8
125
8
1579*
(161,0)
30
125
9
140
9
1928** (196,5)
40
140
10
160
10
2156 (219,8)
30
160
11
3
4
5

382.

6
180
11
180
12
2613 (266,4)
30
_______________
* Марка сварочной проволоки - Св-10HMA; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Св-08ХН2ГМЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали равнополочных уголков по ГОСТ 8509-72 соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не менее 200 мм.
4. Все болты (за исключением болтов по схеме 6) М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27. Усилие предварительного натяжения 239 кН (24,4 тс).
5. Болты по схеме 6 - М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН (31,8 тс).
6. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
7. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
расчетное сопротивление стали уголка растяжению по пределу текучести);
, где
- площадь сечения уголка с максимальными типоразмерами из указанных в графе 3 для каждого фланцевого соединения;
- максимальное
- толщина фланцев;
- катет угловых сварных швов.
Приложение 3
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ШИРОКОПОЛОЧНЫХ ТАВРОВ
Таблица 1
N п/п
Схема фланцевого соединения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5

383.

1
10Шт1
800**
(81,5)
30
881**
(89,8)
25
1439* (146,7)
30
1919**
(195,6)
30
2537*
(258,6)
40
11,5Шт1
2
13Шт1
13Шт2 (см. п.6 примечаний)
3
15Шт1
15Шт2
15Шт3
4
17,5Шт1
17,5Шт2
17,5Шт3
5
20Шт1
20Шт2

384.

20Шт3
Таблица 2
N п/п
Схема фланцевого сечения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5
10Шт1
958
(97,6)
20
1227*
(125,1)
25
1494**
(152,3)
25
1919**
(195,6)
30
1
11,5Шт1
2
13Шт1
13Шт2
3
15Шт1
15Шт2
4
17,5Шт1
17,5Шт2

385.

17,5Шт3
20Шт1
5
2681**
(273,3)
40
20Шт2
20Шт3
_______________
* Марка сварочной проволоки - Св-10НМА; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Cв-08XH2ГMЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали тавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г20-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не менее 200 мм.
4. Все болты, за исключением болтов по схеме 5 (табл.1 и табл.2), М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4
тс).
5. Болты по схеме 5 (табл.1 и табл.2) М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН (31,8 тс).
6. На схеме (табл.1) представлено фланцевое соединение тавров с расчетным сопротивлением не выше 315 и 270 МПа для 13Шт1 и 13Шт2 соответственно.
7. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
8. Обозначения, принятые в таблицах:
- расчетная продольная сила фланцевых соединений (
расчетное сопротивление стали тавра растяжению по пределу текучести);
, где
- площадь сечения тавра с максимальными типоразмерами из указанных в графе 3 для каждой схемы фланцевых соединений;
- максимальное
- толщина фланцев;
- катеты угловых сварных швов стенки и полки тавра соответственно.
Приложение 4
COPTAМEHT ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ КРУГЛЫХ ТРУБ
N
п/п
Схема фланцевого соединения
1
2
Сечение трубы, мм
мм
, кН (тс)
, мм
, мм
,
, мм
мм
3
4
5
6
7
8

386.

1
114
2,5
121
245
175
5,0; 6,0*
255
185
127
3,0
4,0
255
185
140
3,5; 4,5
275
205
20
140
4,0
8,0*
(92,2)
903
25
310
220
24
159
3,5; 5,5
630
20
300
220
20
168
4,0
903
25
350
250
24
(138,2) 1356
25
350
250
24
400
300
400
300
430
330
400
300
430
330
168
2
3
6,0
8,0
219
6,0; 8,0*
219
10,0*
10,0*
4,0
20
20
8,0*
219
7,0; 8,0
10,0
(184,3) 1808
25
24
6,0
245
245
(64,2)
630
6,0*
168
219
4
5,0
12,0*
(230,4) 2260
25
24

387.

273
4,5.....**6,0
273
8,0; 10,0*
325
5
460
360
5,0; 5,5
535
425
377
5,0
560
460
273
7,0; 8,0
460
360
273
12,0*
460
360
377
9,0; 10,0
560
460
325
6,0
520
410
8,0
(276,5) 2712
8,0
(360)
3532
25
30
24
27
_______________
* Горячедеформированные трубы по ГОСТ 8732-78*
** Брак оригинала. - Примечание изготовителя базы данных.
Примечания: 1. Типоразмеры и марки стали электросварных прямошовных труб по ГОСТ 10704-76 и горячедеформированных труб по ГОСТ 8732-78* соответствуют сокращенному сортаменту металлопроката для
применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали ребер жесткости назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Толщина ребер принимается равной толщине стенки трубы с округлением в большую сторону. Длина ребер
определяется конструктивными особенностями соединения, но не менее 1,5 диаметра трубы для четных и 1,7 диаметра трубы для нечетных ребер.
4. Болты М20, М24 и М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 23, 28 и 31 мм. Усилие предварительного натяжения 167, 239 и 312 кН соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
6. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
трубы растяжению по пределу текучести);
- толщина фланцев;
- диаметр фланцев;
- диаметр болтовой риски;
- диаметр болтов.
, где
- площадь сечения трубы с типоразмерами из указанных в графе 3 для каждого фланцевого соединения;
- расчетное сопротивление стали

388.

Приложение 5
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Геометрические параметры соединений
Диаметр
болта
Параметры,
мм
Номер профиля ригеля
26Б1
30Б1
35Б1
35Б2
40Б1
М24
М27
45Б1
50Б1
55Б1
60Б1
45Б2
50Б2
55Б2
60Б2
70Б1
70Б2
80Б1
90Б1
100Б1
100Б2
23Ш1
26Ш1
26Ш2
30Ш1
35Ш1
40Ш1
50Ш1
30Ш2
35Ш2
40Ш2
60Ш1
70Ш1
70Ш2
90
90
100
100
90
90
100
100
60
60
60
60
60
60
60
60
40
45
45
50
40
45
45
50
100
100
110
110
100
100
110
110
70
70
70
70
70
70
70
70
45
50
50
55
45
50
50
55

389.

Примечание. Параметр
может быть изменен в зависимости от типа колонны при выполнении условий, изложенных в разделе 4 (п.4) настоящих рекомендаций.
НЕСУЩАЯ СПОСОБНОСТЬ СОЕДИНЕНИЯ (тс·м)
Тип
фла
н- ца
1
2
3
4
Диаметр
болт
а
Номер профиля ригеля
26
Б1
30Б1
35
Б1
35
Б2
40Б1
40Б2
45
Б1
45
Б2
50Б1
50Б2
55
Б1
55
Б2
60Б1 70Б1 80Б1
60Б2 70Б2
90
Б1
100Б
1
23Ш
1
26Ш
1
26Ш
2
30Ш
1
30Ш
2
35Ш
1
35Ш
2
40
Ш
1
40
Ш
2
50Ш
1
50Ш
2
60Ш
1
70Ш
1
70Ш
2
М24
15,
5
18,5
22,
2
25,9
31,
7
35,6
41,
9
46,7
-
-
-
-
13,0
15,2
17,8
21,1
-
-
-
-
М27
-
-
-
36,3
40,
7
-
-
-
-
-
-
-
-
19,4
22,6
-
-
-
-
-
М24
-
-
-
28,8
35,
3
40,2
48,
1
53,5
63,9
74,4
-
-
-
-
-
-
-
-
-
-
М27
-
-
-
-
-
50,5
58,
6
-
-
-
-
-
-
-
-
-
-
-
-
-
М24
-
-
-
-
-
63,5
73,
8
81,9
97,4
112,
9
12
9,5
145,
4
-
-
31,3
37,6
44,
8
61,6
79,2
-
М27
-
-
-
-
-
-
-
100,
7
119,
8
139,
0
-
-
-
-
-
45,6
54,
5
-
-
-
М24
-
-
-
-
-
-
-
-
136,
7
159,
4
18
3,7
206,
8
-
-
-
-
62,
8
86,1
110,
3
132
М27
-
-
-
-
-
-
-
-
-
-
22
2,0
258,
6
-
-
-
-
-
103,
1
132,
7
160
СВАРНЫЕ ШВЫ
Номер
26
30Б
35Б
40Б
45
50
55
60
70
8
90
100Б
23
30
40
50
70Ш

390.

профиля
ригеля
Б
Б
Б
Б
Б
Б
0
Б
Б
Ш
26
Ш
Ш
Ш
Ш
60
Ш
35
Ш
8
8
8
8
8
10
12
12
*
14
*
1
4
*
14
*
14*
8
10
10
12
*
12*
10
10
10
10
14
14
16
16
*
16
*
1
6
*
16
*
20*
10
14
16
16
*
18*
_______________
* Марка сварочной проволоки Св-10 НМА, Св-10Г2 по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ГОСТ 19282-73, 09Г2С-15 по ГОСТ 19282-73.
3. Болты высокопрочные М24 и М27 из стали 40Х ’’Селект" климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а также гайки высокопрочные и шайбы к ним по
ГОСТ 22353-77 - ГОСТ 22356-77.
Усилие предварительного натяжения болтов: М24 - 239 кН; М27 - 312 кН.
4. Диаметр отверстий 28 и 31 мм под высокопрочные болты М24 и М27 соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
Приложение 6
ПРИМЕРЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ПРОЧНОСТИ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ, ПОДВЕРЖЕННЫХ РАСТЯЖЕНИЮ
1. Фланцевое соединение растянутых элементов из парных равнополочных уголков
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - парные равнополочные уголки
=360 МПа (3650 кгс/см ) и временным сопротивлением стали разрыву с
усилие растяжения, действующее на соединение,
по ГОСТ 8509-72 из стали марки 09Г2С-6 по ГОСТ 19282-73 с расчетным сопротивлением стали растяжению по пределу текучести
=520 МПа (5300 кгс/см ), площадь сечения профиля
=2х22=44 см ;
=1557 кН (159 тс);
материал фланца - сталь марки 09Г2С-15 по ГОСТ 19282-73 с расчетным сопротивлением растяжению по пределу текучести
=290 МПа (2950 кгс/см ) и нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с указаниями главы СНиП II-23-81*)
Толщина фланца =30 мм;
болты высокопрочные М24, расчетное усилие болта
катеты сварных швов принять равными
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
МПа (1480 кгс/см ).
=239 кН (24,4 тс);
=10 мм, сварка механизированная проволокой марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм, расчетное сопротивление угловых
швов срезу по металлу шва и по металлу границы сплавления соответственно
=215 МПа (2200 кгс/см ),
материал фасонки - сталь марки 09Г2С-12-2 по ТУ 14-1-3023-80, толщина фасонки
=14 мм.
МПа (2390 кгс/см );

391.

Проверка прочности сварных швов
Определяем длину сварных швов (рис.1):
см, а также необходимые для расчета параметры в соответствии с требованиями главы СНиП II-23-81*:
прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем сечениям:
=0,7,
=1,0,
=1,0,
=1,0,
=1,0. Проверку
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2390 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Рис.1. Схема к примеру расчета фланцевого соединения парных равнополочных уголков 125х9
Таким образом, прочность сварных швов обеспечена.
Для предотвращения внецентренного приложения внешнего усилия на соединение центр тяжести сварных швов должен совпадать с центром тяжести соединяемого профиля. Поэтому необходимо
выполнение условия:
=0, где
- статический момент сварных швов относительно оси
, или
= , где
и
- статические моменты сварных швов выше и ниже оси
соответственно.

392.

Разница между
и
составляет
.
Конструирование и расчет прочности ФС
Конструктивная форма соединения принята, как показано на рис.1. В таком соединении количество болтов внутренней зоны
[см. раздел 5]:
=4. Количество болтов наружной зоны
предварительно назначаем из условия (1)
,
где
- предельное внешнее усилие на болт внутренней зоны от действия внешней нагрузки;
особенностям соединения предварительно назначаем количество болтов наружной зоны
- предельное внешнее усилие на один болт наружной зоны, определяемое по табл.2 (раздел 5). По конструктивным
=4.
Расстановку болтов производим в соответствии с указаниями п.4.6. В соответствии с указаниями п.4.7 болты должны быть расположены безмоментно относительно оси
С учетом, что
=1,5 имеем:
(см. рис.1), поэтому
.
,
таким образом это условие выполнено.
Прочность ФС следует считать обеспеченной, если выполняется условие (2):
,
где - расчетное усилие растяжения, воспринимаемое ФС и определяемое по формулам (3) или (4). Для определения необходимо найти величину
- расчетное усилие на болт наружной зоны -го участка фланца,
представляемого условно как элементарное Т-образное ФС. Заметим, что в силу конструктивных особенностей в этом соединении можно выделить два участка наружной зоны I и II (на рис.1 эти участки заштрихованы). Поэтому
для нахождения величины необходимо определить значения
и
и выбрать наименьшее из них.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к участку I наружной зоны, определяем из условия:
.
Значение
определяем по формуле (5)
, где
находим по формуле (6)
,a
- по формуле (7)
,
здесь
=24 мм - номинальный диаметр резьбы болта,
- ширина фланца, приходящаяся на один болт участка I наружной зоны,

393.

мм - усредненное расстояние между осью болта и краями сварных швов полки уголка и фасонки.
Тогда:
кН (17,7 тс).
Значение
определяем по формуле (8)
,
для чего находим значения
и
:
,
а значение
Тогда:
определяем по табл.4 (
).
кН (28,4 тс).
Поскольку
, принимаем
кН (17,7 тс).
Определение
Значение
находим так же, как и
, с той лишь разницей, что для участка II
мм, а
С учетом этого
тогда
кН (17,6 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
значение
тогда:
определяем по табл.4 (
=1,5),
кН (20,7 тс).
Поскольку
, принимаем

394.

кН.
Так как
, принимаем
.
Поскольку
, расчетное усилие растяжения, воспринимаемое ФС, определяем по формуле (3)
(162 тс).
Проверяем выполнение условия (2):
.
Условие (2) выполнено, таким образом, прочность ФС следует считать обеспеченной.
2. Фланцевое соединение растянутых элементов из круглых труб
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - электросварная прямошовная труба 273х8 мм по ГОСТ 10704-76 из стали марки 09Г2С по ТУ 14-3-500-76 с расчетным сопротивлением стали растяжению по пределу
текучести
=250 МПа (2550 кгс/см ) и временным сопротивлением стали разрыву
усилие растяжения, действующее на соединение,
=470 МПа (4800 кгс/см ), площадь сечения трубы
=66,62 см ;
=1666 кН (170 тс);
материал фланца - сталь марки 09Г2С-15 по ГОСТ 19282-73 с расчетным сопротивлением растяжению по пределу текучести
=290 МПа (2950 кгс/см ) и нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с указаниями главы СНиП II-23-81*)
Толщина фланца =25 мм;
болты высокопрочные М24, расчетное усилие болта
катеты сварных швов принять равными
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
МПа (1480 кгс/см ).
=239 кН (24,4 тс);
=8 мм, сварка механизированная проволокой марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм, расчетное сопротивление угловых
швов срезу по металлу шва и по металлу границы сплавления соответственно
=215 МПа (2200 кгс/см ),
материал ребер жесткости - сталь марки 09Г2С по ТУ 14-1-3023-80, толщина ребер жесткости
МПа (2160 кгс/см );
=10 мм.
Расчет прочности и проектирование ФС
В соответствии с указаниями п.5.7 прочность ФС элементов замкнутого профиля считается обеспеченной, если:
при
Из этого условия определим необходимое количество болтов
мм.
в соединении:
шт.
Количество болтов в соединении принимаем
=8 шт.
Конструирование ФС осуществляем в соответствии с указаниями раздела 4.
При принятом количестве болтов в соединении минимальное количество ребер жесткости
=4. Длина нечетных ребер:

395.

мм,
длина четных ребер:
мм, принимаем
где
=470 мм.
- диаметр трубы.
В соответствии с указаниями п.4.6 болты располагаем как можно ближе к элементам присоединяемого профиля, при этом:
мм,*
_________________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.
мм, с округлением принимаем =50 мм.
Определяем диаметр риски болтов:
мм, принимаем
=355 мм, а диаметр фланца:
мм.
Угол между радиальными осями ребра и болтов, расположенными у ребра:
, с округлением принимаем
=20°.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.2):
мм, а также необходимые для расчета параметры в соответствии с требованиями главы СНиП II-23-81*:
Рис.2. Схема к примеру расчета фланцевого соединения элементов из круглых труб 273х8
Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
=0,7,
=1,0,
=1,0,
=1,0,
=1,0.

396.

;
МПа (2160 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Таким образом, прочность сварных швов обеспечена.
Приложение 7
ПРИМЕР РАСЧЕТА ФЛАНЦЕВОГО СОЕДИНЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Провести проверочный расчет фланцевого соединения (см. рисунок).
Схема к примеру расчета фланцевого соединения широкополочного двутавра 160Б1, подверженного
воздействию изгиба и растяжения
Данные, необходимые для расчета:
профиль присоединяемого элемента - 160Б1 по ГОСТ 26020-83 из стали марки 09Г2С, площадь сечения профиля
=131 см , площадь сечения пояса
=35,4 см , момент сопротивления профиля
;
изгибающий момент и продольное усилие, действующие на соединение, соответственно
=686 кН·м (70 тс·м) и
=490,5 кH (50 тс);
материал фланца - сталь марки 14Г2АФ-15 по ТУ 14-105-465-82 с расчетным сопротивлением изгибу по пределу текучести
=368 МПа (3750 кгс/см ), толщина фланца принята равной
болты высокопрочные М24, расчетное усилие растяжения болта
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
катеты сварных швов по поясам профиля
=8 мм.
=12 мм, по стенке
=239 кН (24,4 тс);
=25 мм;
=2610 см

397.

Максимальное и минимальное значения нормальных напряжений в присоединяемом профиле от действия изгиба и продольных усилий определяем по формуле (10) [см. раздел 5]:
;
.
Усилие в растянутом поясе присоединяемого элемента определяем по формуле (11):
,
где
- площадь сечения участка стенки в зоне болтов растянутого пояса (см. рис.4 и рисунок в настоящем приложении);
;
=10 мм - толщина стенки профиля;
=70 мм - ширина фланца, приходящаяся на один болт, расположенный вдоль стенки профиля;
=15,5 мм - толщина пояса профиля.
мм,
=80·10=800 мм, тогда
=(3540+800)·300=1302 кН (132,5 тс).
Усилие в растянутой части стенки определяем по формуле (12):
,
где
,
;
мм,
тогда
кН (30,5 тс).
Прочность ФС считаем обеспеченной, если при
и
выполняется условие (13):
;
.
При принятом конструктивном решении ФС (наличие ребра жесткости растянутого пояса и симметричное расположение болтов относительно пояса
воспринимаемое болтом и фланцем, относящимися к растянутому поясу,
определяем по формуле (16):
,
, см. рисунок) расчетное усилие растяжения,

398.

то же, к растянутой части стенки,
- по формуле (19):
.
Определение
Поскольку
мм, то
,
,
,
мм - расстояние от оси болтов ряда
до пояса профиля.
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к наружной зоне пояса, определяем из условия:
.
Значение
определяем по формуле (5):
, где
находим по формуле (6):
,a
- по формуле (7):
,
здесь
=24 мм - номинальный диаметр резьбы болта,
=70 мм - ширина фланца, приходящаяся на один болт наружной зоны растянутого пояса профиля;
=33 мм - расстояние от оси болтов ряда
до края сварного шва растянутого пояса профиля (
мм).
Тогда:
,
и
кН (15,7 тс).
Значение
определяем по формуле (8):
,
для чего находим значения
и
:

399.

Н·см;
.
Значение
определяем по табл.4 (
=1,48).
Тогда:
кН (20,1 тс).
Поскольку
, принимаем
кН (15,7 тс) и
.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к растянутой части стенки профиля, определяем из условия:
.
Значения
и
определяем по формулам (5) и (8). Расчет всех параметров, необходимых для определения
относящихся к стенке профиля, параметр
=37 мм (
и
, выполняем так же, как и при определении
мм). Тогда:
;
,
кН (14,7 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
Н·см;
;
значение
определяем по табл.4 (
=1,42);
кН (18,2 тс).
Поскольку
, то принимаем
кН (14,7 тс).
Находим значение
:
, с той лишь разницей, что для болтов и фланца,

400.

кН (31,8 тс).
Определив значения
и
, проверяем условие (13):
кН (132,5 тс)
кН (30,5 тс)
кН (138,4 тс);
кН (31,8 тс).
Условие (13) выполнено. Проверка прочности сварных швов выполнена в соответствии с п.5.10 настоящих рекомендаций. Прочность сварных швов обеспечена.
Таким образом, прочность фланцевого соединения обеспечена.
Приложение 8
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ТОЛСТОЛИСТОВОГО
ПРОКАТА ДЛЯ ФЛАНЦЕВ
1. Общие положения
1.1. Настоящие указания распространяются на толстолистовой прокат строительных сталей толщиной от 12 до 50 мм включительно, предназначенный для изготовления фланцев соединений растянутых и
изгибаемых элементов, и устанавливают методику испытаний на статическое растяжение с целью определения следующих характеристик механических свойств металлопроката в направлении толщины при
температуре
°С: предела текучести (физического или условного); временного сопротивления разрыву; относительного удлинения после разрыва; относительного сужения после разрыва.
1.2. Определяемые в соответствии с настоящими методическими указаниями механические свойства могут быть использованы для контроля качества проката для металлоконструкций; анализа причин разрушения
конструкций; сопоставления материалов при обосновании их выбора для конструкций; расчета прочности несущих элементов с учетом их работы по толщине листов; сравнения сталей в зависимости от химического состава,
способа выплавки и раскисления, сварки, вида термообработки, толщины и т.д.
1.3. При испытании на статическое растяжение принимаются следующие обозначения и определения:
рабочая длина *, мм - часть образца с постоянной площадью поперечного сечения между его головками или участками для захвата;
_______________
* Буквенные обозначения приняты по ГОСТ 1497-73**.
** На территории Российской Федерации действует ГОСТ 1497-84. Здесь и далее. - Примечание изготовителя базы данных.
начальная расчетная длина образца
, мм - участок рабочей длины образца до разрыва, на которой определяется удлинение;
конечная расчетная длина образца после его разрыва
, мм;
начальный диаметр paбочей части цилиндрического образца до разрыва
минимальный диаметр цилиндрического образца после его разрыва
, мм;
, мм;
начальная площадь поперечного сечения рабочей части образца до разрыва
площадь поперечного сечения образца после его разрыва
, мм ;
, мм ;
осевая растягивающая нагрузка
,
предел текучести (физический)
, МПа - наименьшее напряжение, при котором образец деформируется без заметного увеличения нагрузки;
предел текучести условный
- нагрузка, действующая на образец в данный момент испытания;
, МПа - напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении указанной характеристики;

401.

временное сопротивление
, МПа - напряжение, соответствующее наибольшей нагрузке
относительное удлинение после разрыва
относительное сужение после разрыва
, предшествующей разрушению образца;
- отношение приращения расчетной длины образца (
) после разрыва к ее первоначальной длине
, % - отношение разности начальной площади и площади поперечного сечения после разрыва
;
к начальной площади поперечного сечения образца
.
2. Форма, размеры образцов и их изготовление
2.1. Для испытания на растяжение в направлении толщины проката применяют укороченные цилиндрические образцы (см. рисунок, а) диаметром 5 мм, начальной расчетной длиной
1497-73. При этом металл, испытываемый в направлении толщины, условно рассматривается как хрупкий. Рабочая длина образца в соответствии с п.2.3 ГОСТ 1497-73 составляет
мм по п.2.1 ГОСТ
мм.
Образцы для испытаний на растяжение в направлении толщины проката
2.2. Образец вырезают из испытываемого листа так, чтобы ось образца была перпендикулярна к поверхности листа.
2.3. На торцах образцов, выполненных из металлопроката толщиной 30 мм, сохраняется прокатная корка. При толщине испытываемого проката более 30 мм такая корка сохраняется на одном торце образца.
2.4. Для испытания металлопроката толщиной 12-29 мм применяются сварные образцы. С этой целью к листовой заготовке испытываемого металла приваривают в тавр две пластины из стали той же прочности, чтобы
получить крестовое соединение со сплошным проваром. Цилиндрические образцы вырезают из сварного соединения так, чтобы испытываемый металл попадал в рабочую часть образца. При этом продольная ось образца должна
совпадать с направлением толщины испытываемого листа. Этапы изготовления сварных образцов указаны на рисунке, б.
2.5. Для испытания металлопроката толщиной 24-29 мм допускается применять несварные образцы с укороченной рабочей длиной по сравнению с указанной в п.2.1 и на рисунке, а. При этом высота головок образцов не
изменяется.
2.6. Образцы рекомендуется обрабатывать на металлорежущих станках. Глубина резания при последнем проходе не должна превышать 0,3 мм. Чистота обработки поверхности образцов и точность изготовления должны
соответствовать требованиям ГОСТ 1497-73.
2.7. При определении относительного удлинения нужно обходиться без нанесения кернов на рабочей части образца; за начальную расчетную длину следует принимать общую длину образца вместе с головками.
2.8. Начальную и конечную длину образца измеряют штангенциркулем с точностью до 0,1 мм, и полученные значения округляют в большую сторону. Диаметр рабочей части образца до испытания
измеряют микрометром в трех местах (посередине и с двух краев) с точностью до 0,01 мм; в каждом сечении диаметр измеряют дважды (второе измерение производят при повороте образца на 90°), и за
начальный диаметр принимают среднее значение из двух измерений; причем фиксируют все три значения начальных диаметров (в середине и с двух краев рабочей части образца). После испытания
определяют, вблизи какого измеренного сечения произошел разрыв образца, и в дальнейшем при определении относительного сужения после разрыва
диаметр этого сечения принимают за начальный диаметр.
Диаметр образцов после испытания следует измерять штангенциркулем с точностью до 0,1 мм.
2.9. Для испытания изготавливают по три образца от каждого листа, пробы отбирают из средней трети листа (по ширине).
3. Испытание образцов
3.1. Для определения механических свойств в направлении толщины проката при статическом растяжении используют универсальные испытательные машины с механическим, гидравлическим или электрогидравлическим
приводом с усилием не выше 100 кН (10 тс) при условии соответствия их требованиям ГОСТ 1497-73 и ГОСТ 7855-74.
3.2. При проведении испытаний должны соблюдаться следующие основные условия:
надежное центрирование образца в захватах испытательной машины;
плавность нагружения;
скорость перемещения подвижного захвата при испытании до предела текучести - не более 0,1, за пределом текучести - не более 0,4 длины расчетной части образца, выраженная в мм/мин.

402.

3.3. Рекомендуется оснащать машины регистрирующей аппаратурой для записи диаграмм "усилие-перемещение" в масштабе не менее 25:1.
3.4. Испытания на растяжение образцов для определения механических свойств в направлении толщины проката и подсчет результатов испытаний проводят в полном соответствии с § 3 и 4 ГОСТ 1497-73.
3.5. При разрушении сварных образцов вне основного металла испытываемого листа из-за возможных дефектов соединения (поры непроваров, шлаковые включения, трещины и др.) результаты их испытания не принимают во
внимание и испытание повторяют на новых образцах.
3.6. Результаты испытаний каждого образца в виде значений
вносят в журнал испытаний и фиксируют в протоколе, прикладываемом к сертификату на металлоконструкции. Величины
нормируются и служат критериями при выборе и назначении толстолистового проката для изготовления фланцев. Значения других характеристик
и
и
факультативны и используются для накопления данных.
В журнал испытаний вносят также данные из сертификата металлургического завода-изготовителя металлоизделий: марку стали, номер партии, номер плавки, номер листа, химический состав и механические свойства при
обычных испытаниях.
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ
"РЕКОМЕНДАЦИЙ ПО РАСЧЕТУ, ПРОЕКТИРОВАНИЮ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ
ФЛАНЦЕВЫХ СОЕДИНЕНИЙ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ"
Содержание пункта 2.2 раздела ’’Материалы’’ заменяется на следующее.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует принять листовую сталь по ГОСТ 19903-74* с гарантированными механическими свойствами в
направлении толщины проката по ТУ 14-1-4431-88 классов 3-5 марок 09Г2С-15 и 14Г2АФ-15 (по ГОСТ 19282-73) или по ТУ 14-105-465-89 марки 14Г2АФ-15. Допускается применение листовой стали электрошлакового переплава
марки 16Г2АФШ по ТУ 14-1-1779-76 и 10 ГНБШ по ТУ 14-1-4603-89.
______________
Механические характеристики листовой стали марки 10ГНБШ толщиной 10-40 мм: временное сопротивление
относительное сужение в направлении толщины %, ударная вязкость при температуре - 60 °С KCV не менее 8,0 кгс/см .
=52-70 кгс/мм , предел текучести
=40 кгс/мм , относительное удлинение
%,
Содержание пункта 2.3 раздела ’’Материалы’’ заменяется на следующее.
2.3. Фланцы могут быть выполнены из листовой низколегированной стали марок С345, С375 по ГОСТ 27772-88, при этом сталь должна удовлетворять следующим требованиям:
- категория качества стали (только для С345 и С375) - 3 или 4 в зависимости от требований к материалу конструкции по СНиП II-23-81*;
- относительное сужение стали в направлении толщины проката
%, минимальное для одного из трех образцов
%.
Проверку механических свойств стали в направлении толщины проката осуществляет завод строительных стальных конструкций по методике, изложенной в приложении 8.
Содержание пункта 2.5 раздела "Материалы" заменяется на следующее.
2.5. Качество стали для фланцев по характеристикам сплошности в зонах шириной 80 мм симметрично вдоль оси симметрии каждого из элементов профиля, присоединяемого к фланцу, должно удовлетворять требованиям в
таблице 1.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод строительных конструкций. На рисунке в качестве примера показаны зоны контроля стали фланцев для соединений элементов открытого
и замкнутого профилей.
Таблица 1
Зона
дефектоскопии
Характеристика сплошности
Площадь несплошности, см
Допустимая
частота
несплошностей
Максимальная
допустимая
протяженность
несплошности
Минимальное
допустимое
расстояние
несплошностями*

403.

Контролируема
я зона фланцев
Минимальная
учитываемая
Максимальна
я
учитываемая
0,5
1,0
10 м
4 см
10 см
_________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.
Оценку качества стали фланцев марки 10ГНБШ по характеристикам сплошности можно осуществлять по дефектограммам, прилагаемым заводом-поставщиком стали к каждому листу. При удовлетворении требований,
указанных в таблице 1, ультразвуковую дефектоскопию завод строительных конструкций не выполняет.
Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
/ Министерство монтажных и специальных
строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989

404.

405.

ВЫВОДЫ по использованию продольной надвижки пролетного строения с применением катковых - перекаточных и плавучих опор при восстановлении разрушенных мостов в Киевской Руси с использованием опыта Ливана, Вьетнама, Югославии,
Афганистана, Чеченской Республики, Армении по востановлению разрушенных железнадорожных мостов во время боевых действий и их восстановленние, согласно изобретениям проф дтн ПГУПС А.М.Уздина №№1143895, 1168755, 1174616,
165076, 154506, 2010136746 с учетом сдвиговой прочности, для обеспечения демпфирования, при динамических и импульсных растягивающих нагрузках в ПК SCAD для Способ бескрановой установки опор при восстановлении разрушенных
железнодорожных мостов в Киевской Руси с использованием связей Кагановского и тормозной лебедки, с учетом сдвиговой прочности, для обеспечения демпфирования, при динамических и импульсных растягивающих нагрузках,
предназначенных для восстановления разрушенных железнодорожных мостах, путепроводов с креплением на фрикционо-подвижных с учетом сдвиговой прочности пролетного строения моста , которые крепились с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях и их программная реализация в SCAD Office , согласно заявки на изобретение № а 20210051 от 02.03.2021
"Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения", и изобретенными в USSR в ЛИИЖТе проф дтн А.М.Уздиным № а20210217 от 23.09.2021 "Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами", №№ 1143885, 1168755, 1174616, 2010136746, 154506 https://disk.yandex.ru/d/uCnYkTeE5Lb6Lw https://ppt-online.org/1006874
Приложение видеоролики проведенных лабораторных испытаний в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ и разработкой специальных технических условий по способ продольной надвижки пролетного строения с применением
катковых - перекаточных и плавучих опор при восстановлении разрушенных мостов в Киевской Руси с использованием опыта Ливана, Вьетнама, Югославии, Афганистана, Чеченской Республики, Армении по востановлению разрушенных
железнадорожных мостов во время боевых действий и их восстановленние, согласно изобретениям проф дтн ПГУПС А.М.Уздина №№1143895, 1168755, 1174616, 165076, 154506, 2010136746
https://ok.ru/video/3306247162582 https://www.youtube.com/watch?v=U4aUmrOeVbc https://disk.yandex.ru/i/6fYbE0M9Z1_F8Q https://ok.ru/video/3306263022294 https://ok.ru/video/3306312764118 https://disk.yandex.ru/i/PcwhOMxy4yD6cQ
https://ok.ru/video/editor/3306401696470 https://ok.ru/video/3306431122134 https://ok.ru/video/3306475031254 https://ok.ru/video/3306504981206 https://ok.ru/video/3306548628182 https://www.youtube.com/watch?v=ygg1X5qI-0w
https://ok.ru/video/editor/3306596797142 https://ok.ru/video/3306645424854 Редактор газеты «Земля РОССИИ» Быченок Владимир Сергеевич, позывной «ВДВ», спецподразделение «ГРОМ», бригада "Оплот" г. Дебальцево, ДНР, Донецкая область.
1992 г.р, участвовал в обороне города Иловайск http://www.gazetazemlyarossii6.narod.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

ru

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

Более подробно о применения огнестойкого компенсатора -гасителя температурных напряжений ,смотрите внедренные изобретения организации "Сейсмофонд" при СПб ГАСУ Японо-Американской фирмой RUBBER BEARING FRICTION DAMPER
(RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD https://www.damptech.com/for-buildings-cover
https://www.youtube.com/watch?v=r7q5D6516qg https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде
вставной резины, которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим шарниром,
трубчатого в вида Seismic resistance GD Damper https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s

447.

https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake Protection Damper https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ https://www.youtube.com/watch?v=NRmHBla1m8A
Материалы специальных технических условий (СТУ) по испытанию огнестойкого компенсатор - гасителя температурных напряжений в ПК SCAD (ОКГТН -СПб ГАСУ) согласно заявки на изобретение от 14.02.2022 : "Огнестойкого компенсатора гасителя температурных напряжений" , для обеспечения сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ: Cпециальные технические
условия (СТУ), альбомы , чертежи, лабораторные испытания : о применения огнестойкого компенсатора -гасителя температурных напряжений , для обеспечения сдвиговой прочности !!! и сейсмостойкости строительных конструкций в
сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ, новых огнестойких компенсаторов -гасителей температурных напряжений, которые используются в США, Канаде фирмой
STAR SEIMIC , на основе изобретений проф дтн ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая», 154505 «Панель противовзрывная», № 2010136746 «Способ защиты зданий и сооружений при взрыве с
использованием сдвигоустойчивых и легко сбрасываемых соединений , использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» , хранятся на Кафедре технологии
строительных материалов и метрологии КТСМиМ 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ, у проф. дтн Юрий Михайловича Тихонова в ауд 305 С. Тема докторской диссертации дтн проф Тихонова Ю.М " Аэрированные
легкие и тепло-огнезащитные бетоны и растворы с применением вспученного вермикулита и перлита и изделия на их основе" [email protected] [email protected] [email protected] (921) 962-67-78,
( 996) 535-47-29, (911) 175-84-65
https://disk.yandex.ru/d/_ssJ0XTztfc_kg https://ppt-online.org/1100738 https://ppt-online.org/1068549 https://ppt-online.org/1064840
С уважением , редактора газеты «Земля РОССИИ» Быченок Владимир Сергеевич (09.05 1992), позывной «ВДВ», спецподразделение «ГРОМ», бригада "Оплот" г. Дебальцево, ДНР, Донецкая область. [email protected]
Заместитель редактора газеты «Земля РОССИИ» Данилик Павл Викторович, позывной "Ден" , 2 батальон 5 бригады "Оплот" ДНР.(участнику боя при обороне Логвиново, запирая Дебальцевский котел, д.р 6.02.1983) [email protected]
С оригиналом свидетельством газеты «Земля РОССИИ» № П 0931 от 16 мая 1994 можно ознакомится по ссылке https://disk.yandex.ru/i/xzY6tRNktTq0SQ https://ppt-online.org/962861
С оригиналом свидетельство о регистрации «Крестьянского информационного агентство» № П 4014 от 14 октября 1999 г можно ознакомится по ссылке https://disk.yandex.ru/i/8ZF2bZg0sAs-Iw https://ppt-online.org/962861

448.

А.М.Уздин докт. техн. наук, профессор кафедры «Теоретическая механика» ПГУПС

449.

Х.Н.Мажиев -. Президент ОО «СейсмоФонд» при СПб ГАСУ
А.И.Кадашов - стажер СПб ГАСУ, зам президента организации «Сейсмофонд» при СПб ГАСУ
Е.И.Андреева зам Президента организации «СейсмоФонд», инженер –механик ЛПИ им Калинина
Научные консультанты по недению изобретений проф дтн П.М.Уздина изобретенных еще в СССР в ЛИИЖТе проф дтн ПГУПС Уздиным А.М №№ 1143895, 1168755, 1174616, 2550777, 165076, 154506, 1760020 2010136746, с натяжными
диагональными элементами верхнего и нижнего пояса ферм и с креплениями болтовыми и сварочными креплениями, ускоренным способом и сконструированным со встроенным фибробетонным настилом, с пластическими шарнирами, по с
расчетом , как встроенное пролетное строение железнодорожного ( штат Минисота , река Лебедь) и автомобильного моста ( штат Монтана , река Суон) для более точного расчета ПK SCAD инженерами организации «Сейсмофонд» при
СПб ГАСУ , при распределения нагрузок на полосу движения железнодорожного и грузового автомобильного транспорта, по отдельным фермам, и была рассчитана с использованием 3D –модели конечных элементов в США, при
финансировании проектных и строительных работ ускоренной переправы через реку Суон Министерством транспорта США и Строительным департаментом штата Монтана США
Богданова И А зам Президента организации «СейсмоФонд», инженер –стрроитель СПб ГАСУ [email protected] ( 921) 962-67-78 Безвозмездно оказала помощь при расчет в ПK SCAD прямой упругоплатический расчет
стальных ферм пролетом 60 метро для однопутного железнодорожного моста грузоподьемностью 70 тонн , ширина пути 3, 5 для перправы через реку Лнепр в Смоленской области для военных целях
Научный консультан прямого упругопластического расчет стальных американских пролтетных ферм с большими перемешениями на прельное равновестие и приспособлчемость , теоретическеи основы расчет на плпмтиснмелн
предельное равновесие и приспособляемость и упругоплатическое поведение стального стержня и бронзовой или тросовй втулки , гильзы и бота с пропиленным пазом болгаркой для создания упругоплатическо соедения пролетного
строения для создания предельного равновесия
Титова Тамила Семеновна Первый проректор - проректор по научной работе - Ректорат, Заведующий кафедрой - Кафедра «Техносферная и экологическая безопасность»,
Заместитель Председателя - Учёный совет Контакты: (812) 436-98-88 (812) 457-84-59 [email protected] Санкт-Петербург, Московский пр., д. 9, ауд. 7-223 оказала помощь при расчет в лабораторных испытаниях в ПK SCAD и перводе на русский

450.

американских и китайских публикаций , чертежей, о прямом упругоплатическом расчете стальных ферм пролетом 60 метро для однопутного железнодорожного моста грузоподьемностью 70 тонн , ширина пути 3, 5 для перправы
опытного, учебного сбороно- разбороно моста через реку Днепр в Смоленской области для военных целях в Новроссии ЛНР, ДНР соместро с Белорусской Республики
Бенин Андрей Владимирович - научный консультан по проведению лабортаорных испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого упругопастического расчет пролетных строений армейского
быстрособираемого железножорожного моста с большими перемещениями напредельное равновесие и приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и Министоа при переправе через реку Суон и
Лбедь в шатет Министоа ( см Китайскую статью на английском языке)
Контакты:
(812) 457-80-19, (812) 310-31-28, [email protected]
Санкт-Петербург, Московский пр., д. 9, ауд. 7-225
СМК РД 09.36-2022 «Положение о Научно-исследовательской части» (sig)
Контакты (812) 310-31-28, 58-019 Санкт-Петербург, Московский пр., д. 9, ауд. 7-225
Видюшенков Сергей Александрович -- научный консультан по проведению лабортаорных испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого упругопастического расчет пролетных строений
армейского быстрособираемого железножорожного моста с большими перемещениями напредельное равновесие и приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и Министоа при переправе через
реку Суон и Лбедь в шатет Министоа ( см Китайскую статью на английском языке)
Контакты: (812) 457-82-34
СМК РД 09.31-2020 «Положение о кафедре ФГБОУ ВО «Петербургский государственный университет путей сообщения Императора Александра I»
Контакты
[email protected] (812) 457-82-34 (812) 571-53-51
Санкт-Петербург, Московский пр., д. 9, ауд. 3-309

451.

Декан факультета
Андрей Вячеславович ЗАЗЫКИН--- научный консультан по проведению лабортаорных испытаний в ПК SCAD узлов , ффрагментов и математических моделей прямого упругопастического расчет пролетных строений армейского
быстрособираемого железножорожного моста с большими перемещениями напредельное равновесие и приспособлемость с учето опыта американских и китайских инженеров из шатат Монтан и Министоа при переправе через реку Суон и
Лбедь в шатет Министоа ( см Китайскую статью на английском языке) https://www.spbgasu.ru/Studentam/Fakultety/Avtomobilno-transportnyy_fakultet/ Контакты автомобильно-дорожного факультета
Адрес:
Санкт-Петербург, Курляндская ул., д. 2/5
Адрес для корреспонденции: СПбГАСУ, 2-я Красноармейская ул., д.
4, г. Санкт-Петербург, Россия, 190005
Деканат:
Каб. 102-К
На карте
Тел.:
(812) 251-93-61, (812) 575-01-82, (812) 575-05-12
E-mail:
[email protected]
ВКонтакте:
https://vk.com/id337348801
Задать вопрос о приёме на факультет:
Заместителю ответственного секретаря приѐмной комиссии
СПбГАСУ по работе на автомобильно-дорожном факультете
Щербакову Александру Павловичу
➠ Писать на электронную почту: [email protected]
English     Русский Правила