Похожие презентации:
Испытания узлов и фрагпментов пролетного строения из упругопластических стальных ферм
1.
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат№ RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул.,д. 4, ИЦ «ПКТИ - Строй-ТЕСТ», «Сейсмофонд»
при СПб ГАСУ ИНН: 2014000780 [email protected]
190005 , 2-я Краноармейская ул.д 4 СПб ГАСУ. 195251, СПб , ул
Политехническая , д 29 Политехнический Университет Всего : 575 стр
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех.
условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 43552016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78
«УТВЕРЖДАЮ» протокол № 568 от 21 декабря 2022
Президент «Сейсмофонд» при СПб ГАСУ
/Мажиев Х.Н. 21.12.2022
ПРОТОКОЛ номер 568 от 28 декабря 2022 испытания узлов и фрагпментов пролетного строения из
упругопластических стальных ферм 6, 9, 12, 18, 24 и 30 метров c большими перемещениями,
однопутного, автомобильного , ширина проезжей части 3 метра, грузоподъемностью до 5 тонн , с
ускоренным способом сборки, со встроенным бетонным настилом по американской технологии
при переправе через реку Суон в штате Монтане , длиной 205 футов, с пластическими шарнирами
( по американским чертежам ) , с системой стальных ферм, соединенных на болтовых и
соединений, между диагональными натяжными элементами, верхним и нижним поясом фермы из
пластинчатых балок с использованием расчет в 3D -модель (ANSIS) кончных элементов, блока НАТО (США)
скомбинацией нагрузок AASHTO Strength Fatigue 1 Sevice 11 с использованием отечественных изобретений
Красноярского ГАСУ , Томского ГАСУ и ПГУПС №№ 2155259 основная , 2188287 Томск ГАСУ, 2136822
Трехмерный блок, 2208103 Ферма, 2208103, 2188915 Способ монтажа, 2136822, 2172372 патентный отдел, 2228415
Узловое сопряжение 2155259 https://www.youtube.com/watch?v=t3WxHO6i418
2.
На настоящий момент построена экспериментальная модель моста в штате Минесота , через рекуСуон. Американской стороной проведены всесторонние испытания, показавшие высокую
корреляцию с расчетными значениями (минимальный запас 4.91%). Мостовое сооружение не
имеет аналогов на территории Российской Федерации .
На конструкцию армейского моста получен патенты №№ 1143895, 1168755, 1174616, 168076,
2010136746. Доработан авторами , в том числе авторами способ бескрановой установки
надстройки опор при строительстве временного железнодорожного моста № 180193 со сборкой
на фланцевых фрикционно-подвижных соединениях проф дтн А.М.Уздина для сборно-
разборного железнодорожного моста демпфирующего компенсатора гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в
ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий
поперечных сил ) антисейсмическое фланцевое фрикционное соединение для
сборно-разборного быстрособираемого железнодорожного моста из стальных
конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа
«Молодечно» (серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» ) для
системы несущих элементов и элементов проезжей части армейского сборноразборного пролетного надвижного строения железнодорожного моста, с
быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционнодемпфирующей прочностью и предназначенные для сейсмоопасных районов с
сейсмичностью до 9 баллов, серийный выпуск.
В районах с сейсмичностью более 9 баллов, необходимо использование
демпфирующих компенсаторов с упругопластическими шарнирами на
фрикционно-подвижных соединениях, расположенных в длинных овальных
отверстиях, с целью обеспечения многокаскадного демпфирования при
импульсных растягивающих и динамических нагрузках согласно изобретениям,
патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС
А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на
изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.314 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный
универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 2
3.
компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя температурных
напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционнодемпфирующий компенсатор для трубопроводов" заявка № 2021134630 от
29.12.2021, "Термический компенсатор гаситель температурных колебаний" Заявка
№ 2022102937 от 07.02.2022 , вх. 006318, "Термический компенсатор гаситель
температурных колебаний СПб ГАСУ № 20222102937 от 07 фев. 2022, вх 006318,
«Огнестойкий компенсатор –гаситель температурных колебаний»,регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое соединения
растянутых элементов трубопровода со скошенными торцами" № а 20210217
от 23 сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для
трубопроводов" № а 20210354 от 22 февраля 2022 Минск , заявка № 2018105803
от 27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение
для трубопроводов" № а 20210354 от 22.02. 2022, Минск, "Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов № 2018105803
от 15.02.2018 ФИПС, для обеспечения сейсмостойкости сборно-разборных
надвижных армейских быстровозводимых мостов в сейсмоопасных районах в
сейсмичностью более 9 баллов https://disk.yandex.ru/d/ctPqcuCLs1-9Sg
Ускоренный способ надвижки американского автомобильного
быстро-собираемого моста ( длиной 205 футов = 60 метров ) в
штате Монтана ( США ) ,для переправы через реку Суон в 2017
сконструированного со встроенном бетонным настилом в полевых
условиях с использованием упруго пластических стальных ферм,
скрепленных ботовыми соединениями между диагональными
натяжными элементами верхнего и нижнего пояса пролетного строения
моста, с экономией строительным материалов до 26 %
В статье приведен краткий обзор характеристик существующих временных
мостовых сооружений, история создания таких мостов и обоснована необходимость
проектирования универсальных быстровозводимых мостов построенных в штате Монтана через
реку Суон в США
Аннотация.
Предпосылкой для необходимости проектирования новой временной мостовой конструкции
послужили стихийные бедствия в ДНР, ЛНР во время специальной военной операции на Украине
в 20222012 г., где будут применены быстровозводимых сооружений, что могло бы значительно
увеличить шансы спасения человеческих жизней.
Разработанную, в том числе автором, новую конструкцию моста, можно монтировать со
скорость не менее 25 метров в сутки без применения тяжелой техники и кранов и доставлять в
любой пострадавший район воздушным транспортом.
Разрезные пролетные строения могут достигать в длину от 6 до 60 метров, при этом
габарит пролетного строения так же варьируется. Сечение моста подбирается оптимальным из
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 3
4.
расчета нагрузка/количество металла.Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 4
5.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 5
6.
Испытание узлов и фрагментов компенсатора пролетного строения выполнялись вСПб ГАСУ из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью
10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм
соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей
прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов
проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми
жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD
и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими
организациями в программе 3D - модели конечных элементов компенсатора–
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 6
7.
гасителя напряжений для пластичных ферм американскими инженерами, пристроительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате
Монтана в 2017 году.
Расчет, научная статья , рабочие чертежи Bayley bridge прилагаются , аналогичной переправы
через реку Суон, в штате Монтана (США) автомобильного моста для грузовых автомобилей ,
построенного блоком НАТО в 2017, длиной 205 футов ( 60 метров) ускоренным методом , в
полевых условиях . с экономией строительных материло на 30 процентов .
Расчет американскими инженерами выполнен в программ 3D -модель конечных элементов
Пользуясь случаем, редакция газеты "Армия Защитников Отечества " и от информационного
агентство "Русская Народная Дружина" поздравляем Вас Владимир Владимирович и весь
коллектив Администрации Президента с 143 годовщиной Дня рождения тов Сталина Желаем
всему коллективу активно защищать интересы трудового народа и нашей Родины и
Черноморских морпехов Республики Крым и Севастополь, которые ждут с большой надежной
быстро возводимый , быстро собираемый армейский , надвижной из стальных конструкций с
применение замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия
1.460ю3-14 НПИ "Ленпроектсталькострукция" для системы несущих элементов и элементов
проезжей части с упругопластичными компенсатора проф дтн ПГУП А.М.Уздина с
ипозованием изобретений №№ 165076 ("Опора сейсмостойкая"), 2010136746, 1143895, 1168755,
1174616, 2550777, предназначенных для сейсмоопасных районов с сейсмичностью более 8 баллов
(в районах с сейсмичностью более 8 баллов необходимо использование демпфирующих
соединения и опор на фрикционно-подвижных соединениях и для соединения
металлоконструкций (МК) и стальных трубопроводов с демпфирующими компенсаторами с
болтовыми соединениями, расположенными в длинных овальных отверстиях с целью обеспечения
многокаскадного демпфирования при динамических нагрузках)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 7
8.
Лабораторные испытания проходиив СПб ГАСУ фрагментов, узлов упругопалстического сдвигового компенсатора, дляармейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров ,
ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD (оценка несущей способности узлов крепления сооружений, предназначенных для
сейсмоопасных районов Одесской области с сейсмичностью до 9 баллов, серийный выпуск (в рай-онах с
сейсмичностью 8 баллов и выше для упргоплатической фермы сбороно- разбороного надвижного , однопутного ,
автомобильного армейского моста необходимо использование сейсмостойких телескопических опор, а для
соединения пролетных ферм на фланцевых фрикционно- подвижных сое-динений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз
шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им. Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-1997.00.00 и изобретениям №№ 1143895,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 8
9.
1174616,1168755, 2550777 " Сейсмостойкий мост" SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismicfriction-damping-device, в местах для упргоплатической фермы сбороно- разбороного надвижного , однопутного ,автомобильного армейского моста устанавливать сейсмостойкие опорах согласно изобретения, патент № 165076
МПК E04H 9/02 "Опора сейсмостойкая", Бюл. № 28 от 10.10.2016).
Настоящий протокол касается испытаний на сейсмостойкость в механике деформируемых сред в ПК SCAD математических моделей
сооружений (с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия
1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон ,
длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель
конечных элементов в ПK SCAD , предназначенных для сейсмоопасных районов Одеской области с сейсмичностью до 9 баллов,
серийный выпуск и фрикционно-подвижных соединений для упргоплатической фермы сбороно- разбороного надвижного ,
однопутного , автомобильного армейского моста, установленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов
и выше для упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского
моста, необходимо использование сейсмостойких телескопических опор, а для соединения трубопроводов - фланцевых фрикционноподвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней
пазом и с забитым в паз шпильки медным обожженным клином) согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-1997.00.00 и изобретениям №№ 1143895, 1174616,1168755 SU,
4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device, в местах опоры моста на сейсмостойких опорах
согласно изобретения, патент № 165076 МПК E04H 9/02 "Опора сейсмостойкая", согласно заявки на изобретение № 2018105803/
20(008844) от 15.02.208 "Антисейсмическое фланцевое фрикционо -подвижное соединение для трубопро-водов". Узлы и фрагменты
(дугообразный зажим с анкерной шпилькой) прошли испытания на осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ"
(приложение: протокол №1516-2 от 25.11.2013). Настоящий протокол не может быть полностью или частично воспроизведен без
письменного согласия ОО «Сейсмофонд», Адрес: ОО «Сейсмофонд» ИНН:2014000780, СПб ГАСУ 190005, 2-я Красноармейская ул. д. 4
т/ф (812) 694-78-10, (951) 644-16-48, (921) 962-67-78 [email protected] [email protected] [email protected]
[email protected]
ПРОТОКОЛ СОДЕРЖИТ:
1. Введение
2. Место проведения испытаний СПб ГАСУ 190005, 2 -я Красноармейская дом 4 812 694-78-10
3. Условия проведения испытания на скольжение и податливость
4. Цель и условия лабораторных испытаний фрикционно-подвижных соединений (ФПС), работающих на
растяжение. Методика испытаний. Результаты испытаний фрагментов фланцевых фрикционно-подвижных
соединений и демпфирующих узлов крепления при динамических нагрузках и математических моделей
объектов в ПК SCAD.
5. Испытательное оборудование и измерительные приборы
6. Характеристики механических ВВФ (внешние воздействующие факторы) при испытаниях на сейсмостойкость фрагментов демпфирующих податливых узлов крепления.
5
11
11
11
7. Результат испытаний. Испытание математических моделей в ПК SCAD сооружений предназначенных для
сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск и фрикционно-подвижных
соединений для крепления упргоплатической фермы сбороно- разбороного надвижного , однопутного ,
автомобильного армейского моста установленных на сейсмо-стойких опорах(в районах с сейсмичностью 8
баллов и выше необходимо использование сейсмостойких телескопических опор, а для соединения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки
медным обожжен-ным клином).
8. Заключение по испытанию на сейсмостойкость математических моделей в ПК SCAD сооружений (с
54
29
33
56
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314
ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со
встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку
Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30
процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса
ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076,
1760020 с использованием 3D -модель конечных элементов в ПK SCAD , предназначенных для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск и фрикционно-подвижных соединений для
упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского
моста, установ-ленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов и выше для установки
блок-контей-неров и трубопроводов необходимо использование сейсмостойких телескопических опор, а для
соединения трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 9
10.
паз шпильки медным обожженным клином).Заказчик
Редакция газеты "Земля РОССИИ" и ИА "Крестьнское информ агентство"
Изготовитель
Организация"Сейсмофонд" при СПб ГАСУ ОГРН: 1022000000824
Основание для проведения
испытаний
Наименование продукции
Договор № 576 от 16.12. 2022 г., ОО "Сейсмофонд" ИНН 2014000780, СПб ГАСУ 190005, 2-я Красноарм
ул. д. 4
Фрагменты и узлы упругопалстического сдвигового компенсатора, для армейского сбороно- разбо
пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина
проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мост
км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молод
( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинча
балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , п
аналогу переправы через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экон
строительных материалов до 30 процентов, за счет предварительно напряжения гнутосварных замк
профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС А.М.Уздина №№ 11438
1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных элем
ПK SCAD , предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск
районах с сейсмичностью 8 баллов и выше для упргоплатической фермы сбороно- разбороного
надвижного , однопутного , автомобильного армейского моста необходимо использование сейсмо
телескопические опоры, а для соединения трубопроводов - фланцевых фрикционно- подвиж-ных соединен
работающих на сдвиг, с использованием фрикци -болта, состоящего из латун-ной шпильки с пропиленным
пазом и с забитым в паз шпильки медным обожженным кли-ном, согласно рекомендациям ЦНИИП им.
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73, альбома 1-487-199
изобретениям №№ 1143895, 1174616, 1168755, 2550777 " Сейсмостойкий мост" SU, 4,094,111 US, TW20140
Restraintanti-windandanti-seismic-friction-damping-device, в местах подключения трубопро-водов к контейне
пунктам трубопроводы должны быть уложены в виде "змейки" или "зиг-зага " на сейсмостойких опорах со
изобретения, патент № 165076 МПК E04H 9/02 "Опора сейс-мостойкая", Бюл. № 28 от 10.10.2016).
Акт приемки образцов
От 16.12.2022г. ОО "Сейсмофонд" не несет ответственности за отбор образцов фрагментов ФПС . ОГРН
1027810280255
[email protected] (921) 962-67-78, (812) 694-78-105
Дата проведения испытаний
Начало: 17.12.2022 г. Окончание: 01.11.2022 г.
Определяемые показатели
Геометрические размеры, ГОСТ 22853-86.2, ГОСТ 25957-83. Нагрузки на образец ФПС.
Методика испытаний
Испытания на соответствие требованиям нормативных документов ГОСТ 22853-86, ГОСТ 25957-83.
За единичные результаты испытаний одного образца принимаются значения испытательной нагрузки,
соответствующие:
- начала пластических деформаций фрикционно-подвижного соединения (ФПС);
- перемещение скобы по шпильке при постоянной нагрузке;
- срыв гайки; - смятие грани гайки М16- М22.
Описание образцов:
Фрагменты фрикционно-подвижных соединений для сооружений предназначенных для сейсмоопасных ра
сейсмич-ностью до 9 баллов, серийный выпуск и фрикционно-подвижных соединений для упргоплатичес
фермы сбороно- разбороного надвижного , однопутного , автомобильного армейского моста
и установленных на сейсмостойких опорах(в районах с сейсмичностью 8 баллов и выше для установки бло
упргоплатической фермы сбороно- разбороного надвижного , однопутного , автомобильного
армейского моста необходимо использование сейсмостойких телескопических опор, а для соединения
Испытательное
оборудование и средства
измерения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки ме
обожженным клином)
Испытательная машина ZD-10/90 (сертификат о калибровке № 13 -1371 от 28.08.2017) испы-тательного Це
«ПКТИ – СтройТЕСТ» 197341, СПб, Афонская ул., д.2, тел. +7(996) 798-26-54 +7(921) 962-67-78 Линейка
измерительная (ГОСТ 427-75). Штангенциркуль ШЦ-1-0,05 (ГОСТ 166-89). Индикатор часового типа ИЧ1
(ГОСТ 577-68).
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 10
11.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 11
12.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 12
13.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 13
14.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 14
15.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 15
16.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 16
17.
Испытания узлов и фрагментов компенсатора пролетного строения из упругопластическихстальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей
части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным
настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм
соединенных элементов на болтовых и соединений между диагональными натяжными элементами,
верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с
применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей
части армейского сбрно- разборного пролетного строения моста с упругопластическими
коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при
испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ
организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели
конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году с иползованием изобртений Красноярского ГАСУ 2228415 м лп .
ТРЕХГРАННАЯ БЛОК-ФЕРМА 2 136822 ТРЕХГРАННАЯ БЛОК-ФЕРМА Красноярская
государственная архитектурно строительная академия
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 17
18.
(11)2 136 822
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
E04C 3/17 (1995.01)
E04B 1/19 (1995.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 3 год с 10.09.1999 по 09.09.2000. Патент перешел в общественное достояние.
(21)(22) Заявка: 97115691/03, 09.09.1997
(24) Дата начала отсчета срока действия
патента:
09.09.1997
(45) Опубликовано: 10.09.1999
(56) Список документов, цитированных
в отчете о поиске: Дмитриев П.А.
и др. Индустриальные
пространственные деревянные
конструкции. - НИСИ
им.В.В.Куйбышева, 1981, с. 88. SU
1281651 A, 07.01.87. FR 2551789 A,
15.03.85. SU 65455 A, 31.12.45. US
4389829 A, 28.06.83.
(71) Заявитель(и):
Красноярская государственная
архитектурно-строительная
академия
(72) Автор(ы):
Инжутов И.С.,
Деордиев С.В.,
Дмитриев П.А.,
Енджиевский З.Л.,
Чернышов С.А.
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная
академия
Адрес для переписки:
660041, Красноярск,
пр.Свободный 82, Ректору
КрасГАСА Наделяеву В.Д.
(54) ТРЕХГРАННАЯ БЛОК-ФЕРМА
(57) Реферат:
Трехгранная блок-ферма покрытия относится к строительству и может быть использована
для соединения стержней пространственных конструкций зданий и сооружений. Технический
результат изобретения заключается в достижении наиболее эффективной работы верхнего
пояса с нижним, экономии материалов. Блок-ферма покрытия, представляет собой
двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен
из однотипных клеефанерных плит, пространственная решетка регулярного типа выполнена
из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен
по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних и средних
раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент
нижнего пояса выполнен из круглой стали, в ферму введены крайние стальные стержни
нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие
опорные
узлы
со
средним
стальным
элементом
нижнего
пояса,
3
ил.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 18
19.
Изобретение относится к области строительства, а именно к конструкциям покрытия.Известна панель покрытия треугольного очертания, образованная двумя плитами, шарнирно соединенными между
собой в коньке и затяжкой с V-образными разветвлениями по концам в уровне опорных узлов. Плиты подкреплены
двумя сжатыми раскосами и двумя растянутыми (с V-образным планом) раскосами. Поперечное сечение панели треугольное. Плиты состоят из нижних (основных несущих) ребер, фанерной обшивки, поперечных ребер,
размещенных на обшивке сверху, продольных элементов обрамления (см. SU 1281651 A, 07.01.87).
Недостатком этой конструкции является большая материалоемкость плит, обусловленная развитой свободной
длиной нижних ребер.
Наиболее близкой по техническому решению к предлагаемому изобретению (прототипом) является блок -ферма
покрытия, представляющая собой двухскатную четырехпанельную пространственную ферму, верхн ий пояс которой
выполнен из однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного типа
выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с
нижним поясом раскосами через опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой
деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали (см. Дмитриев
П.А. и др. "Индустриальные пространственные деревянные конструкции", НИСИ им. В.В. Куйбышева, 1981, с. 88).
Недостатком конструкции прототипа является неэффективная работа верхнего пояса с нижним, т.к. передача
усилий с верхнего пояса на нижний передается под большим углом к направлению волокон древесины, что определяет
значительные деформации в узловом сопряжении. Прочность древесины вдоль волокон существенно выше, чем
поперек. Работа крайних раскосов на растяжение не позволяет выполнить элементы решетки взаимозаменяемыми, что
является причиной повышенной материалоемкости констр укции.
Целью изобретения является эффективная работа блок-фермы, экономия материалов.
Цель достигается тем, что в блок-ферме покрытия, представляющем собой двухскатную четырехпанельную
пространственную ферму, верхний пояс которой выполнен из однотипных вза имозаменяемых клеефанерных плит,
пространственная решетка регулярного типа выполнена из деревянных поставленных V -образно взаимозаменяемых
раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних и
средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса
выполнен из круглой стали, введены крайние стальные стержни нижнего пояса, имеющие по концам V -образное
разветвление и соединяющие напрямую опорные узлы со средним стальным элементом нижнего пояса.
Благодаря введению крайних стальных стержней нижнего пояса, имеющих по концам V -образное разветвление,
улучшилась работы блок-фермы за счет того, что усилие с нижнего на основные ребра верхнего пояса передается под
небольшим углом к направлению волокон древесины, что определяет незначительные деформации в узловом
сопряжении, в связи с этим обусловлена возможность уменьшить размеры поперечных сечений раскосов, а
следовательно, достичь экономии древесины.
На фиг. 1 изображена блок-ферма покрытия; на фиг. 2 - совмещенные вид и разрез в плане; на фиг. 3 совмещенный поперечный разрез.
Блок-ферма покрытия включает верхний пояс, состоящий из однотипных клеефанерных плит 1, имеющих каркас из
основных нижних ребер 2, и прикрепленной к нему сверху шурупами обшивки 3 из плоских асбестоцементных
листов. Между вспомогательными дощатыми ребрами 4, расположенными вдоль пролета, на обшивку укладывается
утеплитель 5 из полистирольного пенопласта марки ПСБ. Гидроизоляция устраивается из трех слоев рубероида по
выравнивающему слою из стеклоткани. Диафрагмы 7 находятся между основными нижними ребрами 2 в сечениях,
совпадающих с узлами сопряжения верхнего пояса 1 конструкции с раскосами 8. Верхний пояс объединен с нижним
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 19
20.
пространственной решеткой регулярного типа, выполненной из деревянных поставленных V -образновзаимозаменяемых раскосов 8 квадратного сечения. Нижние узлы 9 крайних и средних раскосов соединены между
собой деревянным элементом 10 нижнего пояса. Средний элемент 11 нижнего п ояса выполнен из круглой стали.
Крайние стальные стержни 13 нижнего пояса имеют по концам V-образное разветвление и напрямую соединяют
опорные узлы со средним стальным элементом нижнего пояса 11. Разветвление расперто стержнем 12.
Сборка блок-фермы осуществляется на строительной площадке. В начале собирается верхний пояс из однотипных
клеефанерных плит 1, затем плиты стыкуются в коньковом узле. Дальше к плитам навешиваются деревянные
взаимозаменяемые раскосы 8. После этого следует выполнение узлов 9 нижнего пояса и в конце производится
крепление крайних стальных стержней 13, имеющих по концам V-образное разветвление и соединяющих напрямую
опорные узлы со средним стальным элементом нижнего пояса 11.
Положительные свойства разработанного технического решения заключаются в эффективной работе блок-фермы
за счет введения крайних стальных стержней нижнего пояса, которые напрямую соединяют опорные узлы со
средними стальными элементами нижнего пояса. Вследствие этого при нагружениях по всему пролету возникают
сжимающие усилия во всех раскосах. Усилие с нижнего пояса на основные ребра верхнего пояса передается под
небольшим углом к направлению волокон древесины, что определяет незначительные деформации в узловом
сопряжении. В связи с этим обусловлена возможность сделать раскосы взаимозаменяемыми, уменьшить размер
поперечного сечения, а следовательно, достичь экономии древесины.
В сравнении с прототипом, данное техническое решение позволяет снизить расход материалов на 12 - 15%,
улучшить условия работы верхнего пояса благодаря снижению величин изгибающих моментов и уменьшению угла
между осью передачи продольного усилия и направлением волокон древесины с нижнего пояса на основные работы
верхнего.
Формула изобретения
Блок-ферма покрытия представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс
которой выполнен из однотипных клеефанерных плит, пространственная решетка регулярного типа выполнена из
деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним
поясом раскосами через опорные узлы, нижние узлы крайних и средних раскосов соединены между собой деревянным
элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали, отличающаяся тем, что в
ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую
соединяющие опорные узлы со средним стальным элементом нижнего пояса.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 20
21.
ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ 2188287РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
(13)
C2
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК
E04C 3/04 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К
ПАТЕНТУ
(12)
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 4 год с 28.06.2003 по 27.06.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000117116/03, 27.06.2000
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
(71) Заявитель(и)
Всего листов 556
Лист 21
22.
(24) Дата начала отсчета срока действия патента:Томский гос
27.06.2000
(72) Автор(ы):
(45) Опубликовано: 27.08.2002 Бюл. № 24
Копытов М.
(56) Список документов, цитированных в отчете о поиске: RU 8716 U1, 16.12.1998. SU 727790 А,
29.04.1980. SU 1255697 А1, 07.09.1986. US 1959756 А, 22.06.1934. GB 898605 А, 14.06.1962.
Ерохин К.А.
Матвеев А.В
Мелехин Е.А
Адрес для переписки:
(73) Патентообла
634003, г.Томск, 3, пл. Соляная, 2, ТГАСУ, патентный отдел
Томский гос
(54) ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
(57) Реферат:
Изобретение относится к области строительства, а более конкретно к несущим
металлическим конструкциям покрытия производственных и общественных зданий. Каждая
отдельная трехгранная ферма покрытия состоит из двух верхних коробчатых поясов и одного
нижнего, также коробчатого пояса, соединенных между собой раскосной решеткой. Все
коробчатые пояса имеют пентагональное сечение и выполнены каждый из жестко
соединенных между собой швеллера и уголка. Раскосная решетка выполнена из одиночных
уголков, прикрепленных полками к полкам поясных уголков. Стенки швеллеров верхних
поясов расположены вертикально, а стенка нижнего швеллера горизонтально. Верхние пояса
объединены по полкам швеллеров профнастилом. За счет вертикальной ориентации стенок
швеллеров верхних поясов повышается значение момента сопротивления и радиуса инерции
пентагонального сечения. Технический результат изобретения заключается в повышении
несущей способности трехгранной фермы и сокращение количества элементов в покрытии. 3
ил.
Изобретение относится к строительным
металлическим конструкциям, а более
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 22
23.
конкретно к несущим конструкциям покрытияпроизводственных и общественных зданий, и
может быть использовано для подвески
технологических устройств, а также в качестве
перекрытий, элементов комбинированных
систем.
Известны устройства бесфасоночных
покрытий из трехгранных ферм с поясами и
наклонной решеткой из круглых труб [1]. По
верхним поясам этих ферм уложены прогоны,
на которые опираются ограждающие
конструкции. Недостатком таких покрытий
является большое количество прогонов и
сложность выполнения пространственных
узлов сопряжении труб, что ведет к
повышенному расходу металла и трудоемкости
изготовления. Известны также устройства
беспрогонных покрытий из трехгранных ферм
[2] с коробчатым сечением двух верхних
поясов, образованных из состыкованных
уголков и нижним поясом из одиночного
уголка, к которым с помощью фасонок
прикреплены раскосы. Недостатком таких
покрытий является большое количество
фасонок, необходимость делать вырезы в
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 23
24.
полках уголков для пропуска фасонок, чтотакже ведет к повышенному расходу металла и
трудоемкости изготовления.
Наиболее близким к заявляемому покрытию
является складчатое покрытие из наклонных
ферм [3]. Оно состоит из непрерывной
системы плоских ферм, наклоненных под
углом 45 o к вертикальной плоскости. Каждая
смежная ферма имеет общий пояс: либо
верхний, представляющий собой пятигранный
профиль сечения, образованный из
состыкованного швеллера и уголка; либо
нижний, образованный из одиночного уголка,
ориентированного обушком вверх. К поясам
торцами приварены раскосы из одиночных
уголков. Это позволяет реализовать
беспрогонное и бесфасоночное решение
кровельного покрытия и является экономичней
аналогов. Однако конструкция такого
покрытия вынуждает ориентировать
пятигранный профиль сечения с горизонтально
расположенной стенкой швеллера, что
необходимо для образования складчатой
системы. Анализ показывает, что при такой
ориентации поясов на 25...45% снижается
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 24
25.
прочность сжато-изогнутого стержня верхнегопояса, т.к. момент сопротивления и радиус
инерции сечения оказываются меньше, чем
при ортогональной ориентации этого же
сечения. Кроме того, непрерывная система
складчатого покрытия требует большого
количества наклонных ферм и необходимость
выполнения вручную большого объема работ
на строительной площадке по укрупнительной
сборке конструкции. Раскосная решетка таких
ферм слабо нагружена и имеет большой запас
несущей способности, но без нее невозможно
образовать конструктивную форму
складчатого покрытия. Все это
сопровождается повышенным расходом
металла и большой трудоемкостью
изготовления.
Задача изобретения состоит в том, чтобы
снизить металлоемкость и трудоемкость
изготовления покрытия при сохранении его
несущей способности.
Задача решается следующим образом. В
покрытии из трехгранных ферм, объединенных
профнастилом, каждая из которых включает
верхние коробчатые пояса пентагонального
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 25
26.
сечения из жестко соединенных между собойшвеллеров и уголков, нижний пояс,
содержащий уголок, направленный обушком
вверх, и раскосную решетку, прикрепленную к
полкам поясных уголков, согласно
изобретению нижний пояс снабжен
швеллером, жестко соединенным с уголком и
образующий с ним пентагональное сечение;
при этом стенки швеллеров верхних и нижнего
пояса ориентированы ортогонально.
Таким образом, заявляемое устройство
отличается от прототипа тем, что:
- нижний пояс снабжен швеллером, жестко
соединенным с уголком и образующим с ним
пентагональное сечение;
- стенки швеллеров верхних и нижнего поясов
распложены ортогонально.
Это говорит о "новизне" заявляемого
устройства.
Так как нижний пояс выполнен из
пентагонального сечения, а полки швеллеров
верхних и нижнего пояса ориентированы
ортогонально, это позволило увеличить
площадь растянутого нижнего пояса с
одновременным увеличением моментов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 26
27.
сопротивления и радиусов инерции сжатоизогнутых верхних поясов, т.е. повыситьнесущую способность отдельной фермы. При
этом большой запас несущей способности
раскосной решетки уменьшится и она станет
работать эффективней, что и позволило
дискретизировать систему несущих
конструкций покрытия из наклонных ферм.
Благодаря качественному изменению
конструктивной формы непрерывная
складчатая система покрытия превратилась в
блочную, состоящую из трехгранных ферм со
свободным пространством между ними. Это
позволяет существенно сократить количество
элементов в покрытии, повысить несущую
способность поясов конструкции за счет
оптимальной ориентации их сечений и в
совокупности существенно снизить
трудоемкость изготовления, металлоемкость и
стоимость.
Предлагаемая конструкция позволяет
осуществить полное заводское изготовление и
сборку трехгранной фермы, удобна при
транспортировке и монтаже. Таким образом,
при сохранении и соблюдении всех
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 27
28.
необходимых рабочих параметров заявляемаяконструкция требует в сравнении с
прототипом меньше металла, меньшего
количества элементов, что в итоге приводит к
снижению металлоемкости, трудоемкости и
стоимости при сохранении несущей
способности покрытия.
На фигуре 1 изображен общий вид покрытия
из трехгранных ферм; на фигуре 2 изображен
общий вид наклонной плоскости трехгранной
фермы; на фигуре 3 - поперечный разрез
трехгранной фермы.
Трехгранная ферма содержит два верхних
пояса 1, нижний пояс 2 и раскосы 3. Верхний
пояс 1 состоит из состыкованного швеллера и
уголка при вертикальной ориентации стенки
швеллера; нижний пояс 2 - то же при
горизонтальной ориентации стенки швеллера;
раскосы 3 - из одиночных уголков. Стержни
раскосов 3 прикреплены торцами к полкам
поясных уголков (фиг.3) посредством сварки.
Верхние пояса трехгранных ферм в
горизонтальной плоскости связаны сплошным
профнастилом 4 (фиг.1), который завершает
формирование покрытия из трехгранных ферм.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 28
29.
Между смежными трехгранными фермами нетребуется размещения элементов 2 и 3 (фиг.1);
достаточно перекрыть это свободное
пространство настилом 4.
Изготовление покрытия из трехгранных ферм
производят следующим образом: швеллер и
уголок стыкуют между собой продольными
сварными швами и образуют элементы поясов
1 и 2 пятигранного профиля сечения. Два
верхних пояса 1 устанавливают с
вертикальной ориентацией стенки швеллера
(как показано на фиг. 3); нижний пояс 2 - с
горизонтальной ориентацией стенки швеллера.
При этом полки швеллеров верхних поясов
служат опорами для настила, а наклон
плоскостей поясных уголков пятигранных
профилей 1 и 2 соответствует требуемым
плоскостям элементов раскосной решетки 3.
Элементы раскосной решетки 3, выполненные
из одиночных уголков, торцами приваривают к
полкам поясных уголков соответственно
верхнего 1 и нижнего 2 поясов. Образуется
бесфасоночная пространственная трехгранная
ферма полной заводской готовности. Эта
ферма удобна при транспортировке: ее
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 29
30.
габариты и устройство позволяют перевозитьодновременно несколько ферм за счет их
укладки "елочкой" в транспортное средство.
На монтажной площадке к верхним поясам
пространственной фермы без прогонов
устанавливается и крепится профнастил 4 и
образуется трехгранный блок покрытия. Он
устанавливается в проектное положение.
Следующий блок покрытия устанавливается
так, что между ними образуется свободное
пространство, не заполненное стержневыми
элементами: достаточно перекрыть его лишь
профнастилом 4, который одновременно
совмещает несущие и ограждающие функции.
Это позволяет сократить количество элементов
в покрытии из трехгранных ферм, снизить
металлоемкость, трудоемкость и стоимость.
Конвейерная сборка и блочный монтаж
дополнительно упрощают процесс
изготовления и монтажа, делают его
технологичным и менее трудоемким.
Покрытие из трехгранных ферм работает как
пространственная стержневая система с
неразрезными поясами и примыкающими
раскосами. Верхний пояс 1 работает как
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 30
31.
сжато-изогнутый стержень. Максимальноезначение изгибающего момента и радиуса
инерции соответствует вертикальной
плоскости, поэтому вертикальной ориентацией
стенки швеллера достигается максимальное
значение момента сопротивления и радиус
инерции, которые определяют прочность при
сжатии с изгибом, т.е. достигается
максимальная несущая способность сжатоизогнутого пятигранного сечения, и оно
работает с максимальной эффективностью.
Нижний пояс 2 работает как растянутый
стержень; примыкающие раскосы работают в
условиях растяжения или сжатия. Профнастил
работает на изгиб как однопролетная или
многопролетная гофрированная пластина.
Покрытие из трехгранных ферм отличается
повышенной пространственной жесткостью
как на стадии монтажа, так и в условиях
эксплуатации и является индустриальной и
технологичной конструктивной формой.
Источники информации
1. Беленя Е.И. и др. Металлические
конструкции. Специальный курс. - М.: 1982, с.
57...60.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 31
32.
2. Авт. св. СССР 1544921, М.кл. Е 04 С 3/04.3. Свид. на полез модель 8716, МПК Е 04 С
3/04.
Формула изобретения
Покрытие из трехгранных ферм,
объединенных профнастилом, каждая из
которых включает верхние коробчатые пояса
пентагонального сечения, из жестко
соединенных между собой швеллеров и
уголков, нижний пояс, содержащий уголок,
направленный обушком вверх, и раскосную
решетку, прикрепленную к полкам поясных
уголков, отличающееся тем, что нижний пояс
снабжен швеллером, жестко соединенным с
уголком и образующим с ним пентагональное
сечение, при этом стенки швеллеров верхних и
нижнего поясов размещены ортогонально.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 32
33.
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ упргоплатической фермы
сбороно- разбороного надвижного , однопутного , автомобильного армейского моста БЛОК-ФЕРМЫ
ПОКРЫТИЯ 2228415 и др
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 228 415
(13)
C2
(51) МПК
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина:Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 33
34.
(45) Опубликовано: 10.05.2004 Бюл. № 13(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная бло
12-3Р // Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1
SU 1281651 A1, 07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.
4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания ―следящих‖
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 34
35.
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания ―следящих‖ за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания ―следящих‖ за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 35
36.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 36
37.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 37
38.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 38
39.
(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ:30/2006
СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА
ПОКРЫТИЯ 2208103
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 39
40.
2(13)
C1
(51) МПК
E04C 3/10 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 13.08.2022)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 2002121993/03, 12.08.2002
(24) Дата начала отсчета срока действия патента:
12.08.2002
(45) Опубликовано: 10.07.2003 Бюл. № 19
(56) Список документов, цитированных в отчете о поиске: БЕЛЕНЯ
Е.И. Предварительно напряженные несущие металлические
конструкции. - М.: Стройиздат, 1975, с.250-252, (рис.V.21). SU
802479 A, 15.02.1981. SU 910985 A, 09.03.1982. GB 2174430 A,
05.11.1986. US 4353190 A1, 12.10.1982. SU 1308731 A1, 07.05.1987.
(71) Заявитель(и):
Петербургский государственный универс
сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный универс
сообщения
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС,
патентный отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительным конструкциям и может быть использовано при
изготовлении предварительно напряженных шпренгельных блоков покрытия, применяемых в
качестве несущих конструкций покрытий зданий и сооружений и т. п. Технический результат
- снижение трудоемкости монтажа предварительно напряженных шпренгельных блоков
покрытия. Способ монтажа предварительно напряженного шпренгельного блока покрытия
включает крепление к концам элемента жесткости приопорных хомутов, объединенных
затяжкой, и установку диафрагм шпренгеля. Приопорные хомуты пропускают в петли на
концах затяжки. Затем направляющие на концах диафрагм шпренгеля упирают в
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 40
41.
сегментообразные торцы стопоров затяжки. Ригели диафрагм шпренгеля заводят вкриволинейные направляющие элемента жесткости и объединяют их временной затяжкой,
снабженной натяжным устройством, с помощью которого смещают ригели диафрагм
шпренгеля навстречу друг другу до касания с упорами криволинейных направляющих. После
этого устанавливают фиксаторы и демонтируют временную затяжку. 8 ил.
Изобретение относится к строительным конструкциям и может
быть использовано при изготовлении предварительно
напряженных шпренгельных блоков покрытия, применяемых в
качестве несущих конструкций покрытий зданий и сооружений и
т. п.
Известен способ предварительного напряжения шпренгельных
балок, преимущественно большепролетных покрытий,
включающий установку рычагов, присоединение к их средним
частям концов затяжки и направляющей со стяжными
приспособлениями, к которым прикрепляют одни концы рычагов,
подвижно соединенные с направляющей, при этом рычаги
выполняют спаренными и соединяют другими концами с
предварительно напрягаемой балкой жесткости, а направляющую
и концы затяжки размещают между ними, причем концы затяжки
жестко закрепляют к рычагам [1].
Недостатком известного технического решения является
сложность и трудоемкость его осуществления, связанная с
необходимостью монтажа мощных рычагов, направляющих,
стяжных приспособлений, а также осуществления прикреплений в
местах опирания рычагов на балку жесткости и жесткого
закрепления затяжки к рычагам. Кроме того, известное
техническое решение предусматривает объединение затяжки при
помощи вставки, помещаемой между спаренными рычагами, что
также увеличивает трудоемкость процесса предварительного
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 41
42.
напряжения.Также известен способ монтажа предварительно напряженной
несущей конструкции, включающий монтаж элемента жесткости,
прикрепление к его торцам гибкой затяжки, установку средней
стойки шпренгеля, после чего производится первый этап
натяжения затяжки домкратами двойного действия,
закрепленными на концах гибкой затяжки, а второй этап
предварительного натяжения производится посредством
удлинения средней стойки шпренгеля, смонтированной на ней
винтовой муфтой [2] (принято за прототип).
Недостатком такого технического решения является
повышенная трудоемкость, обусловленная необходимостью
присоединения к гибкой затяжке и средней стойке шпренгеля
натяжных устройств (домкратов и стяжной муфты), а также
невозможностью демонтажа стяжной муфты, что, в конечном
счете, повышает трудоемкость монтажа конструкции в целом.
Задачей настоящего изобретения является снижение
трудоемкости монтажа предварительно напряженных
шпренгельных блоков покрытия.
Технический результат достигается тем, что в способе монтажа
предварительно напряженного шпренгельного блока покрытия,
включающем крепление к концам элемента жесткости
приопорных хомутов, объединенных затяжкой, и установку
диафрагм шпренгеля, приопорные хомуты пропускают в петли на
концах затяжки, затем направляющие на концах диафрагм
шпренгеля упирают в сегментообразные торцы стопоров затяжки,
а ригели диафрагм шпренгеля заводят в криволинейные
направляющие элемента жесткости и объединяют их временной
затяжкой, снабженной натяжным устройством, с помощью
которого смещают ригели диафрагм шпренгеля навстречу друг
другу до касания с упорами криволинейных направляющих, после
чего устанавливают фиксаторы и демонтируют временную
затяжку.
Предлагаемое техническое решение описывается следующими
графическими материалами:
- на фиг. 1 приводится общий вид предварительно напряженного
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 42
43.
шпренгельнго блока (вид по 1-1 на фиг. 2) после монтажа;- на фиг. 2 - план шпренгельного блока по фиг. 1;
- на фиг. 3 - поперечный разрез по 2-2 на фиг. 2;
- на фиг. 4 - узел А на фиг. 1;
- на фиг. 5 - общий вид предварительно напряженного
шпренгельного блока на стадии монтажа;
- на фиг. 6 - узел Б на фиг. 5;
- на фиг. 7 - узел В на фиг. 5;
- на фиг. 8 - вид по 3 - 3 на фиг. 7.
Предлагаемый способ монтажа предварительно напряженного
шпренгельного блока покрытия заключается в прикреплении к
концам элемента жесткости 1 приопорных хомутов 2,
объединенных затяжкой усиления 3, и установке диафрагм 4
шпренгеля, для чего приопорные хомуты 2 пропускают в петли 5
на концах затяжки усиления 3 и крепят их к концам элемента
жесткости 1 (например, с помощью резьбовых концевиков с
гайками), затем направляющие 6 диафрагм 4 шпренгеля упирают
в сегментообразные торцы стопоров 7 затяжки усиления 3, а
ригели 8 диафрагм 4 шпренгеля, снабженные прорезями на
концах, заводят в криволинейные направляющие 9 элемента
жесткости 1 и объединяют их временной затяжкой 10 с натяжным
устройством 11 (например, стяжной муфтой), при помощи
которого затем смещают ригели 8 диафрагм 4 шпренгеля
навстречу друг другу до касания с упорами 12 криволинейных
направляющих 9, в результате чего диафрагмы 4 шпренгеля
поворачиваются относительно точек упора направляющих 6
диафрагм 4 шпренгеля в стопоры 7 затяжки 3, после чего в
отверстия 13 криволинейных направляющих 9 устанавливают
фиксаторы 14 и демонтируют временную затяжку 10.
На концах затяжки 3 устроены петли 5 и стопоры 7, например, в
виде спрессованных шайб.
Закрепление временной затяжки 10 к ригелям 8 диафрагм 4
шпренгеля осуществляется, например, с использованием
торцевых анкеров.
При стягивании натяжным устройством 11 временной затяжки
10 она укорачивается, что приводит к перемещению ригелей 8
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 43
44.
диафрагм 4 шпренгеля навстречу друг другу (в направлении ксередине пролета), при этом ригели 8 перемещаются в
направляющих 9 (например, листового типа) вплоть до касания с
упорами 12.
При перемещении диафрагм 4 шпренгеля из начального
наклонного положения в проектное расстояние между осями
элемента жесткости 1 и затяжки 3 увеличивается, что приводит к
появлению в затяжке 3 и приопорных хомутах 2 растягивающих
усилий предварительного напряжения.
Стопоры 7 с сегментообразными торцами, смонтированные на
затяжке 3, предотвращают смещение направляющих 6 диафрагм 4
шпренгеля и соответственно нижних концов диафрагм 4
шпренгеля, фиксируя их положение в процессе напряжения
временной затяжки 10 натяжным устройством 11. При этом на
стопоры 7 воздействуют усилия, возникающие из-за разности
горизонтальных составляющих усилий в затяжке 3 и приопорных
хомутах 2.
Торцы стопоров 7 затяжки 3, контактирующие с
направляющими диафрагм 4 шпренгеля, выполнены
сегментообразными, что позволяет обеспечить поворот диафрагм
4 шпренгеля относительно их точек упора в стопоры 7 затяжки 3
и уменьшить необходимые усилия для перемещения ригелей 8
диафрагм 4 шпренгеля навстречу друг другу, что, как следствие,
приводит к снижению трудоемкости монтажа.
Криволинейные направляющие 9 выполнены по кривым, радиус
кривизны которых равен расстоянию от направляющей 6
диафрагмы 4 шпренгеля в месте пропуска затяжки 3 до прорезей
ригеля 8 диафрагмы 4 шпренгеля, что позволяет уменьшить
дополнительные усилия при перемещении ригеля 8 диафрагмы 4
шпренгеля (повороте диафрагм 4 шпренгеля) по направляющим 9
элемента жесткости 1, и, как следствие, снизить трудоемкость
монтажа в целом.
При натяжении временной затяжки 10 натяжным устройством
11 диафрагмы 4 шпренгеля поворачиваются и соответственно
угол α между продольной осью диафрагмы 4 и осью временной
затяжки 10 увеличивается, следовательно, усилия во временной
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 44
45.
затяжке 10 и натяжном устройстве 11, необходимые дляперемещения ригелей 8 диафрагмы 4 шпренгеля и равные
Fз=Fд•cosα (где F з - усилие натяжения во временной затяжке 10,
Fд - реакция направляющих 9), уменьшаются, что приводит к
снижению трудоемкости процесса предварительного напряжения
временной затяжки 10 натяжным устройством 11 и, как следствие,
к снижению трудоемкости монтажа всего шпренгельного блока
покрытия в целом.
Кроме того, отпадает необходимость в стационарном натяжном
устройстве (стяжной муфте и т. п.), которое остается на
установленном предварительно напряженном шпренгельном
блоке покрытия и в дальнейшем не используется.
Демонтируемые временная затяжка 10 и натяжное устройство
11 являются инвентарными элементами многократного
применения.
Использование предлагаемого изобретения позволит снизить
трудоемкость монтажа предварительно напряженных
шпренгельных блоков покрытия на 10... 15%.
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ
1. Авторское свидетельство СССР 802479, Е 04 G 21/12; В 1/22.
Исаев П.М. и др. Натяжное устройство преимущественно для
предварительного напряжения шпренгельных балок
большепролетных покрытий. - Бюл. 5. - 1981.
2. Беленя Е.И. Предварительно напряженные несущие
металлические конструкции. -М.: Стройиздат, 1975. - с. 250...252
(рис. V.21).
Формула изобретения
Способ монтажа предварительно напряженного шпренгельного
блока покрытия, включающий крепление к концам элемента
жесткости приопорных хомутов, объединенных затяжкой, и
установку диафрагм шпренгеля, отличающийся тем, что
приопорные хомуты пропускают в петли на концах затяжки, затем
направляющие на концах диафрагм шпренгеля упирают в
сегментообразные торцы стопоров затяжки, а ригели диафрагм
шпренгеля заводят в криволинейные направляющие элемента
жесткости и объединяют их временной затяжкой, снабженной
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 45
46.
натяжным устройством, с помощью которого смещают ригелидиафрагм шпренгеля навстречу друг другу до касания с упорами
криволинейных направляющих, после чего устанавливают
фиксаторы и демонтируют временную затяжку.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 46
47.
РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 47
48.
RU(11)
2
(13)
C1
(51) МПК
E04C 3/10 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 17.07.2021)
Пошлина: учтена за 4 год с 17.07.2004 по 16.07.2005. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2001119753/03, 16.07.2001
(24) Дата начала отсчета срока действия патента:
16.07.2001
(45) Опубликовано: 10.09.2002 Бюл. № 25
(56) Список документов, цитированных в отчете о поиске: БЕЛЕНЯ
Е.И. и др. Металлические конструкции, -М.1982, с.95, рис.6.14
ж. КИРСАНОВ Н.М. Висячие покрытия производственных
зданий. - М., 1990, с.8, рис.1.1. SU 910985 А, 09.03.1982. GB
2174430 А, 05.11.1986. US 4353190 А1, 12.10.1982. SU 1308731 А1,
07.05.1987.
(71) Заявитель(и):
Петербургский государственный универс
сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный универс
сообщения
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС,
патентный отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ШПРЕНГЕЛЬНОЙ РАМЫ
(57) Реферат:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 48
49.
Изобретение относится к строительным конструкциям, а именно к способу монтажапредварительно напряженной шпренгельной рамы, и может быть использовано при
возведении
несущих
каркасов
зданий
и
сооружений,
жестких
поперечин
электрифицированных железных дорог и т.п. Технический результат - упрощение монтажа
предварительно напряженных шпренгельных рам и, как следствие, снижение его
трудоемкости. Для этого в способе монтажа предварительно напряженной шпренгельной
рамы, включающем объединение колонн с фундаментами и предварительно напряженным
ригелем шпренгельного типа, к балке-распорке ригеля прикрепляют стойки с вилкообразными
наконечниками, а на ее концах устанавливают вилкообразные упоры, затем балку-распорку
ригеля стропуют в средней ее части и выполняют промежуточный подъем, спрессованные на
затяжке шайбы заводят за вилкообразные упоры, и опускают ригель, монтируют торцевые
башмаки и крепят к ним концевые стопоры затяжки, после чего ригель перестроповывают и
устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков
ригеля и оголовков колонн. При этом тангенс угла наклона скошенных поверхностей
торцевых башмаков и оголовков колонн при их совмещении равен отношению
горизонтальных и вертикальных зазоров между ригелем и колоннами. 1 з.п.ф -лы, 9 ил.
Изобретение относится к строительным конструкциям, а именно
к способу монтажа предварительно напряженной шпренгельной
рамы, и может быть использовано при возведении несущих
каркасов зданий и сооружений, жестких поперечин
электрифицированных железных дорог и т.п.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 49
50.
Известен способ монтажа рамы, заключающийся впредварительном монтаже колонн, ригеля и якорей (анкеров,
погруженных в землю, например, гравитационного типа, бутовых, бетонных и т.п., - свайных и др.), к которым
присоединяются гибкие ванты, объединяемые с ригелем
подвесками, после чего производится предварительное
напряжение вантовой системы натяжными устройствами
(например, стяжными муфтами и т.п.) [1].
Недостатком такого решения является его сложность,
обусловленная, в частности, изготовлением и установкой на
вантах специальных натяжных устройств и проведением
дополнительных операций, связанных с натяжением вант и
регулированием усилий в вантовой системе.
Также известен способ монтажа рамы с предварительно
напряженным ригелем, заключающийся: в предварительном
монтаже колонн и элемента жесткости ригеля рамы;
присоединении к нему стоек шпренгеля, снабженных на концах
направляющими для пропуска гибких затяжек с закреплением их
на торцах элемента жесткости; закреплении на гибкой затяжке
натяжных устройств; создание с их помощью в затяжке усилий
предварительного напряжения и их регулирования [2] (принято за
прототип).
Недостатком такого решения является его сложность, связанная,
в частности, с необходимостью закрепления на гибких затяжках
натяжных устройств [3], проведением операций по
предварительному натяжению гибких затяжек и регулированию
усилий в шпренгельной системе. Создание предварительного
напряжения в затяжках, кроме того, требует дополнительных
трудозатрат на операции по контролю величины их натяжения и
на устройство монтажных подмостей.
Задачей изобретения является упрощение монтажа
предварительно напряженных шпренгельных рам и, как
следствие, снижение его трудоемкости.
Технический результат достигается тем, что в способе монтажа
предварительно напряженной шпренгельной рамы, включающем
объединение колонн с фундаментами и предварительно
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 50
51.
напряженным ригелем, к балке-распорке ригеля, до ее монтажа впроектное положение, прикрепляют стойки шпренгеля с
вилкообразными наконечниками, а на ее концах устанавливают
вилкообразные упоры, затем балку-распорку ригеля стропуют в
средней ее части и выполняют промежуточный подъем,
спрессованные на затяжке шайбы заводят за вилкообразные
упоры и опускают ригель на временные опоры, монтируют
торцевые башмаки и крепят к ним концевые стопоры затяжки,
после чего ригель перестроповывают и устанавливают на
колонны с совмещением скошенных поверхностей торцевых
башмаков ригеля и оголовков колонн. При этом тангенс угла
наклона скошенных поверхностей торцевых башмаков и
оголовков колонн принимают равным отношению вертикальных и
горизонтальных зазоров между ригелем и колоннами.
Монтаж, включая предварительное напряжение шпренгельной
рамы, производится в два этапа.
Первый этап - сборка и предварительное напряжение
шпренгельного ригеля рамы. К балке-распорке крепят стойки
шпренгеля с вилкообразными наконечниками, а на ее концах
устанавливают вилкообразные упоры. Балку-распорку ригеля
стропуют в средней ее части и выполняют промежуточный
подъем. Затем к балке-распорке прикрепляют затяжку, вводя ее в
вилкообразные наконечники стоек шпренгеля, а спрессованные на
затяжке шайбы заводят за вилкообразные упоры. Положение
затяжек в вилкообразных упорах фиксируют замыкающими
фиксаторами (например, шпильками, болтами и т.п.). После чего
шпренгельный ригель рамы, включающий балку-распорку, стойки
шпренгеля и затяжку, опускают на временные опоры,
размещенные под концами балки-распорки.
Балка-распорка как элемент шпренгельного ригеля
воспринимает в основном продольные сжимающие усилия и в
связи с этим обладает невысокой изгибной жесткостью. При
строповке в средней части ее длины и промежуточном подъеме
балка-распорка деформируется по двухконсольной схеме, при
этом концы балки-распорки под действием собственной массы
опускаются, а расстояние между вилкообразными упорами
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 51
52.
уменьшается, что позволяет завести за них спрессованные шайбызатяжки. В местах крепления затяжки к вилкообразным упорам
устанавливают замыкающие фиксаторы. После установки ригеля
на временные опоры, размещенные под концами балки-распорки,
и его расстроповки балка-распорка распрямляется и растягивает
гибкую затяжку, создавая в ней усилия предварительного
напряжения.
Второй этап - монтаж шпренгельного ригеля, включая
предварительное напряжение колонн и дополнительное
предварительное напряжение затяжки. На концах балки-распорки
шпренгельного ригеля устанавливают торцевые башмаки и
прикрепляют к ним концевые упоры затяжки. Так как крепление
торцевых башмаков к балке-распорке выполнено с возможностью
их перемещения вдоль оси балки-распорки (болты,
прикрепляющие торцевые башмаки к балке-распорке,
установлены в овальные отверстия), то усилий в затяжке на
участках между спрессованными шайбами и концевыми
стопорами при этом не возникает.
Шпренгельный ригель стропуют с размещением мест захвата
строповочных устройств у его концов и производят подъем. При
установке шпренгельного ригеля на колонны, предварительно
объединенные с фундаментами, совмещают скошенные
поверхности торцевых башмаков и оголовков колонн, при этом
между опорными горизонтальными и вертикальными
поверхностями торцевых башмаков и оголовков колонн остаются
зазоры Δ1 и Δ2 соответственно. После расслабления строповочных
устройств под действием собственной массы (сил гравитации)
преодолеваются силы трения, развивающиеся по контактным
плоскостям скошенных поверхностей торцевых башмаков ригеля
рамы и оголовков колонн, происходит самопроизвольная осадка
шпренгельного ригеля рамы в проектное положение (до полного
касания опорных поверхностей - Δ1=0, Δ2=0), а торцевые башмаки
перемещаются вдоль скошенных поверхностей оголовков колонн.
При этом на концевых участках затяжки (на участках между
спрессованными шайбами и концевыми стопорами) возникают
дополнительные растягивающие усилия, горизонтальные
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 52
53.
составляющие которых направлены перпендикулярнопродольным осям колонн к центру рамы. Это вызывает в сечениях
колонн усилия предварительного напряжения (начальные
изгибающие моменты). Таким образом, на втором этапе
производится предварительное напряжение колонн и
дополнительное напряжение затяжки ригеля (за счет
донапряжения ее концевых участков).
Изобретение описывается следующими графическими
материалами:
- на фиг.1 приводится общий вид предварительно напряженной
шпренгельной рамы;
- на фиг.2 - узел "А" на фиг.1;
- на фиг.3 - вид по 1-1 на фиг.2;
- на фиг.4 - узел "Б" на фиг.1;
- на фиг.5 - вид по 2-2 на фиг.2;
- на фиг.6 - вид по 3-3 на фиг.2;
- на фиг.7 - вид по 4-4 на фиг.4;
- на фиг.8 - схема строповки балки-распорки на 1-м этапе
монтажа;
- на фиг.9 - схема строповки шпренгельного ригеля на 2-м этапе
монтажа.
Предлагаемый способ монтажа заключается в следующем.
Колонны 1 шпренгельной рамы объединяются с фундаментами 2
и с предварительно напряженным шпренгельным ригелем 3.
На 1-м этапе монтажа к балке-распорке 4 шпренгельного ригеля
3 крепят стойки шпренгеля 5 с вилкообразными наконечниками 6,
а на ее концах устанавливают вилкообразные упоры 7. Балкураспорку 4 шпренгельного ригеля 3 стропуют в средней ее части
и выполняют промежуточный подъем. Затем к балке-распорке 4
прикрепляют затяжку 8, вводя ее в вилкообразные наконечники 6
стоек шпренгеля 5, а спрессованные на затяжке 8 шайбы 9 заводят
за вилкообразные упоры 7. Положение затяжки 8 на концах
фиксируют замыкающими фиксаторами 10. После чего
шпренгельный ригель 3, включающий балку-распорку 4, стойки
шпренгеля 5 и затяжку 8, опускают на временные опоры 11,
размещенные под концами балки-распорки 4.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 53
54.
На 2-м этапе монтажа на концах балки-распорки 4шпренгельного ригеля 3 с помощью болтов 12 устанавливают
торцевые башмаки 13 со скошенными поверхностями 14.
Концевые стопоры 15 затяжки 8 крепят к торцевым башмакам 13.
Вследствие того что болты 12 проходят через овальные отверстия,
расположенные в торцевых башмаках 13, то возможно взаимное
смещение торцевых башмаков 13 относительно балки-распорки 4
вдоль ее продольной оси. При этом в затяжке 8 на участках между
спрессованными шайбами 9 и концевыми стопорами 15 усилий не
возникает.
Шпренгельный ригель 3 перестроповывают с размещением мест
захвата строповочных устройств у его концов и производят его
подъем.
При установке шпренгельного ригеля 3 на колонны 1
совмещают скошенные поверхности 14 торцевых башмаков 13 и
оголовков 16 колонн 1, при этом между опорными
горизонтальными и вертикальными поверхностями торцевых
башмаков 13 и оголовков 16 остаются зазоры Δ1 и
Δ2 соответственно.
После расслабления строповочных устройств под действием
собственной массы (сил гравитации) происходит
самопроизвольная осадка шпренгельного ригеля 3 рамы в
проектное положение до полного касания опорных поверхностей
(Δ1=0, Δ2= 0), а торцевые башмаки 13 перемещаются вдоль
скошенных поверхностей 14. При этом тангенс угла наклона
скошенных поверхностей 14 торцевых башмаков 13 и оголовков
16 колонн 1 принимают равным отношению вертикальных (Δ1) и
горизонтальных (Δ2) зазоров между шпренгельным ригелем 3 и
колоннами 1.
Силы гравитации преодолевают силы трения, развивающиеся по
контактным участкам скошенных поверхностей 14 торцевых
башмаков 13 шпренгельного ригеля 3 и оголовков 16 колонн 1.
При этом на концевых участках затяжек 8 (на участках между
спрессованными шайбами 9 и концевыми стопорами 15)
возникают дополнительные растягивающие усилия, которые
создают в местах контакта скошенных поверхностей 14 торцевых
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 54
55.
башмаков 13 и оголовков 16 колонн 1 горизонтальныесоставляющие усилий, направленные к центру рамы
перпендикулярно продольным осям колонн 1. Это вызывает в
сечениях колонн 1 усилия предварительного напряжения начальные изгибающие моменты, а на концевых участках затяжки
8 - дополнительные растягивающие усилия предварительного
напряжения.
Балка-распорка 4 как элемент шпренгельного ригеля 3 обладает
невысокой изгибной жесткостью. При ее строповке в средней
части и промежуточном подъеме балка-распорка 4 работает по
двухконсольной схеме, при которой ее концы под действием
собственной массы провисают, а расстояния между
вилкообразными упорами 7 уменьшаются, что позволяет завести
за них спрессованные на затяжке 8 шайбы 9. Строповка балкираспорки 4 в средней ее части и промежуточный подъем по
двухконсольной схеме увеличивает (в сравнении с другими
схемами строповки) перемещения ее концов.
После установки шпренгельного ригеля 3 на временные опоры
11, размещенные под концами балки-распорки 4, и его
расстроповки балка-распорка 4 распрямляется и растягивает
гибкую затяжку 8, создавая в ней усилия предварительного
напряжения. Шпренгельный ригель 3 становится предварительно
напряженным элементом. При этом для натяжения затяжки 8 не
требуются специальные силовые устройства (например,
домкраты, грузы, натяжные устройства - стяжные муфты и т. п. ),
так как деформирование балки-распорки 4 осуществляется за счет
силы тяжести, возникающей от ее собственной массы. Причем
отпадает необходимость в контрольно-измерительной аппаратуре
(например, динамометрах, тензометрах и т.п.), так как расчетные
усилия предварительного напряжения в затяжке 8 определяются
ее длиной на участке между спрессованными шайбами 10.
Процесс сборки шпренгельного ригеля 3 совмещается с
процессом его предварительного напряжения. Это приводит к
упрощению его сборки и, как следствие, к снижению
трудоемкости монтажа шпренгельной рамы в целом.
При установке шпренгельного ригеля 3 на оголовки 16 колонн 1
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 55
56.
происходит самопроизвольная осадка шпренгельного ригеля 3 впроектное положение до полного касания опорных поверхностей
(Δ1= 0, Δ2=0). При этом на концевых участках затяжки 8 (на
участках между спрессованными шайбами 9 и концевыми
стопорами 15) возникают дополнительные растягивающие усилия,
под действием которых происходит изгиб колонн 1 вовнутрь
рамы. Таким образом, на втором этапе монтажа шпренгельной
рамы создается предварительное напряжение колонн 1 и
дополнительное напряжение затяжки 8. При этом процесс
установки шпренгельного ригеля 3 в проектное положение
совмещается с процедурой предварительного напряжения колонн
1, что приводит к упрощению их предварительного напряжения и,
как следствие, к снижению трудоемкости монтажа шпренгельной
рамы в целом.
Назначение тангенса угла наклона скошенных поверхностей 14
торцевых башмаков 15 и оголовков 16 равным отношению
вертикальных зазоров - Δ1 к горизонтальным зазорам - Δ2 (
)
обеспечивает одновременное и полное касание опорных
поверхностей шпренгельного ригеля 3 и колонн 1 в проектном
положении (Δ1=0, Δ2=0).
Использование изобретения позволяет упростить монтаж рамы
за счет совмещения процессов сборки шпренгельного ригеля и его
установки в проектное положение с предварительным
напряжением шпренгельного ригеля и колонн рамы. При этом не
требуется применение дополнительных силовых устройств для
натяжения затяжки и изгиба колонн, не требуется контроль за
величиной усилий предварительного напряжения в затяжке и
величинами смещения колонн, в связи с чем отпадает
необходимость в специальной измерительной аппаратуре. В
целом это приводит к снижению трудоемкости монтажа до 1218%.
Источники информации
1. Кирсанов Н.М. Висячие покрытия производственных зданий. М.: Стройиздат, 1990. - 128 с. - (Наука - строительному
производству). Рис. 1.1 на с. 8.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 56
57.
2. Металлические конструкции: Спец. курс. учеб. пособие длявузов /Е.И. Беленя, Н. Н. Стрелецкий и др.; Под общ. ред. Е.И.
Беленя. - 2-е изд. перераб. и доп. - М.: Стройиздат, 1982. - 472с.
Рис. 6.14, ж на с.95.
3. Руководство по применению стальных канатов и анкерных
устройств в конструкциях зданий и сооружений. - М.: Стройиздат,
1978. - 94с.
Формула изобретения
1. Способ монтажа предварительно напряженной шпренгельной
рамы, включающий объединение колонн с фундаментами и
предварительно напряженным ригелем шпренгельного типа,
отличающийся тем, что на концах балки-распорки ригеля со
стойками шпренгеля, имеющими вилкообразные наконечники,
устанавливают вилкообразные упоры, балку-распорку ригеля
стропуют в средней ее части и выполняют промежуточный
подъем, затем спрессованные шайбы затяжки заводят за
вилкообразные упоры, и опускают ригель на временные опоры,
монтируют торцевые башмаки и крепят к ним концевые стопоры
затяжки, после чего ригель перестроповывают и устанавливают
на колонны с совмещением скошенных поверхностей торцевых
башмаков ригеля и оголовков колонн.
2. Способ монтажа предварительно напряженной шпренгельной
рамы по п. 1, отличающийся тем, что тангенс угла наклона
скошенных поверхностей торцевых башмаков и оголовков колонн
принимают равным отношению вертикальных и горизонтальных
зазоров между ригелем и колоннами.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 57
58.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 58
59.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 59
60.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 60
61.
РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU
(11)
2
(13)
C1
(51) МПК
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 61
62.
E01D 22/00 (2000.01)E01D 19/00 (2000.01)
E04C 3/10 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 4 год с 22.02.2003 по 21.02.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000104023/03, 21.02.2000
(24) Дата начала отсчета срока действия патента:
21.02.2000
(45) Опубликовано: 20.08.2001 Бюл. № 23
(56) Список документов, цитированных в отчете о поиске: SU 1261998
A, 07.10.1986. RU 2117120 C1, 10.08.1998. SU 1090786 A,
07.05.1984. SU 1070248 A, 30.01.1984. SU 1744172 A1, 30.06.1992.
SU 1799944 A1, 07.03.1993. SU 1090784 A, 07.05.1984. DE 1258441
(71) Заявитель(и):
Воронежская государственная архитекту
академия
(72) Автор(ы):
Накашидзе Б.В.
(73) Патентообладатель(и):
Воронежская государственная архитекту
академия
A, 11.01.1968. GB 1241681 A, 04.08.1971. US 4718209 A,
12.01.1988. WO 93/22521 A, 11.11.1993. ГЛИНКА Н.Н.,
ПОСПЕЛОВ Н.Д. Клееные пролетные строения мостов. - М.:
Транспорт, 1964, с.52-53. КУЛИШ В.И. Клееные деревянные
мосты с железобетонной плитой. - М.: Транспорт, 1979, с.43-50,
рис.III.2.
Адрес для переписки:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 62
63.
394006, г.Воронеж, ул. 20-летия Октября, 84, ВГАСА, патентноинформационный отдел(54) БАЛКА
(57) Реферат:
Изобретение относится к мостостроению и может быть использовано для усиления
балочных конструкций промышленных и гражданских зданий, действующих мостовых
конструкций, а также в строительных предварительно напряженных конструкциях из
разнородных материалов. Конструкция содержит усиленную продольными арматурными
стержнями по нижней грани деревянную стенку и верхнюю железобетонную плиту,
объединенную со стенкой с помощью сдвиговоспринимающих устройств в виде наклонных
тяг, установленных под острым углом в направлении торцов балки. Новым является то, что
продольные арматурные стержни снабжены на своих концевых участках устройствами
компенсации реактивных сил в виде контактирующих с анкерами поперечных упоров,
подпружиненных цилиндрических гильз, шарнирно соединенных посредством боковых
накладок с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от
соответствующего торца к середине балки, при этом противоположные кон цы наклонных тяг
также соединены через боковые накладки с продольными ребровыми выступами
железобетонной плиты с возможностью вращения, причем выступы выполнены высотой не
менее 1/3 высоты стенки из дерева. Технический результат, достигаемый изобретением,
состоит в создании и сохранении длительного эффекта преднапряжения, а также
дополнительного разгружающего момента в балочной конструкции, варьировании
жесткостью сдвиговых связей с целью снижения деформаций между между железобетонной
плитой и дощатоклееной стенкой, повышения степени поперечного обжатия для уменьшения
скалывающих
напряжений.
10
ил.
Изобретение относится к области мостостроения и может быть
использовано для усиления балочных конструкций
промышленных и гражданских зданий, действующих мостовых
конструкций, а также в строительных предварительно
напряженных конструкциях из разнородных материалов.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 63
64.
Известны конструктивные решения по усилению пролетныхмостовых балок из железобетона [1] . Однако такие технические
решения не позволяют сохранить длительно заданный эффект
предварительного напряжения, а конструкции балок не обладают
демпфирующими свойствами.
Наиболее близкой к изобретению по совокупности признаков
является балка деревожелезобетонного пролетного строения,
преимущественно моста, включающая стенку из дерева,
усиленную продольными арматурными стержнями по нижней
грани, и верхнюю железобетонную плиту, объединенную со
стенкой посредством сдвиговоспринимающих устройств,
выполненных в виде наклонных тяг, установленных под острым
углом в направлении торцов балки [2].
В известном техническом решении продольные арматурные
стержни и наклонные тяги позволяют создать эффект
предварительного напряжения, а выполнение стенки из клееной
древесины способствует образованию демпфирующих свойств в
конструкции балок при действии подвижной нагрузки.
Однако использование такого технического решения не
позволяет сохранить требуемый длительный эффект
предварительного напряжения по причине ползучести древесины
и релаксации армирующего материала, не представляется
возможным создание дополнительного разгружающего
изгибающего момента, противодействующего моменту от
внешней нагрузки, а также усложняется конструктивное решение
снижения сдвиговых деформаций между железобетонной плитой
и дощатоклееной деревянной стенкой.
Задачей, на решение которой направлено изобретение, является
создание и сохранение длительного эффекта преднапряжения, а
также дополнительного разгружающего момента в балочной
конструкции, варьирование жесткостью сдвиговых связей с целью
снижения деформаций между железобетонной плитой и
дощатоклееной деревянной стенкой, повышение степени
поперечного обжатия для уменьшения скалывающих напряжений.
Технический результат достигается за счет взаимосвязи
напрягаемых арматурных стержней с устройствами компенсации
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 64
65.
реактивных сил, а благодаря наклонным тягам, угол наклонакоторых увеличивается по мере удаления от соответствующего
торца к середине балки, появляется возможность варьирования
деформациями между железобетонной плитой и клееной
деревянной стенкой. Выполнение в железобетонной плите в
плоскости сдвига прерывистых продольных ребровых выступов
высотой не менее 1/3 высоты стенки из дерева обеспечивает
образование дополнительного разгружающего момента в
составной деревожелезобетонной балке, а также способствует
снижению деформаций сдвига и отрыва в плоскости сопряжения
плиты и стенки.
Сущность предлагаемого изобретения заключается в том, что
балка, преимущественно моста, включающая стенку из дерева,
усиленную продольными арматурными стержнями по нижней
грани, и верхнюю железобетонную плиту, объединенную со
стенкой посредством сдвиговоспринимающих устройств,
выполненных в виде наклонных тяг, установленных относительно
продольных арматурных стержней под острым углом в
направлении торцов балки, отличается от прототипа тем, что
расположенные под нижней гранью стенки продольные
арматурные стержни снабжены установленными на своих
концевых участках устройствами компенсации реактивных сил в
виде контактирующих с анкерами продольных арматурных
стержней поперечных упоров, подпружиненных относительно
размещенных под нижней гранью стенки и охватывающих
концевые участки упомянутых стержней цилиндрических гильз,
шарнирно соединенных посредством боковых накладок, попарно
установленных с противоположных сторон стенки, с наклонными
тягами, угол наклона которых увеличивается по мере удаления
тяг от соответствующего торца к середине балки, при этом
противоположными своими концами наклонные тяги также через
боковые накладки связаны с возможностью вращения с
прерывистыми продольными ребровыми выступами верхней
железобетонной плиты, выполненными высотой не менее 1/3
высоты стенки из дерева.
Выполнение конструктивной системы путем взаимосвязи
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 65
66.
напрягаемых арматурных стержней и устройств компенсацииреактивных сил позволяет создавать и длительно сохранять
эффект предварительного напряжения, а также повысить степень
обжатия всей комбинированно-армированной балки как в
продольном, так и в поперечном направлении; при этом
наклонные тяги, связанные шарнирно с прерывистыми
продольными ребровыми выступами железобетонной плиты и
продольными арматурными стержнями, создают не только эффект
обратного выгиба, противоположного прогибу от внешней
нагрузки, но и дополнительный разгружающий момент от
внутренних сил обжатия. Выполнение в плоскости сопряжения
железобетонной плиты и деревянной дощатоклееной стенки
прерывистых ребровых выступов позволяет значительно
увеличить жесткость и прочность сдвиговых связей и тем самым
повысить несущую способность всей балки. Благодаря устройству
компенсации реактивных сил, шарнирно связанному с
наклонными тягами и продольными арматурными стержнями,
обеспечивается надежный контроль и сохранение начально
созданных напряжений в напрягаемой конструктивной системе и
тем самым длительно обеспечивается эффект преднапряжения в
балке.
На фиг. 1 изображена балка пролетного строения, общий вид; на
фиг. 2 - разрез 1-1 на фиг. 1; на фиг. 3 - разрез 2-2 на фиг. 1; на
фиг. 4 изображен фрагмент А на фиг. 1, крепление продольных
арматурных стержней с наклонными сдвиговоспринимающими
устройствами посредством компенсатора реактивных сил; на фиг.
5 изображен фрагмент Б на фиг. 1, крепление наклонных
сдвиговоспринимающих устройств с продольным ребровым
выступом железобетонной плиты; на фиг. 6 - разрез 3-3 на фиг. 4;
на фиг. 7 - фрагмент выполнения на концевых участках
деревянной стенки ниш для ребровых выступов железобетонной
плиты; на фиг. 8 - общий вид балки пролетом более 9 м с
концевыми и промежуточными сдвиговоспринимающими
устройствами; на фиг. 9 фрагмент выполнения в деревянной
стенке промежуточной ниши для ребровых выступов
железобетонной плиты; на фиг. 10 - фрагмент создания
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 66
67.
дополнительного внутреннего момента, образующегося вплоскости сдвига ребровых выступов плиты и стенки.
Балка содержит деревянную дощатоклееную стенку 1,
усиленную по нижней грани продольной арматурой 2, а по
верхней - железобетонной плитой 3. Периферийные элементы
усиления 2 и 3 объединены совместно наклонными тягами 4 и
боковыми накладками 5, шарнирно соединенными одним концом
с цилиндрическими гильзами 6, а другим с прерывистыми
продольными ребровыми выступами 7 железобетонной плиты 3.
Цилиндрические гильзы 6, по крайней мере на одном конце
балки, взаимодействуют с устройствами компенсации реактивных
сил, например, в виде пружин 8, ориентированных вдоль
цилиндрической гильзы 6 и концевого участка продольной
арматуры 2. Пружины 8 закреплены одним концом к упорному
столику 9, установленному на боковой грани цилиндрической
гильзы 6, а другим концом к поперечному П - образному упору
10, сквозь который пропущен концевой участок продольной
арматуры 2, закрепленный при помощи концевого анкера 11.
Наклонные тяги 4, имеющие на концах анкера 11, крепятся
шарнирно с боковыми накладками 5 при помощи упорных
столиков 9.
Сборку балки производят следующим образом. Первоначально в
клееной дощатой деревянной стенке 1 выполняют ниши 12 на
концевых участках (фиг. 7) на глубину не менее 1/3 высоты
стенки 1, а для перекрываемых пролетов от 9 до 15 м выполняют
дополнительно еще промежуточные ниши 13 (фиг. 8, 9) на
глубину не менее 1/3 высоты стенки, а для пролетов от 15 до 18 м
вновь дополнительно выполняются промежуточные ниши 13
соответственно на глубину не менее 1/3 высоты стенки 1. Шаг
между нишами 12, 13 начиная от концов стенки 1 к ее серединной
части принимается равным 1/4 - 1/7 перекрываемого пролета.
Затем осуществляется омоноличивание верхней грани стенки 1
железобетоном таким образом, чтобы в образовавшихся
продольных ребровых выступах плиты 3 выполнялось сквозное
отверстие 14 для шарнирного крепления боковых накладок 5. С
набором требуемой прочности бетона осуществляется установка
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 67
68.
напрягаемой системы в виде продольных и наклонныхарматурных стержней 2, 4, 5. Установка напрягаемой системы
осуществляется таким образом, чтобы угол наклона концевых тяг
4 и боковых накладок 5 в приопорной части балок был в пределах
30 - 45o относительно продольной оси арматуры 2, а для балок
длиной от 9 до 15 м и для перекрываемых пролетов от 15 до 18 м,
имеющих дополнительные промежуточные наклонные тяги 4 и
боковые накладки 5, угол наклона которых принимается в
пределах 50 - 60o относительно продольной оси арматуры 2.
Перед установкой напрягаемой системы первоначально
осуществляется подготовка продольной арматуры 2 к взаимосвязи
с устройством компенсации реактивных сил и наклонными тягами
4 с накладками 5. Конструктивное решение устройств
компенсации реактивных сил имеет большое разнообразие (см.
Патент РФ N 2109894). Взаимосвязь продольной арматуры 2 и
компенсатора реактивных сил 8 осуществляется следующим
образом. Первоначально, по крайней мере на одном конце
продольной арматуры 2, устанавливается анкер 11, затем к
нижней грани стенки 1 балки на концевых участках
устанавливают цилиндрические гильзы 6, к которым шарнирно
присоединены одним концом боковые накладки 5, попарно
устанавливаемые с противоположных сторон стенки 1. Затем в
сквозные отверстия 14 продольных ребровых выступов 7 плиты 3
вставляют оси 15, на которые крепится шарнирно другая
противоположная пара боковых накладок 5. После установки
боковых накладок 5 в уровне верхней и нижней грани стенки 1
осуществляют их взаимное соединение тягами 4, которые
выполнены с концевыми анкерами 11. Продольный арматурный
стержень 2 свободным (без анкера 11) концом протягивают сквозь
цилиндрические гильзы 6 и поперечный упор 10, а затем на
свободный конец надевают анкер 11 и крепят к домкрату
двойного действия (не показан). Для создания дополнительных
реактивных сил обжатия конструкции и их компенсации при
потерях в период ползучести материала основы конструкции и
релаксации напрягаемой арматуры необходимо устанавливать
компенсатор, например, в виде пружины 8 между поперечным
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 68
69.
упором 10 и цилиндрической гильзой 6. Таким образом, придействии домкрата пружина 8 сжимается, а продольная арматура
2 натягивается на требуемую расчетную величину и затем
свободный ее конец анкеруется анкером 11.
Напрягаемая система балки работает следующим образом.
Используемый домкрат работает по принципу двойного действия,
в результате при натяжении продольной арматуры 2 компенсатор
реактивных сил, например, пружины 8 и цилиндрические гильзы
6 сжимаются, а наклонные сдвиговоспринимающие элементы в
виде боковых накладок 5 и тяг 4 растягиваются. В результате
внутреннего перераспределения сил от действия домкрата и
сдвиговоспринимающих элементов с компенсатором реактивных
сил балка выгибается в сторону, противоположную прогибу от
внешней нагрузки и собственного веса. При действии внешней
нагрузки на балку образуется погонное сдвигающее внутреннее
усилие относительно нейтральной оси балки, которое
воспринимается, как правило, связями. Податливость связей
зависит от их жесткости. Выполнение в плоскости сдвига ж/б
плиты 3 и деревянной дощатоклееной стенки 1 дополнительных
связей в виде прерывистых продольных ребровых выступов 7
позволяет значительно повысить несущую способность составной
деревобетонной балки благодаря снижению вероятности
скалывания в плоскости сдвига, так как касательные напряжения
воспринимаются связями. При этом усилия от наклонных
сдвиговоспринимающих элементов 4, 5, передаваемые на оси 15,
способствуют созданию дополнительного внутреннего
разгружающего момента, противоположного по знаку моменту от
внешней нагрузки. Разгружающий дополнительный внутренний
момент образуется следующим образом. При натяжении
наклонных тяг 4 и боковых накладок 5 в условной точке
сквозного отверстия 14 от оси 15 в ребровом выступе плиты 3
происходит внутреннее разложение усилий вдоль оси балки,
поперек и под соответствующим углом вдоль оси
сдвиговоспринимающих элементов 4, 5. Усилие, направленное
вдоль, относительно нейтральной оси балки имеет
эксцентриситет, который и способствует созданию
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 69
70.
дополнительного внутреннего момента (фиг. 10).Изобретение позволяет повысить степень обжатия и эффект
предварительного напряжения в балке благодаря
комбинированному функциональному совмещению напрягаемой
продольной арматуры, наклонных сдвиговоспринимающих
элементов и устройств компенсации реактивных сил. Принятые
углы наклона сдвиговоспринимающих элементов позволяет
варьировать деформациями сдвига и отрыва ж/б плиты от
дощатоклееной деревянной стенки, а выполнение прерывистых
продольных ребровых выступов в плите в плоскости сдвига
способствует созданию дополнительного разгружающего момента
от действия внешней нагрузки на балку, а также позволяет
повысить жесткость связей, воспринимающих сдвиг.
Таким образом, появилась большая надежность и возможность
использования клееной древесины в комбинированных
конструкциях из железобетона, полимербетона и металла, так как
обеспечивается прочность от возможного раскалывания
древесины, являющейся наиболее уязвимым местом в деревянных
конструкциях. Совместная взаимосвязь продольной арматуры,
наклонных сдвиговоспринимающих элементов и компенсатора
потерь реактивных сил позволяет не только создавать в балке
противодействующий внешней нагрузке изгибающий момент,
длительно сохранять эффект предварительного напряжения,
значительно упростить процесс предварительного напряжения
балки, но еще появилась возможность создавать дополнительный
разгружающий момент от действия внешней нагрузки и
гарантировать надежность составной балочной конструкции от
скалывания при действии касательных напряжений.
Изобретение может быть использовано для усиления балочных
конструкций из традиционных материалов при действии как
статической, так и динамической либо пульсирующей нагрузки, а
также при конструировании подкрановых балок и других
изгибаемых конструкций составного сечения с разномодульными
характеристиками составных зон и недостаточной жесткостью
связей, воспринимающих их взаимный сдвиг относительно
продольной оси.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 70
71.
Источники информации1. RU, Патент РФ 2117120, кл. E 04 С 3/10.
2. SU, авт. св. 1261998, кл. E 01 D 7/02.
Формула изобретения
Балка, включающая стенку из дерева, усиленную продольными
арматурными стержнями по нижней грани и верхнюю
железобетонную плиту, объединенную со стенкой посредством
сдвиговоспринимающих устройств, выполненных в виде
наклонных тяг, установленных относительно продольных
арматурных стержней под острым углом в направлении торцов
балки, отличающаяся тем, что расположенные под нижней гранью
стенки продольные арматурные стержни снабжены
установленными на своих концевых участках устройствами
компенсации реактивных сил в виде контактирующих с анкерами
продольных арматурных стержней поперечных упоров,
подпружиненных относительно размещенных под нижней гранью
стенки и охватывающих концевые участки упомянутых стержней
цилиндрических гильз, шарнирно соединенных посредством
боковых накладок, попарно установленных с противоположных
сторон стенки, с наклонными тягами, угол наклона которых
увеличивается по мере удаления тяг от соответствующего торца к
середине балки, при этом противоположными своими концами
наклонные тяги также через боковые накладки связаны с
возможностью вращения с прерывистыми продольными
ребровыми выступами верхней железобетонной плиты,
выполненными высотой не менее 1/3 высоты стенки из дерева.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 71
72.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 72
73.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 73
74.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 74
75.
СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИРОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
2503783
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
2 503 783
(13)
C1
(51) МПК
E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.12.2021)
Пошлина: учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока действия
патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи заявки: 25.06.2012
(45) Опубликовано: 10.01.2014 Бюл.
№1
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Закрытое акционерное общество "Казанский
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром")
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 75
76.
(56) Список документов, цитированныхв отчете о поиске: RU 103115 U1,
27.03.2011. RU 2354789 C1,
10.05.2009. AU 568956 B2,
14.01.1988.
(RU)
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления
фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной
или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с поясами.
Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий
фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел состоит из двух
фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса.
Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем укладывают
нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый
монтажный стык нижнего пояса полуфермы. После чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм. Затем на узлы полуфермы накладывают внахлест стержни решетки
нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или
полос. Полосы преднапрягают, стягивая их в середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм и з прокатных
профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной
решетки с сечением из коробчатых профилей, заключающийся в соединении сваркой односрезных концов раскосов с
поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16,
7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует
повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими
раскосами, выполняемой из прямого коробчатого пояса, заключающийся в соединении сваркой односрезных концов
двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей. Серия
1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления
ферм с треугольной или раскосной решеткой, т.к. ширина сходящихся в узлах стержне й решетки ферм и поясов
выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости изготовления фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения
центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых
коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении сваркой односрезных
концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают
верхний пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы,
состоящий из двух фасонок, приваренных к поясу в продолжении плоскости с тенок верхнего пояса и приваренную
перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шириной равной
верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам
встык приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего
направления, выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы преднапрягают
стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности
изготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемых из
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 76
77.
коробчатых профилей равной ширины «b» (Фиг.1). Все восходящие раскосы фермы с треугольной или раскосойрешеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или
полос (Фиг.1). Остальные раскосы 5 фермы нисходящего направления изготавливают из двух полос, которые
накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следующей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: укладывают верхний пояс 1 из
коробчатого профиля (Фиг.2), который содержет фланцевый монтажный стык 6, и опорный узел полуфермы (Фиг.2),
состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и
приваренную перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с
шириной пояса 2 равного ширине верхнего пояса 1, который содержит фланцевый монтажный стык 9 нижнего пояса 2
полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3,
выполняя их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы
накладывают внахлест раскосы 4 и 5 решетки нисходящего направления (Фиг.4), выполняя их из двух параллельных
неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы
фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в
узле раскосов, кроме того при изготовлении нисходящих раскосов нахлестом на узлы полуферм происходит усиление
стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из
коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной
или раскосной решеткой, заключающийся в соединении сваркой односрезных концов раск осов с поясами,
отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчатого
профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок,
приваренных к поясу в продолжении плоскости стенок верхнего пояса, и приваренную перпендикулярно фасонкам
опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который
содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм;
затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 77
78.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 78
79.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 79
80.
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ 2228415
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 228 415
(13)
C2
(51) МПК
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина:Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 80
81.
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25(45) Опубликовано: 10.05.2004 Бюл. № 13
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная бло
12-3Р // Информ. листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1
SU 1281651 A1, 07.01.1987. RU 2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.
4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания ―следящих‖
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 81
82.
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединеныметаллические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания ―следящих‖ за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания ―следящих‖ за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 82
83.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкциипредставлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 83
84.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 84
85.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 85
86.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 86
87.
(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ:30/2006 +
СТРОИТЕЛЬНАЯ ФЕРМА 2155259
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 155 259
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
C2
(51) МПК
E04C 3/11 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: учтена за 5 год с 17.04.2000 по 16.04.2001. Патент перешел в общественное достояние.
(21)(22) Заявка: 96107742/03, 16.04.1996
(24) Дата начала отсчета срока действия
патента:
16.04.1996
(71) Заявитель(и):
Государственный
гидрологический институт
(72) Автор(ы):
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 87
88.
(45) Опубликовано: 27.08.2000 Бюл.№ 24
(56) Список документов, цитированных
в отчете о поиске: SU 781293 A,
23.11.1980. FR 2237030 A1,
07.02.1975. US 3541749 A,
24.11.1970.
Миронов В.Е.
(73) Патентообладатель(и):
Государственный
гидрологический институт
Адрес для переписки:
199053, Санкт-Петербург, В.О., 2я линия 23, Государственный
гидрологический институт
(54) СТРОИТЕЛЬНАЯ ФЕРМА
(57) Реферат:
Изобретение относится к области строительства и может быть использовано в качестве
несущей конструкции пролетного строения решетчатых гидрометрических мостов и как
стропильная ферма в перекрытиях зданий, сооружений. Технический результат изобретения повышение жесткости фермы. Строительная ферма содержит верхний сжатый и нижний
растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также
дополнительные стойки и подкосы. Каждая из дополнительных стоек одним концом
прикреплена к раскосу вне узла, а другим концом к нижнему поясу, также вне узла, при этом
длины панелей уменьшаются от середины пролета к опорам. Подкосы и дополнительные
стойки расположены только в средней части пролета фермы и имеют меньшее поперечное
сечение, чем сопряженные с ними стержни фермы, при этом одна часть подкосов прикреплена
к стойкам под углом 45° вне узла, а другим концом - к нижнему поясу, также вне узла, другая
часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также
вне узла, причем точки крепления к поясам подкосов и дополнительных стоек отстоят от
ближайших
узлов
на
расстоянии
1/6
длины
панели.
3
ил.,
1
табл.
Изобретение относится к области гидрологии, а также строительства, в частности к гидрометрическим решетчатым
мостам, в которых ферма может быть использована как несущая конструкция пролетного строения и которые могут
быть использованы на водных потоках с устойчивыми руслами и берегами для выполнения гидрометрических
измерений, с максимальной шириной по урезу в период горизонта высоких вод до 30 м и при перепаде уровня воды до
3-4 м. В конструкциях перекрытий зданий и сооружений данное изобретение может найти применение в качестве
стропильной фермы, в том числе с местной загрузкой поясов.
Известна строительная ферма с неравными панелями, длина которых уменьшается от середины пролета к опорам,
содержащая верхний сжатым и нижний растянутый пояса, стержни раскосной системы решетки с переменным
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 88
89.
направлением раскосов (треугольной системы решетки) и стойки. Такая ферма с местной загрузокй поясов считаетсянаиболее экономичным решением в случае, когда длина панелей фермы уменьшается от середины пролета к опорам
[1] (с. 250, фиг. 13).
Недостатком известной фермы является отсутствие единообразия в сх емах узлов, которые по этой причине
неудобны и трудоемки для конструирования. Это обстоятельство практически не позволяет запроектировать ферму,
состоящую из сборных унифицированных элементов, что является особенно важным при проектировании пролетных
строений мостов различного назначения. Кроме того, при большой местной загрузке поясов в средней части пролета
фермы приходится значительно увеличивать сечения поясов, что приводит к увеличению материалоемкости.
Известна равнопанельная строительная ферма с параллельными поясами, включающая верхний сжатый и нижний
растянутый пояса, стержни треугольной решетки и стойки, а также дополнительные стойки, каждая из которых одним
концом прикреплена к раскосу вне узла, а другим концом - к нижнему растянутому поясу, также вне узла, в точке,
отстоящей от него на расстоянии примерно 1/4 длины панели [2]. Такая конструкция решетки позволяет снизить
материалоемкость за счет уменьшения расчетной длины раскосов. Однако из -за значительной длины дополнительных
стоек достигаемый экономический эффект является небольшим.
Наиболее близким к изобретению по технической сущности является равнопанельная строительная ферма моста
параболического очертания, содержащая параболический верхний сжатый и нижний растянутый пояса, нисходящие
стержни раскосной системы решетки, стойки и расположенные между всеми стойками подкосы, каждый из которых
одним концом прикреплен к раскосу в средней точке, а другим концом - к нижнему растянутому поясу вне узла в
точке, отстоящей от него на расстоянии примерно 1/7 длины панели [1] (с. 802). Известная строительная ферма моста
параболического очертания принята за прототип.
Недостатком прототипа является то, что его конструкция позволяет только немного снизить материалоемкость за
счет уменьшения расчетной длины раскосов, так как подкосы имеют значительную длину - половину длины раскосов.
Кроме этого, снижению материалоемкости не способствует то, что прототип является равнопанельной фермой.
Указанные недостатки в предлагаемой ферме сведены к минимуму. При создании изо бретения были решены
задачи снижения материалоемкости и повышения надежности устройства за счет дополнения решетки фермы
системой коротких стержней, позволяющих значительно уменьшить расчетные длины стержней решетки, прогибы
поясов от местной загрузки и повысить устойчивость сечения поясов при работе на изгиб.
В предлагаемой строительной ферме треугольного, параболического, полигонального или какого -либо другого
очертания с непараллельными поясами, с длинами панелей, уменьшающимися от середины пролета к опо рам,
содержащей верхний сжатый и нижний растянутый пояса, стержни раскосной системы решетки, стойки, а также
подкосы и дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим
концом - к нижнему поясу, также вне узла, сущность изобретения заключается в том, что подкосы и дополнительные
стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее поперечное сечение, чем
сопряженные с ними стержни фермы, при этом в каждой панели одна часть подкосов прикреплена к стойкам под
углом 45 o вне узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к
раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем расстояния между точками крепления
подкосов и дополнительных стоек к поясам и ближайшими узлами (их геометрическими центрами) определяются
исходя из приближенного расчета поясов на прочность от местной загрузки и расчета раскосов на устойчивость при
сжатии с учетом их предельной гибкости, устанавливаемой нормами [3], и составляют примерно 1/6 длины панели.
Предлагаемая строительная ферма соответствует критерию "Новизна", так как она не известна из уровня техники,
и соответствует критерию "Изобретательский уровень", так как для специалиста явным образо м не следует из уровня
техники.
На фиг. 1 приведена строительная ферма треугольного очертания с подкосами и дополнительными стойками в
средней части пролета. На фиг. 2 - фрагмент строительной фермы треугольного очертания на фиг. 1 в средней части
пролета. На фиг. 3 - расчетная схема балки для определения площади поперечного сечения нижнего пояса,
используемая для определения оптимального расстояния
которое соответствует минимальной материалоемкости
строительной фермы и удовлетворяет условиям прочности и устойчивости ее элементов.
Строительная ферма содержит верхний сжатый пояс 1, нижний растянутый пояс 2, раскосную решетку 3, стойки 4,
дополнительные стойки 5 и подкосы 6, расположенные в средней части пролета фермы.
Устройство работает следующим образом.
При загрузке фермы (в том числе при местной загрузке поясов) верхний пояс 1 и раскосы 3 сжимаются, а нижний
пояс 2 и стойки 4 растягиваются и, кроме того, от местной загрузки нижний пояс 2 изгибается и прогибается.
Существенному уменьшению изгиба и прогиба нижнего пояса способствуют опорные закрепления подкоса 6 и
дополнительной стойки 5, которые под воздействием подвижной нагрузки P растягиваются и вовлекают в работу
стойку 4, раскос 3 и посредством их верхний пояс 1. Кроме этого, опорные закрепления раскос а 3 посредством
подкоса 6 у верхнего пояса 1 и дополнительной стойки 5 у нижнего пояса 2 уменьшают расчетную длину раскоса 3
при его сжатии и, таким образом, увеличивают устойчивость раскоса.
В целом благодаря наличию подкосов и дополнительных стоек в средней части пролета фермы значительно
уменьшаются расчетные длины стержней решетки и местные прогибы нижнего пояса, а также повышается его
устойчивость при работе на изгиб. Кроме этого, повышается жесткость фермы в целом и в результате уменьшаются
прогибы узлов фермы в середине пролета при действии эксплуатационных нагрузок.
Для определения оптимального расстояния
(см. фиг. 2) приведем обоснование расчетных формул и результаты
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 89
90.
расчета по ним в табличной форме.Площади поперечных сечений подкосов и дополнительных стоек определяются исходя из расчета на устойчивость
при сжатии по нормам [3]. При этом с учетом запаса гибкости подкосов и дополнительных стоек должны быть не
более 150.
При определении площади поперечного сечения дополнительной стойки или подкоса п редварительно определяется
радиус инерции r g его поперечного сечения
где l g - длина дополнительной стойки или подкоса (расстояние между точками закрепления);
λ - гибкость дополнительной стойки или подкоса, принимаемая по нормам [3], но не более 150.
Площадь Fg поперечного сечения дополнительной стойки или подкоса определяется по формуле
Fg = Ig/rg 2
где Ig - момент инерции поперечного сечения дополнительной стойки или подкоса.
Оптимальное горизонтальное расстояние
между узлом фермы на нижнем поясе и точкой крепления
дополнительной стойки (подкоса) к поясу может быть определено на основании расчета части длины пояса между
точками крепления дополнительной стойки и подкоса как простой однопролетной балки, загруженной
сосредоточенной силой P в середине пролета l п - 2aо , где l п - длина панели. Для выполнения этого расчета
предварительно следует задаться некоторым расстоянием a о . На основании расчета для каждого заданного значения
aо определяются геометрические характеристики поперечного сечения нижнего поя са и затем объем материала
нижнего пояса
Определяются длина подкоса и дополнительной стойки в зависимости от расстояния a о , площади
поперечных сечений дополнительной стойки и подкоса и затем также объемы материалов подкоса и дополнительной
стойки V' 2 и V''2 (см. расчетные формулы, константы и результаты расчетов в таблице). Объемы
V'2,
V''2 суммируются. В результате каждому заданному значению a о соответствует объем материала V, включающий
нижний пояс и сопряженные с ним дополнительную стойку и подкос.
Результаты расчетов для определения оптимального расстояния a о представлены в таблице.
Расчетные формулы
F1 = b•h;
Константы *)
lп = 300 см; P = 150 кгс; σ = 1600 кГc/cм 2; b = 0,4 см; F2 = 1,46 см 2; F'2 = 1,94 см 2; tgϕ = 0,857; cos 45 o = 0,707.
В приведенных формулах и обозначениях констант:
M - изгибающий момент в середине пролета l п-2aо ;
W - момент сопротивления площади поперечного сечения нижнего пояса;
σ - напряжение в крайних волокнах поперечного сечения нижнего пояса от изгиба;
h - высота поперечного сечения нижнего пояса в форме пластины шириною b;
F1 - площадь поперечного сечения нижнего пояса;
объем материала нижнего пояса в пределах длины панели l п;
V'2 - объем материала подкоса;
F2 - площадь поперечного сечения подкоса или дополнительной стойки при a о = 37,5 см;
F'2 - площадь поперечного сечения подкоса или дополнительной стойки при a о = 75,0 см;
V''2 - объем материала дополнительной стойки;
ϕ - угол между направлением раскоса и нижним поясом;
V - суммарный объем материала нижнего пояса, подкоса и дополнительной стойки.
Остальные обозначения были пояснены в тексте ранее.
*)
Площадь сечения F2 соответствует площади сечения уголка 20х20х4, а площадь сечения F' 2 - площади сечения
уголка 32х20х4.
Для определения оптимального значения
соответствующего минимальному значению V, была применена
интерполяционная формула Ньютона при равных разностях аргумента [4]. При этом начальное значение
aо принималось равным 0. На основании применения этой формулы оптимальное расстояние
формуле
определялось по
где V 1, V2, V 3 - значения объема V, соответствующие первому, второму и третьему значениям аргумента a о ;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 90
91.
Δao - разность аргумента.В рассматриваемом случае в соответствии с результатами расчета расстояния
по указанной формуле при Δa o =
37,5 см равно 49.4 см. При l п = 300 см относительное расстояние
Аналогичным образом расстояние a п вдоль раскоса между узлом на верхнем поясе и точкой крепления к раскосу
подкоса определяется по формуле
где l г - геометрическая длина раскоса (между центрами верхнего и нижнего узлов);
lр - расчетная длина раскоса (расстояние между опорными закреплениями).
Расчетная длина раскоса определяется по формуле
lp = r•λп,
где r - радиус инерции поперечного сечения раскоса, принимаемого по результатам общего статического расчета
фермы без учета подкосов и дополнительных стоек;
λп - предельная гибкость раскоса, принимаемая по нормам [3].
Таким образом, результаты расчетов по приведенным формулам показывают, что оптимальное р асстояние
составляет 1/6 длины панели l п. При этом удовлетворяются условия прочности и устойчивости элементов
строительной фермы.
В заявляемом изобретении по сравнению с прототипом благодаря сочетанию неравнопанельной фермы с
подкосами и дополнительными стойками в средней части пролета снижение материалоемкости составляет ≈ 20%.
Одновременно благодаря уменьшению прогиба узлов фермы приблизительно на 30% повышается надежность
устройства. Причем подкосы и дополнительные стойки не учитывались в общем статиче ском расчете фермы. Площади
сечения подкосов и дополнительных стоек принимались с запасом исходя из расчетной гибкости этих элементов при
сжатии.
Источники информации
1. Деревянные конструкции. Справочник проектировщика промышленных сооружений. Л., ОНТИ, 1 937 - 955 с.
2. Беккер Г.Н. Ферма с параллельными поясами. Авт. свид. СССР N 781293, кл. E 04 C 3/04.
3. Стальные конструкции. Глава СНиП П-23-81 *. - М.: Стройиздат, 1990.
4. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Под редакцией
д.т.н., проф. А.А. Уманского. Госстройиздат.- М: 1960 - 1040 с.
Формула изобретения
Строительная ферма, содержащая верхний сжатый и нижний растянутый непарал лельные пояса, стержни
раскосной решетки, стойки, а также подкосы и дополнительные стойки, каждая из которых одним концом
прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, при этом длины панелей
уменьшаются от середины пролета к опорам, отличающаяся тем, что подкосы и дополнительные стойки введены в
решетку строительной фермы в средней части пролета и имеют меньшее поперечное сечение, чем сопряженные с
ними стержни фермы, при этом одна часть подкосов прикреплена к стойкам по д углом 45 o вне узла, а другим концом к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к
верхнему поясу, также вне узла, причем точки крепления к поясам подкосов и дополнительных стоек отстоят от
ближайших узлов на расстоянии 1/6 длины панели.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 91
92.
УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ ВПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК ФЕРМЕ
(19)
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
RU 2247813
(11)
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ C1
СОБСТВЕННОСТИ,
(51) МПК
ПАТЕНТАМ И ТОВАРНЫМ
E04C 3/00 (2000.01)
ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение стат уса:
02.07.2021)
Пошлина: учтена за 13 год с 26.08.2015 по 25.08.2016.
Возможность восстановления: нет.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 92
93.
(21)(22) Заявка: 2003126076/03, 25.08.2003(
(24) Дата начала отсчета срока действия патента:
25.08.2003
(45) Опубликовано: 10.03.2005 Бюл. № 7
(
(56) Список документов, цитированных в отчете о поиске: SU1638284 A1, 30.03.1991.
RU2228415 C2, 10.09.2001. RU2184819 C1, 10.07.2002.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, НИС Красноярская
государственная архитектурно-строительная академия
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В
ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК ФЕРМЕ 2247813
(57) Реферат:
Изобретение относится к строительству и может быть использовано для
покрытия отапливаемых промышленных и сельскохозяйственных зданий и
сооружений. Достигаемый технический результат изобретения - более полное
использование прочностных свойств конструкции за счет предварительного
напряжения и создания ―следящих‖ за деформациями ползучести усилий
предварительного напряжения в целях уменьшения потерь преднапряжения. Для
решения поставленной задачи узловое сопряжение верхнего и нижнего поясов в
пространственной предварительно напряженной блок-ферме, включающее
траверсу с ребрами жесткости, на которой закреплены посредством фиксаторов
гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы,
согласно изобретению снабжено средством для сохранения усилия
предварительного напряжения в виде рессор, связанных с нижним поясом,
установленным с возможностью перемещения, при этом на концах нижнего
пояса вварены металлические стержни, которые пропущены через отверстия,
выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 93
94.
расположенные с наружной стороны траверсы, фиксаторы гибких арокприварены к ребрам жесткости траверсы и расположены совместно с
установленными в них гибкими арками в прорезах, выполненных на концах
нижнего пояса-затяжки. 5 ил.
Изобретение относится к строительству и может быть использовано для
покрытия отапливаемых промышленных и сельскохозяйственных зданий и
сооружений.
Известна пространственная предварительно напряженная металлическая
блок-ферма, содержащая верхний и нижний гибкие пояса, составной по
длине жесткий стержень, соединенный с концами фермы п ри помощи
траверс [Авт. свид. №421743, Е 04 С 3/04].
Недостатком известной фермы является низкая ее эффективность из -за
сложности создания предварительного напряжения путем распирания
домкратами отдельных частей жесткого стержня и установки в
образовавшийся зазор вставки.
Наиболее близким по технической сущности к изобретению является
узловое сопряжение верхнего и нижнего поясов в известной
пространственной предварительно напряженной ферме, принятой за
прототип [Авт. свид. №1638284, Е 04 С 3/00]. Известная ферма состоит
верхнего пояса, включающего ребристые плиты с утеплителем и кровлей,
уложенные на гибкие арки, нижнего пояса -затяжки в виде тонкой полосы,
установленных между ними вертикальных распорок, раскосов и
поперечных траверс, установленных по концам фермы, к которым
прикреплены верхний и нижний пояса, причем поперечные траверсы
снабжены наклонной полкой, к которой на высокопрочных ботах
прикреплены концы нижнего пояса и фиксаторы -карманы с гибкими
арками.
Недостатком прототипа являются потери усилия п редварительного
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 94
95.
напряжения в нижнем поясе, обусловленные деформациями ползучести итемпературно-влажностными деформациями в древесине ребер плит
верхнего пояса, температурными деформациями металла нижнего пояса, и,
как следствие, не в полной мере использов ание прочностных свойств
конструкции с жестким выполнением соединения верхнего и нижнего
поясов.
Задача изобретения - более полное использование прочностных свойств
конструкции за счет предварительного напряжения и создания ―следящих‖
за деформациями ползучести усилий предварительного напряжения в
целях уменьшения потерь преднапряжения.
Для решения поставленной задачи узловое сопряжение верхнего и
нижнего поясов в пространственной предварительно напряженной блок ферме, включающее траверсу с ребрами жесткост и, на которой закреплены
посредством фиксаторов гибкие арки верхнего пояса и нижний пояс затяжка в виде тонкой полосы, согласно изобретению снабжено средством
для сохранения усилия предварительного напряжения в виде рессор,
связанных с нижним поясом, установленным с возможностью
перемещения, при этом на концах нижнего пояса вварены металлические
стержни, которые пропущены через отверстия, выполненные в траверсе, и
оперты при помощи упорных шайб и гаек на рессоры, расположенные с
наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам
жесткости траверсы и расположены совместно с установленными в них
гибкими арками в прорезах, выполненных на концах нижнего пояса затяжки.
На фиг.1 изображено узловое сопряжение верхнего и нижнего поясов в
пространственной предварительно напряженной блок -ферме; на фиг.2 - то
же, вид сверху; на фиг.3 - то же, вид сбоку; на фиг.4 - вид в объеме с
наружной стороны блок-фермы; на фиг.5 - вид в объеме с внутренней
стороны блок-фермы.
Узловое сопряжение верхнего и нижнего по ясов в пространственной
предварительно напряженной блок-ферме включает траверсу 1 с ребрами
жесткости 2 и 3, расположенными с обеих сторон траверсы. К ребрам 2
приварены фиксаторы 4, в которых закреплены гибкие арки 5 верхнего
пояса посредством болтовых соединений 6. С наружной стороны траверсы
на ребра 3 приварены рессоры 7, взаимодействующие с нижним поясом 8,
выполненным в виде металлической полосы. При этом на конце нижнего
пояса 8 выполнены прорези 9 под гибкие арки, по контуру приварены
стержни 10, выступающие концы которых пропущены через отверстия 11 в
траверсе 1 и между рессорами 7. Стержни 10 оперты на рессоры 7 через
упорные шайбы 12, например, в виде швеллеров и гайки 13. С внутренней
стороны траверсы 1 нижний пояс 8 установлен с возможностью
перемещения на скошенных ребрах 14 и закреплен на приваренной к
ребрам 14 пластине 15 посредством болтовых соединений 16,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 95
96.
расположенных в пазах 17, выполненных в нижнем поясе 8.В процессе эксплуатации конструкции рессоры будут регулировать
усилие предварительного напряжения, сохраняя его, несмотря на ползучие
и температурно-влажностные деформации в древесине и температурные
деформации металла.
Использование предлагаемого изобретения по сравнению с прототипом
позволяет создавать и сохранять усилие предваритель ного напряжения в
процессе эксплуатации, тем самым сохраняя несущую способность и
жесткость конструкции.
Такое решение дает более полное использование прочностных свойств
конструкции, уменьшает потери преднапряжения, что приведет к
сохранению несущей способности и жесткости.
Формула изобретения
Узловое сопряжение верхнего и нижнего поясов в пространственной
предварительно напряженной блок-ферме, включающее траверсу с
ребрами жесткости, на которой закреплены посредством фиксаторов
гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы,
отличающееся тем, что оно снабжено средством для сохранения усилия
предварительного напряжения в виде рессор, связанных с нижним поясом,
установленным с возможностью перемещения, при этом на концах
нижнего пояса вварены металлические стержни, которые пропущены через
отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и
гаек на рессоры, расположенные с другой стороны траверсы, фиксаторы
гибких арок приварены к ребрам жесткости траверсы и расположены
совместно с установленными в них гибкими арками в прорезах,
выполненных на концах нижнего пояса -затяжки.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 96
97.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 97
98.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 98
99.
СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИРАСКОСАМИ 2503783
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
2 503 783
(13)
C1
(51) МПК
E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.12.2021)
Пошлина: учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока действия
патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи заявки: 25.06.2012
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 99
100.
(45) Опубликовано: 10.01.2014 Бюл.№1
(56) Список документов, цитированных
в отчете о поиске: RU 103115 U1,
27.03.2011. RU 2354789 C1,
10.05.2009. AU 568956 B2,
14.01.1988.
Закрытое акционерное общество "Казанский
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром")
(RU)
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления
фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной
или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с поясами.
Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий
фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел состоит из двух
фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса.
Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем укладывают
нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый
монтажный стык нижнего пояса полуфермы. После чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм. Затем на узлы полуфермы накладывают внахлест стержни решетки
нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или
полос. Полосы преднапрягают, стягивая их в середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм из прокатных
профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполн яемой из прямых поясов и треугольной
решетки с сечением из коробчатых профилей, заключающийся в соединении сваркой односрезных концов раскосов с
поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16,
7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует
повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими
раскосами, выполняемой из прямого коробчатого пояса, заключающийся в соединении сваркой односрезных концов
двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей. Серия
1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления
ферм с треугольной или раскосной решеткой, т.к. ширина сходящихся в узлах стержней решетки ферм и поясов
выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкос ти изготовления фермы.
Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения
центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполня емой из прямых
коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении сваркой односрезных
концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают
верхний пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы,
состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса и приваренную
перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний поя с фермы с шириной равной
верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам
встык приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по
ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего
направления, выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы преднапрягают
стягивая их в середине болтом.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 100
101.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательностиизготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемых из
коробчатых профилей равной ширины «b» (Фиг.1). Все восходящие раскосы фермы с треугольной или раскосой
решеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или
полос (Фиг.1). Остальные раскосы 5 фермы нисходящего направления изготавливают из двух полос, которые
накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следующей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: ук ладывают верхний пояс 1 из
коробчатого профиля (Фиг.2), который содержет фланцевый монтажный стык 6, и опорный узел полуфермы (Фиг.2),
состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и
приваренную перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с
шириной пояса 2 равного ширине верхнего пояса 1, который содержит фланцевый монтажный стык 9 нижнего пояса 2
полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3,
выполняя их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы
накладывают внахлест раскосы 4 и 5 решетки нисходящего направления (Фиг.4), выполняя их из двух параллельных
неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы
фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в
узле раскосов, кроме того при изготовлении нисходящих раскосов нахлестом на узлы полуферм происходит усиление
стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из
коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной
или раскосной решеткой, заключающийся в соединении сваркой односрезных концов раскосов с поясами,
отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из ко робчатого
профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок,
приваренных к поясу в продолжении плоскости стенок верхнего пояса, и приваренную перпендикулярно фасонкам
опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который
содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни
решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширин е поясам полуферм;
затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 101
102.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 102
103.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясомтрехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы дорожного покрытия , включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания ―следящих‖ за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов , образованный трубой с приваренными сверху V-образно двумя фасонками
5, раскосы , присоединенные через металлические фасонки 5 к металлическому элементу
соединения раскосов , и металлический стержень , пропущенный через металлический элемент
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 103
104.
соединения раскосов , имеющий резьбовую нарезку на конце и закрепленный с помощью гаек . Наметаллический стержень между гайками и металлическим элементом соединения раскосов
размещены две шайбы , выполненные из швеллера, и между ними винтовая пружина .
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов , образованному трубой с приваренными сверху V-образно двумя фасонками ,
присоединяются раскосы , затем через пропускается металлический стержень , имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу , винтовую пружину ,
шайбу и закрепляется с помощью гаек .
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия проезжей части , включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками
и металлическим элементом соединения раскосов размещены две шайбы, выполненные из
швеллера, и между ними винтовая пружина.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
https://patentimages.storage.googleapis.com/bd/9a/cd/4f500c0445ccf4/RU2136822C1.pdf
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ
ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
ДМИТРИЕВ П.А.,
ИНЖУТОВ И.С.,
ЧЕРНЫШОВ С.А.,
ДЕОРДИЕВ С.В.,
ФИЛИППОВ А.П.
Тип: патент на изобретение
Номер патента: RU 2228415 C2 Патентное ведомство: РоссияГод публикации: 2004
Номер заявки: 99123410/03Дата регистрации: 04.11.1999Дата публикации: 10.05.2004
Патентообладатели: Красноярская государственная архитектурно-строительная академия
МЕЖДУНАРОДНАЯ ПАТЕНТНАЯ КЛАССИФИКАЦИЯ:
E04C 3/17
Длинномерные несущие строительные элементы / балки; прогоны; фермы или подобные конструкции, например,
полуфабрикаты; сборные дверные и оконные перемычки; переплеты / балки; прогоны; фермы или подобные конструкции из
дерева, например армированные, с предварительно напряжѐнными элементами / с непараллельным верхним и нижним
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 104
105.
поясом, например стропильные фермыE04B 1/19
Строительные конструкции общего назначения; сооружения, не обуславливаемые конструкцией стен, например перегородок,
полов, перекрытий или крыш / строительные конструкции, состоящие из длинномерных несущих элементов, например
колонн, балок, каркасов / трехмерные строительные конструкции
АННОТАЦИЯ:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и
сельскохозяйственных зданий и сооружений. Технический результат - повышение прочности и жесткости за счет предварительного
напряжения и создания ―следящих‖ за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя
фасонками, раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический
стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с
помощью гаек. Между гайками и металлическим элементом соединения раскосов размещены две шайбы, выполненные из швеллера, а
между ними винтовая пружина. 4 ил.
https://www.elibrary.ru/item.asp?id=37938622
SPb GASU NIOKR Provedenie patentno-issledovatelskix rabot primeneniyu bistrosobiraemix pereprav mostov 485 str
https://ppt-online.org/1281358
https://patentimages.storage.googleapis.com/bd/9a/cd/4f500c0445ccf4/RU2136822C1.pdf
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ https://findpatent.ru/patent/222/2228415.html
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания ―следящих‖
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 105
106.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемыхпромышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания ―следящих‖ за деформациями
ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 106
107.
металлическому элементу соединения раскосов, и металлический стержень, пропущенный черезметаллический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания ―следящих‖ за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
позволяет создать экономичную конструкцию за счет повышения несущей способности и
жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 107
108.
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехграннойпредварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
STU Spetsialnie texnisheskie usloviya montaja sborno-razbornix bisrosobiraemix odnoputnix avtomobilnix mostov pereprav 469 str
https://ppt-online.org/1283117
Спец военный Вестник газеты "Земля России" №37
https://ppt-online.org/1142605
NIOKR Provedenie patentno-issledovatelskix rabot primeneniyu
bistrosobiraemix pereprav mostov 517 str
https://studylib.ru/doc/6381752/niokr-provedenie-patentno-issledovatelskix-rabot-primenen...
https://patents.google.com/patent/RU2136822C1/ru
УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ
ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ
ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых
промышленных и сельскохозяйственных зданий и сооружений. Технический результат повышение прочности и жесткости за счет предварительного напряжения и создания ―следящих‖
за деформациями ползучести усилий предварительного напряжения. Узловое сопряжение
представляет собой металлический элемент соединения раскосов, образованный трубой с
приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень,
пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 108
109.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемыхпромышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и
сооружений, а также для несущих элементов транспортных галерей, переходов и других
аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую
облегченную железобетонную плиту, выполняющую роль верхнего пояса, к которой присоединены
металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей,
состоящих из стержней решетки, нижнего пояса. Она снабжена дополнительно криволинейным
поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками,
присоединенными к узлам нижнего пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и
расхода материалов в отличие от предлагаемой авторами [1].
Более близким по техническому решению к предлагаемому изобретению (прототипом) является
трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс П-образного
сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и
прикрепленной к нему сверху шурупами обшивки из плоских асбестоцементных листов. Между
вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается
утеплитель из полистирольного пенопласта. Гидроизоляция устанавливается из трех слоев
рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним
пространственной решеткой регулярного типа, выполненной из деревянных раскосов квадратного
сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками.
Нижний пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление
для сопряжения с основными ребрами верхнего пояса [2].
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей
способности, потери усилия предварительного напряжения в нижнем поясе за счет ползучести и
температурно-влажностных деформаций в древесине и температурных деформаций металла и, как
следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и
жесткости, за счет предварительного напряжения и создания ―следящих‖ за деформациями
ползучести усилий предварительного напряжения.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 109
110.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясомтрехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом
трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов, образованный трубой с приваренными сверху Vобразно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через
металлический элемент соединения раскосов, имеющий резьбовую нарезку на конце и
закрепленный с помощью гаек, на металлический стержень между гайками и металлическим
элементом соединения раскосов размещены две шайбы, выполненные из швеллера, и между ними
винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения
материалоемкости, создания ―следящих‖ за деформациями ползучести усилий предварительного
напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь
ведет к повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции
представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя
фасонками 5, раскосы 1, присоединенные через металлические фасонки 5 к металлическому
элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический
элемент соединения раскосов 3, имеющий резьбовую нарезку на конце и закрепленный с помощью
гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения
раскосов 3 размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения
раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя фасонками 5,
присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий
резьбовую нарезку на конце. Далее стержень пропускается через шайбу 9, винтовую пружину 8,
шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения,
сохраняя его несмотря на ползучие и температурно-влажностные деформации в древесине и
температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие
предварительного напряжения и сохраняет его в процессе эксплуатации, что в свою очередь
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 110
111.
позволяет создать экономичную конструкцию за счет повышения несущей способности ижесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р
// Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной
предварительно напряженной блок-фермы покрытия, включающее в себя металлический элемент
соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения
раскосов, и металлический стержень, пропущенный через металлический элемент соединения
раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, отличающееся
тем, что на металлический стержень между гайками и металлическим элементом соединения
раскосов размещены две шайбы, выполненные из швеллера, и между ними винтовая пружина.
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ
МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
УДК 693.98
СТРУКТУРНОЕ ПОКРЫТИЕ НА ОСНОВЕ ТРЕХГРАННОЙ
МЕТАЛЛОДЕРЕВЯННОЙ БЛОК-ФЕРМЫ
Леоненко А.В.
научный руководитель канд. техн. наук Деордиев С.В.
Сибирский федеральный университет
Древесина всегда была одним из наиболее распространѐнных материалов используемых для
строительства на территории нашей страны. Это обусловлено не только тем, что она всегда
была и остаѐтся самым доступным и сравнительно недорогим материалом, но и наличием
целого ряда других преимуществ по сравнению с другими традиционными материалами.
Древесина имеет высокие прочностные характеристики при достаточно небольшой плотности, а
значит и небольшом собственном весе, что в свою очередь исключает необходимость
сооружения массивных и дорогостоящих фундаментов. Кроме того к положительным свойствам
древесины как строительного материала относятся: низкая теплопроводность, способностью
противостоять климатическим воздействиям, воздухопроницаемость, экологическая чистота, а
также природной красота и декоративностью, что для современных строений играет
немаловажную роль.
Деревянные структуры обладают рядом преимуществ, правильное использование которых
позволяет повысить экономическую эффективность по сравнению с традиционными решениями. К
преимуществам относятся: пространственность работы системы; повышенная надѐжность от
внезапных разрушений; возможность перекрытия больших пролѐтов; удобство проектирования
подвесных потолков; максимальная унификация узлов и элементов; существенное снижение
транспортных затрат; возможность использования совершенных методов монтажа-сборки на земле
и подъѐма покрытия крупными блоками; архитектурная выразительность и возможность
применения для зданий различного назначения.
В качестве объекта исследования и компоновки структурного покрытия принята
металлодеревянная блок-ферма пролетом 18 метров (рис. 1). Конструкция блок-фермы
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 111
112.
представляет собой двускатную четырехпанельную пространственную ферму, верхний пояскоторой выполнен из однотипных клеефанерных плит, пространственная решетка регулярного
типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний
пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних
и средних раскосов соединены между собой металлическим элементом нижнего пояса, средний
элемент нижнего пояса выполнен из круглой стали, также в ферму введены крайние стальные
стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие
опорные узлы со средним стальным элементом нижнего пояса [1]
Рис. 1. Блок ферма пролетом 18м
Структурное покрытие представляет собой совокупность одиночных блок-ферм связанных
между собой в узлах примыкания раскосов решетки к верхнему поясу и установки
дополнительных затяжек между узлами раскосов, что позволяет комбинировать структурные
покрытия различных пролетов.
С помощью программного комплекса SCAD v.11.5, реализующий конечно-элементное
моделирование были проведены расчеты различных вариантов структур пролетами 6, 9, 12, и 15
метров. Расчет структурной конструкции блок-фермы проводился на основное сочетание нагрузок,
состоящее из постоянных и кратковременных нагрузок. На основе полученных результатов расчета
составлена сводная таблица усилий и напряжений различных элементов структурного покрытия
(таблица 1).
Таблица 1 – Таблица усилий и напряжений
Пролет
Мах.сжимающие Мах.растягивающе
структур усилие раскоса, е усилие раскоса,
ы
кН (напряжение кН
МПа)
(напряжение МПа)
6
120,15 (7,68)
99,06 (6,34)
9
183,95 (11,16)
159,9 (10,23)
12
254,1 (15,56)
215,47 (12,73)
15
296,77 (18,99)
264,35 (13,79)
Мах.усилие в затяжке, Мах.перемещение, мм
кН (напряжение МПа)
244,58 (240,4)
280,36 (275,58)
331,54 (325,88)
398,92 (392,12)
46,03
57,44
73,34
98,26
Проведенный анализ структурных покрытия пролетами 6, 9, 12, 15 метров показывает, что
более оптимально конструкция работает при относительно небольших пролетах. Увеличение
пролета структуры приводит к увеличению напряжений и деформаций конструкции.
Использование структурных покрытий больших пролетов приводят к значительному повышению
собственного веса конструкции и нерациональному использованию материала. Наиболее
оптимальным вариантом структурного покрытия является пролет структуры 18 х 9 метров (рис 2.).
Предлагаемая конструкция представляет собой структуру образованную посредством
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 112
113.
соединения отдельных блок-ферм, размерами в плане 18х9м, в единый конструктивный элементпокрытия шарнирно опертый по углам.
Рис. 2 Структурное покрытие размерами 18 х 9 метров
В настоящее время проводится работа по дальнейшему решению задачи применения
металлодеревянных структурных покрытий в условиях повышенной сейсмической опасности.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Инжутов И.С.; Деордиев С.В.; Дмитриев П.А.; Енджиевский З.Л.; Чернышов С.А Патент
на изобретение № 2136822 от 10.09.1999 г.
Испытания узлов и фрагментов компенсатора пролетного строения из упругопластических
стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей
части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным
настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм
соединенных элементов на болтовых и соединений между диагональными натяжными элементами,
верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с
применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей
части армейского сбрно- разборного пролетного строения моста с упругопластическими
коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при
испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ
организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели
конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году и испозования опыта Китайских инженерорв из КНР, расчеты и испытание узлов
структутрной фермы кторый прилагаются ниже организаций "Сейсмофонд" при СПб ГАСУ
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 113
114.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 114
115.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 115
116.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 116
117.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 117
118.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 118
119.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 119
120.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 120
121.
ДИспыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 121
122.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 122
123.
Рис Показано: УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ СНИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОКФЕРМЫ ПОКРЫТИЯ фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского сбороноразборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжей
части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 123
124.
замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD № 576 от 16.12.2022
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 124
125.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 125
126.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 126
127.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 127
128.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 128
129.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 129
130.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 130
131.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 131
132.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 132
133.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 133
134.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 134
135.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 135
136.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 136
137.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 137
138.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 138
139.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 139
140.
Основанием для лабортарных испатений узлов и фрагменто надвижного мосоа послужилПРЯМОЙ УПРУГОПЛАТИЧЕСКИЙ РАСЧЕТ ПРОЛЕТНЫХ СТРОЕНИЙ
ЖЕЛЕЗНОДОРОЖНОГО МОСТА С БОЛЬШИМИ ПЕРЕМЕЩЕНИЯМИ НА
ПРЕДЕЛЬНОЕ РАВНОВЕСИЕ И ПРИСПОСОБЛЯЕМОСТЬ , НА ПРИМЕРЕ БЫСТРО
СОБИРАЕМОГО АМЕРИКАНСКОГО МОСТА, ДЛЯ ПЕРЕПРАВЫ ЧЕРЕЗ РЕКУ СУОН
В ШТАТЕ МОНТАНА, СКОНСТРУИРОВАННОГО СО ВСТРОЕННЫМ БЕТОННЫМ
НАСТИЛОМ, С ИСПОЛЬЗОВАНИЕМ УПРУГОПЛАСТИЧЕСКИХ ПРОЛЕТНЫХ
СТРОЕНИЙ МОСТА, СКРЕПЛЕННЫХ БОЛТОВМИ СОЕДЕИНЯИМИ, С
ДИАГОНАЛЬНЫМИ НАТЯЖНЫМИ РАСКОСАМИ, ВЕРХНЕГО И НИЖНЕГО ПОЯСА и
испытание фрагментов компенсатора пролетного строения из упругопластических стальных ферм
6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
УДК 69.059.22
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 140
141.
Уздин Александр Михайлович ПГУПС проф. дтн: [email protected]Мажиев Хасан Нажоевич Президент организации «Сейсмофонд» при CПб ГАСУ ИНН:
2014000780 E-Mail: [email protected] т/ф (812) 694-78-10, ( 921) 962-67-78, Коваленко Елена
Ивановна - заместитель Президента организации "Сейсмофонд" при СПб ГАСУ
[email protected]
(996) 798-26-54. Коваленко Александр Ивановича - зам .Президент организации "Сейсмофонд"
при СПб ГАСУ. ОГРН: 1022000000824. t9516441648 @gmail.com тел ( 951) 644-16-48
Рис. 1. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
построенное в 2017 по изобретениям проф дтн Уздина А.М
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 141
142.
Рис. 1. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, СШАпостроенное в 2017 по изобретениям проф дтн Уздина А.М
Ключевые слова: Сборно-разборные мосты, временные мосты, быстровозводимые мосты,
мостовые сооружения, мостовые конструкции, реконструкция мостов.
В данной работе описывается разработанный авторами прямой метод упругопла- стического
анализа стальных пространственных ферм в условиях больших перемещений, для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777,
165076, 1760020, 154506
За основу был принят инкрементальный метод геометрически нелинейного анализа
пространственных ферм, разработанный ранее одним из авторов, и выполнена его модификация,
позволяющая учесть текучесть и пластические деформации в стержнях ферм. Предложенный
метод реализован в виде программного приложения на платформе Java. При помощи этого
приложения выполнен ряд примеров, описанных в данной работе. Приведенные примеры
демонстрируют, что прямой расчет пространственных ферм на пластическое предельное
равновесие и приспособляемость при больших перемещениях может быть успешно реализован в
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 142
143.
программе. Алгоритмы охватывают широкий спектр упругопластического поведения фермы:упругую работу, приспособляемость, прогрессирующие пластические деформации и разрушение
при формировании механизма. Программное приложение может быть использовано в качестве
тестовой платформы для исследования упругопластического поведения ферм и как инструмент
для решения прикладных задач.
КЛЮЧЕВЫЕ СЛОВА: стальная ферма, большие перемещения, пластичность, для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
1. Теоретические основы расчета на пластическое предельное равновесие и приспособляемость
Деформации и устойчивость стальных конструкций зависят от геометрической и физической
нелинейности их поведения. При больших перемещениях конструкции условия равновесия и
зависимости «перемещения-деформации» нелинейны. Если материал в отдельных частях
конструкции достигает предела текучести, то изменяются соотношения «напряжениядеформации», а также отношения жесткостей элементов конструкции, и в ней могут
образовываться механизмы. Данная статья посвящена анализу таких конструкций при помощи
компьютерных моделей и для ускоренного монтажа временной надвижки длиной 60 метров
шириной 3 метра упругопластинчетых пространственных пролетных ферм быстро собираемого моста с применением замкнутых гнутосварных профилей прямоугольного сечения
типа "Молодечно! ( серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного надвижного строения моста с
быстросъмеными упруго пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное соединение для трубопроводов " №
2018105803 F16L 23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо
-демпфирующей жесткостью, приспособленных на предельную нагрузку и приспособляемость
с учетом больших перемещений за счет использования медной обожженной гильзы, бронзовой
втулки, тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым
медным обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Теоретические основы расчета на предельную пластическую нагрузку и приспособляемость
изложены в сопутствующей статье [1]. Показано, что при малых перемещениях такие задачи
традиционно решаются при помощи методов оптимизации. При использовании методов
оптимизации, рассматривается последовательность статически возможных состояний
конструкции и определяется максимальный коэффициент нагружения, называемый
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 143
144.
коэффициентом надежности приспособляемости. Альтернативно, может быть рассмотренапоследовательность кинематически возможных перемещений конструкции и определен
минимальный коэффициент нагружения.
В прямом методе расчета, излагаемом в данной работе, удовлетворяются как статические, так
и кинематические условия, и оптимизация не требуется. Прямой метод требует расчета
последовательности конфигураций конструкции, так как при наступлении пластичности ее
жесткость изменяется. Если какой-то из стержней фермы достигает пластического состояния
или наоборот, если стержень восстанавливает упругое состояние при разгрузке, должно быть
выполнено переформирование и разложение матрицы жесткости системы. На начальных этапах
развития теории предельного пластического равновесия и приспособляемости мощности
компьютеров не соответствовали объему вычислений прямого метода. В связи с этим,
предпочтение отдавалось методам, основанным на теории оптимизации, для которых был
разработан ряд теорем.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 144
145.
Все теоремы оптимизации, рассмотренные в [1] основаны на линейной суперпозиции нагрузок приформировании их сочетаний. Если поведение конструкции геометрически нелинейно, то
суперпозиция нагрузок неправомерна. В этом случае теоремы теряют справедливость, и
оптимизационный подход не может быть использован для анализа приспособляемости.
При современном уровне развития компьютеров преимущество непрямого оптимизационного
подхода становится спорным даже для задач с малыми перемещениями. В представленной
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 145
146.
работе поставлена задача оценить возможность использования прямого методаупругопластического расчета для практических инженерных задач расчета стальных
пространственных ферм.
Инкрементальный метод геометрически нелинейного анализа пространственных ферм, который
использован в настоящем исследовании, был описан в ряде публикаций [2-7], и поэтому в данной
статье не представлен. Авторами статьи была выполнена модификация этого метода,
позволяющая учесть текучесть и пластические деформации в стержнях ферм.
2. Упругопластическое поведение стального стержня для ускоренного монтажа временной
надвижки длиной 60 метров шириной 3 метра упругопластинчетых пространственных
пролетных ферм быстро -собираемого моста с применением замкнутых гнутосварных
профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Ускоренный способ надвижки американского автомобильного быстро-собираемого моста (
длиной 205 футов = 60 метров ) в штате Монтана ( США ) ,для переправы через реку Суон в
2017 сконструированного со встроенном бетонным настилом в полевых условиях с
использованием упруго пластических стальных ферм, скрепленных ботовыми соединениями
между диагональными натяжными элементами верхнего и нижнего пояса пролетного строения
моста, с экономией строительным материалов до 26 %
Аннотация. В статье приведен краткий обзор характеристик существующих временных
мостовых сооружений, история создания таких мостов и обоснована необходимость
проектирования универсальных быстровозводимых мостов построенных в штате Монтана через
реку Суон в США
Стальные ферменные мосты являются эффективным и эстетичным вариантом для пересечения
автомобильных дорог. Их относительно небольшой вес по сравнению с пластинчато-балочными
системами делает их желательной альтернативой как с точки зрения экономии материалов, так и с
точки зрения конструктив-ности. Прототип сварной стальной фермы, сконструированной со
встроенным бетонным настилом, был предложен в качестве потенциальной альтернативы для
проектов ускоренного строительства мостов (ABC) в Монтане. Эта система состоит из сборноразборной сварной стальной фермы, увенчанной бетонным настилом, который может быть отлит
на заводе-изготовителе (для проектов ABC) или в полевых условиях после монтажа (для обычных
проектов). Чтобы исследовать возможные решения усталостных ограничений некоторых сварных
соединений элементов в этих фермах, были оценены болтовые соединения между диагональными
натяжными элементами и верхним и нижним поясами фермы. В этом исследовании для моста со
стальной фермой, скрепленной болтами /сваркой, были оценены как обычная система настила на
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 146
147.
месте, так и ускоренная система настила моста (отлитая за одно целое с фермой). Для болееточного расчета распределения нагрузок на полосу движения и грузовые автомобили по отдельным
фермам была использована 3D-модель конечных элементов. Элементы фермы и соединения для
обоих вариантов конструкции были спроектированы с использованием нагрузок из комбинаций
нагрузок AASHTO Strength I, Fatigue I и Service II. Было проведено сравнение между двумя
конфигурациями ферм и длиной 205 футов. пластинчатая балка, используемая в ранее
спроектированном мосту через реку Суон. Оценки материалов и изготовления показывают, что
стоимость традиционных и ускоренных методов строительства на 10% и 26% меньше,
соответственно, чем у пластинчатых балок, предназначенных для переправы через реку Суон.
Специальные технические условия надвижки пролетного строения из стержневых
пространственных структур с использованием рамных сбороно-разборных конструкций с
использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно"
(серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для
обеспечения сейсмостойкого строительства железнодорожных мостов в Киевской Руси https://pptonline.org/1148335
Предпосылкой для необходимости проектирования новой временной мостовой конструкции
послужили стихийные бедствия в ДНР, ЛНР во время специальной военной операции на Украине
в 20222012 г., где будут применены быстровозводимых сооружений, что могло бы значительно
увеличить шансы спасения человеческих жизней.
Разработанную, в том числе автором, новую конструкцию моста, можно монтировать со скорость
не менее 25 метров в сутки без применения тяжелой техники и кранов и доставлять в любой
пострадавший район воздушным транспортом. Разрезные пролетные строения могут достигать в
длину от 3 до 60 метров, при этом габарит пролетного строения так же варьируется. Сечение моста
подбирается оптимальным из расчета нагрузка/количество металла.
Рис. 2. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
построенное в 2017 по изобретениям проф дтн Уздина А.М
На настоящий момент построена экспериментальная модель моста в штате Минесота , через реку
Суон. Американской стороной проведены всесторонние испытания, показавшие высокую
корреляцию с расчетными значениями (минимальный запас 4.91%). Мостовое сооружение не
имеет аналогов на территории Российской Федерации.
На конструкцию армейского моста получен патенты №№ 1143895, 1168755, 1174616, 168076,
2010136746.
Доработан авторами , в том числе авторами способ бескрановой установки надстройки опор при
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 147
148.
строительстве временного железнодорожного моста № 180193 со сборкой на фланцевыхфрикционно-подвижных соединениях проф дтн А.М.Уздина для сборно-разборного
железнодорожного моста демпфирующего компенсатора гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011
SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое
фрикционное соединение для сборно-разборного быстрособираемого железнодорожного моста
из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно»
(серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со
сдвиговой фрикционно-демпфирующей прочностью и предназначенные для сейсмоопасных
районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9
баллов, необходимо использование демпфирующих компенсаторов с упругопластическими
шарнирами на фрикционно-подвижных соединениях, расположенных в длинных овальных
отверстиях, с целью обеспечения многокаскадного демпфирования при импульсных
растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895,
1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с
использованием сдвигового демпфирующего гасителя сдвиговых напряжений , согласно заявки
на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА
НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных
серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост»
№ 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного
строения моста» № 2022115073 от 02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя
температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционнодемпфирующий компенсатор для трубопроводов" заявка № 2021134630 от 29.12.2021,
"Термический компенсатор гаситель температурных колебаний" Заявка № 2022102937 от
07.02.2022 , вх. 006318, "Термический компенсатор гаситель температурных колебаний СПб
ГАСУ № 20222102937 от 07 фев. 2022, вх 006318, «Огнестойкий компенсатор –гаситель
температурных колебаний»,-регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое
соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217 от 23
сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения" № а 20210051, "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 22
февраля 2022 Минск , заявка № 2018105803 от 27.02.2018 "Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов" № а 20210354 от 22.02. 2022, Минск,
"Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов №
2018105803 от 15.02.2018 ФИПС, для обеспечения сейсмостойкости сборно-разборных
надвижных армейских быстровозводимых мостов в сейсмоопасных районах в сейсмичностью
более 9 баллов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 148
149.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 149
150.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 150
151.
Рис. 3. Показано пролетное строение из упруго пластинчатых балок, через реку Суон, штатМонтана, США и фрагментов компенсатора пролетного строения из упругопластических
стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей
части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным
настилом с пластическими шарнирами ( компенсаторами ) , системой стальных ферм
соединенных элементов на болтовых и соединений между диагональными натяжными элементами,
верхним и нижним поясом фермы из пластинчатых пролетной стальной фермы- балки с
применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей
части армейского сбрно- разборного пролетного строения моста с упругопластическими
коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при
испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ
организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели
конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
В результате стихийных бедствий (наводнение, сход сели, землетрясение, техногенная
катастрофа), военных или других чрезвычайных ситуаций происходит разрушение мостов и
путепроводов. Разрыв транспортных артерий существенно осложняет оказание помощи
пострадавшим местам. Максимально быстрое возобновление автомобильного и железнодорожного
движения является одной из главных задач восстановления жизнеобеспечения отрезанных стихией
районов. Мостовой переход - это сложное инженерное сооружение, состоящее из отдельных
объектов (опор, пролетных строений, эстакад, подходных насыпей и т.д.), капитальный ремонт или
новое строительство которых может длится годы. Поэтому в экстренных случаях используют
временные быстровозводимые конструкции, монтаж которых занимает всего несколько суток, а
иногда и часов. Последовательно рассмотрим существующие варианты восстановления мостового
перехода.
В исключительных случаях, при возникновении чрезвычайной ситуации могут сооружать
примитивные мосты, например, срубив дерево и опрокинув его на другой берег. На рисунке 1.
показан такой способ переправы, мост через реку Суон США , штат Монтана.
Примитивные мосты - это и подвесные мосты, сооруженные из подручных материалов.
Сплетенные из лиан и других ползучих растений веревки натягивают через ущелье, горный поток
или овраг, пространство между ними застилают или досками.. Ненадежность конструкции, низкая
грузоподъѐмность все это практически исключает примитивные мосты для серьезного
использования при ликвидации последствий стихийных бедствий.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 151
152.
Самым распространенным и самым быстрым способом устройства мостового перехода насегодняшний день является наведение понтонной переправы. Для еѐ монтажа требуется доставить
понтоны к месту строительства и спустить на воду, после чего происходит их объединение.
Плавучие элементы несут нагрузку за счет герметично устроенного корпуса.
Также возникают проблемы в организации такой переправы на быстротоках и мелководье. Для
доставки и монтажа требуется мощная, как правило, венная техника.
Дешевой и быстровозводимой разновидностью понтонных мостов через водную преграду
являются понтонно-модульные платформы. На каждой платформе предусмотрены специальные
проушины, которые позволяют собирать конструкцию любого габарита и любой длины.
Существенный недостаток этих мостов - низкая грузоподъемность. Максимальная нагрузка на
пластиковый модуль не превышает 400 кгс/м2. Применение таких мостов оправдано для переправы
людей в экстренных ситуациях, а так же для устройства причалов или плавучих ферм.
В основном, существующие в Российской Федерации временные сборно-разборные мостовые
переходы разработаны еще во времена СССР и «морально» устарели. Их конструкции, как
правило, не универсальны, т.е. неизменны по длине и величине пропускаемой нагрузки.
Максимальная длина одного балочного разрезного пролетного строения составляет 33 метра.
Пролетное строение моста через реку Суон 60 метров в Монтане США . Это влечет
необходимость устройства промежуточных опор при перекрытии широких препятствий, что не
всегда возможно и занимает дополнительное время. У всех рассмотренных сборно-разборных
конструкций невозможна оптимизация сечений элементов в зависимости от массы пропускаемой
нагрузки. Единственным решением, которое смогло исключить этот недостаток, является
разрезное пролетное строение с двумя решетчатыми фермами (патент РФ №2010136746, 1143895,
1168755, 1174616, 2550777, 165076, ). В конструкции этого моста имеется два варианта
грузоподъемности: обычный и повышенный. Для монтажа практически всех без исключения
существующих решений временных сооружений необходимо применение тяжелой техники и
большого числа монтажников. Соответственно, даже при возможности быстрого монтажа самой
конструкции, доставка в район постройки необходимой техники займет много времени. Целью
данного исследования является обеспечение возобновление пешеходного, автодорожного или
железнодорожного движения в зоне стихийного бедствия в кратчайшие сроки за счет применения
при временном восстановлении мостовых сооружений универсальной, сборно-разборной
конструкции временного моста.
7. Заключение по испытанию узлов и фрагментов компенсатора пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 152
153.
Примеры, приведенные в данной статье, демонстрируют, что прямой расчетпространственных ферм на пластическое предельное равновесие и приспособляемость при
больших перемещениях может быть успешно реализован в программе. Алгоритмы охватывают
широкий спектр упругопластического поведения фермы: упругую работу, приспособляемость,
прогрессирующие пластические деформации и разрушение при формировании механизма.
Полный набор результатов расчета включает переменные состояния узлов и стержней на всех
шагах нагружения всех шагов по времени во всех циклах для всех коэффициентов надежности и
является чрезвычайно объемным. Так как состояние стержня не изменяется на шаге нагружения,
на печать выводятся лишь каждое изменение состояния каждого стержня фермы. Эта
детальная информация позволяет выполнить тщательный анализ поведения конструкции.
Разработанное программное приложение позволяет определять последовательность, в
которой стержни достигают текучести, величину нагрузки, при которой это происходит,
накопление пластических деформаций в стержнях, остаточные напряжения в стержнях, а
также перемещения узлов при знакопеременной пластичности. Оно может быть использовано в
качестве тестовой платформы для исследования упругопластического поведения ферм и как
инструмент для решения многих прикладных задач.
Рис. 11. История перемещений узлов n5 и щ3 при коэффициенте X= 4,22656
Время, требуемое для расчета описанной выше двухпролетной фермы при 25 бисекциях и
максимальном количестве циклов для каждой бисекции равном 24, составляет 5 секунд для
стандартного портативного компьютера. Требуемое время зависит в основном от времени,
затрачиваемого на составление и решение систем уравнений. Ожидаемое время расчета
аналогичной фермы с 300 узлов - менее 1 часа. Для инженерной точности расчета время может
быть сокращено до 30 минут. Задачи большей размерности могут решаться на компьютерах
большей производительности, в том числе вычислительных кластерах.
Литература
1. Хейдари А., Галишникова В.В. Аналитический обзор теорем о предельной нагрузке и
приспособляемости в упругопластическом расчете стальных конструкций // Строительная
механика инженерных конструкций и сооружений.- 2014.- № 3. - С. 318.
2. Галишникова В.В. Вывод разрешающих уравнений задачи геометрически нелинейного
деформирования пространственных ферм на основе унифицированного подхода // Вестник
ВолгГАСУ, серия: Строительство и архитектура. - Волгоград, 2009.-Вып. 14(33). - С. 39-49.
3. Галишникова В.В. Постановка задачи геометрически нелинейного деформирования
пространственных ферм на основе метода конечных элементов // Вестник ВолгГА- СУ, серия:
Строительство и архитектура. - Волгорад, 2009. -Вып.14(33). - С. 50-58.
4. Галишникова В.В. Модификация метода постоянных дуг, основанная на использовании
матрицы секущей жесткости // Вестник МГСУ. - Москва, 2009. №2. - С. 63-69.
5. Галишникова В.В. Конечно-элементное моделирование геометрически нелинейного поведения
пространственных шарнирно-стержневых систем // Вестник гражданских инженеров
(СПбГАСУ). - СПб, 2007. -№ 2(11). - С. 101—106.
6. Галишникова В.В. Алгоритм геометрически нелинейного расчета пространственных
шарнирно-стержневых конструкций на устойчивость // МСНТ «Наука и технологии»: Труды
XXVII Российской школы. - М.: РАН, 2007. - С. 235—244.
7. Галишникова В.В. Обобщенная геометрически нелинейная теория и численный анализ
деформирования и устойчивости пространственных стержневых систем. Диссертация на
соискание ученой степени доктора технических наук. -М.: МГСУ, 2011.
Refeгences
1. Heidari, А, Galishnikova, VV. (2014). A Review of Limit Load and Shakedown Theorems for the
Elastic-Plastic Analysis of Steel Structures.Structural Mechanics of Engineering Constructions and
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 153
154.
Buildings, № 3, 3-18.2. Galishnikova, VK(2009). Derivation of the governing equations for the problem of geometrically
nonlinear deformation of space trusses on the basis of unified approach. J. of Volgograd State University
for Architecture and Civil Engineering.Civil Eng. & Architecture, 14(33), 39-49 (in Russian).
3. Galishnikova, VV. (2009). Finite element formulation of the problem of geometrically nonlinear
deformations of space trusses. Journal of Volgograd State University for Architecture and Civil
Engineering.Civil Eng. & Architecture, 14(33), 50-58 (in Russian).
4. Galishnikova, VV. (2009). Modification of the constant arc length method based on the secant matrix
formulation. Journal of Moscow State University of Civil Engineering, №2, 63-69 (in Russian).
5. Galishnikova, VV. (2007). Finite element modeling of geometrically nonlinear behavior of space
trusses. Journal of Civil Engineers. Saint-Petersburg University if Architecture and Civil Engineering,
2(11), 101—106 (in Russian).
6. Galishnikova, VV. (2007). Algorithm for geometrically nonlinear stability analysis of space trussed
systems. Proceedings of the XXVII Russian School "Science and Technology". Moscow: Russian Academy
of Science, 235-244 (in Russian).
7. Galishnikova VV. (2011). Generalized geometrically nonlinear theory and numerical deformation
and stability analysis of space trusses.Dissertation submitted for the degree of Dr. of Tech. Science.
Moscow State University of Civil Engineering, 2011.
DIRECT ELASTIC-PLASTIC LIMIT LOAD AND SHAKEDOWN ANALYSIS OF STEEL SPACE TRUSSES
WITH LARGE DISPLACEMENTS
A. Heidari, V.V. Galishnikova
Peoples Friendship University of Russia, Moscow
A direct method for elastic-plastic limit load and shakedown analysis of steel space trusses with large
displacements is treated in this paper. The incremental method for the geometrically nonlinear analysis of
space trusses, developed by one of the authors was modified to account for yielding and plastic strains in
the bars of the truss. The new method has been implemented in computer software. The examples in this
paper show that the direct analysis of space trusses with large displacements can be implemented
successfully for both the limit and the shakedown analysis of space trusses on the Java platform. The
algorithms cover a wide range of elastic-plastic truss behavior: purely elastic behavior, shakedown,
ratcheting and collapse due to the formation of a mechanism. The sequence in which the bars yield, the
load levels at which this occurs, the accumulation of the plastic strains in the bars, the residual stresses in
the bars and the node displacements during ratcheting can all be evaluated. The computer application is
therefore suitable as a test platform for elastic-plastic truss behavior. It can be applied to many other
problems of elastic-plastic space truss analysis.
KEY WORDS: steel space trusses, large displacements, plasticity, limit analysis, shakedown.
Строительная механика инженерных конструкций и сооружений, 2014, № 3
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 154
155.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 155
156.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 156
157.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 157
158.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 158
159.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 159
160.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 160
161.
Лабораторных испытаний фрагментов, узлов упругопалстического сдвигового компенсатора, для армейского сбороноразборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12 метров , ширина проезжейчасти 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4 км/час ), с применением
замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314 ГПИ
"Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным бетонным
настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205 футов (60
метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет предварительно
напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн ПГУПС
А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 с использованием 3D -модель конечных
элементов в ПK SCAD
Для обеспечения, высокой надежности испытания узлов и фрагментов компенсатора
пролетного строения
из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 161
162.
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов иэлементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году, необходимо использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", осуществляется за счет увеличения
демпфирующей способности опоры при импульсных растягивающих нагрузках путем использования фрикционноподвижных соединений для скользящих опор( изобретение, патент № 165076 "Опора сейсмостойкая") и согласно
изобретениям патенты №№ 1143895, 1168755, 1174616, автор проф.д.т.н. ПГУПС А.М.Уздин, и использования для
строительных конструкций и трубопровода демпфирующие компенсаторы для системы противопожарной защиты
,демпфирующих компенсаторов (заявка № а 20210217 от 15.07.21 "Фланцевое соединение растянутых элементов
трубопровода со скошенными тор-цами" Минск ).
Согланоо изобретениям, патенты №№ 165076 ("Опора сейсмостойкая"), 2010136746, 1143895, 1168755, 1174616,
2550777, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов (в районах с сейсмичностью
более 8 баллов необходимо использование демпфирующих опор на фрикционно-подвижных соединениях и для
соединения трубопроводов демпфирующими компенсаторами с болтовыми соединениями, расположенными в
длинных овальных отверстиях с целью обеспечения многокаскадного демпфирования при динамических нагрузках).
Испытания проводились на соответствие группам механической прочности на вибрационные ударные воздействия:
М5-М7, М38-М39 методом численного моделирования на взаимодействие опор скользящих и трубопровода с
геологической средой в ПК SСАD. Фрикционно-подвижные демпфирующие соединения выполнены в виде болтовых
соединений с контролируемым натяжением, расположенных в длинных овальных отверстиях согласно СП
14.13330.2014 «Строительство в сейсмических районах» п. 9.2), .на устойчивость при сейсмическом
воздействии до 9 балов по шкале MSK-64 включительно при уровне установки 70 метров над
нулевой отметкой для изобретений №№ 165076 ("Опора сейсмостойкая"), 2010136746, 1143895,
1168755, 1174616, 2550777, предназначенных для сейсмоопасных районов с сейсмичностью более
8 баллов (в районах с сейсмичностью более 8 баллов необходимо использование демпфирующих
соединения и опор на фрикционно-подвижных соединениях и для соединения
металлоконструкций (МК) и стальных трубопроводов с демпфирующими компенсаторами с
болтовыми соединениями, расположенными в длинных овальных отверстиях с целью обеспечения
многокаскадного демпфирования при динамических нагрузках).
Испытания проводились на соответствие группам механической прочности на вибрационные
ударные воздействия: М5-М7, М38-М39 методом численного моделирования на взаимодействие
опор скользящих и трубопровода с геологической средой в ПК SСАD. Фрикционно-подвижные
демпфирующие соединения выполнены в виде болтовых соединений с контролируемым
натяжением, расположенных в длинных овальных отверстиях согласно СП 14.13330.2014
«Строительство в сейсмических районах» п. 9.2).
Содержание вредных веществ в воздухе рабочих помещений не должно превышать
допустимых значений по ГОСТ 12.1.005-88;
При работе с Составом необходимо использовать индивидуальные средства защиты
органов дыхания по ГОСТ 12.4.034, защиты кожи рук по ГОСТ 12.4.068, защиты глаз по ГОСТ
Р 12.4.013, специальную одежду по ГОСТ 12.4.011 и ГОСТ 12.4.103.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 162
163.
1. Введение1
2. Место проведения испытаний СПб ГАСУ 190005, СПб, 2-я Красноармейская ул, д. 4 [email protected]
3.Испытательное оборудование и измерительные приборы. Условия проведения испытания на скольжение и податливость
4. Цель испытаний: оценка сейсмостойкости в ПК SCAD математических моделей и фрагментов антисейсмического
фрикционно- демпфирующего соединения с контролируемым натяжением строительных конструкций предназначенных
для сейсмоопас-ных районов с сейсмичностью более 9 баллов, серийный выпуск.
3
4
5
5.Применение численного метода моделирования при испытании в ПК SCAD с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
Испытание фрагментов ФДПК.
5
6. Изобретения, используемые при испытаниях, предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов с трубопрово-дами, с креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных
демпфирующих компен-саторов (ФПДК).
7. Результаты и выводы по испытаниям математических моделей с помощью косых антисейсмических компенсаторов,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами.
8.Литература, использованная при испытаниях на сейсмостойкость математической модели при испытаниях в ПК SCAD и
при испытаниях узлов крепления опоры скользящей к трубопроводу, предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов.
22
59
60
1.Введение
При испытаниях в ПК SCAD математических моделей узлов и фрагментов компенсатора пролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением трубопровода с помощью
фрикционных протяжных демпфи-рующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных
овальных отверстиях было использо-вано численное моделирование в ПК SCAD Office (метод аналитического решения задач
строительной механики с помощью физического, математического и компьютерного моделирования взаимодействия оборудования
и трубопроводов с геологической средой, метод оптимизации и идентификации динамических и статических задач теории
устойчивости, в том числе нелинейным методом расчета с целью определения возможности их использования в районах с
сейсмичностью более 9 баллов (в районах с сейсмичностью более 8 баллов необходимо использование для соединения
трубопровода косых компенсаторов с применением фрикционно-под-вижных болтовых соединений с длинными овальными
отверстиями согласно изобретениям №№ 1143895, 1174616,1168755, с использованием сейсмостойких маятниковых опор на
фрикционно- демпфирующих соединениях (для трубопроводов) согласно изобретения, патент № 165076 ( «Опора сейсмостойкая»),
согласно СП 14.13330.2014 «Строительство в сейсмических районах» п. 9. Фрикционно- подвижные соединения, работающие на
сдвиг выполнены с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз
шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ
24.038.12-72, ОСТ 37.001. -050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 163
164.
seismic-friction-damping-device Мкл E04H 9/02, в местах подключения трубопроводов к сооружениям, изготавливаемых всоответствии с техническими условиями и ГОСТ, трубопроводы должны быть уложены в виде "змейки" или "зиг-зага "согласно
ГОСТ 15150, ГОСТ 5264-80-У1- 8 , ГОСТ Р 55989-2014, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)).
[email protected] (921) 962-67-78, (996) 798-26-54.
Узлы и фрагменты антисейсмического компенсатора для трубопровода (дугообразный зажим с анкерной шпилькой) прошли
испытания на осевое статическое усилие сдвига в ИЦ "ПКТИ-СтройТЕСТ" (протокол №1516-2 от 25.11.2019). Настоящий протокол
не может быть полностью или частично воспроизведен без письменного согласия «Сейсмофонд», [email protected] т/ф. (812)
694-78-10 (996) 798-26-54
Испытания на сейсмостойкость математических моделейпредназначен для сейсмоопасных районов с
сейсмичностью, до 9 баллов, серийный выпуск. В районах с сейсмичностью более 9 баллов, необходимо
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", с креплением трубопроводов с помощью фрикционных протяжных демпфи-рующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях производились нелинейным методом
расчета в ПК SCAD согласно СП 16.13330. 2011 (СниП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3,
ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546. 3-98, СП 14.13330-2014, п.4.7, согласно инструкции «Элементы теории трения,
расчет и технология применения фрикционно-подвижных соединений», НИИ мостов, ПГУПС (д.т.н. Уздин А.М. и др.) проводились
в соответствии с ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 531.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО 0041-2004, СТП 006-97, СП «Здания сейсмостойкие и сейсмоизолированные», Правила
проектирования.2013, Москва. Д.т.н. Кабанов Е.Б. «Направления развития фрикционных соединений на высо-копрочных болтах»,
НПЦ мостов СПб, согласно мониторингу землетрясений и согласно шкалы землетрясений, с учетом требований НП-31-01, в части
категории сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и с учетом требований предъявляемых к
оборудованию (группа механического исполнения М39; I и II категории по НП 031-01; сейсмостойкость при воздействии МП3 7
баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика здания АЭС, согласно
научного отчета: Синтез тестовых воздействий для анализа сейсмостойкости объектов атомной энергетики.
Материалы лабораторным испытаниям испытания узлов и фрагментов компенсатора пролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году и фрагментов, узлов упругопалстического
сдвигового компенсатора, для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет
6 метров, 9 метров, 12 метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость
проезда по мосту - 4 км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа
"Молодечно" ( серия 1.460.314 ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато балочных ферм, со встроенным бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы
через реку Суон , длиной 205 футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30
процентов, за счет предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по
изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и
изобртений Красноярского ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель
конечных элементов в ПK SCAD , хранятся в библиотеке СПб ГАСУ 190005, 2-я Красноармейская дом
4 [email protected]
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 164
165.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 165
166.
строение из упруго пластинчатых балок, через реку Суон, штат Монтана,США узлов и фрагментов компенсатора пролетного строения из упругопластических стальных
ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
Рис. 6. Пролетное
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 166
167.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 167
168.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 168
169.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 169
170.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 170
171.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 171
172.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 172
173.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 173
174.
Рис. 3. Проверка при лабораторных испытаниях в СПб ГАСУ ,состояния стержня в конце цикла итерации, для ускоренного
монтажа временной надвижки длиной 12 метров
шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа
"Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 174
175.
"Антисейсмическое фланцевое фрикционно -подвижноесоединение для трубопроводов " № 2018105803 F16L
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со
сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506 испытания узлов и
фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12,
18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
Bспытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных
ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 175
176.
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытанияхупругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году и Стержень, упругий в начале шага, остается упругим в
конце шага нагружения, если абсолютное значение напряжения в
нем меньше предела текучести. В противном случае стержень в
конце шага считается достигшим текучести. Коэффициент
снижения нагрузки вычисляется следующим образом:
Рассмотрим стержень, состояние которого на шаге было
принято пластическим состоянием. Для упругой и пластической
деформаций задаются пределы погрешностей Se и ѐр. Типичными
значениями пределов погрешностей можно
считать 5S = 10-10 и 5р = 10 6 . Стержень испытывает на шаге
пластическую
деформацию, если значение абсолютной величины инкремента
пластической деформации | sp| превосходит погрешность ѐр. В
противном случае стержень во время шага был упругим вопреки
допущению, принятому в начале шага, и в программе
устанавливаются соответствующие флажки.
Если проверка состояния стержней в конце первого цикла
итераций показывает, что ни один их стержней не изменил
состояния, то цикл считается завершенным. Если хотя бы один
из стержней перешел в упругое состояние, шаг нагружения
повторяется с использованием новых состояний стержней.
В противном случае хотя бы один из стержней перешел в
пластическое состояние, и вычисляется наименьший
коэффициент редуцирования rmm. Пробное состояние
масштабируется при помощи этого коэффициента, и цикл
завершается.
В начале второго и всех последующих циклов итераций на шаге
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 176
177.
нагруже- ния, состояние стержня принимается равным егосостоянию в конце предыдущего цикла. Вычисляется матрица
секущей жесткости для текущих инкрементов перемещений и
состояния стержней. Процедура продолжается так же, как и в
предыдущем цикле. Итерации на шаге нагружения завершаются,
когда норма погрешности пробного решения становится меньше
заданного предельного значения. Пошаговое нагружение
завершается, когда достигается предельная нагрузка или когда
выполняется заданное число шагов нагружения. Предельная
нагрузка считается достигнутой, когда максимальное заданное
число делений длины хорды в методе постоянных дуг не
приводит к формированию положительно определенной
матрицы секущей жесткости или к сходимости метода для
пробного состояния фермы на шаге нагружения.
4. При лабортарных испытаниях в СПб ГАСУ проводился расчет двухпролетной фермы на
предельную нагрузку Данный пример демонстрирует применение прямого метода расчета на
предельную пластическую нагрузку, описанного в разделе 3, к анализу двухпролетной фермы, для
ускоренного монтажа временной надвижки длиной 60 метров шириной 3 метра
упругопластинчетых пространственных пролетных ферм быстро -собираемого моста с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно! (
серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих элементов и
элементов проезжей части пролетного надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое
фрикционно -подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от 7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей
жесткостью, приспособленных на предельную нагрузку и приспособляемость с учетом
больших перемещений за счет использования медной обожженной гильзы, бронзовой втулки,
тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506 и испытания узлов и фрагментов компенсатора пролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 177
178.
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчетамериканскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
Рис. 4. При лаборотрных испытаниях в СПб ГАСУ исползовался американский аналог моста
Bailie bridge его аксонометрическую проекцию двухпролетной фермы (диагонали на показаны)
для ускоренного монтажа временной надвижки длиной 60 метров шириной
3 метра
упругопластинчетых пространственных пролетных ферм быстро -собираемого моста с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно! (
серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих элементов и
элементов проезжей части пролетного надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое
фрикционно -подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от 7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей
жесткостью, приспособленных на предельную нагрузку и приспособляемость с учетом
больших перемещений за счет использования медной обожженной гильзы, бронзовой втулки,
тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
2550777, 165076, 1760020, 154506
Узлы и фрагнетиы испытвались при испвтаниях в СПб ГАСУ конструкций фермы состоит из
четырех поясов, крестовой решетки и вертикальных связей-диафрагм, установленных в каждой
панели длиной 2 м. Площади сечения элементов поясов и диагональных элементов равны 0,0008
м2; площади сечения вертикальных и горизонтальных элементов связей - 0,0006м2. Опоры в
середине длины фермы представляют собой неподвижные шарниры (перемещения по трем
направлениям координационных осей равны нулю), крайние опоры - подвижные шарниры
(перемещения по направлениям осей х2и х3 равны нулю, перемещение вдоль оси x1 возможно). Все
стержни имеют пре5
2
8
2
дел текучести 2,4 10 кН/м и модуль упругости 2,1^10 кН/м . Схема нагружения состоит из двух
вертикальных сосредоточенных сил в 100 кН каждая, приложенных в средних узлах верхнего пояса
правого пролета фермы (см. рис. 4). Результаты расчета приведены на рис. 5 для грани фермы x2
= 0 с учетом симметрии задачи. Стержни, находящиеся на шаге нагружения в пластическом
состоянии, показаны на рисунке сплошной жирной линией. Стержни, достигающие предела
текучести на данном шаге, показаны жирным пунктиром. На рисунке показаны все изменения в
состояниях стержней и нагрузки, при которых они происходят. При уровне нагрузки 435,787 кН
наступает текучесть в поперечной связи между загруженными узлами, и формируется механизм
разрушения конструкции. Предельный коэффициент нагружения равен 4,542.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 178
179.
В протоколе отражены графики зависимости вертикальных перемещений от нагрузки длятрех свободных узлов нижнего пояса правого пролета фермы n11, n13 и n15 (см. рис. 5).
Поведение фермы остается почти линейным до уровня нагрузки около 370,0 кН, что составляет
81,5% от предельной. Время, затраченное на выполнение прямого пошагового расчета 36-узловой
фермы на предельную пластическую нагрузку, составляет долю секунды. для ускоренного
монтажа временной надвижки длиной 60 метров шириной 3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777,
165076, 1760020, 154506, и испытания узлов и фрагментов компенсатора пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 179
180.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 180
181.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 181
182.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 182
183.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 183
184.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 184
185.
строение из упруго пластинчатых балок, через реку Суон, штат Монтана,США для испытания узлов и фрагментов компенсатора пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
Рис. 6. Пролетное
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 185
186.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 186
187.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 187
188.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 188
189.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 189
190.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 190
191.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 191
192.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 192
193.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 193
194.
Рис. 3. При лабораторных испывтаниях в СПб ГАСУпроводилассь визуальная проверка состояния стержня в конце
цикла испытаний для ускоренного монтажа временной
надвижки длиной 60 метров шириной 3 метра
упругопластинчетых пространственных пролетных
ферм быстро -собираемого моста с применением
замкнутых гнутосварных профилей прямоугольного
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 194
195.
сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное
соединение для трубопроводов " № 2018105803 F16L
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со
сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506
Стержень, упругий в начале шага, остается упругим в конце
шага нагружения, если абсолютное значение напряжения в нем
меньше предела текучести. В противном случае стержень в
конце шага считается достигшим текучести. Коэффициент
снижения нагрузки вычисляется следующим образом при испытании
узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 ,
9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 195
196.
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсаторапроф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
Рассмотрим стержень, состояние которого на шаге было
принято пластическим состоянием. Для упругой и пластической
деформаций задаются пределы погрешностей Se и ѐр. Типичными
значениями пределов погрешностей можно
считать 5S = 10-10 и 5р = 10 6 . Стержень испытывает на шаге
пластическую
деформацию, если значение абсолютной величины инкремента
пластической деформации | sp| превосходит погрешность ѐр. В
противном случае стержень во время шага был упругим вопреки
допущению, принятому в начале шага, и в программе
устанавливаются соответствующие флажки.
Если проверка состояния стержней в конце первого цикла
итераций показывает, что ни один их стержней не изменил
состояния, то цикл считается завершенным. Если хотя бы один
из стержней перешел в упругое состояние, шаг нагружения
повторяется с использованием новых состояний стержней.
В противном случае хотя бы один из стержней перешел в
пластическое состояние, и вычисляется наименьший
коэффициент редуцирования rmm. Пробное состояние
масштабируется при помощи этого коэффициента, и цикл
завершается.
При лаборатрных
испытаниях фрагментов, узлов упругопалстического сдвигового компенсатора,
для армейского сбороно- разборного пролетного надвижного строения моста (надвижной пролет 6 метров, 9 метров, 12
метров , ширина проезжей части 3 метра , грузоподъемность однопутного моста 10-15 тонн, скорость проезда по мосту - 4
км/час ), с применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.314
ГПИ "Ленпроектстальконструкция") для системы несущих элементов плаcтинчато -балочных ферм, со встроенным
бетонным настилам ( ускоренным методом в полевых условиях) , по аналогу переправы через реку Суон , длиной 205
футов (60 метров) в штате Монтана (США), с экономией строительных материалов до 30 процентов, за счет
предварительно напряжения гнутосварных замкнутых профилей, верхнего и нижнего пояса ферм, по изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777, 165076, 1760020 и изобртений Красноярского
ГАСУ №№ 228415, 2503783, 2247813, и Казанского ГАСУ с использованием 3D -модель конечных элементов в ПK SCAD
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 196
197.
Испытания проводились циклов итераций при шаговомунагруже- ния, состояние стержня принимается равным его
состоянию в конце предыдущего цикла. Вычисляется матрица
секущей жесткости для текущих инкрементов перемещений и
состояния стержней. Процедура продолжается так же, как и в
предыдущем цикле. Итерации на шаге нагружения завершаются,
когда норма погрешности пробного решения становится меньше
заданного предельного значения. Пошаговое нагружение
завершается, когда достигается предельная нагрузка или когда
выполняется заданное число шагов нагружения. Предельная
нагрузка считается достигнутой, когда максимальное заданное
число делений длины хорды в методе постоянных дуг не
приводит к формированию положительно определенной
матрицы секущей жесткости или к сходимости метода для
пробного состояния фермы на шаге нагружения.
4.Испытание узлов и фрагментов двухпролетной фермы на
предельную нагрузку Данный пример демонстрирует применение
прямого метода расчета на предельную пластическую нагрузку,
описанного в разделе 3, к анализу двухпролетной фермы, для
ускоренного монтажа временной надвижки длиной 60
метров шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа
"Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного
надвижного строения моста с быстросъмеными упруго
пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное
соединение для трубопроводов " № 2018105803 F16L
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 197
198.
23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , сосдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и
приспособляемость с учетом больших перемещений за
счет использования медной обожженной гильзы,
бронзовой втулки, тросовой гильзы стального троса в
полимерной оплетке или фрикци-болта с забитым медным
обожженным клином в прорезанный паз болгаркой в
стальной шпильке стягивающего -контрольным
натяжением болта, расположенного в длинных овальных
отверстиях , согласно изобретениям проф ПГУПС
А.М.Уздина №№ 1143895Ю 1168755, 1174616,
2010136746, 2550777, 165076, 1760020, 154506
Рис. 4. Ппоказаны узлы для исптвнеи монтажных узлов надвижки длиной 60 метров шириной
3 метра упругопластинчетых пространственных пролетных ферм быстро собираемого моста с применением замкнутых гнутосварных профилей прямоугольного сечения
типа "Молодечно! ( серия 1.460-3-14 ГПИ "Ленпроектстальконструкция" для системы несущих
элементов и элементов проезжей части пролетного надвижного строения моста с
быстросъмеными упруго пластическими компенсаторами ( заявка на изобретение:
"Антисейсмическое фланцевое фрикционно -подвижное соединение для трубопроводов " №
2018105803 F16L 23/02 от -7.06.2018 ФИПС заявитель СПб ГАСУ ) , со сдвиговой фрикционо
-демпфирующей жесткостью, приспособленных на предельную нагрузку и приспособляемость
с учетом больших перемещений за счет использования медной обожженной гильзы, бронзовой
втулки, тросовой гильзы стального троса в полимерной оплетке или фрикци-болта с забитым
медным обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласно
изобретениям проф ПГУПС А.М.Уздина №№ 1143895Ю 1168755, 1174616, 2010136746,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 198
199.
2550777, 165076, 1760020, 154506 , узлов и фрагментов компенсатора пролетного строения изупругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Конструкция фермы состоит из четырех поясов, крестовой решетки и вертикальных связейдиафрагм, установленных в каждой панели длиной 2 м. Площади сечения элементов поясов и
диагональных элементов равны 0,0008 м2; площади сечения вертикальных и горизонтальных
элементов связей - 0,0006м2. Опоры в середине длины фермы представляют собой неподвижные
шарниры (перемещения по трем направлениям координационных осей равны нулю), крайние опоры
- подвижные шарниры (перемещения по направлениям осей х2и х3 равны нулю, перемещение вдоль
оси x1 возможно). Все стержни имеют пре5
2
8
2
дел текучести 2,4^10 кН/м и модуль упругости 2,1^10 кН/м . Схема нагружения состоит из двух
вертикальных сосредоточенных сил в 100 кН каждая, приложенных в средних узлах верхнего пояса
правого пролета фермы (см. рис. 4). Результаты расчета приведены на рис. 5 для грани фермы x2
= 0 с учетом симметрии задачи. Стержни, находящиеся на шаге нагружения в пластическом
состоянии, показаны на рисунке сплошной жирной линией. Стержни, достигающие предела
текучести на данном шаге, показаны жирным пунктиром. На рисунке показаны все изменения в
состояниях стержней и нагрузки, при которых они происходят. При уровне нагрузки 435,787 кН
наступает текучесть в поперечной связи между загруженными узлами, и формируется механизм
разрушения конструкции. Предельный коэффициент нагружения равен 4,542.
На рис. 6 показаны графики зависимости вертикальных перемещений от нагрузки для трех
свободных узлов нижнего пояса правого пролета фермы n11, n13 и n15 (см. рис. 5). Поведение
фермы остается почти линейным до уровня нагрузки около 370,0 кН, что составляет 81,5% от
предельной. Время, затраченное на выполнение прямого пошагового расчета 36-узловой фермы на
предельную пластическую нагрузку, составляет долю секунды. для ускоренного монтажа
временной надвижки длиной 60 метров шириной
3 метра упругопластинчетых
пространственных пролетных ферм быстро -собираемого моста с применением замкнутых
гнутосварных профилей прямоугольного сечения типа "Молодечно! ( серия 1.460-3-14 ГПИ
"Ленпроектстальконструкция" для системы несущих элементов и элементов проезжей части
пролетного надвижного строения моста с быстросъмеными упруго пластическими
компенсаторами ( заявка на изобретение: "Антисейсмическое фланцевое фрикционно подвижное соединение для трубопроводов " № 2018105803 F16L 23/02 от -7.06.2018 ФИПС
заявитель СПб ГАСУ ) , со сдвиговой фрикционо -демпфирующей жесткостью,
приспособленных на предельную нагрузку и приспособляемость с учетом больших
перемещений за счет использования медной обожженной гильзы, бронзовой втулки, тросовой
гильзы стального троса в полимерной оплетке или фрикци-болта с забитым медным
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 199
200.
обожженным клином в прорезанный паз болгаркой в стальной шпильке стягивающего контрольным натяжением болта, расположенного в длинных овальных отверстиях , согласноизобретениям проф ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2010136746, 2550777,
165076, 1760020, 154506
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 200
201.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 201
202.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 202
203.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 203
204.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 204
205.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 205
206.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 206
207.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 207
208.
Рис.К протоколу лабораторных испытаний прилагаются чертежи, фигуры, описание изобретения, формула изобретения, рефератк направленной заявке на полезную модель от 22 января 2022 изобретение "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная" и реальные испытания узлов и
фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12,
18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
Адрес отправления заявки на изобретение: Федеральная служба по интеллектуальной собственности, Бережковская наб., 30, корп.1,
Москва, Г-59, ГСП-3, 125993 Российская Федерация
2. Место проведения испытаний узлов и фрагментов компенсатора
пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 208
209.
штате Монтана в 2017 году.Испытания на сейсмостойкость математических моделей
испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
предназначен для сейсмоопасных районов с сейсмичностью, до 9 баллов, серийный выпуск. В районах с
сейсмичностью более 9 баллов, необходимо использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", с креплением к строительным конструкциям с
помощью фрикционных протяжных демпфи-рующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в
длинных овальных отверстиях производились нелинейным методом расчета в ПК SCAD в соответствии с ГОСТ 30546.1-98, ГОСТ
30546.3-98, СП 14.1330-2011, п. 4.6, ГОСТ Р 54257-2010, ГОСТ 17516. 1-90, МДС 53-1.2001, ОСТ 36-72-82, СТО 0051- 2006, СТО
0041-2004, СТП 006-97, СП «Здания сейсмо-стойкие и сейсмоизолированные», Правила проектирования.2013, Москва. Д.т.н.
Кабанов Е.Б. «Направления развития фрикционных соединений на высокопрочных болтах», НПЦ мостов СПб, согласно
мониторингу землетрясений и согласно шкалы землетрясений, с учетом требований НП-31-01, в части категории
сейсмостойкости II «Нормы проектирования сейсмостойких атомных станций» и с учетом требований предъявляемых к
оборудованию (группа механического исполнения М39; I и II категории по НП 031-01; сейсмостойкость при воздействии МП3 7
баллов ПЗ 6 баллов при уровне установки на отметке до 10 (25) м включительно, с учетом спектров отклика здания АЭС.
Испытания фрагментов антисейсмического фрикционно- демпфирующего соединения трубопроводов, выполненного в виде
болтового соединения (латунная шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые шайбы), расположенного в длинных овальных отверстиях, с контролируемым натяжением для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках, предназначенного для трубопроводов опоры скользящей для системы противопожарной защиты ,предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов производились в ИЦ «ПКТИ-СтройТЕСТ».
В качестве объекта исследования были выбраны фрагменты антисейсмического фрикционно- демпфирующего компен-сатора
трубопроводов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов .
Испытания производились на вибростойкость (на осевое статическое усилие сдвига по линии нагрузки соединений) фрикционноподвижного соединения для трубопроводов с косым антисейсмическим компенсатором, предназначенных для сейсмоопасных
районов с сейсмичностью более 9 баллов). Дата проведения испытаний: 10 ноября 2021 г.
Основание для проведения испытаний договор № 568 от 03.01.2022 : Оценка сейсмостойкости в ПК SCAD испытания узлов
и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12,
18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 209
210.
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
предназначен для сейсмоопасных районов с сейсмичностью, до 9 баллов, серийный выпуск. В районах с
сейсмичностью более 9 баллов, необходимо использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная" и испытание на сейсмостойкость фрагментов
антисейсмического фрикционно- демпфирующего компенсатора для соединения трубопроводов, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов по шкале MSK-64.
Испытание фрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 26.01.2021, № 1506-1 от
23.12.20). Аттестат аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО
ФПГ «РОССТРО», ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность», 25.03.2018 г.и в СПбГАСУ,
аттестат аккредитации №RA.RU.21 CT39 от 27.05.2015.
Наименование продукции: Фрагменты антисейсмического фрикционно- демпфирующиего компенсатора
3. Испытательное оборудование и измерительные приборы. Условия проведения испытания узлов крепления испытания
узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 ,
9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
предназначен для сейсмоопасных районов с сейсмичностью, до 9 баллов, серийный выпуск. В районах с
сейсмичностью более 9 баллов, необходимо использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная" на скольжение и податливость
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 210
211.
Перечень (приведен в таблице 1) испытания узлов и фрагментов компенсаторапролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
испытательного оборудования и измерительных приборов для проведения испытаний фрагментов фрикционно-подвижных
соединений для использования изобретения "Огнестойкий компенсатора - гаситель температурных
напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционноподвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при
импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС
А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора
сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях.
Таблица 1
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 211
212.
№п/п
Испытания на перемещение демпфирующих
узлов с амортизирующими элементами
Тип прибора,
оснастки,
оборудование
Диапазон
измерения
1
Определение статических усилий для сдвига податливого анкера, установленного в изолирующей
трубе с амортизирующими податливыми элементами в виде тросового «или» дугообразного зажима
с анкерной шпилькой производилось в ИЦ «ПКТИСтрой-ТЕСТ» («Протокол испытания на осевое
статическое усилие сдвигу дугообразного зажима с
анкерной шпилькой»)
Рулетка,
штангенциркуль
+- (2- 5) см
Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой согласно патента на полезную модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь».
2
Индикатор с манометром до 10 тонн, для измерения
перемещения податливого анкера по дугообразному
зажиму с анкерной шпилькой (тросовому зажиму).
Индикатор
измерений
перемещений с
ценой деления в
динах 2 мм
1%
См. Протокол испытания на
осевое статическое усилие
сдвига дугообразного зажима
с анкерной шпилькой
3
Домкрат до 10 тонн для отрыва демпфирующего
крепления
Рулетка,
штангенциркуль
+- (2- 5) см
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой согласно патента на полезную
модель № 102228 «Анкерная
крепь для горных выработок»
и № 44350 «Анкерная крепь»
4
Лебедка рычажная (усилие 5 тонн) для определения смятия при выдергивании анкера со
свинцовым «тормозным» клином, забитым в
прорезанный паз в резьбовой части анкера М16
Теодолит
1%
См. Протокол испытания на
осевое статическое усилие
сдвигу дугообразного зажима
с анкерной шпилькой
5
Кувалда, вес 4 кг. (для определения перемещения
демпфирующего анкера с тормозным клином во
время испытания на монтажной строительной
площадке)
Нивелир
+/- 0,0 T/c2
Годен до 12.2025 г.
6
Лабораторный механический манометр для
измерения перемещения анкера М16 ГОСТ 24376.1
на податливость
Штатив с
манометром
0,01 мм – 1000
мм
Свид. №1 до 12.2023 г.
7
Аналогично вибростенду ES -180-590
использовалась испытательная машина ZD-10/90 на
сдвиг, скольжение и податливость согласно ГОСТ
53166-2008 «Землетрясения»
Усилия
выдергивания
шкала 100 кгс.
Заводской №
66/79
(сертификат о
калибровке №
143-1371 от
28.08.2013г.)
Годен до 12.2022 г.
8
Ключ динамометрический
Нивелир
+/- 0,0 T/c2
Годен до 12.2022 г.
9
Нивелир
Штатив с
манометром
0,01 мм. – 1000
мм.
Свид. № 1 до 12.2023 г.
10
Домкрат 5 т
Усилия
выдергивания
шкала 5 тонн
Заводской № 1
(сертификат №
14 от
18.09.2013г.)
Годен до 12.2022 г.
11
Лебедка 5 тонная
Для определения
сдвига или
скольжение анкера в
изолированной
трубе
5%
Годен до 12.2023 г.
12
Болгарка для простукивания пазов в анкерных
Болгарка дисковая
Паз пропила 2
Свидетельство № 3 до
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Примечание
Всего листов 556
Лист 212
213.
13болтах для забивки стопорного свинцового клина
пила
Гайковерт ИП-3128 исползовался при испыта-ниях
на фрагментах, деталях сдвигоустойчи-вых
скользящих сейсмостойких и взрывостой-ких узлах
крепления.
При испытаниях на
демпфирован-ность
и сдвигоустойчивость, допускает настройку
величины крутя-щих
моментов от 80до
150 кгс
мм
Заводской № 1
№ 19 от 18.09.
2013г.)
01.12.2023 г.
Годен до 12.2023
Условия проведения испытания узлов крепления опоры скользящей для испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
на скольжение и податливость -согласно нормативным документам, действующим на 09.11 2021 г., действующим ГОСТ Р и
специальным техническим условиям (СТУ).
4. Цель испытаний на сейсмостойкость в ПК SCAD математических моделей использование изобретение
"Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 (
направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой
прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности
соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" и фрагментов антисейсмического фрикционно- демпфирующего соединения с контролируемым
натяжением трубопровода, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный
выпуск.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 213
214.
Цель испытаний: оценка сейсмостойкости в ПК SCAD узлов и фрагментов компенсаторапролетного строения
из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
математических моделей использование изобретение "Огнестойкий компенсатора - гаситель температурных
напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционноподвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при
импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС
А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора
сейсмостойкая", 2550777, 154506 "Панель противовзрывная"
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" для системы противопожарной защиты, предназначенных для сейсмоопасных районов с сейсмич-ностью
более 9 баллов, серийный выпуск и возможность эксплуатации опоры скользящей с трубопроводом в районах с сейсмич-ностью
более 9 баллов.
Цель лабораторных испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения с контролируемым
натяжением в строительных конструкциях с использованием изобретения "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 214
215.
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными вдлинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для сейсмоопасных районов
с сейсмичностью более 9 баллов - определение возможности их использова-ния в районах с сейсмичностью более 9 баллов по
шкале MSK-64.
5.Применение численного метода моделирования при испытании в ПК SCAD и испытания узлов и фрагментов
компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
использованием изобретения "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", с креплением строительных конструкций , трубопроводов к опоре скользящей с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК), предназначенных для сейсмоопасных районов с
сейсмичностью более 9 баллов. Испытание фрагментов ФДПК.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ
мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
РАСЧЕТНАЯ СХЕМА испытания СКАД испытания узлов и фрагментов компенсатора
пролетного строения
из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 215
216.
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон вштате Монтана в 2017 году с опорой скользящей с трубопроводом для системы противопожарной защиты
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", с креплением трубопровода с помощью демпфирующих компенсаторов, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов.
Геометрические характеристики схемы испытания математических моделей использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ
защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная"с креплением
трубопровода с помощью демпфирующих компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов в ПК SCAD.
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных
ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 216
217.
на болтовых и соединений между диагональными натяжными элементами, верхним и нижнимпоясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году.
РАСЧЕТНАЯ СХЕМА с использование изобретение "Огнестойкий компенсатора - гаситель температурных
напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционноподвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при
импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС
А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора
сейсмостойкая", 2550777, 154506 "Панель противовзрывная"
Геометрические характеристики схемы
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 217
218.
РАСЧЕТНАЯ СХЕМА испытания узлов и фрагментов компенсаторапролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Геометрические характеристики схемы (использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ
защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная")
Нагрузки приложенные на схему
Результата расчета
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 218
219.
Эпюры усилий«N»
«Му»
«Qz»
«Qy»
Деформации
Коэффициент использования профилей испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 219
220.
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
Для лабораторных испытаний узлов и фрагментов компенсатора
пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году
были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и контрольная сборка производилась
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 220
221.
в организации «Сейсмофонд». Инструкция по креплению фланцев к трубам предусматривала такую последовательностьпроизводства работ:
1.
2.
3.
4.
5.
6.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами
с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости {в плане и по высоте}.
Соединить фланцы трубопровода с помощью фланцевых вибростойких соединений
Выполнить именную маркировку с ФФПС.
После производилась окончательная установка и затяжка всех высокопрочных болтов.
Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по
ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5).Трубопроводы
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов соединены с помощью фрикци-анкерных,
протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых соединений (латунная
шпилька с пропиленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые
шайбы), расположенных в длинных овальных отверстиях.
7.
Для испытания на сейсмостойкость использование изобретение "Огнестойкий
компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", использовались узлы крепления опоры к
трубопроводу в виде фланцевых фрикционно –демпфирующих соединений (ФПС) с контролируемым натяжением, расположенных
в длинных овальных отверстиях, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов.
№
п/п
1
Наименование проверок и испытаний
2
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
3
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
4
5
6
7
8
9
Проверка крепления скольжения и
податливости сдвигоустойчивого анкера
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Величина усилия, кгс при котором
происходит, вырыв болтового
крепления из стального листа (Ст3)
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Результаты статических испытаний
крепежных изделий на испытательную
нагрузку
Испытательное
оборудование
Создание осевого
усилия испытательной
машиной ZD -10/90 зав
№ 66/79 (сертификат о
калибровке № 13-1371
от 28.08.2018
При испытаниях
податливых
сдвигоустойчивых и
скользящих узлов
крепления
Величина контролируемого
параметра
Величина усилия 580 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилия 1420 кгс при котором
происходит скольжение или
перемещение стального тросового
зажима по стальному анкеру
Величина усилий кгс 2420
Срыв резьбы на стальном листе
Величина усилий кгс 4000
Регистрация усилий
производилось по
шкале до 1000 кгс
сдвигоустойчивого
податливого крепления
подогревателя
топливного газа
Срыв резьбы на стальном листе
Величина усилий кгс 730
Срыв резьбы на стальном листе
Величина усилий 30 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 40 кгс
Смятие граней полимодальной гайки
М12на резьбе гайки М22
Величина усилий 50 кгс
Смятие граней полимидальной гайки
М12на резьбе гайки М22
Величина усилий 150 кгс
Смятие граней полимидальной гайки
М12 на резьбе гайки М22
Результаты
испытаний
800 кгс
340 кгс
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Характер
разрушения срыв
резьбы на
стальном листе
Срыв гайки М10
на резьбе гайки
Срыв гайки М12,
М22
Срыв гайки М14,
М22
Срыв гайки М16,
М22
Таблица комплектующих фрикционно-подвижного соединения (ФПС) испытания узлов и фрагментов компенсатора
для пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 221
222.
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году , при использовании изобретения
"Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 (
направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой
прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности
соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" с контролируемым натяжением (протяжное повышенной надежности), работающего на растяжение согласно
СП 4.13130.2009 п. 6.2.6, ТКТ 45-5.04-274-2012(02250), Минск, 2013, 10.3.2, 10.8 Стальные конструкции, Технический кодекс, СП
16.13330.2011 (СниП II -23-81*) Стальные конструкции, Москва, 2011г., п.п. 14.3, 14.4, 15, 15.2, в соответствии с изобретением №
TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК) E04B1/98; F16F15/10 (демпфирующая опора с
фланцевыми, фрикционно–подвижными соединениями), Тайвань, согласно изобретениям №№ 1143895,1174616,1168755, 2357146,
2371627, 2247278, 2403488, 2076985, SU United States Patent 4,094,111 [45] June 13, 1978, согласно изобретения «Опора
сейсмостойкая, патент № 165076 (авторы: Андреев Б.А, Коваленко А.И) (проходили испытания) при испытаниях узлов и
фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12,
18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в
2017 году учитывался опыт США
Поз.
1
2
3
4
5
6
Обозначение
Фрикци-шпилька ( латунный болт с контролируемым натяжением М12x30
Шайба гровер Г.12
Шайба медная обожженная – плоская С.12
Шайба свинцовая плоская С.12
Медная труба ( гильза, втулка) С.14-16
Медный обожженный забивной клин , который забивается в пропиленный паз
латунной или обожженной стальной шпильки (болта)
Кол
4
4
4
4
4
4
Наименование изделия
Шпилька
Нормативная документация
ГОСТ 9066-75
Применение
Фрикционно-подвижное соединение по ГОСТ 12815-80
Шпилька полнорезьбовая
Гайка
Шайба
DIN 976-1
ГОСТ 9064-75
ГОСТ 9065-75
Для крепления транспортировочных брусков
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 222
223.
ШайбаБолт
Заклѐпка вытяжная
Шпилька
ГОСТ 6402-70
ГОСТ 7798-70
Хомут
БОЛТЫ
АТК-25.000.000
№
1
Испытание в ПК SCAD спектральным
методом на основе синтезированных
акселерограмм на соответствие ГОСТ
17516.-90 п.5 (к сейсмическим воздействиям 9 баллов по шкале MSK-64) на
основе рекомендаций: ОСТ -34-10-75797, ОСТ 36-72-82, СТО 0041-2004, МДС
53-1.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (скользящие, катковые, шариковые) ВСН 382-87, ОСТ
108.275.51-80, ГОСТ 25756-83
Наименование и тип
Диап
Класс
лабораторного
азон
точности
измерительного
измер или предел
оборудования
ений
допускаемо
контр й
олир
погрешност
уемы и
х
велич
ин
Испытание в ПК SCAD
узлов крепления спектральным методом на основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90
п.5 (к сейсмическим
воздействиям 9 баллов по
шкале MSK-64) на основе
рекомендаций: ОСТ -34-10757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые)
ВСН 382-87, ОСТ
108.275.51-80, ГОСТ
25756-83.
Наименование и тип лабораторного
измерительного оборудования
1
Фрикционно-подвижное соединение по ГОСТ 12815-80
Фрикционно-подвижное соединение по ГОСТ 12815-80
Установка доборного элемента
Закрепления металлосайдинга и дополнительного
оборудования
Фиксация кабельтрасс
Испытание в ПК SCAD спектральным методом на основе синтезиро-
Диап
азон
изме
рени
й
конт
роли
руем
ых
вели
чин
Испытание фрагментов демпфирующих
узлов крепления согласно «Руководства
по креплению технологического оборудования фунд. Болтами»,
ЦНИИПРОМЗДАНИЙ, М., Стройиздат,
1979 г. И альбома «Анкерные болты», сер.
4.402-9, в.5.
Заводско
й№
Класс
точности
или предел
допускаемо
й
погрешност
и
Примечание
Согласно программному комплексу
«Интегрированная система анализа
конструкции SCADOffice» № 0896002 от
28.12.2013.
http://www.youtube.com/watch?v=pHelYxRUhttp://www.youtube.com/watch?v=siCT9
DhdhjAhttp://smotri.com/video/view/?id=v2275
5810d79
Испытание в ПК SKAD на основе синтезированных акселерограмм фрагментов
демпфирующего узла крепления выполненного в виде болтового соединения с амортизирующими элементами в виде тросового зажима со свинцовыми шайбами, расположенными
с двух сторон болтового крепления, изготовленного согласно «Ру-ководства по креплению
технологического оборудования фундаментными болтами», ЦНИИПРОМЗДАНИЙ,
ВНИИМОНТАЖСПЕЦСТРОЙ, М.,
Стройиздат, 1979, предназначенного для
работы в сейсмоопасных районах с сейсмичностью 8 баллов по шкале MSK-64.
Завод
ской
№
Примечание
В программе SCAD и программмах SCADOffice реализованы и
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 223
224.
ванных акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к сейсмическим воздействиям 9 баллов пошкале MSK-64) на основе рекомендаций: ОСТ -34-10-757-97, ОСТ 3672-82, СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72, альбома
серии 4.903, вып. 5 «Опоры трубопроводов подвижные» (сколь-зящие,
катковые, шариковые) ВСН 382-87,
ОСТ 108.275.51-80, ГОСТ 25756-83.
№
Наименование и тип
лабораторного
измерительного
оборудования
1
Испытание в ПК SCAD
спектральным методом на
основе синтезированных
акселерограмм на соответствие ГОСТ 17516.-90 п.5 (к
сейсмическим воздействиям 9
баллов по шкале MSK-64) на
основе рекомендаций: ОСТ 34-10-757-97, ОСТ 36-72-82,
СТО 0041-2004, МДС 531.2001, РТМ 24. 038.12-72,
альбома серии 4.903, вып. 5
«Опоры трубопроводов
подвижные» (скользящие,
катковые, шариковые) ВСН
382-87, ОСТ 108.275.51-80,
ГОСТ 25756-83
сертифицированы положения следующих
нормативных документов:
1) СниП 2.01.07-85* – Нагрузки и
воздействия;
2) СниП II-23-81* – Стальные конструкции;
3) СниП 2.03.01-84* – Бетонные и
железобетонные конструкции;
4) СниП II-22-81 – Каменные и
армокаменные конструкции;
5) СниП II-7-81* Строительство в
сейсмических районах;
6) СниП 2.02.01-83* – Основания зданий и
сооружений;
7) СниП 2.02.03-85 – Свайные фундаменты;
8) СниП II-25-80 – Деревянные конструкции;
9) СниП 52-01-2003 – Бетонные и
железобетонные конструкции. Основные
положения.
9) СП 52-101-2003 – Бетонные и
железобетонные конструкции без
предварительного напряжения арматуры;
10) СП 53-101-96 – Общие правила
проектирования элементов стальных
конструкций и соединений;
11) СП 50-101-2004 – Проектирование и
устройство оснований и фундаментов зданий
и сооружений;
12) СП 50-102-2003 – Проектирование и
устройство свайных фундаментов
Диапазон
измерений
контролируемы
х величин
Класс
точнос
ти или
предел
допуск
аемой
погре
шност
и
Заводск
ой №
Примечание
1)
ДБН В.1.2-2:2006 – Нагрузки и
воздействия (Украина);
2) СП 31-114-2004 –
Строительство в сейсмических
районах (Россия);
3) СниП В1.2-1-98 –
Строительство в сейсмических
районах (Казахстан);
4) СниП РК 2.03-30-2006 –
Строительство в сейсмических
районах. Нормы
проектирования (Казахстан);
5) СНРА ІІ-2.02-94 –
Сейсмостойкое строительство.
Нормы проектирования
(Армения);
6) МГСН 4-19-2005 –
Временные нормы и правила
проектирования многофункциональных высотных зданий и
зданий-комплексов в городе
Москве.
НОРМЫ ПРОЕКТИРОВАНИЯ
СЕЙСМОСТОЙКИХ АТОМНЫХ
СТАНЦИЙ НП-031-01 УДК
621.039 Введены в действие с 1 января
2002 г. Утверждены постановлением
Госатомнадзора России от 19 октября
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 224
225.
2001 г. № 9Результаты испытаний фрагментов демпфирующих узлов крепления испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году, котрые (работают на растяжение) и фрикционноподвижных соединений (ФПС), расположенных в длинных овальных отверстиях, работающих на растяжение, с контролируемым
натяжением согласно изобретениям № 1143895, 1174616, 1168755 для крепления опоры скользящей для системы противопожарной
защиты использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений "
МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с тру-бопроводами, с
креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (Ф ПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях
Проверка фрагментов демпфирующих узлов крепления работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с подпиленным пазом, установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и
медного клина)
№
п/п
1
2
Наименование проверок и
испытаний
№ пункта
по ПМ
Величина контролируемого
параметра
Результаты испытаний
Проверка скольжения ,
податливости
Проверка скольжения гайки
в ИЦ «ПКТИ-Строй-ТЕСТ»,
адрес: 197341, СПб,
Афонская ул.2 .
п.6
Величина усилий в кгс согласно
протокола ПКТИ –Строй-ТЕСТ
При величине усилий 800 кгс
происходит перемещение скобы
зажима по шпильке при испытании
Уточняется опытным путем
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Соответствует при монтаже
зданий для сейсмоопасных
районов 8 баллов (по шкале
MSK-64), необходимо
испытание на перемещение
Всего листов 556
Лист 225
226.
3Проверка смятия свинцовой шайбы.
4
Проверка свинцовой
прокладки
Проверка фланцевого
соединения
5
6
Проверка фрагментов
фрикционно-подвижных
соединений
7
Проверка срыва резьбы на
шпильке согласно протокола № 1506-1 от 18.11.
2020
Проверка соединения латунной гайки и полиамидальной гайки
8
9
Проверка гайки М12 с
пазом
Смотри протокол ПКТИ –СтройТЕСТ от 18.11.2020
[email protected]
Соответствуют требованиям
узла крепления
Определяется при установке
зданий
соответствует
Функционирует при податливых
характеристиках и перемещениях
до 2-4 см
Фрикционно-подвижное соединение
(происходит многокаскадное демпфирование при импульсных растягивающих нагрузках)
Осевое статическое усилие отрыва в
кгс(Ст3) 1500-600 кгс ПКТИ –
Строй-ТЕСТ
соответствует
Маркировка, таблички, надписи
соответствуют требованиям КД
Величина усилия кгс (при котором
происходит перемещение гайки в
узле крепления)
После испытаний фрагменты демпфирующих узлов крепления и
фрикционно-подвижных соединений
для объектов проходят проверку на
соответствие Инструкции "Элементы теории трения, расчет и технология применения фрикционноподвижных соединений".
Происходит пере-мещение
гайки при 30-150 кгс,
уточняется при монтаже
Проверяются перемещения
домкратом или лебедкой
Регистрационные усилия
выдергивания производились по шкале до 4000 кгс
Соответствует после
испытания фрагментов
демпфирующих узлов
крепления, фланцевых
соединений и фрикционноподвижных сое-динений для
объ-ектов для сейсмоопасных районов 8 баллов
по шкале MSK-64.
Проверка фрагментов демпфирующих узлов крепления испытания узлов и фрагментов компенсатора
пролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
И работающих на сдвиг и выполненных в виде болтовых соединений (латунная шпилька с подпиленным пазом, установленная в
изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного» клина) для опоры
скользящей с трубопроводами для системы противопожарной защиты использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ
защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных
для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением трубопроводов с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с конт-ролируемым натяжением, расположенных в длинных овальных отверстиях. При
осмотре не обнаружено механических повреждений и ослабления демпфирующего фрикци-анкерного крепления.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 226
227.
Проверка податливостип.6
Необходимо обернуть свинцовым или
соответствует
латунной шпильки .
медным листом шпильку
2
Проверка подпиленной
Наблюдается перемещение шпильки
соответствует
латунной гайки
3
Проверка латунной шпильки с
Энергию поглощает стопорный (торсоответствует
пропиленным пазом для
мозной) клин на шпильке
стопорного клина
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных
соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом,
установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина) для крепления опоры скользящей для системы противопожарной защиты для узлов и фрагментов компенсатора
1
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
При осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения трубопроводов для опоры
скользящей для системы противопожарной защиты использование изобретение "Огнестойкий компенсатора -
гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для сейсмо-опасных
районов с сейсмичностью более 9 баллов для опоры скользящей для системы противопожарной защиты
1
Проверка смятия свинцовой
п.6
Происходит смятие свинцовой шайбы
соответствует
Проверка смятия забитого в
Клин забивается в паз шпильки с
соответствует
паз латунной шпильки
помощью кувалды (4 кг)
шайбы
2
обожженного медного
стопорного клина
3
Проверка изолирующей
Латунная шпилька (расположена в
трубки в виде обертки
изолирующей трубе или обернута
шпильки медным листом
тонким слоем медного листа)переме-
соответствует
щается на 1 градус при ударе кувалдой
4
Проверка гайки со спилен-
Гайка с подпиленным пазом сдвигается
соответствует
Проверка свинцовой
Свинцовая рубашка, нанесенная на
соответствует
рубашки при обвертывании
шпилька демпфирует
ным пазом
5
шпильки
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 227
228.
67
Проверка свинцовой
Многослойная медно-свинцовая
прокладки
прокладка при ударе сминается
Проверка шпильки, у кото-
Согласно протокола ПКТИ от
рой две противоположные
18.11.2013 № 1506 -1 при нагрузке
стороны сточены 4.0, 3,5 и
1500- 610 кгс ( Ст3) отрыв шпильки
3.0 мм
происходит со срывом резьбы.
Проверка фланцевого
Происходит срыв резьбы и сдвиг на
соединения со стальной
0,5-0,9см
соответствует
соответствует
соответствует
шпилькой со сточенными
зубьями
8
9
Проверка компенсаторов Z –
Крепление комплектующих элементов
образных для трубопровода
не ослаблено. Крепеж не ослаблен.
Проверка компенсаторов
Необходимо дополнительные
«змейка» для трубопровода
испытания при укладке кабельтрасс (до
соответствует
соответствует
контролируемых неразрушающих
перемещений 2-6 см) .
Результаты испытания испытания узлов и фрагментов компенсатора
пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 228
229.
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальнойфермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году и болтового соединения на сдвиг для опоры скользящей для системы противопожарной
защиты с использованием изобретения "Огнестойкий
компенсатора - гаситель температурных напряжений
" МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная"
серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами и с
креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях. узлов и фрагментов компенсатора пролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
№ п.п.
Наименование узла крепления
использование изобретение
"Огнестойкий компенсатора гаситель температурных напряжений
" МПК F16L 23/00, А16Д 27/2 (
направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой
прочности , расположенными в
длинных овальных отверстиях, с
целью обеспечения надежности
соединения, при температурных
колебаний и при импульсных
растягивающих и динамических
нагрузках), согласно изобретениям
проф. дтн. ПГУПС А.М.Уздина: №№
1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий",
Величина усилия, кгс, при
Характеристики
котором происходит
скольжения,
скольжение или
податливости.
перемещение стального
зажима для троса по
стальному анкеру
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 229
230.
165076 "Опора сейсмостойкая",2550777, 154506 "Панель
противовзрывная"
1
1.
2
3
Фрикционно-подвижное соединение (ФПС) с
болтовыми
зажимами
с
четырьмя
Было ранее
(50)
Стало
4
Перемещение шайбы с гайкой 2,5 см
по овальному отверстию при
постоянной нагрузке
шестигранными гайками Ml0, затянутыми с
помощью гаечного
усилия или
усилием
ключа
на половина
динамометрического ключа с
40
Н*м.
с
контактирующими
(
между
поверхностями
проложен стальной трос в пластмассой
оплетке диаметром 4 мм)
2.
Фрикционно –подвижное соединение
с
Было 90-150
четырьмя гайками с двух сторон затянуты
гаечным ключом на максимальную нагрузку
двумя
шестигранными
гайками
М10,
Перемещение шайбы с гайком 3,54.0 см по условному овальному
отверстию при постоянной
Стало
нагрузке
_______
затянутыми с помощью гаечного ключа или
динамометрического ключа с усилием 20
Н*м.
( между контактирующими поверхностями
проложен
стальной
трос
впластмассой
оплетке диаметром 4 мм)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 230
231.
Рис. Общий вид образцов и узлов при лабораторных испытаниях узлов и фрагментов компенсаторапролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между
диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
опоры скользящей для системы противопожарной защиты использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", согласно изобретения № 165076 RU E 04H
9/02 «Опора сейсмостойкая», изобретения № 2010136746 от 20.01.201 «Способ защиты зданий и сооружений при взрыве с
использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии», заявки на изобретение № 20181229421/20(47400) от
10.08.2018 «Опора сейсмоизолирующая «гармошка», заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 , испытываемых на сдвиг с
болтами ( шпилькой) М 10 с тросом в оплетке и без оплетки со стальным тросом М 2 мм. Образец № 1 ГОСТ 22353- 77 с
платиной 260 мм Х 40 Х 3 мм Сталь 10 ХСНД
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 231
232.
Рис. Варианты конструктивного решения сейсмозащиты элементов скользящих опор для системы противопожарной защиты ОС25, ОС-32, ОС-50, ОС-65, ОС-80, ОС-100.Рис.Испытанияфрагментов фрикционного протяжного демпфирующего компенсатора с контролируемым натяжением на сдвиг и
скольжение проходили в испытательном Центре «ПКТИ–Строй-ТЕСТ» (протокол испытаний№ 1516-2 от 22.12.2020). Аттестат
аккредитации федерального агентства по техническому регулированию и метрологии № ИЛ/ЛРИ-00804 (ООО ФПГ «РОССТРО»,
ИЦ «ПКТИ-Строй-ТЕСТ»), выдано ОАО «НТЦ» Промышленная безопасность» , узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
Типовые альбомы, испытания узлов и фрагментов компенсатора пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 232
233.
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями впрограмме 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году. при испытаниях фрагментов антисейсмического компенсатора для опор скользящих для
системы противопожарной защиты использование изобретение "Огнестойкий
компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных
колебаний и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф.
дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076
"Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная"
.
При испытаниях математических моделей опор скользящих для системы противопожарной защиты использование
изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д
27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом
сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности
соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск с
трубопровода-ми с использованием для соединения трубопровода косых компенсаторов, работающих на сдвиг расчетным
способом определялась расчетная несущая способность узлов податливых креплений, стянутых одним болтом с предварительным
натяжением классов прочности 8.8 и 10.9,
, (3.6)
где ks— принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных стандартах группы 7
(см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с контролируемым
натяжением, в соответствии со ссылочными стандартами группы 7 (см. 1.2.7), усилие предварительного натяжения Fp,C в формуле
(3.6) следует принимать равным
(3.7)
Таблица — Значения ks
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 233
234.
Описание испытание антисейсмического компенсатора работающего на сдвиг 1-2 смс использованием овальных отверстийks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче усилия перпендикулярно
0,85
продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси отверстия
0,63
Таблица — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 2 — Классификация поверхностей трения при любом другом способе обработки должна быть основана
на результатах испытаний образцов поверхностей по процедуре, изложенной в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 3 — Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может произойти потеря
предварительного натяжения.
Моделирование систем сейсмоизоляции для строительных конструкций с использованием изобретения
"Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 (
направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой
прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности
соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" для системы противопожарной защиты
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 234
235.
Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем сейсмоизоляции присейсмических воздействиях, представлены в таблице Б.1. узлов и фрагментов компенсатора пролетного строения
из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60 метров ) через реку Суон в
штате Монтана в 2017 году.
Т а б л и ц а Б.1 —– Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
сейсмоизоляции для трубопроводов
Типы сейсмоизолирующих
элементов
Схемы сейсмоизолирующих элементов
Идеализированная зависимость
«нагрузка-перемещение» (F-D)
F
F
Струнные и маятниковые опоры
с низкой способностью
к диссипации энергии
D
D
F
F
F
с высокой способностью
к диссипации энергии
DD
D
F
F
F
D
D
С демпфирующими
способностями
D
F
F
F
F
F
D
D
D
D
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листовD556
F
Лист 235
F
F
D
D
D
236.
DF
F
F
с плоскими
горизонтальными
поверхностями скольжения
Фрикционно-подвижные опоры
Маятниковые с
демпфирующими
способностями за счет
сухого трения скользящих
поверхностей
F
FF
F
F
D
DD
D
DD
D
D
Струнная опора с ограничителями перемещений за
счет демпфирующих упругих стальных пластин со
скольжением верха опоры
за счет фрикционно-подвижного соединения поверхностями скольжения
при R1=R2 и μ1≈μ2
Струнная опора с
трущимися поверхностями
согласно изобретения по
Уздина А.М № 2550777
«Сейсмостойкий мост»
Тарельчатая сейсмоизолирующая опора по изобретению. № 2285835 «Тарельчатый виброизолятор
кочетовых», Бюл № 29
20.10.2006 с демпфирующим сердечником по
изобретению № 165076
«Опора сейсмостойкая»
F
FF
F
D
DD
D
F
FF
F
DD
DD
F
FFFF
D
DDD
D
Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения
F
взрывной энергии, для обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках для опор скользящих сейсмоизолирующих для системы противопожарной защиты
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
D
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных
соединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" Дата проведения испытаний в ПК SCAD : 21 декабря 2022 г. испытания узлов и фрагментов
компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 236
237.
американскими инженерами, при строительстве переправы , длиной 260 футов (60м етров ) через реку Суон в штате Монтана в 2017 году.
пластичных ферм
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
трубопроводов) из
шести уголков
Идеализированная зависимость фрикционнодемпфирующей «нагрузки для перемещения»
(F-D)
F
F
D
F
D
F
D
D
с высокой способностью
к поглощению пиковых
ускорений
Винтообразный
,упругопластические
демпфирующий
компенсатор для
трубопроводов на
фланцевых, фрикционо
–подвижных
соединениях (ФФПС )
из шести уголков
Зиг-заго образный
компенсатор для
трубопроводов
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии (
из 3-х уголков)
Энергопоглощающие демпфирующие
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей
Демпфирующий
GTNKTJ,HFPYSQ
компенсатор ( из шести
уголков) на скользящих
опорах раскачивается
при смятии медного
обож-женного клина,
забитого в пропиленный
паз шпильки
F
F
F
D
D
F
D
F
F
D
D
F
D
F
D
F
D
F
F
F
F
D
D
D
F
F
D
D
F
D
D
F
F
D
F
F
D
F
D
F
F
D
D
D
F
D
F
D
D
F
F
F
D
F
Тросовая опора
демпфирующая
перемещающая по
линии нагрузки
(ограничитель
перемещений
одноразовый)
D
D
D
F
D
F
D
F
D
F
D
F
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
D
F
ВсегоD листов 556
Лист 237
D
238.
DD
Тросовая трубпровдная
опора с упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (многоразовая)
Демпфирующая опора
(с короткими овальными
отверстиями ) и
пластическим шарниром
– скольжения,
перемещения по
длинным овальным
отверстиям по линии
нагрузки
(многоразовый)
нагрузки
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
F
F
D
D
F
F
D
D
Всего листов 556
Лист 238
239.
Моменты затяжки для крепления трубопровода Опора скользящая для системы противопожарной защиты использованиеизобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д
27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом
сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности
соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная"с фланцевыми фрикционно-подвижными соединениями. испытания узлов и фрагментов
компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 239
240.
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчетамериканскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
Таблица 1 - Моменты затяжки болтовых (винтовых), резьбовых соединений фланцевого соединенияс помощью фрикционных
протяжных демпфирующих компенсаторов с контролируемым натяжением, для применения в районах с сейсмичностью 9 балловпо
шкале MSK-64,обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке.
Диаметр резьбы, мм
Момент затяжки М, [H∙м] для резьбового или болтового соединения
с шлицевой головкой (винты)
с шестигранной головкой
М3
0,5±0,1
М3,5
0,8±0,2
М4
1,2±0,2
1,5±0,2
М5
2,0±0,4
7,5±1,0
М6
2,5±0,5
10,5±1,0*
М8
22,0±1,5*
М10
40,0±2,0
М12
70,0±3,5
М16
120,0±6,0
* В соединениях с шайбами тарельчатыми контактными DIN 6796 момент затяжки для М6 – (8,0±1,0) H∙м, для М8 –
(20,0±1,5) H∙м.
Примечание.
Моменты затяжки болтовых (винтовых), резьбовых соединений, клеммных зажимов необходимо выполнить согласно
технической документации завода-изготовителя комплектующих изделий.
Результаты определения параметров ФПС
параметры N
подвижки
k1106, кН-1 k2 106,кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
15
0.3
9
2.5
0.00028
0.35
Результаты статистической обработки значений параметров ФПС
154
75
8
Значения параметров
Параметры
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 240
241.
соединенияматематическое
ожидание
среднеквадратичное
отклонение
k1 106, КН-1
9.25
2.76
6
21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
q,мм-1
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
k2 10 , кН-
1
Результаты определения параметров ФПС
параметры N
подвижки
6
1
k110 , кН- k2 106,кН-1
k ,
с/мм
S0, мм
SПЛ
мм
q,
мм-1
f0
N0, кН
к
1
11
32
0.25
11
9
0.00001
0.34
105
260
2
8
15
0,24
8
7
0.00044
0.36
152
90
3
12
27
0.44
13.5
11.2
0.00012
0.39
125
230
4
7
14
0.42
14.6
12
0.00011
0.29
193
130
5
14
35
0.1
8
4.2
0.0006
0.3
370
310
6
7
6
8
11
20
0.2
0.2
12
19
9
16
0.00002
0.00001
0.3
0.3
120
106
100
130
8
8
15
0.3
9
2.5
0.00028
Таблица коэффициентов трения скольжения и качения.
0.35
154
75
к (мм)
f ск
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Регистрация усилия выдергивания производилась по шкале до 1000 кгс для испытания узлов и фрагментов
компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного
сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы
несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного
строения моста с упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со
сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и
использовании при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет
американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для
пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов (
60м етров ) через реку Суон в штате Монтана в 2017 году.
6. Изобретения, используемые при испытаниях опоры скользящей для системы противопожарной защиты
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 241
242.
F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижныхсоединениях с учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью
обеспечения надежности соединения, при температурных колебаний и при импульсных растягивающих и
динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616,
1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", предназначенных для сейсмоопасных районов с сейсмичностью более 9 бал-лов с
трубопроводами, с креплением трубопроводов к опоре скользящей с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК).
Материалы научного сообщения, изобретения, специальные технические решения, альбомы, чертежи используемые при испытаниях
на сейсмостойкость в ПК SCAD , узлов и фрагментов компенсатора пролетного строения из
упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно"
( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью
с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году и опоры скользящей для при использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ
защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", ,
предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, с креплением трубопроводов с помощью
фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных
овальных отверстиях (используются в США, Канаде, Японии, Китае (фирма STARSEIMIC).,,.
1.Изобретения, патенты №№ 1143895, 1168755, 1174616, автор- проф. д.т.н. ПГУП А.М.Уздин
2.Изобретения, патенты №№ 2382151, 2208096, 2629514 " УЗЕЛ СОЕДИНЕНИЯ", КазГАСУ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU
(11)
165 076
(13)
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 26.09.2019)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 242
243.
(21)(22) Заявка: 2016102130/03, 22.01.2016(24) Дата начала отсчета срока действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
КоваленкоАлександр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за сче т использования
фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие
охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия
в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной
<I> которая превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в штоке. Ширина паза в штоке
соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз
штока совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до
заданного усилия. Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличен ию сил трения в
сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты
объектов от динамических воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах,
накладках и прокладках выполнены овальные отверстия через которые пропущены болты, объединяющие листы,
прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительно
накладок контакта листов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в края
овальных отверстий, соединение начинает работать упруго, а затем происходит разрушение соединения за счет смятия
листов и среза болтов. Недостатками известного являются: ограничение де мпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из -за разброса по трению.
Известно также Устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту
TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F 15/10.Устройство
содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних
пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие
элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы
проходят через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает ветровые нагрузки но , при возникновении
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложно сть расчетов из-за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси
и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе
выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий элемент-болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность
деформироваться в радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина соответствует заданному перемещению штока.
Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаем ой конструкции поясняется чертежами,
где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 243
244.
разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое
охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса
перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3.
Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси
выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине ди аметру
калиброванного болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца корпуса
до нижней точки паза «Н». В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в том, что
шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями
корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5,
скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с поверхностью болта
(высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение
усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - цилиндр
штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок
и др.) определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении
корпус-шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным элементом, выполн енным в виде калиброванного болта,
проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный
гайкой с заданным усилием, кроме того вкорпусе, параллельно центральной оси, выполнено два открытых паза, дл ина
которых, от торца корпуса, больше расстояния до нижней точки паза штока.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 244
245.
РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU 2010136746
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(13)
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теп
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU)
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполне ние проема/проемов
рассчитанной площади для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных
помещениях при аварийных внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении,
при этом обеспечивают плотную посадку полости/полостей во всем объе ме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема
и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с
высокой степенью подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 245
246.
фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжексухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич» -панелям в горизонтали
в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки
на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных
землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со
свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре -восемь гаек и
способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным
несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на
шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для
малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической
энергии может определить величину горизонтального и вертикального перемещения «сэндвич» -панели и определить ее
несущую способность при землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич» -панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем
испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES
2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций ( стеновых «сэндвич»-панелей,
щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при
землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» «Защита и безопасность городов».
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU(11)
2367917(13) C1
(51) МПК
G01L5/24 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.09.2013 - прекратил действие
Пошлина:
(21), (22) Заявка: 2008113689/28, 07.04.2008
(24) Дата начала отсчета срока действия патента:
07.04.2008
(45) Опубликовано: 20.09.2009
(72) Автор(ы):
Устинов Виталий Валентинович (RU)
(73) Патентообладатель(и):
ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ИНГЕРСОЛЛ-РЭНД СиАйЭ
(56) Список документов, цитированных в отчете о
поиске: RU 2296964 C1 10.04.2007. SU 1580188 A1
23.07.1990. RU 2066265 C1 10.09.1996. RU 2025270 C1
30.12.1994. SU 1752536 A1 07.08.1992. RU 2148805 C1
10.05.2000.
Адрес для переписки:
606100, Нижегородская обл., г. Павлово, ул.
Чапаева, 43, корп.3, ЗАО "Ингерсолл-Рэнд СиАйЭс"
(54) СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ И
ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 246
247.
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
Миролюбов Юрий
Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(56) Список документов, цитированных в отчете о поиске: Чесноков
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A,
15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО
СОЕДИНЕНИЯ
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 247
248.
RU(11)
2 413 098
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
F16B 31/02 (2006.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
G01N 3/00 (2006.01)
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.08.2017)
Пошлина:
учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(45) Опубликовано: 27.02.2011 Бюл. № 6
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
(56) Список документов, цитированных в отчете ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
о поиске: SU 1753341 A1, 07.08.1992. SU
1735631 A1, 23.05.1992. JP 2008151330 A,
03.07.2008. WO 2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5,
корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ
МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 248
249.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 249
250.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 250
251.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 251
252.
Патент ОПОРА СЕЙСМОСТОЙКАЯ № 165 076 МПК E04H9/02 (2006.01) Опубликовано: 10.10.2016 Бюл. № 28
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 252
253.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 253
254.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 254
255.
При испытаниях узлов и фрагментов компенсатора пролетного строения из упругопластическихстальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части
3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 255
256.
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017году использовались СТП.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву хсрезны х одн
оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия
образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжени е
болта осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных
болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не
ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т,
характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия
образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу
(прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое
может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болт
оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научноисследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт
выполненный из латунной шпильки с забитмы медным обожженным клином позволяет обеспечить надежный и быстрый погашение
сейсмической нагрузки при землетрясении, вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве
.Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим клином вставляютмс
свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным ободдженным кгильзоц или втулкой ( на
чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 256
257.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за
счет использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены
продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикциболтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который
забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под действием запорного элемента в виде
стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических
воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет
раскачиваться за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и
при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с контролируемым
натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
При испытания узлов и фрагментов компенсатора пролетного строения из упругопластических
стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части
3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 257
258.
году испозовалось изобние инж Кваленко Александра Иванвича[email protected]
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа забиваенься
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также
установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими
выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента,
Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении,
можно установить медный втулки или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными
упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан)
.
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим
элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной шпильки с забиты с
одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с
уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между
выступами устанавливаются также дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и
герметичность соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание
соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух
сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения
трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность
его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше
единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и
забитым медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области
использования соединения, фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м
медым обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) , уплотнительными
элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза или втулка .
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 258
259.
Фиг 1Фиг 2
Фиг 3
Фиг 4
Фиг.5
Фиг 6
Фиг 7
Фиг 8
Фиг 9
Приложение статьи , научные публикации котрые использовалисть при испытаниях узлов и фрагментов
компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 259
260.
7. Результаты и выводы по испытаниям математических моделей опоры скользящей для испытания узлов и фрагментовкомпенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30
метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10
тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 260
261.
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущихэлементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 годуи использовалист изобретение "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых
фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№
1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777,
154506 "Панель противовзрывная", и узлов крепления опоры скользящей к трубопроводу с помощью демпфирующих и
косых антисейсмических компенсаторов, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 261
262.
ВЫВОДЫ по испытанию математических моделей испытания узлов и фрагментов компенсаторапролетного
строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный,
автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным
способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) ,
системой стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" (
серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году и исптание опоры скользящей и использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты
зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами , которые крепились с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
и их программная реализация в SCAD Office.
Испытания математических моделей опор скользящих для испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 262
263.
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединениймежду диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году. с использованием изобретение "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых
фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№
1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777,
154506 "Панель противовзрывная", серийный выпуск, предназначенных для сейсмоопасных районов с сейсмичностью более 9
баллов с трубопроводами, с креплением трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК)
согласно программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий и сооружений как более
новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения количественной характеристики
сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD.
Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм,
обеспечивающий высокую воспроизводимость оценок.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности землетрясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для
оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной балльности.
При испытании моделей узлов и фрагментов опор скользящей и испытания узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году. и других изобретенийЮ напрмер "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых
фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№
1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777,
154506 "Панель противовзрывная", которые предназначены для сейсмоопасных районов с сейсмичностью более 9 баллов с
трубопроводами с антисейсмическими косых компенсаторов ( изобретение № 887748 « Стыковое соединение растянутых
элементов») илии с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях, оценено влияние продолжительности колебаний на сейсмическую интенсивность. За
полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность испытания
математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений. Корреляция
инструментальных данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих опор с
использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) в местах крепления
трубопровода , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов (с учетом зарубежного опыта в КНР,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 263
264.
Новой Зеландии, Японии, Тайваня, США в части широкого использования сейсмоизоляции для трубопроводов и использованияФФПС и демпфирующей сейсмоизоляции для трубопроводов).
Методика проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего соединения и испытания
узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9,
12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра,
грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017
году.
соединенного с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) с контролируемым
натяжением, расположенных в длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью более
9 баллов.
В соответствии с поставленной «Заказчиком» задачей: определения величины усилия, при котором будет происходить перемещение зажима по условному длинному овальному отверстию в зависимости от усилия затяжки гаек, испытаны два образца узла
крепления опор скользящих для системы противопожарной защиты использование изобретение "Огнестойкий
компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС
14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности ,
расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения, при
температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты
зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами с креплением трубопроводов с помощью фрикционных
протяжных демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях
(описание в таблице).
Испытание статической нагрузкой проводилось путем жесткого закрепления фрикционно –подвижного соединения (ФПС) на станине
испытательной машины и приложения усилия к дугообразному зажиму в направлении оси шпильки, фрагмента узла протяжного
фрикционно-подвижного соединения на двух болтах М10 с 4 –мя гайками М10 и с 4-мя стальными шайбами(толщина 3 мм, диаметр
34 мм), установленных в длинных овальных отверстиях в соответствии с требованиям : СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001, ГОСТ 30546.1-98 , ГОСТ 30546.2-98, ГОСТ 30546.3-98, СП 14.13330-2011 п
.4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)», альбом серия 4.402-9 «Анкерные болты», вып. 5
«Ленгипронефтехим», ГОСТ 17516.1-90 п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Испытания производились согласно требованиям СП 14.13330. 2014, п.4.7 (демпфирование), п.6.1.6, п.5.2 (моделей), СП 16.13330.
2011 (СНиПII-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97 Устройство соединений на
высокопрочных болтах в стальных конструкциях мостов, согласно изобретениям №№ 1143895, 1174616,1168755 SU, 2371627,
2247278, 2357146, 2403488, 2076985 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice.
Испытания проводились на основе прогрессивной теории активной сейсмозащиты зданий согласно ГОСТ 6249-52 «Шкала для
определения силы землетрясения» в ИЦ «ПКТИ-СтройТЕСТ»,адрес: 197341, СПб, ул. Афонская, д.2, [email protected] (ранее
составлен акт испытаний на осевое статическое усилие сдвига дугообразного зажима анкерной шпильки № 1516-2 )
Проверка податливости (срыв сточенной резьбы на латунной шпильке) демпфирующих узлов крепления, фрикционно-подвижных
соединений работающих на сдвиг и выполненных в виде болтового соединения (латунная шпилька с подпиленным пазом,
установленная в изолирующей трубе, амортизирующие элементы в виде свинцовой шайбы и медного стопорного «тормозного»
клина), при осмотре не обнаружено механических повреждений и ослабления демпфирующего соединения для опоры скользящей для
системы противопожарной защиты использование изобретение "Огнестойкий компенсатора - гаситель
температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых
фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в длинных овальных
отверстиях, с целью обеспечения надежности соединения, при температурных колебаний и при импульсных
растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№
1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 264
265.
154506 "Панель противовзрывная", со строительными конструкциями, трубопроводами, предназначенными длясейсмоопасных районов с сейсмичностью более 9 баллов.
На основании проведенного испытания математических моделей опоры скользящей для системы противопожарной защиты
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L
23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с
учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения
надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная" , предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с
трубопроводами в ПК SCAD и лабораторных испытаний фрагментов узлов крепления опоры скользящей и трубопровода делается
вывод
Использование изобретения "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L
23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с
учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения
надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная", для системы противопожарной защиты, предназначенные для сейсмоопас-ных районов с сейсмичностью более
9 баллов, серийный выпуск, с трубопроводами, соединенными между собой с помощью демпфиру-ющих компенсаторов на фланцевых
фрикционно–подвижных соединениях (ФФПС), с контролируемым натяжением, расположен-ных в длинных овальных отверстиях для
обеспечения многокаскадного демпфирования при динамических нагрузках (преимуществен-но при импульсных растягивающих
нагрузках в узлах соединения), выполненных согласно изобретениям, патенты №№ 1143895, 1174616,1168755, № 165076 «Опора
сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова, согласно альбома 1-487-1997.00.00 и изобрете-нию №№ 4,094,111
US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device Мкл E04H 9/02 СООТВЕТСТВУЮТ ТРЕБОВАНИЯМ
НОРМАТИВНЫХ ДОКУМЕНТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при
сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК
60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел
5),ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73
8.Литература, использованная при испытаниях на сейсмостойкость математической модели испытания узлов и
фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18,
24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью
10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году. при лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ
выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя
напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной
260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году в ПК SCAD и использовании при
лабораторных испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими
организациями в программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм
американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через
реку Суон в штате Монтана в 2017 году, и использование изобретение "Огнестойкий компенсатора гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на
фланцевых фрикционно-подвижных соединениях с учетом сдвиговой прочности , расположенными в
длинных овальных отверстиях, с целью обеспечения надежности соединения, при температурных колебаний
и при импульсных растягивающих и динамических нагрузках), согласно изобретениям проф. дтн. ПГУПС
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 265
266.
А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты зданий", 165076 "Опорасейсмостойкая", 2550777, 154506 "Панель противовзрывная", для системы противопожарной защиты, при
испытаниях в ПК SCAD и при испытаниях узлов крепления опоры скользящей к трубопроводу, предназначенных для
сейсмоопасных районов с сейсмичностью более 9 баллов
1. Гладштейн Л. И. Высокопрочные болты для строительных стальных конструкций с контролем натяжения по срезу торцевого элемента / Л. И.
Гладштейн, В. М. Бабушкин, Б. Ф. Какулия, Р. В. Гафу- ров // Тр. ЦНИИПСК им. Мельникова. Промышленное и гражданское строительство. - 2008. № 5. - С. 11-13.
2. Ростовых Г. Н. И все-таки они крутятся! / Г. Н. Ростовых // Крепеж, клеи, инструмент и...- 2014. - № 3. - С. 41-45.
3. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*.
4. СТП 006-97. Устройство соединений на высокопрочных болтах в стальных конструкциях мостов.
5. ТУ 1282-162-02494680-2007. Болты высокопрочные с гарантированным моментом затяжки резьбовых соединений для строительных стальных
конструкций / ЦНИИПСК им. Мельникова.
References
1. Gladshteyn L. I., Babushkin V. M., Kakuliya B. F. & Gafurov R. V. Trudy TsNIIPSK im. Melnikova. Pro- myshlennoye i grazhdanskoye stroitelstvo - Proc.
of the Melnikov Construction Metal Structures Institute. Industrial and Civil Construction, 2008, no. 5, pp. 11-13.
2. Rostovykh G. N. Krepezh, klei, instrument i... - Bolting, Glue, Tools and... 2014, no. 3, pp. 41-45.
3. Mosty i truby [Bridges and Pipes]. SP 35.13330. 2011. Updated version of SNiP 2.05.03-84*.
4. Ustroystvo soyedineniy na vysokoprochnykh boltakh v stalnykh konstruktsiyakh mostov [Setting up High-Strength Bolt Connections in Steel Constructions
of Bridges]. STP 006-97.
Строительные нормы и правила, глава СниП П-23-81. Нормы проектирования / Стальные конструкции. - М.: Стройиздат, 1982. - С. 40 - 41.
1. Стрелецкий Н.Н. Повышение эффективности монтажных соединений на высокопрочных болтах / Сб. тр. ЦНИИПСК, вып. 19. - М.:
Стройиздат, 1977. - С. 93-110.
2. Лукьяненко Е.П., Рабер Л.М. Совершенствование методов подготовки соприкасающихся поверхностей соединений на высокопрочных
болтах // Бущвництво Украши. - 2006. - № 7. - С. 36-37
3. АС. № 1707317 (СССР) Сдвигоустойчи- вое соединение / Вишневский И. И., Кострица Ю.С., Лукьяненко Е.П., Рабер Л.М. и др. - Заявл.
04.01.1990; опубл. 23.01.1992, Бюл. № 3.
4. Пат. 40190 А. Украша, МПК G01N19/02, F16B35/04. Пристрш для випрювання сил тертя спокою по дотичних поверхнях болтового зсувостшкого з 'езнання з одшею площиною тертя / Рабер Л.М.; заявник iпатентовласник Нацюнальна металургшна акадспя Украши. - № 2000105588;
заявл. 02.10.2000; опубл. 16.07.2001, Бюл. № 6.
5.
Пат. 2148805 РФ, МПК7G01 L5/24. Способ определения коэффициента закручивания резьбового соединения / Рабер Л.М., Кондратов В.В.,
Хусид Р.Г., Миролюбов Ю.П.; заявитель и патентообладатель Рабер Л.М., Кондратов В.В., Хусид Р.Г., Миролюбов Ю.П. - № 97120444/28; заявл.
26.11.1997; опубл. 10.05.2000, Бюл. № 13.
Рабер Л. М. Использование метода предельных состояний для оценки затяжки высокопрочных болтов // Металлург, и горноруд. пром-сть. - 2006. -№ 5.
- С. 96-98
Библиографический список
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные сооружения,
1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для студентов
всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института дополнительного
профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский
государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования
20.01.2013
5. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
Список перечень типовых альбомов серий переданных заказчиком для лабораторных испытаний методом оптимизации и
идентификации в механике деформируемых сред и конструкций физическим и математическим моделирование в ПК
SCAD,предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами из полиэтилена .djvu
ix.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобетон
x.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобетон
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 266
267.
xi.xii.
xiii.
xiv.
xv.
xvi.
xvii.
xviii.
xix.
xx.
xxi.
xxii.
xxiii.
xxiv.
xxv.
xxvi.
xxvii.
xxviii.
xxix.
xxx.
xxxi.
xxxii.
xxxiii.
xxxiv.
xxxv.
xxxvi.
xxxvii.
xxxviii.
xxxix.
xl.
xli.
xlii.
xliii.
xliv.
xlv.
xlvi.
xlvii.
xlviii.
xlix.
l.
li.
lii.
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
А.К Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963.djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961 .djvu
Одельский_ Гидравлический расчѐт трубопроводов_1967.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu 3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = PH.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 4.90310_л1_Тепловые сети. Детали трубопроводов.djvu
4.903-10_и4_Тепловые сети. Опоры трубопроводов неподвижные
4.903-10_м5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые).djvu 4.903-10_м6_Тепловые
сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu 4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов
сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl5230.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4.
Компенсаторы сальниковые.djvl 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu 4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu Серия
3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильных.djvu 3.501.3-183.01 в.0
Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01
в.0 Трубы водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 5.903-13
Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu 3.501.3-183.01 в.0 Трубы
водопропускн кругл гофр = Mn.djvu 3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu Крепления трубопроводов к ЖБ
конструкциям dnl14009.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvl
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
Типовые альбомы чертежи серии разработанные в СССР
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск III - Стальные
конструкций vu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы в.0 Материалы для
проектирования^^
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-1 - Сборные
железобето.djvu
Серия 3.015-192 Унифицированные отдельно стоящие опоры под технологические трубопроводы. Выпуск П-2 - Сборные
железобето.djvu
А.К. Дерцакян, М. Н. Шпотаковский, В.Г. Волков и др. - Справочник по проектированию магистральных трубопроводов 1977.djvu
Бродянский И.Х. - Разметка сварных фасонных частей трубопроводов, 2-е изд. - 1963. djvu
Быков Л.И. (ред.) - Типовые расчеты при сооружении и ремонте газонефтепроводов (Сооружение трубопроводов) - 2006.djvu
Головлев С.Г. - Развертки элементов аппаратуры и трубопроводов - 1961.djvu Одельский_ Гидравлический расчѐт
трубопроводов_1967.djvu
Персион А.А., Гарус К.А. - Монтаж трубопроводов. Справочник рабочего - 1987.djvu
Тудвасев В.А - Рекомендации сварщикам по ручной и дуговой сварке сосудов и трубопроводов, работающих под давлением.
Книга 1 - 1996.djvu
Хисматулин Е.Р. и др. - Сосуды и трубопроводы высокого давления. Справочник - 1990.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 267
268.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . РЧ.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = РЧ.djvu
3.501.3-184.03 в.0 Трубы водопропускн 1,5-3 м гофр = Mn.djvu
3.501.3-184.03 в.1 Трубы водопропускн 1,5-3 м гофр = P4.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
4.903-10_v. 1_Тепловые сети. Детали трубопроводов^уи 4.903-10_у.4_Тепловые сети. Опоры трубопроводов неподвижные^уи
4.903-10_у.5_Тепловые сети. Опоры трубопроводов подвижные (скользящие, катковые, шариковые)^уи
4.903-10_у.6_Тепловые сети. Опоры трубопроводов подвесные (жесткие и пружинные ).djvu
4.903-10_^7_Тепловые сети. Компенсаторы трубопроводов сальниковые.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые dnl52 30.djvu
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
lxxi.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
lxxii.
4.900-9 в.1 Трубопр-ды из пластм труб - Крепления . P4.djvu
lxxiii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
lxxiv.
Серия 3.501.1-144 Трубы водопропускные круглые железобетонные сборные для железных и автомобильныхdjvu
lxxv.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
lxxvi.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
lxxvii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые^уи
lxxviii.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
lxxix.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
lxxx.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
lxxxi.
3.501.3-183.01 в.0 Трубы водопропускн кругл гофр = Mn.djvu
3.501.3-183.01 в.1 Трубы водопропускн кругл гофр = P4.djvu
lxxxii.
Крепления трубопроводов к ЖБ конструкциям dnl14009.djvu
lxxxiii.
5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы сальниковые.djvu
lxxxiv.
Чертежи подвижных компенсаторов 5.903-13 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4. Компенсаторы
сальниковые.djvu
ПРИЛОЖЕНИЕ. Типовые альбомы котрые использовались в лаборатории СПб ГАСУ для
liii.
liv.
lv.
lvi.
lvii.
lviii.
lix.
lx.
lxi.
lxii.
lxiii.
lxiv.
lxv.
lxvi.
lxvii.
lxviii.
lxix.
lxx.
магистральных трубопроводов которые использовались при лабораторных испытаниях в ПК SCAD
использование изобретение "Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L
23/00, А16Д 27/2 ( направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с
учетом сдвиговой прочности , расположенными в длинных овальных отверстиях, с целью обеспечения
надежности соединения, при температурных колебаний и при импульсных растягивающих и динамических
нагрузках), согласно изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755,
2010136746 "Способ защиты зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель
противовзрывная"
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 2
Плиты...._Документация .djvu
3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск
1..._Документация^^и
3.407-107_3 = Униф. норм.и спец. ж.б. опоры ВЛ35кВ - На виброванных стойках #A.djvu
3.001-1 вып.1 = Виброизолирующие устройства фундаментов.djvu
5.904-59 Виброизолирующие основания для вентиляторов ВР-12-26. Выпуск 1.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 2 Плиты. Рабочие
чертежи_Документация.djvu
3.904.9-27 Виброизолирующие основания под насосы ВКС и НЦС. Выпуск 1 Рабочие
чертежи_Документация^и
3.904-17 = Виброизол.основания и гибкие вставки типа 2 для насосов ВК и ВКС.djvu
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 268
269.
Пролетные строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году использовалось изобртение (прилагается)
Заявка на изобретение (от20.11.2021, отправлена в ФИПС) "Фрикционно-демпфирующий компенсатор для трубопроводов" (F16L23)
РЕФЕРАТ
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого трения предназначена для сейсмозащиты , виброзащиты трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых соединений отличающаяся тем,
что с целью повышения сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры выполнен
сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной
верхней части подвижной в вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью
фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением фрикци-болтов с
упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и
нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном отверстии верха и
низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 269
270.
Приложение № 1: Прилагается заявка на изобретение " Фрикционно - демпфирующийкомпенсатор для трубопроводов" F16 L 23/00 организации "Сейсмофонд" при СПб
ГАСУ ОГРН : 102000000824 ИНН : 2014000780 № 2021134630 от 2511.2021 ,
входящий № 073171 ФИПС, отдел № 17 направленная в Федеральный институт
промышленной собственности (ФИПС) , автор Президент организации "Сейсмофон"
Мажиев Х Н. ( В Минск, направлено изобретение с названием "Сталинский
компенсатор" Ю которое использовалось при испытании узлов и фрагментов компенсатора
пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 270
271.
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечениятипа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
См ссылки: https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337
Предлагаемое изобретение c названием Сталинский компенсатор для трубопроводов
, а старое название Фрикционно- демпфирующий компенсатор для испытания узлов и
фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18,
24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью
10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году, аналог компенсатора Сальникова для системы
противопожарной защиты или техническое решение предназначено для защиты
магистральных трубопроводов, агрегатов, оборудования, зданий, мостов,
сооружений, линий электропередач, рекламных щитов от сейсмических
воздействий за счет использования фланцевого соединение растянутых элементов
трубопровода, с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при
многокаскадном демпфировании и динамических нагрузках на протяжных
фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое
соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских
деталей". Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение плоских
деталей встык, патент Фланцевое соединение растянутых элементов
замкнутого профиля № 2413820, «Стыковое соединение растянутых элементов» №
887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G
01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения
" направлено в г.Минск , Республика Беларусь" : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg
https://ppt-online.org/1026337
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 271
272.
Прилагается для испытание узлов и фрагментов компенсатора пролетного строения изупругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный ,
ширина проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со
встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными
натяжными элементами, верхним и нижним поясом фермы из пластинчатых пролетной стальной
фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" (
серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих элементов и
элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
Приложение № 1 Фигуры, чертежи: Фрикционно демпфирующий компенсатор для
трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг4 Фрикционно демпфирующий компенсатор для трубопроводов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 272
273.
Фиг5 Фрикционно демпфирующий компенсатор для трубопроводовФиг6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг7Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг12Фрикционно демпфирующий компенсатор для трубопроводов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 273
274.
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводовФиг14 Фрикционно демпфирующий компенсатор для трубопроводов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 274
275.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 275
276.
Ознакомиться с изобретениями и заявками на изобретения, которые использовались при лабораторных испытаниях узлов ифрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18,
24 и 30 метров , однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью
10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных
испытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году для опоры скользящей для армейского моста , использование изобретение
"Огнестойкий компенсатора - гаситель температурных напряжений " МПК F16L 23/00, А16Д 27/2 (
направлено в ФИПС 14.02.2022) на фланцевых фрикционно-подвижных соединениях с учетом сдвиговой
прочности , расположенными в длинных овальных отверстиях, с целью обеспечения надежности соединения,
при температурных колебаний и при импульсных растягивающих и динамических нагрузках), согласно
изобретениям проф. дтн. ПГУПС А.М.Уздина: №№ 1143895, 1174616, 1168755, 2010136746 "Способ защиты
зданий", 165076 "Опора сейсмостойкая", 2550777, 154506 "Панель противовзрывная", предназначенные для
сейсмоопасных районов с сейсмичностью более 9 баллов, серийный выпуск, с трубопроводами можно по ссылкам : «Сейсмостойкая
фрикционно –демпфирющая опора» https://yadi.sk/i/JZ0YxoW0_V6FCQ «Антисейсмическое фланцевое фрикционное соединение для
трубопроводов» https://yadi.sk/i/pXaZGW6GNm4YrA «Опора сейсмоизолирующая «гармошка» https://yadi.sk/i/JOuUB_oy2sPfog
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 276
277.
«Опора сейсмоизолирующая «маятниковая»https://yadi.sk/i/dZRdudxwOald2w
https://yadi.sk/i/Ba6U0Txx-flcsg Виброизолирующая опора
См. ссылки лабораторный испытаний фрагментов ФПС https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Yhttps://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4,
«Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (996) 798-26-54,
[email protected] [email protected] [email protected]
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 277
278.
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от27.03.2012 http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010
г. [email protected] эксперт, к.т.н. СПб ГАСУ аттестат аккредитации СРО «НИПИ[email protected]тел (921)
962-67-78 , ученый секретарь кафедры ТСМиМ ктн, доцент СПб ГАСУ [email protected] (
Аубакирова И У
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 http://www.npnardo.ru/news_36.htm и СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано 28.04.2010 г. http://nasgage.ru/[email protected]
проф. д.т.н. СПб ГАСУ(996) 798-26-54, [email protected] дтн проф СПб ГАСУ кафедра технологии
строительных материалов и метрологии СПб ГАСУ (951) 644-16-48
Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд»
ОГРН: 1022000000824, т/ф: (812) 694-78-10 , (921) 962-67-78 [email protected] Копия аттестата
испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014, действ 27.05.2019
прилагается к
протоколу испытаний организацией СПб ГАСУ и организацией "Сейсмофонд" ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС, кафедра «Механики и прочности материалов и конструкций»
[email protected] 9219626778@inbox,ru
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС (996) 798-26-54, (921) 962-677-78 [email protected]
[email protected]
Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра организации «Сейсмофон» при
СПб ГАСУ ОГРН 1022000000824 [email protected] [email protected] Мажиев
ХН
Почтовый адрес испытательной лаборатории организации «Сейсмофнд» при СПб ГАСУ: 190005, СПб, 2-я
Красноармейская ул. д 4 krestianinformburo8.narod.ru [email protected]
Руководитель ИЦ «ПКТИ-СтройТЕСТ» 197341, СПб, Афонская ул. д 2
(996) 798-26-54 Суворова Т.В
[email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры
подтверждения компетентности8590-гу (А-5824) т/ф (812) 694-78-10
Подтверждение компетентности организации https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
тел (921) 962- 67-78, ( 996) 798 -26-54,
(951) 644-16-48
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 278
279.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 279
280.
Используемая литература при проектировании и испытаниt узлов и фрагментов компенсаторапролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров ,
однопутный, автомобильный , ширина проезжей части 3 метра, грузоподъемностью 10 тонн ,
ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами (
компенсаторами ) , системой стальных ферм соединенных элементов на болтовых и соединений
между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения
типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" ) для системы несущих
элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с
упругопластическими коменсатора проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 280
281.
использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторныхиспытаниях в СПб ГАСУ организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в
программе 3D - модели конечных элементов компенсатора–гасителя напряжений для пластичных ферм американскими
инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в
штате Монтана в 2017 году.
1 СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий»,
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости».
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
миллиарды»,
21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления –
дом на грунте. Строительство на пучинистых и просадочных
грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации
инженеров «Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли
через четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» .
24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных
волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004
гг. изданиях
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 281
282.
С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкогостроительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в
ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
Фигуры чертежи Огнестойкий компенсатор гаситель
температурных напряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 282
283.
Фиг. 1 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 283
284.
Фиг. 2 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 284
285.
Фиг. 3 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 285
286.
Фиг. 4 Огнестойкий компенсатор - гасительтемпературных напряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 286
287.
Фиг. 5 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 287
288.
Фиг. 6 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 288
289.
Фиг. 7 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 289
290.
Фиг. 8 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 290
291.
Фиг. 9 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 291
292.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 292
293.
Фиг. 10 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 293
294.
Фиг. 11 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 294
295.
Фиг. 13 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 295
296.
Фиг. 14 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 296
297.
Фиг. 15 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 297
298.
Фиг. 16 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 298
299.
Фиг. 17 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 299
300.
Фиг. 18 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 300
301.
Фиг. 19 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 301
302.
Фиг. 20 Огнестойкий компенсатор - гаситель температурныхнапряжений" МПК F16L 27/2
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 302
303.
РЕФЕРАТ Огнестойкий компенсатор - гаситель температурных напряжений"МПК F16L 27/2 ( F16 L 23/00 МПK )
Огнестойкий компенсатор - гаситель температурных напряжений с упругими демпферами сухого трения предназначена для
термической и сейсмической виброзащиты строительных конструкций , трубопроводов , оборудования, сооружений,
объектов, зданий от сейсмических, взрывных, вибрационных, неравномерных воздействий за счет использования
спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры, многослойной
втулки (гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной демпфирующей
опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего «стакан» и состоит из
нижней целевой части и сборной верхней части подвижной в вертикальном направлении с демпфирующим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений и контактирующими поверхностями с
контрольным натяжением фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных в длинных овальных
отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой перекрестной гофры
(демпфирующих ножках) и крепятся фрикци-болтами с многослойным из склеенных пружинистых медных пластин клином,
расположенной в коротком овальном отверстии верха и низа строительных конструкций .
https://findpatent.ru/patent/241/2413820.html
Огнестойкий компенсатор - гаситель температурных напряжений- фланцевое соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения , содержащая трубообразный спиралевидный корпус-опору в
виде перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с ним подвижный узел из контактирующих
поверхностях между которыми проложен демпфирующий трос в пластмассой оплетке с фланцевыми фрикционноподвижными соединениями с закрепленными запорными элементами в виде протяжного соединения.
Кроме того в строительных конструкциях , трубопроводе со скошенными торцами , параллельно центральной оси, выполнено
восемь симметричных или более открытых пазов с длинными овальными отверстиями, расстояние от торца корпуса,
больше расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов трубопровода со скошенными торцами, фрикциболта приводит к уменьшению зазора <Z> корпуса, увеличению сил трения в сопряжении составных частей корпуса
спиралевидной опоры и к увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения по
свинцовому листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой со свинцовой шайбой и
латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной фланцевом соединение растянутых элементов
трубопровода со скошенными торцами, с упругими демпферами сухого трения, с вбитыми в паз шпилек обожженными
медными клиньями, натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса ( массы) оборудования, сооружения, здания, моста и
расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ
45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения, выполнено со скошенными торцами в виде , стаканчато-трубного вида на фланцевых,
фрикционно – подвижных соединениях с фрикци-болтами .
Огнестойкий компенсатор - гаситель температурных напряжений - фланцевое соединение растянутых элементов
трубопровода со скошенными торцами соединяется , на изготовлено из фрикци-болтах, с тросовой втулкой (гильзой) - это
вибропоглотитель пиковых ускорений (ВПУ) с помощью которого поглощается вибрационная, взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при
землетрясениях и взрывной нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность работы
вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные трубопроводы за счет уменьшения
пиковых ускорений, за счет протяжных фрикционных соединений, работающих на растяжение. ( ТКП 45-5.04-274-2012
(02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Огнестойкий компенсатор - гаситель температурных напряжений вместе с
упругой втулкой – гильзой - фрикци-болтом , использующая для Огнестойкий компенсатор - гаситель температурных
напряжений, для фланцевого соединения растянутых элементов трубопровода со скошенными торцами , состоящая из
стального троса в пластмассовой оплетке или без пластмассовой оплетки, пружинит за счет трения между тросами,
поглощает при этом вибрационные, взрывной, сейсмической нагрузки , что исключает разрушения сейсмоизолирующего
основания , опор под агрегатов, мостов , разрушении теплотрасс горячего водоснабжения от тяжелого автотранспорта и
вибрации от ж/д . Надежность friction-bolt на виброизолирующих опорах достигается путем обеспечения многокаскадного
демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование, трубопроводы, которое устанавливается на спиральных сейсмоизолирующих опорах, с
упругими демпферами сухого трения, на фланцевых фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 303
304.
сейсмостойкая" № 165076 E 04 9/02 , опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А.Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности металлоконструкций с
высокопрочными болтами"
В основе огнестойкого компенсатора - гасителя температурных напряжени
используются фланцевые соединения растянутых элементов трубопровода со скошенными торцами ,с упругими
демпферами сухого трения, на фрикционных фланцевых соединениях, на фрикци-болтах (поглотители энергии) лежит
принцип который называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для фланцевых соединений растянутых элементов
трубопровода со скошенными торцами , с упругими демпферами сухого трения, на фрикционно –болтовых и протяжных
соединениях с демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет пару структурных
элементов, соединяющих эти структурные элементы со скольжением, разной шероховатостью поверхностей в виде
демпфирующих тросов или упругой гофры ( обладающие значительными фрикционными характеристиками, с
многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии. Совместное скольжение включает зажимные
средства на основе friktion-bolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы.
В результате пожара, взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов фланцевых
фрикционно-подвижных соединений ( ФФПС) фланцевого соединение растянутых элементов трубопровода со скошенными
торцами, с упругими демпферами сухого трения, скользящих и демпфирующих фрагментами спиральной , винтовой опоры
, по продольным длинным овальным отверстиям .
Происходит поглощение термической, тепловой энергии, за счет трения частей корпуса опоры при сейсмической, ветровой,
взрывной нагрузки, что позволяет перемещаться и раскачиваться спирально-демпфирующей и пружинистого фланцевого
соединение растянутых элементов трубопровода со скошенными торцами на расчетное допустимое перемещение, до 1-2 см
( по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых элементов трубопровода со скошенными торцами,
рассчитана на одно, два землетрясения или на одну взрывную нагрузку от ударной взрывной волны.
После длительных температурных напряжений, вибрационной, взрывной, сейсмической нагрузки, на фланцевое соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого трения, необходимо
заменить, смятые троса ,вынуть из контактирующих поверхностей, вставить опять в новые втулки (гильзы) , забить в
паз латунной шпильки демпфирующего узла крепления, новые упругопластичный стопорные обожженные медный
многослойный клин (клинья), с помощью домкрата поднять и выровнять фланцевое соединение растянутых элементов
трубопровода со скошенными торцами трубопровод и затянуть новые фланцевые фрикци- болтовые соединения, с
контрольным натяжением, на начальное положение конструкции с фрикционными соединениями, восстановить
протяжного соединения на фланцевое соединение растянутых элементов трубопровода со скошенными торцами , для
дальнейшей эксплуатации после взрыва, аварии, землетрясения для надежной сейсмозащиты, виброизоляции от
многокаскадного демпфирования фланцевого соединение растянутых элементов трубопровода со скошенными торцами
трубопровода с упругими демпферами сухого трения и усилить основания под трубопровод, теплотрассу, агрегаты,
оборудования, задний и сооружений
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 304
305.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 305
306.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 306
307.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 307
308.
Описание изобретения Огнестойкий компенсатор гасительтемпературных напряжений МПК F16L 27/ 2, F16L 23/00
Предлагаемое техническое решение предназначено для защиты строительных конструкций от
термических и температурных колебаний при пожарных нагрузках , температурных напряжениях
, динамических , многокаскадных нагрузках на строительные конструкции , металлических ферм ,
магистральных трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет использования
фланцевого соединение растянутых элементов использование термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода строительных
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 308
309.
конструкция, со скошенными торцами, с упругими демпферами сухого трения установленных напружинистую гофру с ломающимися демпфирующими ножками при многокаскадном
демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты строительных конструкций, объектов от
динамических воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент Фланцевое соединение растянутых элементов замкнутого профиля № 2413820,
«Стыковое соединение растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от
11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой
балкой ", RU № 2148 805 G 01 L 5/24 "Способ определения коэффициента закручивания
резьбового соединения "
Изобретение относится к области огнестойкости строительства, магистральных
трубопроводов, и может быть использовано для фланцевых соединение растянутых элементов
трубопровода со скошенными торцами для технологических , магистральных трубопроводов.
Система содержит фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с разной жесткостью, демпфирующий элемент с зазором 50 -100 мм(для
сдвига ) . Использование изобретения позволяет повысить огнестойкость
металлоконструкций, трубопроводов с косым стыком для сейсмозащиты и виброизоляции в
резонансном режиме фланцевые соединения в растянутых элементов и трубопровода со
скошенными торцами
Изобретение относится к огнестойкости строительных конструкций, трубопроводов,
строительству и машиностроению и может быть использовано для виброизоляции
магистральных трубопроводов, технологического оборудования, агрегатов трубопроводов и
со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является фланцевое
соединение растянутых элементов замкнутого профиля № 2413820 , стыковое соединение
растянутых элементов № 887748 система по патенту РФ (прототип), содержащая и
описание работы фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
Недостатком известного устройства является недостаточная эффективность
огнестойкости из-за отсутствия демпфирования колебаний. Технический результат повышение эффективности термической и демпфирующей сейсмоизоляции в резонансном
режиме и упрощение конструкции и монтажа термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Это достигается тем, что в демпфирующем фланцевом соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами , содержащей по крайней
мер, за счет демпфирующего фланцевого соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и сухого трения установлена с использованием фрикциболта с забитым обожженным медным упругопластичным клином, конце демпфирующий
элемент, а демпфирующий элемент выполнен в виде медного клина забитым в паз латунной
шпильки с медной втулкой, при этом нижняя часть штока соединена с основанием
строительных конструкции, трубопровода , опоры , жестко соединенным с демпирующей на
фрикционно –подвижных болтовых соединениях для обеспечения демпфирования фланцевого
соединение растянутых элементов строительных конструкций , кровли, трубопровода со
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 309
310.
скошенными торцами для термического компенсатора гасителя температурных колебанийстроительных конструкций , трубопровода
На фиг. 1 представлена стальная ферма с огнестойким компенсатором гасителем
температурных напряжений с использованием фланцевых соединений в строительных
конструкциях, фермах, пролетных строений, растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения с пружинистыми демпферами
сухого трения в овальных отверстиях для монтажа, крепления термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, виброизолирующая система для
зданий и сооружений, содержит основание и овальные отверстия , для болтов и имеющих
одинаковую жесткость и связанных с строительными конструкциями и опорными элементами
верхней части пояса зданий или сооружения я с использованием термического компенс атора
гасителя температурных колебаний строительных конструкций , трубопровода
Система дополнительно содержит фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, к которая крепится фрикци-болтом с пропиленным пазов в латунной
шпильки для забитого медного обожженного стопорного клина ( не показан на фигуре 2 ) и
которая опирается на нижний пояс основания и демпфирующий элемент, в виде
строительных конструкций, трубопровода с упругими демпферами сухого трения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по изобретению
проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746 «Способ защиты зданий», 165076
«Опора сейсмостойкая»
Демпфирующий элемент фланцевого соединение растянутых элементов строительные
конструкции, трубопровода со скошенными торцами, с упругими демпферами сухого трения за
счет фрикционно-подвижных соединениях (ФПС)и термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
При термических нагрузках , колебаниях и колебаниях грунта сейсмоизолирующая и
виброизолирующее фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, для демпфирующей сейсмоизоляции трубопровода (на
чертеже не показан) с упругими демпферами сухого трения , с упругими демпферами сухого
трения , элементы и воспринимают как вертикальные, так и горизонтальные нагрузки,
ослабляя тем самым динамическое воздействие на демпфирующею сейсмоизоляцию объект,
т.е. обеспечивается пространственную сейсмозащиту, виброзащиту и защита от
термической ударной нагрузки
Огнестойкий компенсатор - гаситель температурных напряжений, с упругими демпферами
сухого трения, поглощает как термическую, так и сейсмическую энергию и так же работает
, как виброизолирующая система работает следующим образом.
При колебаниях температурных колебаний , используется для как виброизоляция объекта ,
фланцеве соединение растянутых элементов трубопровода со скошенными торцами на основе
фрикционо-подвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание, сооружение, трубопровод, за счет зазора 50-100 мм между стыками на
болтовых креплениях
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 310
311.
Упругодемпфирующая фланцевого соединение растянутых элементов строительных конструкций,трубопровода со скошенными торцами с упругими демпферами сухого трения работает
следующим образом.
При колебаниях объекта фланцевое соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем самым динамическое
воздействие на здание , сооружение . Горизонтальные колебания гасятся за счет фрикциболта расположенного в при креплении опоры к основанию фрикци-болтом , что дает ему
определенную степень свободы колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами и силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки происходит взаимное
проскальзывание листов фланцевого соединение растянутых элементов строительных конструкций
трубопровода со скошенными торцами или прокладок относительно накладок контакта листов с
меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий для
скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании, уже не работают упруго.
После того как все болты соединения дойдут до упора края, в длинных овальных отверстий,
соединение начинает работать упруго за счет трения, а затем происходит разрушение
соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг по вертикали
допускается 1 - 2 см или более и пожарных нагрузках, термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Недостатками известного решения аналога являются: не возможность использовать
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса
по трению. Известно также устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий, патент TW201400676(A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B1/98, F16F15/10, патент США Structural stel bulding frame
having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ определения
коэффициента закручивания резьбового соединения" , RU № 2413820 "Фланцевое соединение
растянутых элементов замкнутого профиля", Украина № 40190 А "Устройство для измерения
сил трения по поверхностям болтового соединения" , Украина патент № 2148805 РФ "Способ
определения коэффициента закручивания резьбового соединения"
Таким образом получаем огнестойкий компенсатор - гаситель температурных напряжений, как
фланцевое соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения и виброизолирующею конструкцию
кинематической или маятниковой опоры, которая выдерживает вибрационные и сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения в термическом компенсаторе, гасителе температурных
колебаний в строительных конструкций , трубопроводе
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 311
312.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетовиз-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых
креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, а также повышение точности расчета при использования тросовой
втулки (гильзы) на фрикци- болтовых демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение растянутых
элементов строительных конструкций ,трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус, закрепленный на
фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток
сборный в виде, фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, установленный с возможностью перемещения
вдоль оси и с ограничением перемещения за счет деформации и виброизолирующего фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, под действием
запорного элемента в виде стопорного фрикци-болта с тросовой виброизолирующей втулкой
(гильзой) с пропиленным пазом в стальной шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами выполнены овальные длинные отверстия, и
поперечные отверстия (перпендикулярные к центральной оси), в которые скрепляются фланцевыми
соединениями в растянутых элементов трубопровода со скошенными торцами с установлением
запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с медным клином,
забитым в пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами, параллельно центральной оси, выполнены восемь открытых длинных пазов, которые
обеспечивают корпусу возможность деформироваться за счет протяжных соединений с фрикциболтовыми демпфирующими, виброизолирующими креплениями в радиальном направлении
строительных конструкций.
В теле фланцевого соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения в конструкциях термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами, вдоль
центральной оси, выполнен длинный паз ширина которого соответствует диаметру запирающего
элемента (фрикци- болта), а длина соответствует заданному перемещению трубчатой,
квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении
опоры - корпуса, с продольными протяжными пазами с контролируемым натяжением фрикциболта с медным клином обмотанным тросовой виброизолирующей втулкой (пружинистой гильзой)
, забитым в пропиленный паз стальной шпильки и обеспечивает возможность деформации корпуса
и «переход» сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под вибрационные, сейсмической нагрузкой, взрывные от
воздушной волны.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 312
313.
Сущность предлагаемой конструкции термического компенсатора гасителя температурныхколебаний строительных конструкций , трубопровода , поясняется чертежами, где на
фиг.1 изображено огнестойкий компенсатор - гаситель температурных напряжений, для
строительных конструкций испытанный в США американскими инженерами на Аляске, как
фланцевое соединение растянутых элементов строительных конструкций используемо и
испытанной в США, Канаде для строительных конструкций и трубопровода со скошенными
торцами, с упругими демпферами сухого трения на фрикционных соединениях с контрольным
натяжением для строительных конструкций ;
на фиг.2 изображены виды термического компенсатора американской фермы смонтированной на
болтах , гасителя температурных колебаний , с боку фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения со
стопорным (тормозным) фрикци –болт с забитым в пропиленный паз стальной шпильки
обожженным медным стопорным клином;
На фиг 3 изображен вид с верху , фланцевого соединение растянутых элементов трубопровода со
скошенными торцами для строительных конструкций, стальных ферм на фланцевых креплениях
фиг. 4 изображен разрез фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения виброизолирующею,
сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов строительных
конструкций трубопровода со скошенными торцами термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
термического компенсатора гасителя температурных колебаний строительных конструкций ,
трубопровода
фиг. 7 изображены Японские гасители динамических колебаний, вид медной или тросовой гильзу
для латунной шпильки –болта в тросовой обмотке два раза, с верху фланцевого соединение с
овальными отверстиями растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое косого соединение по замкнутому контуру
растянутых элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
фиг. 10 изображено фланцевое Канадское соединение растянутых элементов трубопровода
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов косого
компенсатора для трубопровода со скошенными торцами с косым демпфирующим компенсатором
и с овальными отверстиями ( не показаны )
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов трубопровода со
скошенными торцами термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
фиг. 13 изображен способ определения коэффициента закручивания резьбового соединения" по
изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания
резьбового соединения" и № 2413098 "Способ для обеспечения несущей способности
металлических конструкций с высокопрочными болтами"
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 313
314.
фиг. 14 изображено Украинское устройство для определения силы трения по подготовленнымповерхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление на
выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера
Л.М. Червинский А.Е "Пути совершенствования технологии выполнения фрикционных соединений
на высокопрочных болтах" Национальная металлургический Академия Украины , журнал
Металлургическая и горная промышленность" 2010№ 4 стр 109-112
На фиг 15 изображен огнестойкий компенсатор - гаситель температурных напряжений,
используемые в США разные термические компенсаторы и графики на английском языке
.Изображен образец для испытания Канадского демпфера и американские (США) затяжные
болты для определение коэффициента трения в ПК SCAD между контактными поверхностями
соединяемых элементов СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ
«ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научно-исследовательским центром
«Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В.
Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на
вибростойкость, сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно
подвижных соединений (ФПС) по изобретениям проф ПГУПС А .М Уздина №№ 1143895, 1168755,
1174616, 165076 «Опора сейсмостойкая»
Огнестойкий компенсатор - гаситель температурных напряжений, как аналог огнестойкости
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, состоит из двух фланцев (нижний
целевой), (верхний составной), в которых выполнены вертикальные длинные овальные отверстия
диаметром «D», шириной «Z» и длиной . Нижний фланец охватывает верхний корпус
строительных конструкций, трубы (трубопровода) . При монтаже демпфирующего
компенсатора, поднимается до верхнего предела, фиксируется фрикци-болтами с контрольным
натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и предварительно забитым
в шпильке обожженным медным клином. и тросовой пружинистой втулкой (гильзой) В стенке
корпусов строительных конструкций и виброизолирующей, сейсмоизолирующей кинематической
опоры или строительных конструкций, перпендикулярно оси корпусов строительных конструкций
выполнено восемь или более длинных овальных отверстий строительных конструкций, в которых
установлен запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой,
пружинистой гильзой, с забитым в паз стальной шпильки болта стопорным ( пружинистым )
обожженным медным многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой
и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов строительных конструкций, трубопровода со
скошенными торцами , с упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход болта –шпильки
) соответствующий по ширине диаметру калиброванного фрикци - болта, проходящего через
этот паз. В нижней части демпфирующего компенсатора, выполнен фланец для фланцевого
подвижного соединения с длинными овальными отверстиями для крепления на фундаменте, а в
верхней части корпуса выполнен фланец для сопряжения с защищаемым объектом,
строительных конструкций ,сооружением, мостом
Сборка фланцевого соединение растянутых элементов строительных конструкций, трубопровода
со скошенными торцами , заключается в том, что составной ( сборный) фланцевое соединение
растянутых элементов трубопровода со скошенными торцами, в виде основного компенсатора
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 314
315.
по подвижной посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Пазфланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, совмещают, скрепленных фрикци-болтом (высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с контрольным натяжением до заданного
усилия в зависимости от массы строительных конструкций, трубопровода, агрегата. Увеличение
усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров
от «Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой,
квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для фланцевого
соединение растянутых элементов строительных конструкций, трубопровода со скошенными
торцами, зависит от величины усилия затяжки гайки (болта) с контролируемым натяжением и
для каждой конкретной конструкции и фланцевого соединение растянутых элементов
трубопровода со скошенными торцами (компоновки, габаритов, материалов, шероховатости и
пружинистости стального тонкого троса уложенного между контактирующими поверхностями
деталей поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами демпфирующего компенсатора , сверху и
снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время
вибрационных нагрузок или взрыве за счет трения между верхним и нижним фланцевым
соединением растянутых элементов трубопровода со скошенными торцами, происходит
поглощение вибрационной, взрывной и сейсмической энергии. Фрикционно- подвижные соединения
состоят из скрученных пружинистых тросов- демпферов сухого трения и свинцовыми (возможен
вариант использования латунной втулки или свинцовых шайб) поглотителями вибрационной ,
термической, сейсмической, взрывной энергии за счет демпфирующих фланцевых соединений в
растянутых элементов строительных конструкций, трубопровода со скошенными торцами с
тросовой втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно забиты в
пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, представляют собой двойную фрикционную пару,
имеющую стабильный коэффициент трения для термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими
ключами или гайковертами на расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса строительных конструкций, трубопровода
Сама составное фланцевое соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см всего, термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 315
316.
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньямизабитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением термического компенсатора
гасителя температурных колебаний строительных конструкций , трубопровода
Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для строительных конструкций, стыкового демпфирующего косого соединения ,
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, является
энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается термическая,
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает
пожарную нагрузкуи сейсмическу. на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность
работы строительных конструкций, трубопровода, за счет уменьшения пиковых ускорений, за
счет использования протяжных фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта
при виброизоляции нагревается за счет трения между верхней составной и нижней целевой
пластинами (фрагменты опоры) до температуры плавления и плавится, при этом поглощаются
пиковые ускорения температурных напряжений, пожарной нагрузки, взрывной, сейсмической
энергии и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также
исключается разрушение строительных конструкций ,теплотрасс горячего водоснабжения от
тяжелого автотранспорта и вибрации от ж/д.
В основе повышения огнестойкости строительных конструкций, виброзащиты с использованием
фланцевого соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами, с упругими демпферами сухого трения на фрикционных соединениях, на
фрикци-болтах с тросовой втулкой, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая строительных конструкций,
трубопровод, опора рассчитана на одну сейсмическую нагрузку (9 баллов), либо на одно
температурное напряжение или взрывную нагрузку. После пожарной нагрузки, температурных
напряжений, взрывной или сейсмической нагрузки необходимо заменить смятые или сломанные
гофрированное виброиозирующее основание, в паз шпильки фрикци-болта, демпфирующего узла
забить новые демпфирующий и пружинистый медные клинья, с помощью домкрата поднять,
выровнять строительные конструкции, кровлю, опору и затянуть болты на проектное
контролируемое протяжное натяжение.
При воздействии пожарной нагрузки, температурных напряжений , вибрационных, взрывных
нагрузок , сейсмических нагрузок превышающих силы трения в сопряжении в фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, трубчатого вида , происходит сдвиг трущихся элементов типа, как шток,
строительных конструкций, стыков металлической фермы, корпуса опоры, в пределах длины
паза, без разрушения строительных конструкций, оборудования, здания, сооружения, моста.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 316
317.
О характеристиках пожарной нагрузки , температурных напряжений в строительныхконструкций виброизолирующего демпфирующего компенсатора - фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, сообщалось на научной XXVI
Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических
моделей температурных напряжений строительных конструкций на фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" при СПб ГАСУ Мажиев Х Н, можно
ознакомиться на сайте: https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на фланцевых фрикционно-подвижных соединений (ФПС) строительных конструкций и
демпфирующих узлов крепления (ДУК), можно ознакомиться: см. изобретения №№ 1143895,
1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_Tech
nischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода и лабораторными испытаниями
демпфирующего косого компенсатора на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на основе фланцевых фрикционно –подвижных соединений
для виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул Афонская дом 2 можно
ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8 https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующих строительных конструкций, трубопровода, косого
компенсатора для трубопроводов на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения, показаны
следующие существенные отличия:
1. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода при пожарной нагрузке косого фланцевое соединение растянутых
элементов строительных конструкций, трубопровода со скошенными торцами с упругими
демпферами сухого трения выдерживает термические нагрузки от перепада температуры
при транспортировке по трубопроводу газа, кислорода в больницах
2. Огнестойкий компенсатор гаситель температурных напряжений для строительных
конструкций , трубопровода и упругая податливость демпфирующего фланцевого соединение
растянутых элементов строительных конструкций , трубопровода со скошенными торцами
регулируется повышает огнестойкость строительных конструкций , трубопровода
4. В отличие от монтажа строительных конструкций без термических компенсаторов
гасителей температурных колебаний , огнестойкость каркаса здания увеличивается в разы, и
свойства которой ухудшаются со временем, из-за отсутствия виброзащиты ,а свойства
фланцевое косое демпфирующее соединение растянутых элементов строительных конструкций.
трубопровода со скошенными торцами, остаются неизменными во времени, а при
температурном напряжении, пожарная нагрузка возрастает и огнестойкость строительных
конструкций падают .
Огнестойкость достигнут за счет использования термического компенсатора гасителя
температурных колебаний строительных конструкций , трубопровода , что повышает
долговечность демпфирующей упругого фланцевого соединение растянутых элементов
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 317
318.
строительных конструкций, трубопровода со скошенными торцами , так как прокладки нафланцах быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет и
монтаже. Пожарная безопасность достигнут также из-за удобства обслуживания узла при
эксплуатации строительных конструкций , фланцевого косого компенсатора соединение
растянутых элементов строительных конструкций, трубопровода со скошенными торцами
Литература которая использовалась для составления заявки на изобретение: Огнестойкий
компенсатор гаситель температурных напряжений для строительных конструкций ,
трубопровода, металлических ферм, трубопроводовс использованием фланцевых соединений,
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн.
наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка
№2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без
заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров
«Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через
четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации
электромагнитных
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 318
319.
другие зарубежные научные издания ижурналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами
Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ
СПб пл. Островского, д.3 .
Формула изобретения огнестойкий компенсатор- гаситель
температурных напряжений" МПК F16L 27/2 для фланцевых
демпфирующих крепления, в том числе и косого и традиционного
фланцевого соединение, растянутых элементов строительных
конструкций и трубопровода со скошенными торцами с
упругими демпферами сухого трения
1. Огнестойкий компенсатор - гаситель температурных напряжений, как и
фланцевое соединение, растянутых элементов строительных конструкций ,
трубопровода со скошенными торцами с упругими демпферами сухого
трения, демпфирующего косого компенсатора для строительных
конструкций и магистрального трубопровода , содержащая: фланцевое
соединение растянутых элементов трубопровода со скошенными и не
скошенными торцами с упругими демпферами сухого трения на
фрикционно-подвижных болтовых соединениях, с одинаковой
жесткостью с демпфирующий элементов при многокаскадном
демпфировании, для термической защиты и сейсмоизоляции строительных
конструкций трубопровода и поглощение сейсмической энергии, в
горизонтальнойи вертикальной плоскости по лини нагрузки, при этом
упругие демпфирующие косые компенсаторы , выполнено в виде фланцевого
соединение растянутых элементов трубопровода со скошенными торцами
2. Огнестойкий компенсатор - гаситель температурных напряжений,
фланцевое соединение растянутых элементов трубопровода со скошенными и
не скошенными торцами с упругими демпферами сухого трения , повышенной
надежности с улучшенными демпфирующими свойствами, содержащая ,
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными
соединениями и упругой втулкой (гильзой), закрепленные запорными
элементами в виде протяжного соединения контактирующих поверхности
детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что
с целью повышения надежности к термическим и температурным колебаниям
при пожаре для строительных конструкций, за счет демпфирующее т
термической эффективности сухого трения при термических и динамических
колебаниях , за счет соединенныя, между собой с помощью фрикционно-
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 319
320.
подвижных соединений с контрольным натяжением фрикци-болтов с тросовойпружинистой втулкой (гильзы) , расположенных в длинных овальных
отверстиях , с помощью фрикци-болтами с медным упругоплатичном,
пружинистым многослойным, склеенным клином или тросовым пружинистым
зажимом , расположенной в коротком овальном отверстии верха и низа косого
компенсатора для трубопроводов
3. Способ работы огнестойкого компенсатора - гасителя температурных
напряжений, с использованием фланцевого соединение растянутых элементов
трубопровода со скошенными и не скошенными торцами с упругими
демпферами сухого трения, для обеспечения несущей способности при
пожаре и высокой температуре строительных конструкций , трубопровода
на фрикционно -подвижного соединения с высокопрочными фрикциболтами с тросовой втулкой (гильзой), включающий, контактирующие
поверхности которых предварительно обработанные, соединенные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия
натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают
нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в
зависимости от величины отклонения, осуществляют коррекцию технологии
монтажа сейсмоизолирующей опоры, отличающийся тем, что в качестве
показателя сравнения используют проектное значение усилия натяжения
высокопрочного фрикци- болта с медным обожженным клином забитым в
пропиленный паз латунной шпильки с втулкой -гильзы из стального тонкого
троса , а определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия
и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига при
огнестойком компенсаторе - гасителе температурных напряжений, к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа, сам огнестойкий компенсатор, гаситель
температурных напряжений , с использованием сдвиговой для перемещения
компенсатора, как перемещающегося по линии нагрузки , как косой
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 320
321.
компенсатор или не косого демпфирующего огнестойкий компенсатор , приотношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение
болта, а при отношении менее 0,50, кроме увеличения усилия натяжения,
дополнительно проводят обработку контактирующих поверхностей
фланцевого перемещающихся, сдвиговых соединение растянутых элементов
строительных конструкции или трубопровода со скошенными торцами с
использованием цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 321
322.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка контактных поверхностей элементов и методы контроля
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
6.4.1
46
Основные требования по технике безопасности при работе с грунтовкой
ВЖС 83-02-87
6.4.2
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
6.5
47
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 322
323.
1. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в
частности, сейсмическим нагрузкам исходит из целенаправленного проектирования предельных
состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования
сооружений с заданными параметрами предельных состояний. Возможны различные технические
реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в которых от
экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих
смещений нормальная эксплуатация сооружения, как правило, нарушается, однако исключается его
обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были
предложены фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций высокопрочными болтами, отличающиеся тем, что отверстия под болты в
соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок.
При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на величину до 34 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый ряд
особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях
оказывается возможным снизить затраты на усиление сооружения, подверженного сейсмическим и
другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа
проектирования мостовых конструкций с заданными параметрами предельных состояний. В 1985-86
г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и
нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных соединений на
высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты пропущены
через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить
взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться пиковое значение
усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в
упомянутых работах овальные отверстия устраивались с целью упрощения монтажных работ. Для
реализации принципа проектирования конструкций с заданными параметрами предельных состояний
необходимо фиксировать предельную силу трения (несущую способность) соединения.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 323
324.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброснатяжения N=20-50 кН, что не позволяет прогнозировать несущую способность такого соединения
по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400
кН, что в принципе может позволить задание и регулирование несущей способности соединения.
Именно эту цель преследовали предложения [3,14-17].
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания
ФПС показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной
работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных
поверхностей соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта.
Отмеченные
исследования
позволили
выявить
способы
обработки
соединяемых
листов,
обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования
для ФПС пескоструйной обработки листов пакета, рекомендованы использование обжига листов,
нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали,
что расчету и проектированию сооружений должны предшествовать детальные исследования самих
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 324
325.
соединений. Однако, до настоящего времени в литературе нет еще систематического изложенияобщей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых
ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в
сейсмостойком строительстве, однако, для этого необходимо детально изложить, а в отдельных
случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и
сооружений с такими соединениями. Целью, предлагаемого пособия является систематическое
изложение теории работы ФПС и практических методов их расчета. В пособии приводится также и
технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что
надежные и долговечные машины, оборудование и приборы могут быть
созданы только при удачном решении теоретических и прикладных задач
сухого и вязкого трения, смазки и износа, т.е. задач трибологии и
триботехники.
Трибология – наука о трении и процессах, сопровождающих трение
(трибос – трение, логос – наука). Трибология охватывает экспериментальнотеоретические
результаты
исследований
физических
(механических,
электрических, магнитных, тепловых), химических, биологических и других
явлений, связанных с трением.
Триботехника
трибологии
при
–
это
система
знаний
проектировании,
о
практическом
изготовлении
и
применении
эксплуатации
трибологических систем.
С
трением
связан
износ
соприкасающихся
тел
–
разрушение
поверхностных слоев деталей подвижных соединений, в т.ч. при резьбовых
соединениях. Качество соединения определяется внешним трением в витках
резьбы и в торце гайки и головки болта (винта) с соприкасающейся деталью
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 325
326.
или шайбой. Основная характеристика крепежного резьбового соединения –усилие затяжки болта (гайки), - зависит от значения и стабильности моментов
сил
трения
сцепления,
возникающих
при
завинчивании.
Момент
сил
сопротивления затяжке содержит две составляющих: одна обусловлена
молекулярным воздействием в зоне фактического касания тел, вторая –
деформированием
тончайших
поверхностей
слоев
контактирующими
микронеровностями взаимодействующих деталей.
Расчет этих составляющих осуществляется по формулам, содержащим ряд
коэффициентов,
установленных
в
результате
экспериментальных
исследований. Сведения об этих формулах содержатся в Справочниках
«Трение, изнашивание и смазка» [22](в двух томах) и «Полимеры в узлах
трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и
научной обоснованности и в настоящее время. Полезный для практического
использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее
трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении
соприкасающихся газообразных, жидких и твердых тел и вызывающее
сопротивление движению тел или переходу из состояния покоя в движение
относительно конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде,
а также при наличии смазки в области механического контакта твердых тел.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 326
327.
При учете трения (сухого или вязкого) различают внешнее трение ивнутренне трение.
Внешнее трение возникает при относительном перемещении двух тел,
находящихся в соприкосновении, при этом сила сопротивления движению
зависит от взаимодействия внешних поверхностей тел и не зависит от
состояния внутренних частей каждого тела. При внешнем трении переход
части механической энергии во внутреннюю энергию тел происходит только
вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц
одного и того же тела (твердого, жидкого или газообразного). Например,
внутреннее трение возникает при изгибе металлической пластины или
проволоки, при движении жидкости в трубе (слой жидкости, соприкасающийся
со стенкой трубы, неподвижен, другие слои движутся с разными скоростями и
между ними возникает трение). При внутреннем трении часть механической
энергии переходит во внутреннюю энергию тела.
Внешнее
трение
соприкосновения
в
твердых
чистом
тел
без
виде
возникает
смазочной
только
прослойки
в
случае
между
ними
(идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не
отличается от механизма внутреннего трения в жидкости. Если толщина
смазки менее 0,1 мм, то трение называют пограничным (или граничным). В
этом случае учет трения ведется либо с позиций сухого трения, либо с точки
зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено
представление о внешнем трении. Понятие о внутреннем трении введено в
науку в 1867 г. английским физиком, механиком и математиком Уильямом
Томсоном (лордом Кельвиным).1)
1)
[Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения
в котором перешел в Кембриджский университет и закончил его в 21 год; в 22 года он стал
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 327
328.
Законы сухого тренияСухое трение впервые наиболее полно изучал Леонардо да Винчи (14521519). В 1519 г. он сформулировал закон трения: сила трения, возникающая
при контакте тела с поверхностью другого тела, пропорциональна нагрузке
(силе прижатия тел), при этом коэффициент пропорциональности – величина
постоянная и равна 0,25:
.
Через 180 лет модель Леонарда да Винчи была переоткрыта французским
механиком и физиком Гийомом Амонтоном2), который ввел в науку понятие
коэффициента трения как французской константы и предложил формулу силы
трения скольжения:
.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной
плоскости) впервые предложил формулу:
,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения
Леонарда да Винчи – Амонтона:
,
впервые получил формулу для случая прямолинейного равноускоренного
движения тела по наклонной плоскости:
профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии
наук, а в 1851 г. (в 27 лет) он стал членом Лондонского королевского общества и 5 лет был его
президентом].
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 328
329.
,где t – промежуток времени движения тела по плоскости на участке
длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль
Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами
работ ученых XIX и XX веков, которые более полно раскрыли понятия силы
трения покоя (силы сцепления) и силы трения скольжения, а также понятия о
трении качения и трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы
Кулона,
учитывая
все
новые
и
новые
результаты
физико-химических
исследований явления трения. Из этих исследований наиболее важными
являются исследования природы трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность
любого
твердого
тела
обладает
[шероховатость
поверхности
классов)
характеристикой
–
микронеровностями,
оценивается
«классом
качества
шероховатостью
шероховатости»
обработки
(14
поверхности:
среднеарифметическим отклонением профиля микронеровностей от средней
линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел –
источник трения. К этому добавляются силы молекулярного сцепления между
частицами,
принадлежащими
разным
телам,
вызывающим
прилипание
поверхностей (адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное сцепление и деформирующей микронеровности, определяет
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 329
330.
механическую энергию тела, которая затрачивается частично на деформацию(или даже разрушение) микронеровностей, частично на нагревание трущихся
тел (превращается в тепловую энергию), частично на звуковые эффекты –
скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и
электромагнитное поля молекул и атомов соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо
учесть сухое трение, достаточно использовать те законы сухого трения,
которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона)
даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по
поверхности тела В всегда направлена в сторону, противоположную скорости
тела А относительно тела В, а сила сцепления (трения покоя) направлена в
сторону, противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения
скольжения не совпадает с линией действия вектора скорости. (Изотропным
называется сухое трение, характеризующееся одинаковым сопротивлением
движению тела по поверхности другого тела в любом направлении, в
противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную
поверхность
(или
нормальной
реакции
этой
поверхности),
при
этом
коэффициент трения скольжения принимается постоянным и определяется
опытным путем для каждой пары соприкасающихся тел. Коэффициент трения
скольжения зависит от рода материала и его физических свойств, а также от
степени обработки поверхностей соприкасающихся тел:
(рис. 2.1 в).
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 330
331.
Рис.2.1Сила сцепления (сила трения покоя) пропорциональна силе давления на
опорную поверхность (или нормальной реакции этой поверхности) и не может
быть
больше
максимального
значения,
определяемого
произведением
коэффициента сцепления на силу давления (или на нормальную реакцию
опорной поверхности):
.
Коэффициент сцепления (трения покоя), определяемый опытным путем в
момент перехода тела из состояния покоя в движение, всегда больше
коэффициента трения скольжения для одной и той же пары соприкасающихся
тел:
.
Отсюда следует, что:
,
поэтому график изменения силы трения скольжения от времени движения
тела, к которому приложена эта сила, имеет вид (рис.2.2).
При переходе тела из состояния покоя в движение сила трения
скольжения за очень короткий промежуток времени изменяется от
(рис.2.2). Этим промежутком времени часто пренебрегают.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 331
до
332.
В последние десятилетия экспериментально показано, что коэффициенттрения скольжения зависит от скорости (законы Кулона установлены при
равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
Эту зависимость качественно можно проиллюстрировать графиком
(рис.2.3).
- значение скорости, соответствующее тому моменту времени, когда
сила
достигнет своего нормального значения
,
- критическое значение скорости, после которого происходит
незначительный рост (на 5-7 %) коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот
эффект впоследствии был подтвержден исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в
основном, справедливы, на основе адгезионной теории трения предложил
новую формулу для определения силы трения скольжения (модернизировав
предложенную Кулоном формулу):
.
[У Кулона:
, где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел
(контактная площадь),
- удельная (на единицу площади) сила прилипания
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 332
333.
или сцепления, которое надо преодолеть для отрыва одной поверхности отдругой.
Дерягин также показал, что коэффициент трения скольжения зависит от
нагрузки N (при соизмеримости сил
и
) -
, причем при
увеличении N он уменьшается (бугорки микронеровностей деформируются и
сглаживаются, поверхности тел становятся менее шероховатыми). Однако, эта
зависимость учитывается только в очень тонких экспериментах при решении
задач особого рода.
Во многих случаях
, поэтому в задачах классической механики, в
которых следует учесть силу сухого трения, пользуются, в основном, законом
Кулона, а значения коэффициента трения скольжения и коэффициента
сцепления определяют по таблице из справочников физики (эта таблица
содержит значения коэффициентов, установленных еще в 1830-х годах
французским ученым А.Мореном (для наиболее распространенных материалов)
и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии
наук, автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения
скольжения
составляет
с
прямой,
по
которой
направлена
скорость
материальной точки угол:
,
где
и
- проекции силы трения скольжения
на главную нормаль
и касательную к траектории материальной точки, при этом модуль вектора
определяется формулой:
. (Значения
и
определяются по
методике Минкина-Доронина).
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 333
334.
Трение каченияПри качении одного тела по другому участки поверхности одного тела
кратковременно соприкасаются с различными участками поверхности другого
тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были
проведены эксперименты по определению сопротивления качению колеса
вагона или локомотива по рельсу, а также сопротивления качению роликов
или шариков в подшипниках.
В результате экспериментального изучения этого явления установлено,
что сопротивление качению (на примере колеса и рельса) является следствием
трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя
соприкасающихся тел (деформация требует затрат энергии);
2)
зацепление
бугорков
неровностей
и
молекулярное
сцепление
(являющиеся в то же время причиной возникновения качения колеса по
рельсу);
3)
трение
скольжения
при
неравномерном
движении
колеса (при
ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное
влияние
всех
трех
факторов
учитывается
общим
коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу
абсолютно твердого тела надо отбросить и рассматривать деформацию
соприкасающихся тел в области контактной площадки.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 334
335.
Так как равнодействующаяреакций опорной поверхности в точках
зоны контакта смещена в сторону скорости центра колеса, непрерывно
набегающего на впереди лежащее микропрепятствие (распределение реакций
в точках контакта несимметричное – рис.2.4), то возникающая при этом пара
сил
и
(
-
сила
тяжести)
оказывает
сопротивление
(возникновение качения обязано силе сцепления
качению
, которая образует
вторую составляющую полной реакции опорной поверхности).
Момент пары сил
называется моментом сопротивления качению.
Плечо
пары
сил
«к»
называется
коэффициентом трения качения. Он имеет
размерность длины.
Момент
сопротивления
качению
определяется формулой:
,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 335
336.
где N - реакция поверхности рельса, равная вертикальной нагрузке наколесо с учетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению,
которое можно отразить силой сопротивления
, приложенной к центру
, где R – радиус колеса,
колеса (рис.2.5), при этом:
откуда
,
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель
во много раз
меньше коэффициента трения скольжения для тех же соприкасающихся тел, то
сила
на один-два порядка меньше силы трения скольжения. (Это было
известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел
роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы
показывают
без
смещения
в
сторону
скорости
, то силу
(колесо
и
рельс
рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления
качению. Для колеса железнодорожного экипажа и рельса рост сопротивления
качению заметен после скорости колесной пары 100 км/час и происходит по
параболическому
закону.
Это
объясняется
деформациями
колес
гистерезисными потерями, что влияет на коэффициент трения качения.
Трение верчения
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 336
и
337.
Трение верчения возникает при вращении тела,опирающегося на некоторую поверхность. В этом
случае следует рассматривать зону контакта тел, в
точках которой возникают силы трения скольжения
(если контакт происходит в одной точке, то
трение верчения отсутствует – идеальный случай)
(рис.2.6).
А – зона контакта вращающегося тела, ось
вращения которого перпендикулярна к плоскости
этой зоны. Силы трения скольжения, если их привести к центру круга (при
изотропном трении), приводятся к паре сил сопротивления верчению, момент
которой:
,
где r – средний радиус точек контакта тел;
- коэффициент трения скольжения (принятый одинаковым для всех
точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту
поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или
оси стрелки компаса острием и опорной плоскостью. Момент сопротивления
верчению стремятся уменьшить, используя для острия и опоры агат, рубин,
алмаз и другие хорошо отполированные очень прочные материалы, для
которых коэффициент трения скольжения менее 0,05, при этом радиус круга
опорной площадки достигает долей мм. (В наручных часах, например,
менее
мм).
Таблица коэффициентов трения скольжения и качения.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 337
338.
к (мм)Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное
сцепление
приводит
к
образованию
связей
между
трущимися парами. При сдвиге они разрушаются. Из-за шероховатости
поверхностей трения контактирование пар происходит площадками. На
площадках с небольшим давлением имеет место упругая, а с большим
давлением - пластическая деформация. Фактическая площадь соприкасания
пар представляется суммой малых площадок. Размеры площадок контакта
достигают 30-50 мкм. При повышении нагрузки они растут и объединяются. В
процессе разрушения контактных площадок выделяется тепло, и могут
происходить химические реакции.
Различают три группы износа: механический - в форме абразивного
износа, молекулярно-механический - в форме пластической деформации или
хрупкого разрушения и коррозийно-механический - в форме коррозийного и
окислительного износа. Активным фактором износа служит газовая среда,
порождающая
окислительный
износ.
Образование
окисной
пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота
обусловливает физико-химические процессы в слое трения, переводящие
связующие в жидкие фракции, действующие как смазка. Металлокерамические
материалы на железной основе способствуют повышению коэффициента
трения и износостойкости.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 338
339.
Важна быстрая приработка трущихся пар. Это приводит к быстромулокальному износу и увеличению контурной площади соприкосновения тел.
При
медленной
приработке
локальные
температуры
приводят
к
нежелательным местным изменениям фрикционного материала. Попадание
пыли, песка и других инородных частиц из окружающей среды приводит к
абразивному разрушению не только контактируемого слоя, но и более
глубоких слоев. Чрезмерное давление, превышающее порог схватывания,
приводит к разрушению окисной пленки, местным вырывам материала с
последующим, абразивным разрушением поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий
эксплуатации:
давление
поверхностей
трения,
скорость
относительного
скольжения пар, длительность одного цикла нагружения, среднечасовое число
нагружений, температура контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают
стабильность коэффициента трения, высокую износостойкость пары трения,
малые модуль упругости и твердость материала, низкий коэффициент
теплового расширения, стабильность физико-химического состава и свойств
поверхностного слоя, хорошая прирабатываемость фрикционного материала,
достаточная механическая прочность, антикоррозийность, несхватываемость,
теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии
изготовления
деталей,
фрикционных
даже
в
элементов;
пределах
отклонения
установленных
размеров отдельных
допусков;
несовершенство
конструктивного исполнения с большой чувствительностью к изменению
коэффициента трения.
Абразивный
износ
фрикционных
пар
подчиняется
следующим
закономерностям. Износ пропорционален пути трения s,
=ks s,
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
(2.1)
Всего листов 556
Лист 339
340.
а интенсивность износа— скорости трения(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу
пути трения пропорциональна удельной нагрузке р,
(2.3)
Мера
интенсивности
рv
износа
не
должна
превосходить
нормы,
определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется
интегральной функцией времени или пути трения
.
(2.4)
В условиях кулонова трения, и в случае kр = const, износ пропорционален
работе сил трения W
.
(2.5)
Здесь сила трения F=f N = f p ; где f – коэффициент трения, N – сила
нормального давления; - контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и
окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за
период колебаний Т == 2л/ определяется силой трения F и амплитудой
колебаний а
W= 4F а.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
(2.6)
Всего листов 556
Лист 340
341.
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС3.1. Исходные посылки для разработки методики
расчета ФПС
Исходными посылками для разработки методики расчета ФПС
являются
экспериментальные
исследования
одноболтовых
нахлесточных соединений [13], позволяющие вскрыть основные
особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг.
были выполнены экспериментальные исследования деформирования
нахлесточных соединений такого типа. Анализ полученных диаграмм
деформирования позволил выделить для них 3 характерных стадии
работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности
соединения [Т], рассчитанной как для обычного соединения на
фрикционных высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил трения по
контактным плоскостям соединяемых элементов при сохраняющих
неподвижность шайбах высокопрочных болтов. При этом за счет
деформации болтов в них растет сила натяжения, и как следствие
растут силы трения по всем плоскостям контактов.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 341
342.
На третьей стадии происходитсрыв с места одной из шайб и
дальнейшее взаимное смещение
соединяемых
элементов.
процессе
В
подвижки
наблюдается интенсивный износ
во
всех
контактных
парах,
сопровождающийся
падением
натяжения
болтов
и,
следствие,
снижение
как
несущей
способности соединения.
В
процессе
испытаний
наблюдались следующие случаи
выхода из строя ФПС:
∙ значительные взаимные перемещения соединяемых деталей, в
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
∙ отрыв головки болта вследствие малоцикловой усталости;
∙ значительные пластические деформации болта, приводящие к
его
необратимому
удлинению
и
исключению
из
работы
при
“обратном ходе" элементов соединения;
∙ значительный износ контактных поверхностей, приводящий к
ослаблению болта и падению несущей способности ФПС.
Отмеченные
результаты
экспериментальных
исследований
представляют двоякий интерес для описания работы ФПС. С одной
стороны для расчета усилий и перемещений в элементах сооружений
с ФПС важно задать диаграмму деформирования соединения. С
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 342
343.
другой стороны необходимо определить возможность перехода ФПС впредельное состояние.
Для
описания
диаграммы
деформирования
наиболее
существенным представляется факт интенсивного износа трущихся
элементов соединения, приводящий к падению сил натяжения болта
и несущей способности соединения. Этот эффект должен определять
работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения
вследствие деформации болта.
Для оценки возможности перехода соединения в предельное
состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае
исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент
закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие,
что закрытие зазора приводит к недопустимому росту ускорений в
конструкции,
то
проверки
(б)
и
(в)
заменяются
проверкой,
ограничивающей перемещения ФПС и величиной фактического
зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и
подвижке в соединении должно базироваться на задании диаграммы
деформирования
соединения,
представляющей
зависимость
его
несущей способности Т от подвижки в соединении s. Поэтому
получение зависимости Т(s) является основным для разработки
методов
расчета
ФПС
и
сооружений
с
такими
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
соединениями.
Всего листов 556
Лист 343
344.
Отмеченные особенности учитываются далее при изложении теорииработы ФПС.
3.2. Общее уравнение для определения несущей
способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся к более сложному случаю нахлесточного соединения,
характеризующегося трехстадийной диаграммой деформирования. В
случае стыкового соединения второй участок на диаграмме Т(s) будет
отсутствовать.
Первая стадия работы ФПС не отличается от работы обычных
фрикционных соединений. На второй и третьей стадиях работы
несущая способность соединения поменяется вследствие изменения
натяжения болта. В свою очередь натяжение болта определяется его
деформацией (на второй стадии деформирования нахлесточных
соединений) и износом трущихся поверхностей листов пакета при их
взаимном
смещении.
При
этом
для
теоретического
описания
диаграммы деформирования воспользуемся классической теорией
износа
[5,
14,
23],
согласно
которой
скорость
износа
V
пропорциональна силе нормального давления (натяжения болта) N:
(3.1)
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в
виде:
(3.2)
здесь
- начальное -натяжение болта, а - жесткость болта;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 344
345.
, где l - длина болта, ЕF - его погонная жесткость,-
увеличение
натяжения
болта
вследствие
его
деформации;
- падение натяжения болта вследствие его пластических
деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки
.
Если пренебречь изменением скорости подвижки, то скорость V
можно представить в виде:
,
где
(3.3)
— средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
(3.4)
где
.
Решение уравнения (3.4) можно представить в виде:
или
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно
упрощается, так как в этом случае
функции
и
,
входящие
в
, и обращаются в 0
(3.5).
С
учетом
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
сказанного
Всего листов 556
Лист 345
346.
использование интеграла. (3.5) позволяет получить следующуюформулу для определения величины износа
:
(3.6)
Падение натяжения
при этом составит:
(3.7)
а
несущая
соединений
способность
определяется
по
формуле:
(3.8)
Как
видно
из
полученной
формулы относительная несущая
способность соединения КТ =Т/Т0
определяется
всего
двумя
параметрами - коэффициентом износа k и жесткостью болта на
растяжение а. Эти параметры могут быть заданы с достаточной
точностью и необходимые для этого данные имеются в справочной
литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24
мм и коэффициента износа k~5×10-8 H-1 при различных значениях
толщины пакета l, определяющей жесткость болта а. При этом для
наглядности несущая способность соединения Т отнесена к своему
начальному значению T0, т.е. графические зависимости представлены
в безразмерной форме. Как видно из рисунка, с ростом толщины
пакета падает влияние износа листов на несущую способность
соединений. В целом падение несущей способности соединений
весьма существенно и при реальных величинах подвижки s 2 3см
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 346
347.
составляет для стыковых соединений 80-94%. Весьма существеннона характер падений несущей способности соединения сказывается
коэффициент износа k. На рис.3.3 приведены зависимости несущей
способности соединения от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения
должно приводить к существенному росту взаимных смещений
соединяемых деталей и это обстоятельство должно учитываться в
инженерных расчетах. Вместе с тем рассматриваемый эффект будет
приводить к снижению нагрузки, передаваемой соединением. Это
позволяет при использовании ФПС в качестве сейсмоизолирующего
элемента конструкции рассчитывать усилия в ней, моделируя ФПС
демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом
функций f(s) и >(s).Функция f(s) зависит от удлинения болта
вследствие искривления его оси. Если принять для искривленной оси
аппроксимацию в виде:
(3.9)
где x — расстояние от середины болта до рассматриваемой точки
(рис. 3.3), то длина искривленной оси стержня составит:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 347
348.
Удлинение болта при этом определится по формуле:(3.10)
Учитывая,
что
приближенность
представления
(3.9)
компенсируется коэффициентом k, который может быть определен из
экспериментальных данных, получим следующее представление для
f(s):
Для дальнейшего необходимо учесть, что деформирование тела
болта будет иметь место лишь до момента срыва его головки, т.е. при
s < s0. Для записи этого факта воспользуемся единичной функцией
Хевисайда :
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо
учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s
некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при
котором напряжения в стержне достигнут предела текучести,
т.е.:
.
(3.12)
Указанным условиям удовлетворяет функция (s) следующего
вида:
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к
следующим зависимостям износа листов пакета от перемещения s:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 348
349.
при s<Sпл(3.14)
при Sпл< s<S0
(3.15)
при s<S0
(3.16)
Несущая
способность
соединения
определяется
при
этом
выражением:
(3.17)
Здесь fv— коэффициент трения, зависящий в общем случае от
скорости
подвижки
v.
Ниже
мы
используем
наиболее
распространенную зависимость коэффициента трения от скорости,
записываемую в виде:
,
(3.18)
где kv — постоянный коэффициент.
Предложенная
зависимость
содержит
9
неопределенных
параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны
определяться из данных эксперимента.
В отличие от стыковых соединений в формуле (3.17) введено два
коэффициента
износа
-
на
втором
участке
диаграммы
деформирования износ определяется трением между листами пакета
и характеризуется коэффициентом износа k1, на третьем участке
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 349
350.
износ определяется трением между шайбой болта и наружнымлистом пакета; для его описания введен коэффициент износа k2.
На
рис.
3.4
приведен
пример
теоретической
диаграммы
деформирования при реальных значениях параметров k1 = 0.00001;
k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН.
Как видно из рисунка, теоретическая диаграмма деформирования
соответствует описанным выше экспериментальным диаграммам.
Рис. 3.4
Теоретическая диаграмма деформирования ФПС
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 350
351.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
4.
Лист 351
352.
АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями
необходимы
фактические
данные
соединений.
Экспериментальные
о
параметрах
исследования
исследуемых
работы
ФПС
достаточно трудоемки, однако в 1980-85 гг. такие исследования были
начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены
записи
Т(s)
для
нескольких
одноболтовых
и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с
болтами диаметром 22, 24, 27 и 48 мм. Принятые размеры образцов
обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее
Рис. 4.1 Общий вид образцов ПС с болтами 48
ммпри этом в соединении необходимо
распространенными. Однако
размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо
увеличение их диаметра. Поэтому было рассмотрено ФПС с болтами
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 352
353.
наибольшего диаметра 48 мм. Общий вид образцов показан на рис.4.1.
Пластины ФПС были выполнены из толстолистовой стали марки
10ХСНД.
Высокопрочные
тензометрическими
требованиями
из
[6].
стали
болты
40Х
Контактные
были
"селект"
в
поверхности
изготовлены
соответствии
пластин
с
были
обработаны протекторной цинкосодержащей грунтовкой ВЖС-41
после
дробеструйной
очистки.
Болты
были
предварительно
протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с
тарировочными зависимостями ручным ключом на заданное усилие
натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на
универсальном динамическом стенде УДС-100 экспериментальной
базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС
обеспечивалась путем удара движущейся массы М через резиновую
прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались
таким образом, чтобы при неподвижной рабочей тележке получился
импульс силы с участком, на котором сила сохраняет постоянное
значение, длительностью около 150 мс. Амплитудное значение
импульса силы подбиралось из условия некоторого превышения
несущей способности ФПС. Каждый образец доводился до реализации
полного смещения по овальному отверстию.
Во
время
испытаний
на
стенде
и
пресс-пульсаторах
контролировались следующие параметры:
∙ величина динамической продольной силы в пакете ФПС;
∙ взаимное смещение пластин ФПС;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 353
354.
∙ абсолютные скорости сдвига пластин ФПС;∙ ускорение движения пластин ФПС и ударные массы (для
испытаний на стенде).
После
каждого
нагружения
проводился
замер
напряжения
высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес
представляют для нас зависимости продольной силы, передаваемой
на соединение (несущей способности ФПС), от величины подвижки S.
Эти зависимости могут быть получены теоретически по формулам,
приведенным выше в разделе 3. На рисунках 4.2 - 4.3 приведено
графическое
Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования
ФПС для болтов 22 мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из
рисунков видно, что характер зависимостей Т(s) соответствует в
целом принятым гипотезам и результатам теоретических построений
предыдущего раздела. В частности, четко проявляются три участка
деформирования
соединения,
соединения:
после
до
проскальзывания
проскальзывания
листов
пакета
элементов
и
после
проскальзывания шайбы относительно наружного листа пакета.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 354
355.
Вместес
тем,
необходимо
отметить
существенный
разброс
полученных диаграмм. Это связано, по-видимому, с тем, что в
проведенных испытаниях принят наиболее простой приемлемый
способ обработки листов пакета. Несмотря на наличие существенного
разброса,
полученные
диаграммы
оказались
пригодными
для
дальнейшей обработки.
В результате предварительной обработки экспериментальных
данных построены диаграммы деформирования нахлесточных ФПС. В
соответствии с ранее изложенными теоретическими разработками
эти диаграммы должны описываться уравнениями вида (3.14). В
указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0
—
коэффициент,
определяющий
влияние
скорости
на
коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл
—
предельное
смещение,
при
котором
возникают
пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы
болта относительно листа пакета;
к — коэффициент, характеризующий увеличение натяжения
болта вследствие геометрической нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения
болта вследствие его пластической работы.
Обработка
экспериментальных
данных
заключалась
в
определении этих 9 параметров. При этом параметры варьировались
на сетке их возможных значений. Для каждой девятки значений
параметров по методу наименьших квадратов вычислялась величина
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 355
356.
невязкимежду
деформирования,
расчетной
причем
и
экспериментальной
невязка
диаграммами
суммировалась
по
точкам
цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром
24 мм последние варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с
шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом
1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
Н
а рис.
4.4 и
4.5
приве
дены
харак
терн
Рис. 4.5
Рис.4.4
ые
диаграммы деформирования ФПС, полученные экспериментально и
соответствующие
им
теоретические
диаграммы.
Сопоставление
расчетных и натурных данных указывают на то, что подбором
параметров ФПС удается добиться хорошего совпадения натурных и
расчетных диаграмм деформирования ФПС. Расхождение диаграмм
на конечном их участке обусловлено резким падением скорости
подвижки
перед
остановкой,
не
учитываемым
в
рамках
предложенной теории расчета ФПС. Для болтов диаметром 24 мм
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 356
357.
было обработано 8 экспериментальных диаграмм деформирования.Результаты определения параметров соединения для каждой из
подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм
мм
кН
1
кН1
11
32
0.25 11
9 0.00001 0.34 105 260
2
8
15
0,24 8
7 0.00044 0.36 152 90
3
12
27
0.44 13.5 11.2 0.00012 0.39 125 230
4
7
14
0.42 14.6 12 0.00011 0.29 193 130
5
14
35
0.1
8 4.2 0.0006 0.3 370 310
6
6
11
0.2 12
9 0.00002 0.3 120 100
7
8
20
0.2 19 16 0.00001 0.3 106 130
8
8
15
0.3
9 2.5 0.00028 0.35 154 75
Приведенные в таблице 4.1 результаты вычислений параметров
соединения
были
статистически
обработаны
и
получены
математические ожидания и среднеквадратичные отклонения для
каждого из параметров. Их значения приведены в таблице 4.2. Как
видно
из
приведенной
таблицы,
значения
параметров
характеризуются значительным разбросом. Этот факт затрудняет
применение
одноболтовых
ФПС
с
поверхности (обжиг листов пакета).
одноболтовых
к
многоболтовым
рассмотренной
обработкой
Вместе с тем, переход от
соединениям
должен
снижать
разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическое среднеквадратичное
соединения
ожидание
отклонение
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 357
358.
k1 106, КН-1k2 106, кН-1
kv с/мм
S0, мм
Sпл , мм
q, мм-1
f0
Nо,кН
9.25
21.13
0.269
11.89
8.86
0.00019
0.329
165.6
165.6
2.76
9.06
0.115
3.78
4.32
0.00022
0.036
87.7
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования
одноболтовых ФПС позволяют перейти к анализу многоболтовых
соединений. Для упрощения задачи примем широко используемое в
исследованиях фрикционных болтовых соединений предположение о
том, что болты в соединении работают независимо. В этом случае
математическое ожидание несущей способности
(или среднеквадратическое отклонение
и дисперсию DT
) можно записать в виде:
(5.1)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 358
359.
(5.2)(5.3)
В приведенных формулах:
- найденная выше зависимость несущей способности
T от подвижки s и параметров соединения i; в нашем случае в
качестве параметров выступают коэффициент износа k, смещение
при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по
имеющимся данным нам известны лишь среднее значение i и их
стандарт (дисперсия).
Для дальнейших исследований приняты два возможных закона
распределения
возможном
параметров
диапазоне
ФПС:
равномерное
изменения
в
некотором
параметров
и
нормальное. Если учесть, что в предыдущих исследованиях получены
величины
математических
ожиданий
и
стандарта
,
то
соответствующие функции плотности распределения записываются в
виде:
а) для равномерного распределения
при
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
(5.5)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 359
360.
Результаты расчетного определения зависимостей T(s) и (s) придвух законах распределения сопоставляются между собой, а также с
данными натурных испытаний двух, четырех, и восьми болтовых
ФПС.
5.2. Построение уравнений деформирования стыковых
многоболтовых ФПС
Для
вычисления
несущей
способности
соединения
сначала
рассматривается более простое соединение встык. Такое соединение
характеризуется всего двумя параметрами - начальной несущей
способностью Т0 и коэффициентом износа k. При этом несущая
способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание
несущей способности соединения из п болтов составит:
(5.7)
При
нормальном
законе
распределения
математическое
ожидание несущей способности соединения из п болтов определится
следующим образом:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 360
361.
Еслиучесть,
математическим
что
для
любой
ожиданием
случайной
функцией
величины
с
распределения
р(х}
выполняется соотношение:
то первая скобка. в описанном выражении для вычисления
несущей
способности
соединения
Т
равна
математическому
ожиданию начальной несущей способности Т0. При этом:
Выделяя в показателе степени полученного выражения полный
квадрат, получим:
Подынтегральный член в полученном выражении с учетом
множителя
представляет не что иное, как функцию плотности
нормального распределения с математическим ожиданием
среднеквадратичным отклонением
и
. По этой причине интеграл в
полученном выражении тождественно равен 1 и выражение для
несущей способности соединения принимает окончательный вид:
(5.8)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 361
362.
Соответствующие принятым законам распределения дисперсиисоставляют:
для равномерного закона распределения
(5.9)
где
для нормального закона распределения
(5.10)
где
Представляет интерес сопоставить полученные зависимости с
аналогичными
зависимостями,
выведенными
выше
для
одноболтовых соединений.
Рассмотрим,
прежде
всего,
характер
изменения
несущей
способности ФПС по мере увеличения подвижки s и коэффициента
износа
k
для
случая
использования
равномерного
закона
распределения в соответствии с формулой (5.4). Для этого введем по
аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
(5.11)
коэффициент перехода от одноболтового к многоболтовому
соединению
(5.12)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 362
363.
Наконецотклонения
для
относительной
величины
среднеквадратичного
с использованием формулы (5.9) нетрудно получить
(5.13)
Аналогичные зависимости получаются и для случая нормального
распределения:
,
(5.14)
,
(5.15)
(5.16)
где
,
,
.
На рис. 5.1 - 5.2 приведены зависимости
и
от величины
подвижки s. Кривые построены при тех же значениях переменных,
что использовались нами ранее при построении зависимости T/T0 для
одноболтового соединения. Как видно из рисунков, зависимости
аналогичны
зависимостям,
полученным
для
одноболтовых
соединений, но характеризуются большей плавностью, что должно
благоприятно сказываться на работе соединения и конструкции в
целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода
. По своему смыслу математическое ожидание несущей способности многоболтового
соединения
получается из несущей способности одноболтового соединения Т1 умножением на ,
т.е.:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 363
364.
(5.17)Согласно (5.12)
. В частности,
математического ожидания коэффициента износа
при неограниченном увеличении
или смещения s. Более того, при выполнении
условия
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s,
что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения
условием (5.18).
Что касается нормального распределения, то возможность его применения определяется
пределом:
Для анализа этого предела учтем известное в теории вероятности соотношение:
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 364
365.
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величиныподвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 365
366.
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПСот величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 366
367.
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80ммС учетом сказанного получим:
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при
любых соотношениях
и k.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что
разброс значений несущей способности ФПС для случая обработки поверхностей соединяемых
листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом
случае применение ФПС вполне приемлемо, если перейти от одноболтовых к многоболтовым
соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного отклонения
1 последнее убывает пропорционально корню из числа болтов. На рисунке 5.3 приведена
зависимость относительной величины среднеквадратичного отклонения 1 от безразмерного
параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и
приняты в соответствии с данными выполненных экспериментальных исследований. Как видно
из графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не
превосходит 25%, что следует считать вполне приемлемым.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 367
368.
5.3. Построение уравнений деформированиянахлесточных многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений
достаточно громоздко из-за большого количества случайных параметров, определяющих работу
соединения. Однако с практической точки зрения представляется важным учесть лишь
максимальную силу трения Тmax, смещение при срыве соединения S0 и коэффициент износа k. При
этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется
линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция :
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
(5.21)
где
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 368
369.
Математическое ожидание несущей способности нахлесточного соединения из n болтовопределяется следующим интегралом:
(5.22)
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22)
представления для Т1 согласно (5.20) интеграл I1 может быть представлен в виде суммы трех
интегралов:
(5.23)
где
Если учесть, что для любой случайной величины x выполняются соотношения:
и
то получим
Аналогично
Если ввести функции
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 369
370.
(5.24)и
(5.25)
то интеграл I1 можно представить в виде:
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся
и примут вид:
(5.27)
(5.28)
Для нормального распределения p(S0) функция
, а
функция записывается в виде:
(5.29)
Для равномерного распределения функции 1 и 2 могут быть
представлены аналитически:
(5.30)
(5.31)
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 370
371.
Аналитическоепредставление
для
интеграла
(5.23)
весьма
сложно. Для большинства видов распределений его целесообразно
табулировать; для равномерного распределения интегралы I1 и I2
представляются в замкнутой форме:
(5.32)
(5.33)
причем
. В формулах (5.32, 5.33)
Ei - интегральная показательная функция.
Полученные
экспериментальных
формулы
подтверждены
исследований
многоболтовых
результатами
соединений
и
рекомендуются к использованию при проектировании сейсмостойких
конструкций с ФПС.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 371
372.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм6.
Всего листов 556
Лист 372
373.
РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС ИСООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология
элементов
изготовления
соединения,
транспортировку
и
ФПС
включает
подготовку
хранение
выбор
контактных
деталей,
сборку
материала
поверхностей,
соединений.
Эти
вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС и
опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 55377, гайки по ГОСТ 22354-74, шайбы по ГОСТ 22355-75 с обработкой
опорной поверхности по указаниям раздела 6.4 настоящего пособия.
Основные размеры в мм болтов, гаек и шайб и расчетные площади
поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номинальны Расчетна Высота Высот
й диаметр
болта
Разме Диаметр Размеры шайб
Толщин
Диаметр
я
головк
а
р под опис.окр а
внутр нар.
площадь
и
гайки ключ . гайки
.
сечения
по
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 373
374.
22380 303
15
19
36
39,6
6
24
50
24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 2235575 назначается в соответствии с данными табл.6.2.
Таблица 6.2.
Длина резьбы 10
16 18 20 22
длина стержня резьбы d
40
*
45
38 *
50
38 42 *
55
38 42 46 *
60
38 42 46 50
65
38 42 46 50
70
38 42 46 50
75
38 42 46 50
80
38 42 46 50
85
38 42 46 50
90
38 42 46 50
95
38 42 46 50
100
38 42 46 50
105
38 42 46 50
110
38 42 46 50
115
38 42 46 50
120
38 42 46 50
125
38 42 46 50
130
38 42 46 50
140
38 42 46 50
150
38 42 46 50
160, 170, 180
190, 200, 220
44 48 52 56
240,260,280,300
Номинальная
при номинальном диаметре
24 27 30 36 42 48
*
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
66
66
66
66
66
66
66
66
66
66
66
66
66
66
78
78
78
78
78
78
78
78
78
78
78
90
90
90
90
90
90
90
90
102
102
102
102
102
102
102
60
66
72
84
96
108
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 374
375.
Примечание: знаком * отмечены болты с резьбой по всей длине стержня.Для консервации контактных поверхностей стальных деталей
следует применять фрикционный грунт ВЖС 83-02-87 по ТУ. Для
нанесения на опорные поверхности шайб методом плазменного
напыления
антифрикционного
покрытия
следует
применять
в
качестве материала подложки интерметаллид ПН851015 по ТУ-14-13282-81, для несущей структуры - оловянистую бронзу БРОФ10-8 по
ГОСТ, для рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке
хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В
конструкциях
соединений
должна
быть
обеспечена
возможность свободной постановки болтов, закручивания гаек и
плотного стягивания пакета болтами во всех местах их постановки с
применением динамометрических ключей и гайковертов.
Номинальные диаметры круглых и ширина овальных отверстий в
элементах для пропуска высокопрочных болтов принимаются по
табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36
соединений
Определяющих 17 19 21 23 25 28 32 37
42
44
48
50
геометрию
Не
40
45
52
элементах
для
пропуска
20
23
25
28
30
33
36
определяющих
Длины
геометрию
овальных
высокопрочных
болтов
отверстий
назначают
в
по
результатам
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
вычисления
Всего листов 556
Лист 375
376.
максимальных абсолютных смещений соединяемых деталей длякаждого
ФПС
по
результатам
предварительных
расчетов
при
обеспечении несоприкосновения болтов о края овальных отверстий,
и назначают на 5 мм больше для каждого возможного направления
смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не
сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС
устанавливают с учетом назначения ФПС и направления смещений
соединяемых элементов.
При необходимости в пределах одного овального отверстия
может быть размещено более одного болта.
Все
контактные
поверхности
деталей
ФПС,
являющиеся
внутренними для ФПС, должны быть обработаны грунтовкой ВЖС 8302-87 после дробеструйной (пескоструйной) очистки.
Не
допускается
осуществлять
подготовку
тех
поверхностей
деталей ФПС, которые являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины
соединяемых пакета соединяемых деталей.
Во всех случаях несущая способность основных элементов
конструкции, включающей ФПС, должна быть не менее чем на 25%
больше несущей способности ФПС на фрикционно-неподвижной
стадии работы ФПС.
Минимально допустимое расстояние от края овального отверстия
до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 376
377.
Всоединениях
прокатных
профилей
с
непараллельными
поверхностями полок или при наличии непараллельности наружных
плоскостей
ФПС
должны
применяться
клиновидные
шайбы,
предотвращающие перекос гаек и деформацию резьбы.
Конструкции ФПС и конструкции, обеспечивающие соединение
ФПС с
основными элементами сооружения,
должны
допускать
возможность ведения последовательного не нарушающего связности
сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и
методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС
должны
быть
очистки
в
подготовлены
соответствии
с
посредством
либо
пескоструйной
указаниями
ВСН
163-76,
либо
дробеструйной очистки в соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть
удалены
заусенцы,
а
также
другие
дефекты,
препятствующие
плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под
навесом, или на открытой площадке при отсутствии атмосферных
осадков.
Шероховатость
поверхности
очищенного
металла
должна
находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел, воды и
других загрязнений.
Очищенные контактные поверхности должны соответствовать
первой степени удаления окислов и обезжиривания по ГОСТ 9022-74.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 377
378.
Оценка шероховатости контактных поверхностей производитсявизуально сравнением с эталоном или другими апробированными
способами оценки шероховатости.
Контроль
степени
очистки
может
осуществляться
внешним
осмотром поверхности при помощи лупы с увеличением не менее 6-ти
кратного. Окалина, ржавчина и другие загрязнения на очищенной
поверхности при этом не должны быть обнаружены.
Контроль степени обезжиривания осуществляется следующим
образом: на очищенную поверхность наносят 2-3 капли бензина и
выдерживают не менее 15 секунд. К этому участку поверхности
прижимают кусок чистой фильтровальной бумаги и держат до
полного впитывания бензина. На другой кусок фильтровальной
бумаги наносят 2-3 капли бензина. Оба куска выдерживают до
полного испарения бензина. При дневном освещении сравнивают
внешний вид обоих кусков фильтровальной бумаги. Оценку степени
обезжиривания определяют по наличию или отсутствию масляного
пятна на фильтровальной бумаге.
Длительность
перерыва
между
пескоструйной
очисткой
поверхности и ее консервацией не должна превышать 3 часов.
Загрязнения, обнаруженные на очищенных поверхностях, перед
нанесением консервирующей грунтовки ВЖС 83-02-87 должны быть
удалены
жидким
калиевым
стеклом
или
повторной
очисткой.
Результаты проверки качества очистки заносят в журнал.
6.4. Приготовление и нанесение протекторной
грунтовки ВЖС 83-02-87. Требования к загрунтованной
поверхности. Методы контроля
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 378
379.
Протекторнаягрунтовка
двуупаковочный
ВЖС
лакокрасочный
алюмоцинкового
сплава
в
виде
83-02-87
представляет
материал,
пигментной
собой
состоящий
пасты,
из
взятой
в
количестве 66,7% по весу, и связующего в виде жидкого калиевого
стекла плотностью 1,25, взятого в количестве 33,3% по весу.
Каждая
партия
документации
на
материалов
должна
соответствие
ТУ.
быть
проверена
Применять
по
материалы,
поступившие без документации завода-изготовителя, запрещается.
Перед
смешиванием
ингредиентов
следует
составляющих
довести
протекторную
жидкое
калиевое
грунтовку
стекло
до
необходимой плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная часть и
связующее тщательно перемешиваются и доводятся до рабочей
вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4
(ГОСТ 9070-59) по методике ГОСТ 17537-72.
Перед
и
во
время
нанесения
следует
перемешивать
приготовленную грунтовку до полного поднятия осадка.
Грунтовка
ВЖС
83-02-87
сохраняет
малярные
свойства
(жизнеспособность) в течение 48 часов.
Грунтовка
помещении.
ВЖС
При
83-02-87
отсутствии
наносится
под
атмосферных
навесом
осадков
или
в
нанесение
грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению
грунтовки ВЖС 83-02-87 должна быть не ниже +5°С.
Грунтовка
ВЖС
83-02-87
может
наноситься
методами
пневматического распыления, окраски кистью, окраски терками.
Предпочтение следует отдавать пневматическому распылению.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 379
380.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимноперпендикулярным направлениям с промежуточной сушкой между
слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем,
добиваясь окончательной толщины нанесенного покрытия 90-110
мкм. Время нанесения покрытия при естественной сушке при
температуре
воздуха
18-20
С
составляет
24
часа
с
момента
нанесения последнего слоя.
Сушка загрунтованных элементов и деталей во избежание
попадания
атмосферных
осадков
и
других
загрязнений
на
невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и
другие дефекты не допускаются. Высохшая грунтовка должна иметь
серый матовый цвет, хорошее сцепление (адгезию) с металлом и не
должна давать отлипа.
Контроль
толщины
покрытия
осуществляется
магнитным
толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с ГОСТ
15140-69
на
контрольных
образцах,
окрашенных
по
принятой
технологии одновременно с элементами и деталями конструкций.
Результаты проверки качества защитного покрытия заносятся в
Журнал контроля качества подготовки контактных поверхностей
ФПС.
6.4.1 Основные требования по технике безопасности
при работе
с грунтовкой ВЖС 83-02-87
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 380
381.
Для обеспечения условий труда необходимо соблюдать:"Санитарные правила при окрасочных работах с применением
ручных распылителей" (Министерство здравоохранения СССР, № 99172)
"Инструкцию
оборудования
по
санитарному
содержанию
производственных
помещений
и
предприятий"
(Министерство
распыления,
во
здравоохранения СССР, 1967 г.).
При
пневматическом
методе
избежание
увеличения туманообразования и расхода лакокрасочного материала,
должен
строго
соблюдаться
режим
окраски.
Окраску
следует
производить в респираторе и защитных очках. Во время окрашивания
в закрытых помещениях маляр должен располагаться таким образом,
чтобы
струя
лакокрасочного
материала
имела
направление
преимущественно в сторону воздухозаборного отверстия вытяжного
зонта.
При
работе
на
открытых
площадках
маляр
должен
расположить окрашиваемые изделия так, чтобы ветер не относил
распыляемый материал в его сторону и в сторону работающих вблизи
людей.
Воздушная магистраль и окрасочная аппаратура должны быть
оборудованы редукторами давления и манометрами. Перед началом
работы
маляр
исправность
надежность
должен
проверить
окрасочной
аппаратуры
присоединения
герметичность
и
инструмента,
воздушных
шлангов,
а
также
шлангов
к
краскораспределителю и воздушной сети. Краскораспределители,
кисти и терки в конце рабочей смены необходимо тщательно очищать
и промывать от остатков грунтовки.
На каждом бидоне, банке и другой таре с пигментной частью и
связующим должна быть наклейка или бирка с точным названием и
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 381
382.
обозначением этих материалов. Тара должна быть исправной сплотно закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87 нужно
соблюдать осторожность и не допускать ее попадания на слизистые
оболочки глаз и дыхательных путей.
Рабочие и ИТР, работающие на участке консервации, допускаются
к работе только после ознакомления с настоящими рекомендациями,
проведения инструктажа и проверки знаний по технике безопасности.
На участке консервации и в краскозаготовительном помещении не
разрешается работать без спецодежды.
Категорически запрещается прием пищи во время работы. При
попадании составных частей грунтовки или самой грунтовки на
слизистые
оболочки
глаз
или
дыхательных
путей
необходимо
обильно промыть загрязненные места.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 382
383.
6.4.2 Транспортировка и хранение элементов идеталей, законсервированных грунтовкой
ВЖС 83-02-87
Укладывать, хранить и транспортировать законсервированные
элементы и детали нужно так, чтобы исключить возможность
механического повреждения и загрязнения законсервированных
поверхностей.
Собирать можно только те элементы и детали, у которых
защитное покрытие контактных поверхностей полностью высохло.
Высохшее защитное покрытие контактных поверхностей не должно
иметь загрязнений, масляных пятен и механических повреждений.
При
наличии
загрязнений
и
масляных
пятен
контактные
поверхности должны быть обезжирены. Обезжиривание контактных
поверхностей,
производить
законсервированных
водным
последующей
раствором
промывкой
ВЖС
жидкого
водой
и
83-02-87,
калиевого
можно
стекла
просушиванием.
с
Места
механических повреждений после обезжиривания должны быть
подконсервированы.
6.5. Подготовка и нанесение антифрикционного
покрытия на опорные поверхности шайб
Производится очистка только одной опорной поверхности шайб в
дробеструйной камере каленой дробью крупностью не более 0,1 мм.
На
отдробеструенную
напыления
наносится
поверхность
подложка
из
шайб
методом
плазменного
интерметаллида
ПН851015
толщиной . …..м. На подложку из интерметаллида ПН851015 методом
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 383
384.
плазменногонапыления
наносится
несущий
слой
оловянистой
бронзы БРОФ10-8. На несущий слой оловянистой бронзы БРОФ10-8
наносится способом лужения припой ПОС-60 до полного покрытия
несущего слоя бронзы.
6.6. Сборка ФПС
Сборка ФПС проводится с использованием шайб с фрикционным
покрытием одной из поверхностей, при постановке болтов следует
располагать шайбы обработанными поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей
ФПС.
Рекомендуется
использование
неочищенных
внешних
поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой,
другую под гайкой). Болты и гайки должны быть очищены от
консервирующей смазки, грязи и ржавчины, например, промыты
керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания гайки
от руки на всю длину резьбы. Перед навинчиванием гайки ее резьба
должна быть покрыта легким слоем консистентной смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное
положение;
устанавливают
гайковертами
на
болты
90%
от
и
осуществляют
проектного
их
усилия.
натяжение
При
сборке
многоболтового ФПС установку болтов рекомендуется начать с болта
находящегося в центре тяжести поля установки болтов, и продолжать
установку от центра к границам поля установки болтов;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 384
385.
послепроверки
плотности
стягивания
ФПС
производят
усилий
натяжения
герметизацию ФПС;
болты
затягиваются
до
нормативных
динамометрическим ключом.
У
Общество с ограниченной ответственностью «С К С Т Р О Й К О
М П Л Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812-705-0065 E-mail: stanislav@stroycomplex-5. ru http://www. stroycomplex-5.
ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ
МОСТОВЫХ СООРУЖЕНИЙ
1. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в
оголовке опоры и диафрагме железобетонного пролетного строения или отверстий в металле
металлического или сталежелезобетонного пролетного строения с составлением схемы
(шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к опоре и
к пролетному строению в элементах амортизатора по шаблонам и, при необходимости,
райберовка или рассверловка новых отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж аморти-
затора и пространства для его установки на опоре (под диафрагмой). При необходимости, срубка
выступающих частей бетона или устройство подливки на оголовке опоры.
1.5. Устройство подмостей в уровне площадки, на которую устанавливается амортизатор.
2. Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может быть двух видов:
6. болты
расположены
внутри
основания
и
при
полностью
смонтированном
амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы фундаментных болтов
выступают над поверхностью площадки, на которой монтируется амортизатор;
7. болты расположены внутри основания и оканчиваются резьбовыми втулками, верхние
торцы которых расположены заподлицо с бетонной поверхностью;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 385
386.
8. болты расположены у края основания, которое совмещено с корпусом упора, и послемонтажа амортизатора доступ к болтам возможен, при этом концы фундаментных болтов выступают над поверхностью площадки;
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 386
387.
4) болты расположены у края основания и оканчиваются резьбовыми втулками, как и вовтором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае приведена
ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для крепления
амортизатора с фундаментными болтами, опускание основания на площадку, затяжка фундаментных болтов, при необходимости срезка выступающих над гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на подмости в
уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения отверстий под
штифты и резьбовые отверстия под болты в основании с соответствующими отверстиями в упоре,
забивка штифтов в отверстия, затяжка и законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в резьбовые отверстия втулок анкерных болтов на диафрагме пролетного строения. Если зазор между верхней
плитой и нижней плоскостью диафрагмы менее 5мм, производится затяжка болтов. Если зазор
более 5 мм, устанавливается опалубка по контуру верхней плиты, бетонируется или инъектируется зазор, после набора прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от операций
первого случая только тем, что основание амортизатора поднимается на подмости в уровне площадки, на которой монтируется амортизатор и надвигается до совпадения резьбовых отверстий во
втулках фундаментных болтов с отверстиями под болты в основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае приведена
ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки, на которой монтируется амортизатор, на высоту выступающего конца фундаментного болта.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 387
388.
в) Снятие транспортных креплений.г) Надвижка амортизатора в проектное положение до совпадения отверстий для его крепления с фундаментными болтами, опускание амортизатора на площадку, затяжка фундаментных
болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от операций
для третьего случая только тем, что амортизатор поднимается на подмости в уровень площадки,
на которой он монтируется и надвигается до совпадения отверстий в амортизаторе с резьбовыми
отверстиями во втулках.
2.2. Установка амортизаторов с верхним расположением ФПС (под металлические про-
летные строения)
2.2.1. Последовательность и содержание операций по установке на опоры амортизаторов
как с верхним, так и с нижним расположением ФПС одинаковы.
2.2.2. К металлическому пролетному строению амортизатор прикрепляется посредством
горизонтального упора. После прикрепления амортизатора к опоре выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к конст-
рукциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются вильчатые
прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.3. Подъемка амортизатора на подмости в уровне площадки, на которой он будет смон-
тирован.
2.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Л.А. Ушакова
Согласовано:
Главный инженер проекта
ОАО «Трансмост»
Главный инженер проекта ОАО
«Трансмост»
И.В. Совершаев
И.А. Мурох
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 388
389.
Главный инженер проектаВ.Л. Бобровский
При испытаниях узлов и фрагментов компенсатора пролетного строения из упругопластических
стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина проезжей части
3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с
пластическими шарнирами ( компенсаторами ) , системой стальных ферм соединенных элементов
на болтовых и соединений между диагональными натяжными элементами, верхним и нижним
поясом фермы из пластинчатых пролетной стальной фермы- балки с применением гнутосварных
профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ "
Ленпроектстальконструкция" ) для системы несущих элементов и элементов проезжей части
армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора
проф дтн ПГУПС А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях
упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ организацией
"Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных
элементов компенсатора–гасителя напряжений для пластичных ферм американскими инженерами, при
строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017
году, и использовался альбом "Шарнирные узлы" .
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных ферм
Всего листов 556
Лист 389
390.
Испыт. SCAD 3D - модель конечных элемен компенсатора–гасителя напряж для пластичных фермВсего листов 556
Лист 390