Похожие презентации:
Energy Automation
1. Energy Automation
Underexcitation Protection© Siemens AG 2011
Infrastructure & Cities Sector
2. Content
TheoryIntroduction
Stability limits of generators
Admittance measuring principle
Admittance measurement
Characteristic, settings
Comparison with the impedance measuring principle
Examples
Dynamic tests
Practical measurements
Page 2
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
3. Folie 3
Reasons for UnderexcitationFailure of the excitation device
short circuit in the excitation circuit
ZLoad
interruption in the excitation circuit
Maloperation of the automatic voltage
regulator
Incorrect handling of the voltage regulator
(generator, transformer)
Generator running with capacitive load
Countermeasure:
Underexcitation Protection
G
Page 3
excitation
device
Jun-23
Note: This protection is also called
Loss of Field Protection
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
4. Folie 4
Possible Design of the GeneratorCapability Diagram
Definition:
Preferred design
+Q
(Var)
+P
(W)
Operating
area
over excited
+P
(W)
Static
stability
limit
under excited
Operating
area
under over
excited excited
+Q
(Var)
Static stability
limit
Page 4
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
5. Folie 5
0,850,8
0,85
0,9
MW
0,95
P
0,975
0,975
0,95
0,9
Capability Curve of a Turbo Generator
type of generator:
TLRI 108/46
220
nominal apparent power SN = 200 MVA
nominal voltage
VN = 15.750 kV
nominal current
IN = 7.331 kA
nominal frequency
fN = 50.0 Hz
0,7 power factor
cos N = 0.8
cold-air temperature
Tx = 40.00 °C
200
180
0,8
160
140
0,7
0,6
120
0,6
100
80
0,4
60
0,4
40
cosphi
0,2
cosphi
0,2
MVAr 140 120 100 80
60
40 20
underexcited
Page 5
Jun-23
0
20 40
Q
60 80 100 120 140 160 180 MVAr
overexcited
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
6. Folie 6
Per Unit Capability Diagram of a SynchronousGenerator in the Case of Undervoltage (U = 0.9 UN)
P [p.u]
1
0.85
U=1; I=1;
U=0.9; I= 1.11
Stability
limit
overexcited
underexcited
Q [p.u]
0.81/xd
1/xd
In the case of an under-voltage the generator capability curve
moves to right and reduces the stability limits of the generator
Page 6
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
7. Folie 7
Summary of the Statements Regardingthe Stability Limits
practical
stability
limit
Stability
limit at
U < UN + P
(W)
theorectical
steady-state
stability
limit
maximum of
theorectical
dynamic
stability
limit
under
excited
over
excited
+Q
(Var)
U2
xd
U2
x'd
Page 7
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
8. Folie 8
Definitions for Converting the Generator Diagraminto the Admittance Diagram
Complex Power:
S U I
Admittance:
S P jQ
Y
I
U
Y G jB
B: Susceptance
Transformation:
I U
S*
P - jQ
Y
2
2
U
U
U U
+
P
P
G 2
U
Q
B
Q
U2
+
-
G: Conductance
P
Q
j
U2 U2
+
B
G
+
In the per unit
representation
the diagrams are the
same. There is only
- a phase shift in the
reactive part of 180°
Note: In the per unit calculation is UN = 1
Page 8
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
9. Folie 9
Characteristics of the Underexcitation Protectionwith Admittance Measurement Y>
char.3
char.2
3 independent characteristics and 3 timer
char.1
G[p.u.]
characteristic 1,2 is adaptated on the
steady state curve
(delay: alarm only 10s; trip 0,5 – 3 s)
additional inquiry of the field voltage
(trip delay time: 0,5 – 1,0 s)
a3
B[p.u.] x
1
d3
a2
1
1
x d1 x d2
a1
characteristic 3 is adaptated on the
dynamic stability limit curve
(short trip delay time: 0 – 0,3 s)
blocking of the protection at U<25% UN
Settings: Can direct read out from the generator diagram
1
1
x d1 x
d
Page 9
a1= 80°
Jun-23
1
1
xd2 0.9 xd1
a2 = 90°
Energy Automation
1
2
xd3 1 or xd
a3 = 110°
© Siemens AG 2011
Infrastructure & Cities Sector
10. Test Underexcitation
machine data:300 MVA, 20 kV
1= 0.67 p.u. , a1= 70°
2= 0.50 p.u. , a2= 90°
P[p.u.]
UN
CT: 10000/1A,
VT: 20/0.1 kV
ING
I
1 Test1
Char. 1
Char. 2
φTest1
ITest2
2
a1
φTest2
φN
a2
λ 2 1 x d2
-1
1 Q[p.u.]
λ1 1 x d1
I Test InO
λ sin α
λ sin α
InO
sin γ
sin 90 α Test
Example : U U N 1p.u. ; Test1 30
InO (sec)
SN
I
300000 kVA
1A
CTsec
0.866 A
3 U N I CTprim
3 20 kV 10000 A
I Test1 0.866 A
Page 10
Jun-23
Energy Automation
0.67 sin 70
0.712 A
sin 90 70 30
© Siemens AG 2011
Infrastructure & Cities Sector
11. Folie 11
Underexcitation Protection with CriterionImpedance I-ZI<
Generator diagram is transformed into the impedance plane (e.g. X=U2/Q).
Stability limit is represented as a circular arc.
characteristic: Offset-MHO
X[p.u.]
R[p.u.]
characteristic 1, tdelay 0...0.3 s (for high
load generator and field failure)
0.5 xd’
1
tripping zone inside the circle
Char.1
xd
Char.2
Relay settings according
IEEE C37.102-1995
approximation
of stability
limit
characteristic 2, tdelay 0.5 - 3 s (for low
load generator, section field voltage
failure)
Summary:
Measuring principle is from the electromechanical relays, because impedance
measuring elements were only available
circle characteristic is a compromise for
adaptation to the generator stability curve
Page 11
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
12. Folie 12
Transformation of Criterion Impedance I-ZI<into the Admittance Plane
Transformation rule:
A circle which doesn’t touch the zero point becomes inverted a circle again.
Impedance plane
X[p.u.]
Admittance plane
1
Y
Z
G[p.u.]
R[p.u.]
0.5 xd’
1
Char.1
B[p.u.]
xd
2
1
2 x d x ,d x d
Char. 2
2
x ,d
Page 12
Jun-23
Energy Automation
2
1
,
2 xd
© Siemens AG 2011
Infrastructure & Cities Sector
13. Folie 13
Both Measuring Principles in theAdmittance Plane
Impedance
principle
Admittance
principle
Admittance Plane
Trajectory in the
case of underexcitation
with 100% excitation
loss
4
2
Generator
diagram
0
Settings:
x’d = 0,27
xd = 1,81
2
4
8
7
6
2/x’d = 7,4
Page 13
Jun-23
5
4
3
2
1
1/xd = 0,55
Energy Automation
0
1
Note:
B-axis is for mathematical
reasons multiplied by -1
© Siemens AG 2011
Infrastructure & Cities Sector
14. Folie 14
Dynamic Test on a Network Model with RTDSFault Record
Test condition: P=160 MW Q=25 MVar; If = 1,87 If0; Voltage regulator failure: U= 1,05
0,8
Relay settings: Char 1 = 0.55 80°, 10s; Char 2 = 0.51 90°, 10s; Char 3 =1.1 110°, 0s
Page 14
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
15. Folie 15
Dynamic Test on a Network Model with RTDSResults in the Admittance Plane
150
150
100
G1
i
Load
point
Ch1( l )
Ch2( l )
Ch3( m )
50
0
0
250
200
237.814
150
100
B1 l l m
i
50
0
50
12.87
Scaling in percent - related to primary values X calculation every 50ms
Page 15
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
16. Folie 16
Dynamic Test on a Network Model with RTDSRMS Fault Record - Low Load Condition
Test condition: P=40 MW Q=25 MVar; If = 1,4 If0; Voltage regulator failure: U= 1,05
0,7
Relay settings: Char 1 = 0.55 80°, 10s; Char 2 = 0.51 90°, 10s; Char 3 =0.9 100°, 0s
Page 16
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
17. Folie 17
Dynamic Test on a Network Model with RTDSResult in the Admittance Plane
50
50
Leitwerte in Prozent
40
Underexcited
region for 3.2
s
30
G( i )
Ch1( l )
Ch2( l )
20
Load
point
Ch3( m )
Oscillating near
the characteristic
10
0
5
100
100
80
60
40
B( i ) l l m
Leitwerte in Prozent
Scaling in percent - related to primary values
Page 17
Jun-23
Energy Automation
20
0
20
12.066
X calculation every 20ms
© Siemens AG 2011
Infrastructure & Cities Sector
18. Folie 18
Motor Operation of a Pump Storage StationAfter Problems with the Generator Circuit Breaker
the Field Breaker was switched OFF
Trip log of F11
Due to problems of the GCB the HVCB was switched off via
breaker failure protection (see trip delay in the fault record)
Page 18
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector
19. Folie 19
SIGRA Record of Trip by the UnderexcitationProtection
X, R
P, Q
0,5 s by 50 BF
Page 19
Jun-23
Energy Automation
© Siemens AG 2011
Infrastructure & Cities Sector