Похожие презентации:
Геометрический смысл производной
1.
уy f (x)
х
x0
2.
АРабота устно.
tg В -?
4
С
А
В
7
3
С
tg A-?
3
В
Найдите градусную меру < В.
Найдите градусную меру < А.
Вычислите
tgα, если
α = 135°,
120°, 150°.
3.
Острый или тупой угол образуеткасательная к графику функции в точке
х₀ с положительной полуосью Ох?
y 2 x , x0 1
2
y ( x 5) , x0 3
3
2
y x x , x0 1
2
Чему равен тангенс угла наклона
касательной к графику функции y = x² + 2
в точке х₀ = -1?
4.
f ( x0 ) tg kУ
y f (x)
k – угловой коэффициент
прямой (касательной)
y k x b
α
0
x0
Х
Геометрический смысл производной: если к графику функции y = f(x)
в точке с абсциссой x0 можно провести касательную, непараллельную оси у,
то f ( x ) выражает угловой коэффициент касательной, т.е.
f ( x0 ) k
Поскольку k tg , то верно равенство f ( x0 ) tg
0
5.
Если α < 90°, то k > 0.Если α > 90°, то k < 0.
у
x2 x3
у f (x)
x1
0
х
Если α = 0°, то k = 0. Касательная параллельна оси ОХ.
6.
Задание №1.На рисунке изображён
график функции y = f(x) и
касательная к этому
графику, проведённая в
точке с абсциссой -1.
Найдите значение
производной функции f(x) в
точке х₀ = -1.
у
8
4
1
1
0
х
tg (180 ) tg
2
4
f ( x0 ) tg
4
tg
2
подсказка
f ( x0 ) 2
7.
Задание №2.6
Ответ:
8
В8 0
,
7
5
8.
Задание №3.Ответ:
В8
-
3
9.
Задание №4.На рисунке изображён график производной функции y = f (x),
определённой на интервале (-5;6). Найдите количество
точек, в которых касательная к графику функции y = f(x)
параллельна прямой у = 2х – 5 или совпадает с ней.
у f (x)
у
2
0
х
f ( x) 2
Ответ: 5
подсказка
10.
Задание №5К графику функции y = f(x) провели касательные под углом 135°
к положительному направлению оси Ох. На рисунке изображён
график производной функции. Укажите количество точек
касания.
у f (x)
у
-1
Ответ: 5
х
11.
Задание №6у f (x)
у
1
01
х
3
К графику функции y = f(x)
проведена касательная в
точке с абсциссой х₀ = 3.
Определите градусную меру
угла наклона касательной,
если на рисунке изображён
график производной этой
функции.
f ( x0 ) 1
tg 1
45
Ответ:
В8 4
5
12.
13.
Для вычисления угловогокоэффициента
касательной, где k = tgα,
достаточно найти отрезок
касательной с концами в
вершинах клеток и, считая
его гипотенузой
прямоугольного
треугольника, найти
отношение катетов.