Похожие презентации:
О пригодности температурного компенсатора, для трубопроводов теплотрасс и сейсмоопасных районов
1.
Испытательный центр СПб ГАСУ, аккредитован Федеральной службой по аккредитации(аттестат № RA.RU.21СТ39, выдан 23.06.2015), ОО "Сейсмофонд" при СПб ГАСУ
190005, СПб, 2-я Красноармейская ул. д 4 ( ФГБОУ СПб ГАСУ)
ОГРН: 1022000000824
ЗАКЛЮЧЕНИЕ (экспертиза)
О пригодности температурного компенсатора, для трубопроводов теплотрасс и сейсмоопасных районов
более 9 баллов , согласно СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия"
ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РФ (Основание: Постановление Правительства
Российской Федерации от 27 декабря 1997г. № 1636)
Приложение к ПРОТОКОЛУ № 353 от 17.01.2024 ( компьютерное моделирование в механике деформируемых сред и
конструкций, численным и аналитическим методом расчета в ПК SCAD, на сейсмическое воздействие петлеобразного температурного
компенсатора для трубопроводов теплотрасс, закрепленных на СЕЙСМОИЗОЛИРУЮЩИХ опорах ( ИЗОБРТЕНИЕ № 165076 «Опора
сейсмостойкая», преимущественно при импульсных растягивающих температурных нагрузках или сейсмическое взаимодействии с
геологической средой, для сейсмоопасных районов с сейсмичностью более 9 баллов, согласно СП 20.13330.2011, СНиП 2.01.07-85* с
использованием при лабораторных испытания в Испытательном центр в СПб ГАСУ, согласно заявки на изобретение полезная модель:
«Фрикционно-демпфирующий компенсатор для трубопроводов » Мкл. F16 L23/00, регистрационный № 2021134630 от 25.11.2021,
входящий № 073171 Федеральный институт промышленной собственности» (ФИПС). Заявитель Президент организации «Сейсмофонд»
при СПб ГАСУ ИНН : 2014000780, ОГРН: 1022000000824 Мажиев Х. Н.
Техническое свидетельство
выдано ГУП "ТЭК СПб", ООО "Монтажно-эксплуатационная фирма АСК"
[email protected] [email protected] [email protected] 602-93-93 494-84-94 (812) 694-78-10
https://t.me/resistance_test t89219626778Ggmail.com [email protected] О
ПРИГОДНОСТИ ПРОДУКЦИИ ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ
(Основание: Постановление Правительства Российской Федерации от 27 декабря 1997г. №1636)
ТС № 2022-0000571
Зарегистрировано 11 мая 2024 г.
Действительно до 11 мая 2027 г.
Настоящим техническим свидетельством подтверждается пригодность продукции указанного наименования для применения в
строительстве на территории Российской Федерации в соответствии с областью применения и при условии соблюдения требований,
приведенных в технической оценке ФЦС (Федеральный научно-технический центр сертификации в строительстве).
НАИМЕНОВАНИЕ ПРОДУКЦИИ Антисейсмическое фланцевое фрикционно -подвижное соединение для
трубопроводов проф Темнова В Г " RU № 2018105803/20(008844) F16L 23/00, от 15.02.2018 для сейсмоопасных
районов (обеспечивает многокаскадное демпфирование при импульсных растягивающих температурных и динамических
нагрузках при многокаскадном демпфировании № 1143895, 1174616, 1168755, 165076 ) для магистральных
трубопроводов, теплотрасс, серийный выпуск , предназначенные для сейсмоопасных районов с сейсмичностью до 9
баллов, В районах с сейсмичностью более 9 баллов при динамических, импульсных растягивающих нагрузках для
поглощения сейсмической энергии необходимо использование фрикционно-демпфирующих компенсаторов, соединенных
с помощью фланцевых фрикционно-подвижных демпфирующих компенсаторов (с учетом сдвиговой прочности) при
реконструкции тепловой сети в квартал 25А Озеро Долгое Уточкина д 6 корп 3 лит 1 ГУП "ТЭК СПб" 601-93-93
предназначенная для работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64, для
нефтегазовой арматуры (трубопроводов), для районов с сейсмичностью более 8 баллов применяется демпфирующего
спиралеобразного компенсатора на фрикционно–подвижными соединениями (ФПС) с фрикционнодемпфирующими спиралеобразные компенсаторами для трубопроводов на фланцевых фрикционно-подвижными соединениями (ФПС) в виде болтовых
соединений и амортизирующими элементами (предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64),
согласно СП 16.13330.2011( СНиП II -23-81*) п.14.3 -15.2.4, ТКТ 45-5.04-274-2012 (02250) Технический кодекс установившейся практики "Стальные
конструкции" Правила расчета, Минск, 2013 , п. 9.7.4 - п 10.3.2,заявка на изобретение № 2021134630 от 25.11.2021 , вх. 073171 «Фрикционно –
демпфирующий компенсатор для трубопроводов» Мкл F 16 L 23/00 Федеральный институт промышленной собственности (ФИПС) Бережковская наб 30 к.1
2.
ТС №2022-0000571 ОО «Сейсмофонд» № 1Прилагаются лабораторные испытания в Испытательном центре СПб ГАСУ узлов и фрагментов
демпфирующего спиралеобразного компенсатора на фланцевых фрикционно-подвижных компенсаторов,
использовалось изобретение А.М.Уздина , согласно заявки на изобретение "Фрикционнодемпфирующий компенсатор для трубопроводов " F16 L 23/00. Регистрационный № 2021134630
от 25.11.2021 , входящий № 073171, выданный "Федеральным институтом промышленной
собственности" (ФИПС) , автор Зам Президент организации "Сейсмофонд" при СПб ГАСУ ИНН :
2014000780, ОГРН: 1022000000824 Уздин А М т. (812) 694-78-10 https://t.me/resistance_test
[email protected] [email protected]
При лабораторных испытания узлов и фрагментов в Испытательном центре СПб ГАСУ и в ПК
SCAD демпфирующего спиралеобразного компенсатора на фрикционно-подвижных соединениях с
подвижными узлами крепления рассчитаны на сейсмостойкость, взрывопрочность, устойчивость к
воздействию от удара воздушной волны на основе заявки на изобретение : «Фрикционно –
демпфирующий компенсатор для трубопроводов» F16L 23/00, регистрационный № 2021134630 от
25.11.2021 , входящий 073171 ФИПС отражены в протоколе № 571 от 10.03.2022 см ссылку:
https://disk.yandex.ru/d/svWGsxT58paepw https://ppt-online.org/1043075 Смотри : Специальные
технические условия, на осевое статическое усилие сдвига демпфирующего демпфирующего
спиралеобразного компенсатора на фрикционно-подвижных соединениях для противопожарных
трубопроводов фрикционно-подвижного соединения по линии нагрузки № 1516-2/3 от
20.02.2018 см. https://disk.yandex.ru/d/163Eui1iXJE8RQ https://ppt-online.org/1043095
https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://ppt-online.org/1026337
ЗАЯВИТЕЛЬ (ИЗГОТОВИТЕЛЬ) : ГУП "ТЭК СПб " ООО "Монтажно-эксплуатационная
фирма АСК"[email protected] [email protected] [email protected] 602-93-93 494-84-94
(812) 694-78-10 https://t.me/resistance_test t89219626778Ggmail.com
[email protected]
Демпфирующий спиралеобразного компенсатор, изготавливаемые в соответствии с ОСТ 34-10-616-93 , серия
4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные" изготовленные,
и согласно изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов (в районах с сейсмичностью 8
баллов и более необходимо использование демпфирующего спиралеобразного компенсатора (спиралеобразных)
компенсаторов на фрикционно-подвижных соединениях для противопожарных трубопроводов, на фрикционно-подвижных
соединениях, с целью обеспечения многокаскадного демпфирования при температурных нагрузках, согласно
изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755, 2010136746 , 2550777.
Испытание проводились на соответствие групп механической прочности на вибрационные, ударные
температурных воздействия: М5-М7, М38-М39 по результатам испытаний методом численного моделирования в
ПК SCAD на взаимодействие противопожарных трубопровода с геологической средой ).
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ : СП 56.13330.2011 Производственные здания. Актуализи-рованная
редакция СНиП 31-03-2001,ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 17516.1-90, п.5, СП
14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного соединения (ФПС)
согласно альбома серии 4.402-9 «Анкерные болты», альбом, вып.5, «Ленгипронефтехим», ГОСТ 17516.1-90
(сейсмические воздействия 9 баллов по шкале MSK-64) п.5, с применением ФПС, СП 16.13330.2011. п.14.3,
ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
НА ОСНОВАНИИ
Протокола № 535 от 17.01.2024, ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ № RA.RU.21СТ39 от
27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от 27.05.2021, действ. 27.05.2021, свидетельство НП
«СРО «ЦЕНТРСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2021 и свид. СРО
«ИНЖГЕОТЕХ» № 281-2010-2014000780-П-29 от 22.04.2021 в ИЦ "ПКТИ-СтройТЕСТ" и протокола
испытания на осевое статическое усилие сдвига дугообразного зажима с анкерной шпилькой № 1516-2 от
25.11.2021 и протокола испытаний на осевое статическое усилие сдвига фрикционно-подвижного соединения по линии нагрузки № 1516-2/3 от 20.02.2020 : См. https://disk.yandex.ru/d/svWGsxT58paepw https://pptonline.org/1043075
При лабораторных испытаниях использовались изобретения: "Опора сейсмостойкая», патент № 165076, БИ № 28 , от
10.10.2016, заявка на изобретение № 2016119967/20- 031416 от 23.05.2016, Опора сейсмоизолирующая маятниковая",
научные публикации: журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», журнал «Жилищное
строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», журнал
«Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий», журнал «Монтажные и
специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий», Российская газета
от 26.07.95 стр.3 «Секреты сейсмостойкости». Отчет о лабораторных испытания хранится на кафедре металлических
и деревянных конструкций СПб ГАСУ : 190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, (д.т.н. проф ЧЕРНЫХ
А. Г. строительный факультет) [email protected] [email protected] (921) 962-67-78, (911) 175-84-65,
(996) 798-26-54 , т / ф (812) 694-78-10
Президент организации «Сейсмофонд» при СПб ГАСУ
Мажиев Х Н
Эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ
, специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, (812) 694-78-10 https://t.me/resistance_test
t89219626778Ggmail.com [email protected]
(812) 694-78-10 https://t.me/resistance_test t89219626778Ggmail.com
[email protected]
3.
ТС №2022-0000571 №2Техническое свидетельство и специальные технические условия разработанные на основании
использования опыта инженеров американских организация, расположенных в г. Анкоридж (
Аляска, США ) с использованием демпфирующих компенсаторов , предназначены для работы в
сейсмоопасных районах, сейсмичность более 9 баллов, для районов с сейсмичностью 8 баллов и более
соединение трубопроводов должно быть выполнено с помощью спиралеобразных демпфирующих
фланцевых фрикционно-подвижных компенсаторов (соединений на ФПС), по заявке на изобретение
компенсатор для трубопроводов . Старое название Фрикционно- демпфирующий компенсатор для
трубопроводов аналог компенсатора Сальникова для теплотрасс или техническое решение предназначено
для защиты опор скользящих для теплотрасс от температурных воздействий за счет использования
фланцевого демпфирующего компенсатора для трубопроводов, с упругими демпферами сухого трения при
многокаскадном демпфировании и динамических нагрузках на протяжных фрикционное- податливых
соединений проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616
"Болтовое соединение плоских деталей". Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое соединение плоских деталей встык, патент
Фланцевое соединение растянутых элементов замкнутого профиля № 2413820, «Стыковое соединение
растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00
" Узел упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24
"Способ определения коэффициента закручивания резьбового соединения" См. заявку на изобртение №
2021134630 от 25.11.2021 от 25.11.2021 входящий 073171 отдел 17 ФИПС "Фрикционно -демпфирующий
компенстаор для трубопроводов" F16 L 23/00 : https://disk.yandex.ru/i/Ym_3Aa8Ht14Lfg https://pptonline.org/1026337
Протокола № 353 от 17.01.2024 (ИЛ ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от
27.05.2020, действ. 27.05.2020, организация «Сейсмофонд» при СПб ГАСУ ИНН 2014000780 и протокола № 1516-2/3 от 20.02.20230 (ИЦ
"ПКТИ-СтройТЕСТ", адрес:197341, СПб, Афонская ул., д.2 , (921) 962-67-78. Ссылки испытаний фрагментов узлов компенсатора для
трубопроводов на фланцевых соединениях, c использованием болтовых, демпфирующих соединений расположенных в длинных
овальных отверстиях, установленных вдоль оси соединения, по линии нагрузки, с использованием петлеобразных демпфирующих
компенсаторов для трубопроводов, согласно заявка на изобретение : " Фрикционно -демпфирующий компенсатор для трубопроводов" F
16L 23/00 , регистрационный в ФИПС № 2021134630, от 25.11.2021, входящий № 073171 и согласно изобретений «Опора
сейсмостойкая», патент № 165076, 154505, изобретениям №№1143895, 1168755, 1174616, 2010136746 Ссылка на протокол испытаний
на сейсмостойкость в ПК SCAD teplotrassi izobretenie Temnova protokol Antiseysmicheskoe flantsevoe friktsionno podvizhnoe soedinenie 489
стр https://disk.yandex.ru/i/4o7hAnF_Jsmatw https://ppt-online.org/1470250 https://mega.nz/file/53Um3Q6I#TADokI24xa7A7tlbt4J_p3K9eiD_6h4bAnqb0nXyDg Президент организации «Сейсмофонд» при СПб ГАСУ , ИНН: 2014000780 (аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2021 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2021
[email protected] Мажиев Х.Н. г.СПб . Эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных
материалов и метрологии») СПб ГАСУ , специальность: производство строительных изделий и конструкций, квалификация: инженерстроитель-технолог,к.т.н, доцент И.У.Аубакирова (921) 962-6778, (911) 11758465,
4.
ТС №2022-0000571 № 35.
ТС №2022-0000571 ОО «Сейсмофонд» №4Демпфирующий спиралеобразный температурный компенсатор для ГУП "ТЭК СПб " ООО "Монтажно-
эксплуатационная фирма АСК" [email protected] [email protected] [email protected]
602-93-93 494-84-94, и испытан в СПб ГАСУ в виде фрагмента (узла ) в виде болтовых соединений с
тросовыми или медными гильзами, расположенных в длинных овальных отверстиях, согласно
изобретениям: №№ 1143895,1174616, 1168755 SU, 2010136746 RU, участки соединения трубопровода с
системой противопожарной защиты должны быть выполнены в виде спиралевидной винтовой змейки" или «зиг-зага» и уложенные на сейсмоизолирующих опорах, согласно изобретения № 165076
RU "Опора сейсмостойкая", опубликованного в Бюл. № 28 от 10.10.2016 ФИПС , с трубопроводами (
ГОСТ Р 55989-2014), и предназначенное для теплотрасс, серийный выпуск (в районах с сейсмичностью 8
баллов и выше для нефтегазовой арматуры ( трубопроводов) необходимо использование сейсмостойких
демпфирующих опорах , а соединение трубопроводов необходимо на фланцевых сдвиговых
фрикционно- подвижных соединений, работающих на сдвиг, с использованием фрикци -болта,
состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным
обожженным клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.6380,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device и
согласно изобретения «Опора сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от
10.10.2016, а в местах подключения трубопроводов к трубопроводам применять демпфирующий
спиралеобразный компенсатора на фрикционно-подвижных соединениях ГУП "ТЭК СПб " ООО "Монтажно-
эксплуатационная фирма АСК"[email protected] [email protected] [email protected]
602-93-93 494-84-94, для теплотрасс должен быть уложены в виде "Z" или "зиг-зага ", предназначены
для работы в сейсмоопасных районах, сейсмичность более 9 баллов и для взрывопожароопасных
производств категории А, Б и Е), закрепленных на основании фундамента с помощью демпфирующих
фрикционно-подвижных соединений (ФПС), выполненных согласно изобретениям №№ 1143895,1174616,
1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746, 2413098, 2148805, 2472981, 2413820,
2249557, 2407893, 2467170, 4094111 US, TW201400676 (участки соединения промышленного трубопровода,
выполнены в виде «змейки» или «зиг-зага»), для повышения надежности, виброустойчивости и
термоустойчивости для реконструируемых теплотрасс, трубопроводов, которые соответствует
группе механического исполнения М13 (в районах с сейсмичностью более 8 баллов и более комплектные
распределительные устройства должны быть закреплены на основания с помощью демпфирующих ,
сейсмостойких опор на фрикционно-подвижных соединениях с контролируемым натяжением (ФПС),
выполненных в виде болтовых косых или демпфирующих соединениях с использованием латунной
шпильки -болта, с пропиленным в ней пазом и забитым в паз шпильки упруго-пластичным медным
обожженным клином, с использованием тросовой гильзы (обмотки) вокруг шпильки, согласно
изобретениям: патенты №№1143895, 1168755, 1174616, «Опора сейсмостойкая», патент № 165076
Е04Н 9/02).
Президент организации «Сейсмофонд» при СПб ГАСУ, ИНН: 2014000780 (аттестат аккредитации
СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» №
0223.01-2010-2010000211-П-29 от 27.03.2021 СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 [email protected] Мажиев Х.Н.
СПб ГАСУ https://pub.fsa.gov.ru/ral/view/26088/applicant
6.
ТС №2022-0000571 ОО «Сейсмофонд»№ 5Зам Президента организации «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат
аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2021
СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2021 Коваленко Е И г.СПб
7.
ТС №2022-0000571 № 6 ОО «Сейсмофонд»ТКП 45-5.04-274-2012 "Стальные конструкции. Правила расчета"
https://dwg.ru/dnl/13468
Болты установленные в отверстия с большим зазором или в короткие овальные отверстия
при передаче усилия перпендикулярно продольной оси отверстия ТЕХНИЧЕСКИЙ КОДЕКС
ТКП 45-5.04-274-2012 (02250) установившейся практики
СТАЛЬНЫЕ КОНСТРУКЦИИ
8.
ТС №2022-0000571 ОО «Сейсмофонд» № 79.
ТС №2022-0000571 ОО «Сейсмофонд» № 8Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ
, специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова [email protected] [email protected] [email protected] [email protected] (921) 962-6778, (911)
11758465, (951) 6441648 Подтверждение компетентности. Номер решения о прохождении процедуры подтверждения компетентности
8590-гу (А-5824) http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
10.
ТС №2022-0000571ОО «Сейсмофонд» № 9
Зам .Президент организации «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» №
0223.01-2010-2010000211-П-29 от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2021 spb6947810@g,ail.com
Коваленко Е.И. г.СПб Подтверждение компетентности. Номер решения о прохождении процедуры подтверждения компетентности
8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
11.
ТС №2022-0000571ОО «Сейсмофонд» № 10
12.
ТС № 2022-0000571 ОО «Сейсмофонд» № 11Поз.
1
2
3
4
5
6
Обозначение для крепления компенсатора к
конденстоответчику автоматическому к трубопроводу на
протяжных ФПС для нефтегазовой арматуры (трубопровода)
Болт с контролируемым натяжением по изобретению №
1143895, 1168755, 1174616, 165076
Шайба гровер согласно ТУ по изобретению № 1143895,
1168755, 1174616, 165076
Втулка медная обожженная - плоская С.12, пот изобретениям
№ 1143895, 1168755, 1174616, 165076
Шайба свинцовая или медная - плоская С.12 по изобретению
№ 2010136746 E04 C2/00
Кол. по серии ШИФР 1.0102с.94(2021) выпуск 04 СПб ГАСУ
Втулка из троса в оплетке ( гильза, втулка) С.14-16
Медный обожженный энергопоглощающий клин, забитый в
пропиленный паз латунной или стальной шпильки (болта),
для обеспечения многокаскадного демпфирования при
импульсных растягивающих нагрузках для корпусов
Толщиной 2 мм или более
Согласно изобретения ( заявка
2016119967/20(031416) от 23.05.2016
"Опора сейсмоизолирующая маятниковая"
По изобретению № 1143895, 1168755,
1174616, 165076
По изобретению № 1143895, 1168755,
1174616, 165076
По изобретению № 1143895, 1168755,
1174616, 165076
Толщиной 2 мм или более
Президент организации «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» №
0223.01-2010-2010000211-П-29 от 27.03.2021 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2021 Мажиев Х.Н.
г.СПб
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
13.
ТС № 2022-0000571ОО «Сейсмофонд» № 12
Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ
, специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, Подтверждение компетентности. Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
14.
ТС № 2022-0000571ОО "Сейсмофонд" № 13
Демпфирующий спиралеобразный компенсатор для трубопроводов , теплотрасс, предназначены для
теплотрасс и сейсмоопасных районах, сейсмичность 9 баллов), (для районов с
сейсмичностью 8 баллов и более соединение трубопроводов друг должно быть
выполнено с помощью демпфирующего спиралевидного компенсатора на протяжных (
проскальзывающих) фланцевых фрикционно-подвижных соединений (ФФПС) ( см.
изобретения №№ 2413820Е04В1/58, 887748 Е04В1/38) в виде болтовых соединений,
расположенных в длинных овальных отверстиях, согласно изобретениям: №№
1143895,1174616, 1168755 SU, 2010136746 RU, участки соединения трубопровода
теплотрассы, на участках где проходит температурный шов в зданиях и сооружениях
, должны быть выполнены в виде «змейки» или «зиг-зага» и уложенные на
сейсмоизолирующих опорах, согласно изобретения № 165076 RU "Опора
сейсмостойкая", опубликовано в Бюл. № 28 от 10.10.2016).
Президент организации «Сейсмофонд» при СПб ГАСУ, ИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ»
№ 0223.01-2010-2010000211-П-29 от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 Мажиев Х.Н.
г.СПб Подтверждение компетентности. Номер решения о прохождении процедуры подтверждения компетентности 8590-гу (А5824) http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
15.
ТС № 2022-0000571 ОО "Сейсмофонд" № 14Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ ,
специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, Подтверждение компетентности. Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824)
Http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
16.
ТС № 2022-0000571 ОО"Сейсмофонд" №15Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб
ГАСУ , специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н,
доцент И.У.Аубакирова (921) 962-6778, (911) 11758465, Подтверждение компетентности. Номер решения о прохождении
процедуры подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
17.
ТС № 2022-0000571 ОО «Сейсмофонд» № 1618.
ТС № 2022-0000571 ОО "Сейсмофонд" № 1719.
ТС № 2022-0000571 ОО "Сеймофонд" №18Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ
, специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, (951) 6441648. Подтверждение компетентности. Номер решения о прохождении
процедуры подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
20.
ТС №2022-0000571 ОО "Сейсмофонд" № 1921.
ТС № 2022-0000571 ОО "Сейсмофонд" № 20Результаты определения параметров ФПС для крепления компенсатора
параметры N
подвижки
k1106,
кН-1
k2 106,
кН-1
k ,
с/мм
S0,
мм
SПЛ
мм
q,
мм-1
f0
N0 ,
кН
к
1
2
3
4
5
6
7
8
11
8
12
7
14
6
8
8
32
15
27
14
35
11
20
15
0.25
0,24
0.44
0.42
0.1
0.2
0.2
0.3
11
8
13.5
14.6
8
12
19
9
9
7
11.2
12
4.2
9
16
2.5
0.00001
0.00044
0.00012
0.00011
0.0006
0.00002
0.00001
0.00028
0.34
0.36
0.39
0.29
0.3
0.3
0.3
0.35
105
152
125
193
370
120
106
154
260
90
230
130
310
100
130
75
22.
ТС № 2022-0000571 ОО "Сейсмофонд" № 21Результаты определения параметров ФПС для демпфирующего спиралеобразного компенсатора
конденсатоотводчики автоматические (ЛШТИ.494654.001ТУ) АО «Завод им. Гаджиева "
параметры N
подвижки
k1106,
кН-1
k2 106,
кН-1
k ,
с/мм
мм
S0,
SПЛ
мм
мм-1
q,
f0
N0,
к
1
2
3
4
5
6
7
8
11
8
12
7
14
6
8
8
32
15
27
14
35
11
20
15
0.25
0,24
0.44
0.42
0.1
0.2
0.2
0.3
11
8
13.5
14.6
8
12
19
9
9
7
11.2
12
4.2
9
16
2.5
0.00001
0.00044
0.00012
0.00011
0.0006
0.00002
0.00001
0.00028
0.34
0.36
0.39
0.29
0.3
0.3
0.3
0.35
105
152
125
193
370
120
106
154
260
90
230
130
310
100
130
75
кН
Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ
, специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, Подтверждение компетентности. Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
23.
ТС №2022-0000571ОО "Сейсмофонд" № 22
24.
ТС №2022-0000571ОО «Сейсмофонд» № 23
25.
ТС №2022-0000571 ОО "Сейсмофонд" № 24Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ ,
специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 11758465, Подтверждение компетентности. Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
26.
ТС №2022-0000571 ОО "Сейсмофонд" № 25(812) 694-78-10 https://t.me/resistance_test t89219626778Ggmail.com
[email protected] Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН:
1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев, эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра:
«Технологии строительных материалов и метрологии») СПб ГАСУ , специальность: производство строительных изделий и
конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент И.У.Аубакирова (921) 962-6778, (911) 1175865,
Подтверждение компетентности. Номер решения о прохождении процедуры подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
27.
ТС №2022-0000571ОО «Сейсмофонд» №
26
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическое среднеквадратичное
соединения
ожидание
отклонение
6
1
k1 10 , КН9.25
2.76
6
1
k2 10 , кН21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
-1
q, мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
Таблица коэффициентов трения скольжения и качения для изготовления демпфирующего
спиралеобразного компенсатора- конденсатоотводчика автоматического (ЛШТИ.494654.001ТУ) АО
«Завод им. Гаджиева» для трубопроводной нефтегазовой арматуры ( трубопроводов промышленных)
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Руководитель организации «Сейсмофонд» при СПб ГАСУ (ОГРН: 1022000000824, ИНН 2014000780, КПП 201401001) Х.Н.Мажиев,
эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии строительных материалов и метрологии») СПб ГАСУ ,
специальность: производство строительных изделий и конструкций, квалификация: инженер-строитель-технолог,к.т.н, доцент
И.У.Аубакирова (921) 962-6778, (911) 1175865, Подтверждение компетентности. Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
28.
ТС №2022-0000571 ОО "Сейсмофонд" № 27См. изобретение при изготовлении компенсатора для теплотрасс № 2010136746 E04C
2/00«СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» , изобретение "Панель
противовзрывная", патента на полезную модель № 154 506, опубликовано 27.08.2015,
бюл. № 24, патент на полезную модель изобретение, "Опора сейсмостойкая», № 165076,
бюллетень № 28 , опубликовано 10.10.2016, заявитель Андреев Борис Александрович и
др, патент на изобретение «Захватное устройство для «сэндвич»-панелей № 2471700 ,
опубликовано 10.01.2013, заявитель патента СПб ГАСУ , 190005, СПб, 2-я
Красноармейская ул д 4: (911) 175-84- 65, (921) 962-67-78 т/ф (812) 694-78-10
С рабочими чертежами, специальными техническими условиями (СТУ) по изготовлению
демпфирующего спиралеобразного компенсатора для теплотрасс на основе и технических решений
согласно изобретения:
Опора скользящая для теплотрасс, трубопроводов, изготавливаемые в соответствии с
техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 ,
серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные", и запроектированные и изготовленные согласно изобретений № 165076 "Опора
сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные для
сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8 баллов и более
необходимо использование для прокладки трубопровода, теплотрасс , на демпфирующих опор
на фрикционно-подвижных соединениях для теплотрасс , трубопроводов, с целью обеспечения
многокаскадного температурного демпфирования при динамических и температурных
(термических) нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895,
1174616, 1168755, 2010136746 , 2550777. Испытание проводились на соответствие групп
механической прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по
результатам испытаний методом численного моделирования в ПК SCAD на взаимодействие
трубопровода с геологической средой ) в СПб ГАСУ на кафедре строительных материалов у
проф дтн Ю.М.Тихонова (812) 694-78-10 [email protected]
[email protected] [email protected] [email protected]
[email protected] [email protected] Президент ОО «Сейсмофонд» при СПб ГАСУИНН:
2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-20102010000211-П-29 от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано
28.04.2010 Мажиев Х.Н. г.СПб Эксперт СПб ГАСУ, ученый секретарь кафедры ТСМиМ (кафедра: «Технологии
строительных материалов и метрологии») СПб ГАСУ , специальность: производство строительных изделий и конструкций,
квалификация: инженер-строитель-технолог,к.т.н, доцент И.У.Аубакирова (921) 962-6778, (911) 1175865, (951) 6441648
29.
ТС №2022-0000571 ОО "Сейсмофонд" № 29Приложение к техническому свидетельству пригодности для применения при реконструкции теплотрасс в СПб ГУП "ТЭК
СПб " ООО "Монтажно-эксплуатационная фирма АСК"[email protected] [email protected] [email protected] 602-93-93 494-84-94 ( изобретение № 165076 ), изготавливаемые в
соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10,
вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные" изготовленные согласно изобретений №
165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные для теплотрасс и сейсмоопасных
районов с сейсмичностью более 9 баллов (в районах с сейсмичностью 8 баллов и более необходимо использование
спиралеобразный демпфирующего сдвигового компенсатор уложенного с трубопроводом на сейсмоизолирующих опорах, на
фрикционно-подвижных соединениях для противопожарных трубопроводов, с целью обеспечения многокаскадного демпфирования
при динамических нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755, 2010136746 ,
2550777. Испытание проводились на соответствие групп механической прочности на вибрационные, ударные воздействия: М5-М7,
М38-М39 по результатам испытаний методом численного моделирования в ПК SCAD на взаимодействие трубопровода с
геологической средой )с использованием с компенсатора в виде спиралевидного компенсатора в виде «змейка» или с
компенсаторами сальниковыми на фрикционно-подвижных соединениях (ФПС)) для сейсмоопасных районов до 9
баллов по шкале MSK-64.Крепление с применением фрикци -болта на протяжных ФПС производится в
сейсмоопасных районах с сейсмичностью более 8 баллов по шкале MSK-64.
1. Общие требования к технологии производства работ по фланцевому соединению на ФПС для демпфирующего спиралеобразного
компенсатора- ГУП "ТЭК СПб " ООО "Монтажно-эксплуатационная фирма АСК"
[email protected] [email protected] [email protected] 602-93-93 494-84-94, для реконструкции
теплотрасс, трубопроводов , необходимо использовать с компенсатор дополнительно компенсатор в виде «змейка» или с
доработанными на ФПС компенсаторами сальниковыми на фрикционно-подвижных соединениях (ФПС)) для сейсмоопасных
районов более 9 баллов по шкале MSK-64.
С учетом требований, а также с учетом действующих нормативных документов и в соответствии с особенностями строящегося
сооружения и проекта производства работ должно производиться строго по СП 16.13330.2011 "Стальные конструкции" ( СНиП II -2381*)
1. 2. Предусматривается приемка строительной организацией с осуществлением входного контроля, операционного и приемочного
контроля качества с выделением особо важных операций и видов работ.
1. 3. Обязательная проверка соответствия прочностных характеристик нефтегазовой арматуры на фрикционных соединений на
спиралеобразном компенсаторе ( заявка на изобретение полезная модель «Фрикционно –демпфирующий компенсатор
для трубопроводов» F16L 23/00 от 25.11.2021 , входящий 073171 ФИПС Бережковская наб 30, 1 тел (499) 240-60-15, ф
(465) 531-63-18 Соколова Е.А
1. 4. Испытания фланцевых , фрикционно-подвижных соединений с латунным фрикци-болтом проводят на трех контрольных
участках.
1.5. Выбор контрольных участков осуществляют на основании результатов визуальногоосмотра по критерию: наихудшее состояние
1. 6. В зависимости от характера разрушения в результате испытаний выносится решение о дополнительном укреплении ФПС .
1.7. Результаты испытаний оформляют протоколом установленной формы.
1.8. Демпфирующий спиралеобразный компенсатор, необходимо использовать с компенсаторами в виде , как
компенсаторами типа Сальникова на фрикционно-подвижных соединениях (ФПС)) для сейсмоопасных районов до 9 баллов по шкале
MSK-64 (использовать в сейсмоопасных районах с сейсмичностью более 8 баллов: - с различными температурноклиматическими условиями по СНиП 23-01-99 в сухой, нормальной и влажной зонах по СНиП 23-02-2003 при температурах на
поверхности облицовки от минус 50°С до плюс 80°С; - с неагрессивной, слабоагрессивной и среднеагрессивной окружающей средой
по СНиП 2.03.11-85.
9. Необходимо для демпфирующего спиралеобразного компенсатора- использовать сейсмостойкие опоры ( патент 165076
«Опора сейсмостойкая) для трубопроводной нефтегазовой арматуры , которая крепить, на фрикционно-подвижных соединениях
(ФПС)) для сейсмоопасных районов более 9 баллов по шкале MSK-64 могут применяться при условии соответствия входящих в
комплект изделий и деталей, а также применяемой технологии и правил контроля качества монтажа и результатов выполненных
работ, а также проектной документации на строительство.
10. При проектировании следует дополнительным расчетом подтвердить компенсацию температурных деформаций, а также
деформаций основания вследствие возможной неравномерной осадки магистрального трубопровода
11. Крепление фланцевого , протяжного ФПС определяется строительной лабораторией
12. Контрольные испытания ФПС применяемых в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64
рекомендуется проводить в соответствии с ГОСТ Р 53295-2009, ТУ 5728-032-92638584-2014 и ТР 92638584.035.2014.
2. Результаты испытаний оформляют протоколом установленной формы.
2.1. Крепления ФФПС применяемые в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) необходимо
выполнять в полном соответствии с технической документацией с обязательным проведением контроля технологических операций и
составлением актов на скрытые работы.
ВЫВОДЫ
1. Температурный , термический петлеобразный компенсатора- ГУП "ТЭК СПб " ООО "Монтажно-
эксплуатационная фирма АСК"[email protected] [email protected] [email protected]
602-93-93 494-84-94 для теплотрасс пригодны для теплотрасс, трубопроводов в виде фланцевых протяжных и подвижных
соединениях с использованием заявки на изобретение: «Фрикционно-демпфирующих компенсаторов для трубопроводов» F 16L
23/00, на фрикционно-подвижных соединениях (ФПС) для теплотрасс и сейсмоопасных районов более 9 баллов по шкале MSK-64 ,
которые можно применять в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) , что соответствуют
требованиям нормативных документов: СП 14.13330.2014,п.9.2, НП-031-01, НП-071-06 класса безопасности 3НпоОПБ 88/97
при сейсмических воздействиях более 9 баллов по шкале MSK-64 , включительно при уровне установки над нулевой
отметкой 70 м по ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90,
МЭК 60068-3-3 (1991), МЭК 60980, ANSI/IEEEStd. 344-1987, ПМ 04-2014, РД 26.07.23-99 и РД 25818-87 (синусоидальная
вибрация – 5,0-100 Гц с ускорением до 2g).
3.1. Возможность применения реконструкции теплотрасс и в сейсмоопасных районах должна быть подтверждена
обоснованными заключениями и рекомендациями компетентных в области сейсмостойкого строительства организаций, исходя
из требований Закона № 384-Ф3, с ограничениями допустимой сейсмичности площадки строительства и высоты зданий, а также
применяемых в этом случае конструктивных решений элементов и их соединений.
3.2. Заключения и рекомендации должны быть соответствующим образом обоснованы, в т.ч. результатами испытаний на сейсмические воздействия фрагментов спиралеобразными компенсаторами ( ФИПС № 2021134630 от 25.11.2021 , входящий 073171) ,
со смонтированными на них фрикционно-подвижными фланцевыми соединениями (ФПС). Проектирование, монтажи
эксплуатация должны производиться с учетом указанных заключений и рекомендаций. Президент ОО «Сейсмофонд» при СПб
ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 СРО
«ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12,выдано 28.04.2010 [email protected] Мажиев Х.Н. г.СПб
30.
ТС №2022-0000571 ОО «Сейсмофонд» № 29ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ МАТЕРИАЛОВ И НОРМАТИВНЫХ ДОКУМЕНТОВ при оценке технической пригодности
демпфирующего спиралеобразного компенсатора- ГУП "ТЭК СПб " ООО "Монтажно-
эксплуатационная фирма АСК"[email protected] [email protected]
[email protected] 602-93-93 494-84-94 Протокол испытаний № 353 от 17.01.2024 СПб ГАСУ (ЛИСИ),
организация "Сейсмофонд"
Законодательные акты и нормативные документы:
Федеральный закон № 384-Ф3 от 30.12.2009 "Технический регламент о безопасности зданий и сооружений";
Федеральный закон № 123-Ф3 от 22.07.2008 (ред. от 13.07.2015) "Технический регламент о требованиях пожарной
безопасности";
СП 20.13330.201 1 "СНиП 2.01.07-85* Нагрузки и воздействия";
СП 16.13330.2011 "СНиП П-23-81 Стальные конструкции";
СП 28.13330.2012 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии";
СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий";
ТОСТ 31251-2008 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней
стороны".
11. Действующие нормативные документы:
СНИиП 23-02-2003 "Тепловая зашита зданий";
СП 23-101-2004 "Проект и теплозащита зданий";
СНиП 2.02.01-83 "Основания зданий и сооружений**;
СНиП 2.02.04-88 "Основания с фундаментами на вечномерзлых грунтах9*;
СНиП 21-01 -97^ "Пожарная безопасность зданий и сооружений**;
СНиП 2.03.11-85 "Защита строительных конструкций от коррозии**:
СНиП 2.01.07-85* "Нагрузки и воздействия":
СНиП 2.03.06-85 "Алюминиевые конструкции**;
СНиП 23-01-99 "Строительная климатология**;
СНиП 11-7-81 "Строительство в сейсмических районах";
СНиП 2.02.04-88 "Строительство на вечномерзлых трутах";
СНиП 2.02.01-83 "Строительство на нросадочных грушах";
ГОСТ 14918-80* "Сталь тонколистовая оцинкованная с непрерывных линий. Технические условия";
ГОСТ 5632-72 -Сталь высоколегированная и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки";
ГОСТ 5582-75. Прокат тонколистовой коррозионностойкий, .жаростойкий и жаропрочный. Технические условия";
ГОСТ 31251-2003 "Конструкции строительные. Методы определения пожарной опасности. Стены наружные с внешней
стороны".
Пригодность новой продукции подтверждается Техническим свидетельством, оформленным в соответствии с приказом
Минрегиона России от 24 декабря 2008 № 292. зарегистрированным Минюстом России 27 января 2009 г., регистрационный №
13170.
Федеральным законом от 27 декабря 2002 г. № 184-ФЗ "О техническом регулировании"
При наличии этих документов подтверждение пригодности продукции для применения в строительстве не требуется
Более подробно о практическом использовании термического, температурного петлеобразного
компенсатора, на фланцевых фрикционно -подвижных соединений (ФПС) , уложенного (трубопровода) на
сейсмоизолирующих опорах СПб ГАСУ ( изобретение № 165076 «Опора сейсмостойкая» , можно ознакомиться
см. зарубежные изобретения, Тайвань. №TW201400676 Restraintanti-windandanti-seismicfrictiondampingdevice
(МПК):E04B1/98; F16F15/10(демпфирующая опора с фланцевыми, фрикционно–подвижными соединениями с
энергопоглощающей втулкой) (Тайвань), патенты №№1143895,1174616,1168755, 2357146, 2371627, 2247278,
2403488, 2076985, SUUnitedStatesPatent 4,094,111 [45] June 13,
1978STRUCTURALSTEELBUILDINGFRAMEHAVINGRESILIENTCONNECTORS (МПК) E04B 1/98 (США).
Лабораторные испытания проходили с учетом и использованием изобретения на полезную модель «Опора
сейсмостойкая № 165076 , МПК E04H 9/02, бюллетень № 28 , опубликовано 10.10.2016,авторы: Андреев Б.А,
Коваленко А И т/ф (812) 694-78-10, (996) 785-62-76 http://www.youtube.com/watch?v=76EkkDHTvgM
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
Изношенные коммуникации теплосети стали причиноймассовых аварий в Петербурге
Конструктивные решения и рабочие чертежи можно приобрети в СПб ГАСУ по адрес: 190005, 2-я Красноармейская ул д 4
СПб ГАСУ тел /факс 812) 694-78-10 применения антисейсмических петлеобразного ( из трубчатых уголков )
температурогасящего, антисейсмического, для аварийных теплотрасс , на фрикционно-подвижных болтовых соединениях, с
длинными овальными отверстиями, на протяжных фланцевых соединениях с овальными отверстиями и контролируемым
натяжением, выполненных по изобретениям
проф. дтн (ПГУПС Уздина А. М. инж И.А.Богдановой №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»,
2010136746 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» 190005, СПб,, 2-я Красноармейская ул
дом 4 [email protected] 8126947810@ramblerru [email protected] https://t.me/resistance_test
Фигуры Антисейсмическое фланцевое фрикционно подвижное соединение трубопроводов проф
Темнова В Г
Фиг 1
55.
Фиг 2Фиг 3
Фиг 4
Фиг 5
56.
Фиг 6Фиг 7
Фиг 8
Р ЕФЕРАТ аннотация Антисейсмическое фланцевое фрикциооно -подвижное соединение
трубопроводов проф Темнова В Г
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ (ФФПС)
трубопроводов ( Петлеобразный вертикальный компенсатор) для теплотрасс горячего
водоснабжения, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного или двух из фланцев, амортизирующие в виде
латунного фрикци -болта, с пропиленным пазом и забитым медным обожженным
клином , с вставленной медной обожженной втулкой или медной тонкой гильзой ,
охватывающие крепежные элементы и установленные в отверстиях фланцев, и
уплотнительный элемент, фрикци-болт , выполнен , с целью расширения области
использования соединения в сейсмоопасных районах, фланцы выполнены с помощью
энергопоглощающего латунного фрикци -болта , с забитым с одинаковым усилием,
медным обожженным клином, расположенными во фланцевом фрикционно-подвижном
соединении (ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких
шайб , установленные между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены, также на участке между фланцами, за счет протяжности
соединения по линии нагрузки, а между медным обожженным энергопоголощающим
стопорным клином, установлены тонкие свинцовые или обожженные медные шайбы, а
в латунную шпильку устанавливается тонкая медная обожженная гильза - втулка .
57.
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ (ФФПС)железнодорожного моста, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного или двух из фланцев, амортизирующие в виде
латунного фрикци -болта, с пропиленным пазом и забитым медным обожженным
клином , с вставленной медной обожженной втулкой или медной тонкой гильзой ,
охватывающие крепежные элементы и установленные в отверстиях фланцев, и
уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения
области использования соединения в сейсмоопасных районах, фланцы выполнены с
помощью энергопоглощающего латунного фрикци -болта , с забитым с одинаковым
усилием, медным обожженным клином, расположенными во фланцевом фрикционноподвижном соединении (ФФПС) , уплотнительными элемент выполнен в виде медных
тонких шайб , установленные между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены, также на участке между фланцами, за счет протяжности
соединения по линии нагрузки, а между медным обожженным энергопоголощающим
стопорным клином, установлены тонкие свинцовые или обожженные медные шайбы, а
в латунную шпильку устанавливается тонкая медная обожженная гильза - втулка .
Петлеобразный вертикальный компенсатор предназначено для защиты трубопроводов,
теплотрасс от возможных температурных, вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитым
медным обожженным клином позволяет обеспечить надежный и быстрый погашение
сейсмической нагрузки при землетрясении, вибрационных воздействий от
температурных колебаний (нагрузок) .Конструкция фрикци -болт, состоит их латунной
шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на
фланцевом фрикционно- подвижном соединении (ФФПС) .
Количество болтов определяется с учетом воздействия собственного веса ( массы) теплотрассы ,
трубопровода и расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила
расчет, Минск, 2013. п. 10.3.2
Фрикци –болт повышет надежность работы петлевого компенсатора магистральные трубопровода,
теплотрассы за счет уменьшения пиковых ускорений, за счет протяжных фрикционных соединений,
работающие на растяжением на фрикци- ботах, установленные в длинные овальных отверстиях, с
контролируемым натяжением в протяжных соедиениях. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 ,
Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Скрепляя петлеобразный сдвиговой с проскальзыванием компенсатор с теплотрассой , трубопроводом в
положении при котором нижняя поверхности, контактирующие с поверхностью болта (сдвиг по овальному
отверстию максимальный). После этого гайку затягивают не тарировочным ключом до заданного усилия, а
фиксируют обожженным клином . Увеличение усилия затяжки гайки (болта) или медного обожженного клина
приводит к деформации петлеобразного компенсатора и уменьшению зазоров от «Z» до «Z1» в компенсаторе ,
что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - петлеобразного компенсатора . Величина усилия трения в сопряжении в петлеобазном компенсаторе
для теплотрасс и нефтегазовых трубопроводов, зависит от величины усилия затяжки гайки (болта) и для каждой
конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления
нагрузок и др.) определяется экспериментально. При воздействии температурных , сейсмических нагрузок
превышающих силы трения в сопряжении петлеобразного вертикального компенсатора , происходит сдвиг
"петли" , в пределах длины паза выполненного в теле петлеобразного вертикально сдвигового компенсатора , без
разрушения теплотрассы, трубопроводов горячего водоснабжения .
Петлеобразный сдвиговой вертикальный компенсатор, содержащая шесть трубчатых уголков и сопряженный с
ним подвижный узел, закрепленный запорным элементом, отличающаяся тем, что в корпусе петлеобразного
компенсатора выполнены овальные отверстие, сопряженное с трубопроводом, теплотрассой, при этом овальная
длинные отверстия, зафиксированы запорным элементом, выполненным в виде калиброванного болта,
проходящего через поперечные отверстия петлеобразного компенсатора и через паз, выполненный в теле
58.
сдвигового , демпфирующего компенсатора и закрепленный гайкой с заданным усилием, кроме того вкомпенсаторе , параллельно центральной оси теплотрассы, трубопроводов , выполнено длинные овальные ,
одинаковые отверстия, длина которых, от начальной нагрузки , больше расстояния для сдвига и демпфирования
при температурных или сейсмических нагрузок
Описание изобретения Антисейсмическое фланцевое
фрикционно -подвижное соединение трубопроводов проф
Темнова В Г
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др. Расчет на прочность деталей
машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов проф Темнова В Г
Предлагаемое техническое решение предназначено для защиты теплотрасс , трубопроводов от температурных
колебаний зимой , что бы не рвались теплотрассы и сейсмических воздействий за счет использования
фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от
динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L
23/02.
Соединение содержит металлические пятле или П -образный ( петлей в верх ) демпфирующий компенсатор
разработанный проф Демновы В Г . С увеличением температурной или сейсмической нагрузки происходит
взаимное демпфирование демпфирующих проскальзывающих соедиений проф А.М.Уздина и
взаимное смещение происходит на теплотрассе с фланцевоми фрикционно подвижного соединения температурными компенсаторам (ФПС), при импульсных растягивающих нагрузках при многокаскадном
демпфировании, которые работают упруго со скольжением по овальным отверстиям .
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только
по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению.
Известно также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU
1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов Устройство содержит базовое
59.
основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольныепазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает
сейсмические и температурные нагрузки но, при возникновении динамических, импульсных растягивающих
нагрузок, взрывных, сейсмических и температурных нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности
расчета при использования фрикци- болтовых демпфирующих податливых креплений для теплотрасс и
трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет
деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным
пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки
или свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые
обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых температурных ускорений (ЭПУ), с помощью которого,
поглощается взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –
болт повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 ,
Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный
клин и снабжен энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображено петлеобразное из шести
или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным
стопорным клином;
на фиг.2 изображено петлеобразное из шести или четырех трубчатых угловых сегментов, на фрикционных
соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз
стальной шпильки обожженным медным стопорным клином латунная шпилька фрикци-болта с пропиленным
пазом
на фиг.3 изображен петлеобразный из шести или четырех трубчатых угловых сегментов, на фрикционных
соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз
стальной шпильки обожженным медным стопорным клином фрагмент о медного обожженного клина забитого
в латунную круглую или квадратную латунную шпильку
на фиг. 4 изображено петлеобразное из шести или четырех трубчатых угловых сегментов, на фрикционных
соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз
стальной шпильки обожженным медным стопорным клином фрагмент установки медного обожженного клина в
подвижный компенсатор ( на чертеже компенстор на показан )
фиг 5 изображены элементы демпфирования и скольжения фтула и троса и медная или бронзовая гильза ,
для демпфирования при температурных или сейсмических колебаний фрикционных соединениях с
60.
контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпилькиобожженным медным стопорным клином, котрый торировочно забивается с одинаковым усилием в
пропитанный антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы исключить
вытекание нефти или газа из магистрального трубопровода, теплотрассы при многокаскадном демпфировании
или температурных перепадах зимой
фиг. 5 изображен сам узел фрикционно -подвижного соединения на фриукци -болту на фрикционно-подвижных
протяжных соедиениях
фиг.6 изображено узел крепления коменастра из трубчатых уголков для демпфирующего петлеобразования , из
шести или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным
стопорным клином шаровой кран соединенный на фрикционно -подвижных соединениях , фрикци-болту с
магистральным трубопроводом на фланцевых соединениях
фиг. изображено длинный пропиленный паз в стальной шпильке и таррировочный медный стопорный клин
для соедиения демпфирующих трубчатых уголков -сегментов для содания демпфирующей вертикальной ( верх
) петли, для создания петлеобразной, из шести или четырех трубчатых угловых сегментов, на фрикционных
соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз
стальной шпильки обожженным медным стопорным клином
Компенсатор проф Темпнова состоит из фрикционо -подвижных демпфирующих соединениях с фрикци болтом фрикционно-подвижных соединений
Антисейсмический виброизоляторы выполнены в виде петлеобразных демпфирующих соединений из шести
или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным
стопорным клиномлатунного фрикци -болта с пропиленным пазом , куда забивается стопорный обожженный
медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также установлен
с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является
медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении,
осуществляется смянанием с энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается медными шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки
или гильзы ( на чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на
чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении , выполненные из латунной
шпильки с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность
соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится
стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную
величину, обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с
одинаковой жесткостью с двух сторон .
61.
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобыих жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и
герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность
соединения и надежность его работы в тяжелых условиях вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты
вынужденных колебаний вибрирующего и температуро -изолирующих трубчатого элемента с учетом частоты
собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта
будет меньше единицы
Формула
Антисейсмическое фланцевое фрикциооно -подвижное
соединение трубопроводов проф Темнова В Г
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ ТРУБОПРОВОДОВ,
содержащее крепежные элементы, подпружиненные и энергопоглощающие со стороны одного
из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и забитым
медным обожженным клином с медной обожженной втулкой или гильзой , охватывающие
крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент, фрикциболт , отличающееся тем, что, с целью расширения области использования соединения, фланцы
выполнены без тонировочного ключа регулирующее везде одинаковое натяжение гайки , а с
помощью энергопоглощающего фрикци -болта , с забитым с одинаковым усилием медным
обожженным клином расположенными во фланцевом фрикционно-подвижном соединении
(ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного
между цилиндрическими выступами фланцев, а крепежные элементы подпружинены также на
участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным
обожженным энергопоголощающим клином, установлены тонкие свинцовые или обожженные
медные шайбы, а в латунную или стальной шпильку устанавливается тонкая медная
обожженная гильза или медная или тросовая втулка .
1. Компенсатор для теплотрасс на фланцевого протяжного с демпфирующим элементами
в местах растянутых элементов моста с упругими демпферами сухого трения,
демпфирующего компенсатора на фланцевых соединениех растянутых элементов с
упругими демпферами сухого трения на фрикционно-подвижных болтовых соединениях,
с одинаковой жесткостью с демпфирующий элементов при многокаскадном
демпфировании, для гашения температурных , сейсмических колебаний , для поглощение
температурной , сейсмической, вибрационной, энергии, в горизонтальной и вертикальной
плоскости по лини нагрузки фланцевого протяжного температурного демпфирующего
компенсатора , в местах растянутых элементов теплотрассы с большими перемещениями
и приспособляемостью , при этом упругие демпфирующие компенсаторы , выполнено в
виде сдвигового элемента , с встроено медной гильзой и обмотки в виде тросовой или
медной с пропилом гильзы для демпфирования фланцевого соединение растянутыми
элементами
2. Компенсатор с упругими демпферами сухого трения, на фланцевых соединениях , а
протяжного , в местах растянутых элементов трубопровода теплотрассы в критических
узлах теплотрассы, повышенной надежности с улучшенными демпфирующими свойствами,
62.
содержащая , сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижнымисоединениями и упругой втулкой (гильзой), закрепленные запорными элементами в виде
протяжного соединения контактирующих поверхности детали и накладок выполнены из
пружинистого троса -гильзы, между овальных отверстиях , контактирующими
поверхностями, с разных сторон, отличающийся тем, что с целью повышения надежности
фланцевого протяжного температурного демпфирующего компенсатора для теплотрассы
в местах растянутых элементов ,
Демпфирующее термически , из-за перепадов теплой нагрузки на теплотрасс,
сейсмоизоляции с демпфирующим эффектом в овальных отверстиях, с сухим трением,
соединенные между собой с помощью фрикционно-подвижных соединений с контрольным
натяжением фрикци-болтов с тросовой пружинистой тросовой в оплетке втулкой (гильзы,
латунной, медной, бронзовой) , расположенных в длинных овальных отверстиях , с помощью
фрикци-болтами, с медным упругоплатичном, пружинистым многослойным, склеенным
клином и тросовой пружинистой втулкой –гильзой , расположенной в коротком овальном
отверстии верха и низа компенсатора для трубопроводов теплотрассы
3. Способ для теплотрасс с упругими демпферами сухого трения, для обеспечения
несущей способности железнодорожного моста на фрикционно -подвижного соединения с
высокопрочными фрикци-болтами с тросовой втулкой (гильзой), включающий,
контактирующие поверхности которых предварительно обработанные, соеди ненные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент фланцевого протяжного температурного демпфирующего
компенсатора для в местах растянутых элементов трубопровода теплотрассы, для
поглощения усилия сдвига и постепенно увеличивают нагрузку на накладку, до момента ее
сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа термической, тепловой, сейсмоизолирующей защиты
теплотрассы , отличающийся тем, что в качестве показателя сравнения используют
проектное значение усилия натяжения высокопрочного фрикци- болта с медным
обожженным клином, забитым в пропиленный паз латунной шпильки с втулкой –гильзы –
тросовой амортизирующей, из стального троса в оплетке -гильзы , а определение усилия
сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и
сдвигаемого компенсатора трубопровода, узел сжатия и узел сдвига, выполненный в виде
овального отверстия, с возможностью соединения его с неподвижной частью трубопровода
теплотрассы
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига рычага к проектному
усилию натяжения высокопрочного фрикци-болта с втулкой и тонкого стального троса в
оплетке, диапазоне 0,54-0,60 корректировку технологии монтажа от температурных
колебаний зимой или сейсмоизолирующих , антисейсмического, антивибрационных
демпферов компенсатора , не производят, при отношении в диапазоне 0,50-0,53, при
монтаже компенсатора не увеличивать натяжение болта, а при отношении менее 0,50,
кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих
поверхностей фланцевого соединение, растянутых фланцевых протяжных температурных
демпфирующих компенсаторов для теплотрасс, в местах растянутых элементов, для
компенсаторов на теплотрассах, с использованием обмазки трущихся поверхностей
компенсатора теплотрассы цинконаполненной грунтовокой ЦВЭС , которая используется
при строительстве мостов https://vmp-anticor.ru/publishing/265/2394/
http://docs.cntd.ru/document/1200093425.
63.
(21) РЕГИСТРАЦИОННЫЙ №ВХОДЯЩИЙ №
Дата поСТУПЛЕНИЯ
оригиналов документов заявки
(85) ДАТА ПЕРЕВОДА международной заявки на национальную фазу
АДРЕС ДЛЯ ПЕРЕПИСКИ
(86)
(регистрационный номер международной заявки и дата
международной подачи, установленные получающим
ведомством)
(полный почтовый адрес, имя
или наименование адресата)
197371, Санкт-Петербург, пр Королева
30 корп 1 кв 135 [email protected]
(87)
(921) 962-67-78, (981) 886-57-42, (981)
(номер и дата международной публикации международной
276-49-92 , (911) 175-84-65 Телефон:
заявки)
Факс: E-mail: [email protected]
Телефон: (812) 694-78-10 Факс:
Email: [email protected]
В Федеральную службу по интеллектуальной собственности, патентам
Бережковская наб., 30, корп.1,
Москва, Г-59, ГСП-5, 123995
и товарным знакам
Изобретение: «Антисейсмическое фланцевое
фрикционно -подвижное соединение трубопроводов проф Темнова В Г» F 16L
(54) НАЗВАНИЕ ПОЛЕЗНОЙ МОДЕЛИ
23/00 Е04Н9/02
(71) ЗАЯВИТЕЛЬ (Указывается полное имя или наименование (согласно учредительному документу),
место жительство или место нахождения, включая официальное наименование страны и полный
почтовый адрес)
Ветеран боевых действий ( удостоверение БД
№ 404894 , выданное 26 июля 2021 года
Минстроем ЖКХ РФ ) , инвалид первой группы
, военный пенсионер , 72 года)
Коваленко
Александр Иванович - освобожден от уплаты
патентной пошлины , как ветеран боевых
действий на Северном Кавказе 1994-1995 гг
ОГРН
КОД страны по стандарту
ВОИС ST. 3
(если он установлен)
Является
(74) ПРЕДСТАВИТЕЛЬ(И) ЗАЯВИТЕЛЯ
Указанное(ые) ниже лицо(а) назначено(назначены) заявителем(заявителями) для ведения дел по
получению патента от его(их) имени в Федеральной службе по интеллектуальной собственности, патентам
и товарным знакам
Указанное
лицо является
Фамилия, имя, отчество (если оно имеется)
государственным заказчиком
муниципальным заказчиком,
Патентным(и) поверенным(и)
Иным представителем
Телефон: 694-78-10
Факс: (812) 694-78-10
исполнитель работ____________________________________________________________
( указать наименование)
исполнителем
работ по: Адрес
государственному
муниципальному
контракту,
Второй
адрес не основной
патентного поверенного
(эксперта) 197371,
СПб пр
Королева
дом
30 корп
1 кв 135 Е.И.Коваленко [email protected]
заказчик
работ
______________________________________________________________
[email protected] (911) 175-84-65 (т/ф
(812) наименование)
694-78-10
указать
Бланк заявления ПМ
лист 1
E-mail: [email protected]
64.
Срок представительстваРегистрационный (е)
(заполняется в случае назначения иного представителя без представления доверенности)
номер (а) патентного(ых)
поверенного(ых)
Полный почтовый адрес места жительства,
включающий официальное наименование
страны и ее код по стандарту ВОИС ST. 3
(72) Автор (указывается полное имя)
Коваленко Александр Иванович
Второй адрес не основной :
197371, СПб , а/я газета «Земля
РОССИИ» [email protected]
(911) 175-84-65, тел / факс (812) 694-78-10
[email protected]
Прошу освободить ветеран боевых действий от уплаты патентной пошлины Коваленко Александра Ивановича ,
«Антисейсмическое фланцевое
фрикционно -подвижное соединение трубопроводов проф Темнова В Г» F 16L 23/00
Е04Н9/02
инвалида 1 группы по общим заболеванием (онкобольной 4-й степени)
________________________________________________________________________________________
(полное имя)
прошу не упоминать меня как автора при публикации сведений
Подпись автора
ПЕРЕЧЕНЬ ПРИЛАГАЕМЫХ ДОКУМЕНТОВ:
о заявке
о выдаче патента.
Кол-во л. в 1 экз.
Кол-во экз.
описание полезной модели
4
1
формула полезной модели
2
1
Нет
нет
2
1
чертеж(и) и иные материалы ( прилагаются ссылки из социальной
сети ) 2 стр для информации
реферат
Освобожден
документ об уплате патентной пошлины
(указать) Ходатайство прикладывается об
освобождении от уплаты патентной
пошлинывтенра Коваленко А И
документ, подтверждающий наличие оснований
для освобождения от уплаты патентной пошлины
Освобожде
н
65.
для уменьшения размера патентнойпошлины
для отсрочки уплаты патентной пошлины
копия первой заявки
(при испрашивании конвенционного приоритета)
перевод заявки на русский язык
доверенность
другой документ (указать)
Фигуры чертежей, предлагаемые для публикации с рефератом ______________________________________________
(указать)
ЗАЯВЛЕНИЕ НА ПРИОРИТЕТ (Заполняется только при испрашивании приоритета более раннего, чем дата
подачи заявки)
Прошу установить приоритет полезной модели по дате старой дате «Способ испытания математических моделей зданий и сооружений и
устройство для его осуществления»
1
подачи первой заявки в государстве-участнике Парижской конвенции по охране промышленной собственности
(п.1 ст.1382 Гражданского кодекса Российской Федерации) (далее - Кодекс)
2
поступления дополнительных материалов к более ранней заявке (п.2 ст. 1381 Кодекса)
3
подачи более ранней заявки (п.3 ст.1381 Кодекса)
4
(более ранняя заявка считается отозванной на дату подачи настоящей заявки)
подачи/приоритета первоначальной заявки (п. 4 ст. 1381 Кодекса), из которой выделена настоящая заявка
№ первой (более ранней, первоначальной)
заявки «Антисейсмическое фланцевое
фрикционно -подвижное соединение
трубопроводов проф Темнова В Г» F 16L
23/00 Е04Н9/02
1.
2.
3.
Бланк заявления ПМ
лист 2
Дата
испрашиваемого
приоритета
08.11.2023
(33) Код страны
подачи
по стандарту
ВОИС ST. 3
(при испрашивании конвенционного
приоритета)
66.
ХОДАТАЙСТВО ЗАЯВИТЕЛЯ: Прикладывается об освобождении отгосударственной пошлины, как ветеран боевых действий
начать рассмотрение международной заявки ранее установленного срока (п.1 ст. 1396 Кодекса)
Подпись
( «Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов проф
Темнова В Г» F 16L 23/00
Е04Н9/02 Коваленко А И
Подпись заявителя или патентного поверенного, или иного представителя заявителя, дата подписи (при подписании от имени
юридического лица подпись руководителя или иного уполномоченного на это лица удостоверяется печатью)
Бланк заявления ПМ
лист 3
лата услуг ФИПС per заявки на выд патента РФ на
Дата отправки 16.06.23
лезную модель и принятия решения по результатам
рмальной экспертизы госпошлина на плезн. модель
пора сейсмоизолирующая "гармошка" Е04Н9/02
ОДАТАЙСТВО
00.000 Заявка № 2018129421/20(047400)
Об освобождении
от
от уплаты патентной пошлины как
08.2018<неиДве
тысячи
500 руб Опора
етеран
боевых
действий
, согласно ст 13 Положение о пошлинах
йсмоизолирующая "гармошка" Зам зав отд. ФИПС
т. адр. 197371, СПб, прю Королева дом 30 к 1 кв 135 тел факс (812) 694-78-10
П.Мурзина (499) 240-34-76
итель физические лица Богданова Ирина Александровна и др
едставитель:
Коваленко
Елена Ивановна адрес: 197371, Санкт-Петерубург, 197371, СПб, пр. Королева дом 30 к 1 кв 135 или
валенко
Александр
Иванович
я «Газета Земля России»
дин Александр Михайлович
орова Ольга Александровна
НОЙ ПРЕДСТАВИТЕЛЬ (полное имя, местонахождение)
исеев
Владик Кирилловна
орой
адрес
для переписки:
197371, Санкт-Петербург, а/я газета «Земля РОССИИ» + 7 (911) 175-84-65, (921) 962-67-78, (812) 694-78-10
ефон: моб:Яна
89117626150
Телекс: моб: 89218718396
Факс: 3780709
исеева
Кирилловна
валенко Елена Ивановна
ководителю ФИПС г Москва 125993, Бережковская наб , 30 корп 1 ГСП -3 и гл специалисту отдела формальной
ажиев
Хасан
Нажоевич
спертизы
заявок
на изобртения ФИПС Е.С.Нефедова тел 8 (495) 531-65-63 ,
факс: (8-495) 531-63-18, тел
499) 240-60-15
ЗАЯВЛЕНИЕ О освобождении от патентной пошлины согласно пункта 13 Положение о пошлине в РФ
«Антисейсмическое фланцевое фрикционно -подвижное соединение
трубопроводов проф Темнова В Г» F 16L 23/00 Е04Н9/02
О выдачи патента РФ на изобретение:
Согласно п 13 Положения о пошлинах от уплаты пошлины Федеральный институт промышленной собственности ФМПС освобождается автор полезной модели ,
ющийся ветераном боевых действий испрашиваемый патент
//www.consultant.ru/document/cons_doc_LAW_82755/df190ef722d41661ade3e070a259dad5aa252656/
платы пошлин, указанных в пункте 12 настоящего Положения, освобождается: физическое лицо, указанное в пункте 12 , настоящего
ожения, являющееся ветераном Великой Отечественной войны,ветераном боевых действий на территории СССР, на территории Российской Федерации и на
иториях других государств (далее -ветераны боевых действий); коллектив авторов, испрашивающихпатент на свое имя, или патентообладателей, каждый из
рыхявляется ветераном Великой Отечественной войны, ветераном
««Антисейсмическое фланцевое фрикционно -подвижное
единение трубопроводов проф Темнова В Г» F 16L 23/00
Е04Н9/02 , Заявление Прошу
редоставить мне льготы и освобождении от патентной пошлины согласно указанных в пункте
настоящего Положения, освобождается: физическое лицо, указанное в пункте 12 и пункта 1 статья
6 Налогового кодекса РФ о выдачи патента на изобретение ветеран боевых действий на
верном Кавказе 1994-1995 гг
67.
Приложение(я) к заявлению:документ об уплате пошлины Освобожден Ветеран боевых действий -письмо прилагается
Кол- во
1
экз.
Кол-во
1
стр.
1
1
листы для продолжения
заменяющие листы Заявления о выдаче патента
Ходатайство (указать):
пись изобретателя
Печать Дата 03.08.2023
(«Антисейсмическое фланцевое фрикционно -подвижное соединение
убопроводов проф Темнова В Г» F 16L 23/00
Е04Н9/02
)
ФИПС Роспатент «Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
проф Темнова В Г» F 16L 23/00
Е04Н9/02 12 января 2024
68.
Автор изобретений ветеран боевых действий, инвалид первой группы , ученик проф дтн ПГУПС А.М.Уздинааспирант в 72 гола Александр Иванович Коваленко 12 января 2024
Заявка на изобретении: « Антисейсмическое фланцевое
фрикционно -подвижное соединение для трубопроводов" RU
№ 2018105803/20(008844) F16L 23/0015.02.2018 (812)6947810
Конструктивные решения и рабочие чертежи можно приобрети в СПб ГАСУ по адрес: 190005, 2-я
Красноармейская ул д СПб ГАСУ тел /факс 812) 694-78-10 применения антисейсмических
петлеобразного ( из трубчатых уголков ) температурогасящего, антисейсмического, для аварийных
теплотрасс , на фрикционно-подвижных болтовых соединениях, с длинными овальными отверстиями,
на протяжных фланцевых соединениях с овальными отверстиями и контролируемым натяжением,
выполненных по изобретениям проф. дтн (ПГУПС Уздина А. М. инж И.А.Богдановой №№ 1143895,
1168755, 1174616, 165076 «Опора сейсмостойкая», 2010136746 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И
СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» 190005, СПб,, 2-я Красноармейская ул дом 4
[email protected] 8126947810@ramblerru [email protected] https://t.me/resistance_test
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19)
RU 2018195803
(11) 20
2018 105 803
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
(13)
(12) ДЕЛОПРОИЗВОДСТВО ПО ЗАЯВКЕ НА ПОЛЕЗНУЮ
МОДЕЛЬ изобретатель Богданова Ирина Александровна
(812) 694-78-10
(921) 944-67-10
Состояние делопроизводства: Формальная экспертиза (последнее
(21)(22) Заявка: 2018105803, 15.02.2018
(30) Конвенционный приоритет: RU
Антисейсмическое фланцевое
фрикционно -подвижное соединение
для трубопроводов (008844) 15.02.2018
Авторы изобр
при реконстр
использования
выдерживает
проф дтн А.М
выполненную
подвижное
(008844) 15.
Донецской, Лу
ГД РФ, из-за эт
Мимнстрой Ж
Славянского Тр
открытым и ч
трубчатых уг
Темновым В. Г
(812)694-78-10,
t9111758465@g
https;//t.me/res
4081781045503
стоимость альб
69.
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 962-67-78, (911) 175-84-65, [email protected][email protected] [email protected] [email protected]
[email protected]
[email protected]
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
Демпфирующие косые термостойкие вибростойкие компенсаторы нафрикционно- подвижных болтовых соединениях, со скошенными торцами,
89.
согласно изобретения №№ 2423820, 887743, для восприятия термических усилий,за счет трения, при растягивающих нагрузках в крепежных элементах с
овальными отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755,
1174616 ,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС
А.М.Уздина № 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ",
№№ 1143895, 1168755,1174616, заявка на изобртение № а20210217 от 15 июля
2021 "фланцевое соединение растянутых элементов трубопровода со
скошенными торцами",
Минск [email protected] disk.yandex.ru/d/UbjzM3qGyO_Ang ; ppt-online.org/992340
Тезисы доклада на НТС Минэнерго России - научное сообщение редактора газеты
"Земля РОССИИ" Данилика Павел Викторовича и Быченка Владимир Сергеевича от
организации "Сейсмофонд"
при СПб ГАСУ
ОГРН 1022000000824 ИНН
2014000780 [email protected] на заседании НТС Министерства энергетики РФ в
присутствии Министра энергетики Шульгина Николай Григорьевича и
Минстроя ЖКХ РФ в присутствии Министра Файзуллина Ирек Энваровича , и в
Жилищном комитета СПб и Ленинградской области по адресу; пл. Островского ,
д 11 ( для Петухова А.И. 576-04-13, Ивановой С.М. 576-04-25 [email protected] и по
адресe Админитсрации Ленингрдской области, 191311, СПб ул.Смольного д.3,
тел 539-41-08 В.Хабаровой [email protected] disk.yandex.ru/d/MTNAChOxLSrkNw
ppt-online.org/992260 ;
Формула изобретения Компенсатор тов. Сталина для трубопроводов
F0416L
1. Компенсатор тов. Сталина для трубопроводов
с упругими демпферами сухого трения, демпфирующего компенсатора для
магиастрального трубопровода , содержащая: фланцевое соединение растянутых
элементов трубопровода с упругими демпферами сухого трения на фрикционноподвижных болтовых соединениях, с одинаковой жесткостью с демпфирующий
элементов при многокаскадном демпфировании, для сейсмоизоляции
трубопровода и поглощение сейсмической энергии, в горизонтальной и
вертикальной плоскости по лини нагрузки, при этом упругие демпфирующие
компенсаторы , выполнено в виде фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
2. Компенсатор тов. Сталина для трубопроводов
с упругими демпферами сухого трения , повышенной надежности с улучшенными
демпфирующими свойствами, содержащая , сопряженный с ним подвижный узел с
фланцевыми фрикционно-подвижными соединениями и упругой втулкой (гильзой),
закрепленные запорными элементами в виде протяжного соединения
90.
контактирующих поверхности детали и накладок выполнены из пружинистоготроса между контактирующими поверхностями, с разных сторон, отличающийся
тем, что с целью повышения надежности демпфирующее сейсмоизоляции, с
демпфирующим эффектом с сухим трением, соединенные между собой с помощью
фрикционно-подвижных соединений с контрольным натяжением фрикци-болтов с
тросовой пружинистой втулкой (гильзы) , расположенных в длинных овальных
отверстиях , с помощью фрикци-болтами с медным упругоплатичном, пружинистым
многослойным, склеенным клином или тросовым пружинистым зажимом ,
расположенной в коротком овальном отверстии верха и низа компенсатора для
трубопроводов
3. Способ Компенсатор тов. Сталина для трубопроводов
с упругими демпферами сухого трения, для обеспечения несущей способности
трубопровода на фрикционно -подвижного соединения с высокопрочными фрикциболтами с тросовой втулкой (гильзой), включающий, контактирующие
поверхности которых предварительно обработанные, соединенные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия
натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают
его с нормативной величиной показателя сравнения, далее, в зависимости от
величины отклонения, осуществляют коррекцию технологии монтажа
сейсмоизолирующей опоры, отличающийся тем, что в качестве показателя
сравнения используют проектное значение усилия натяжения высокопрочного
фрикци- болта с медным обожженным клином забитым в пропиленный паз
латунной шпильки с втулкой -гильзы из стального тонкого троса , а определение
усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между
выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующег антисейсмического и
антивибрационного демпфирующего компенсатора , не производят, при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а
при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно
проводят обработку контактирующих поверхностей фланцевого соединение
растянутых элементов трубопровода с использованием цинконаполненной
грунтовокой ЦВЭС , которая используется при строительстве мостов
https://vmp-anticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
91.
Р Е Ф Е Р А Т изобретения на полезную модель Компенсатор тов. Сталина длятрубопроводов
МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения предназначена для сейсмозащиты , виброзащиты
трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования
спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого
трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения
сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры
выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего
«стакан» и состоит из нижней целевой части и сборной верхней части
подвижной в вертикальном направлении с демпфирующим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикциболтов с упругой тросовой втулкой (гильзой) , расположенных в длинных
овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса
расположены на упругой перекрестной гофры (демпфирующих ножках) и
крепятся фрикци-болтами с многослойным из склеенных пружинистых медных
пластин клином, расположенной в коротком овальном отверстии верха и низа
корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Компенсатор тов. Сталина для трубопроводов с ф ланцевыми соединениями
растянутых элементов трубопровода с упругими демпферами сухого трения
, содержащая трубообразный спиралевидный корпус-опору в виде
перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с
ним подвижный узел из контактирующих поверхностях между которыми
проложен демпфирующий трос в пластмассой оплетке с фланцевыми
фрикционно-подвижными соединениями с закрепленными запорными
элементами в виде протяжного соединения.
Кроме того в трубопроводе , параллельно центральной оси, выполнено восемь
симметричных или более открытых пазов с длинными овальными
отверстиями, расстояние от узла крепления трубопровода , больше расстояния
до нижней точки паза фланцевого крепления.
Увеличение усилия затяжки фланцевое соединение растянутых элементов
трубопровода, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной
опоры и к увеличению усилия сдвига при внешнем воздействии.
92.
Податливые демпферы фланцевое соединение растянутых элементовтрубопровода с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по
свинцовому листу в нижней и верхней части виброизолирующих,
сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой
для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной
фланцевом соединение растянутых элементов трубопровода Фрикционно
демпфирующий компенсатор для трубопроводов, с упругими демпферами
сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие. Количество болтов определяется с учетом воздействия собственного
веса ( массы) оборудования, сооружения, здания, моста и расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых
элементов трубопровода с упругими демпферами , выполнено в виде ,
трубной петли по винту их шести трубчатых уголков на фланцевых,
фрикционно – подвижных соединениях с фрикци-болтами .
Фрикционно демпфирующий компенсатор для трубопроводов фланцевого
соединения растянутых элементов трубопровода а изготовлено из фрикциболтах, с тросовой втулкой (гильзой) - это вибропоглотитель пиковых
ускорений (ВПУ) с помощью которого поглощается вибрационная, взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3
балла импульсные растягивающие нагрузки при землетрясениях и взрывной
нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность
работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП,
магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет
протяжных фрикционных соединений, работающих на растяжение. ( ТКП 455.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81*
п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода , закрепленного фрикци -болтом
обмотанного стальным тросом в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает
при этом вибрационные, взрывной, сейсмической нагрузки , что исключает
разрушения сейсмоизолирующего основания , опор под агрегатов, мостов ,
разрушении теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д .
93.
Надежность friction-bolt на виброизолирующих опорах достигается путемобеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование,труопровоы, которое устанавливается на
спиральных сейсмоизолирующих опорах, с упругими демпферами сухого
трения, на фланцевых фрикционно- подвижных соединениях (ФФПС) по
изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 , опубликовано:
10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко
А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности
металлоконструкций с высокопрочными болтами"
В основе Компенсатор тов. Сталина для трубопроводов
, с упругими демпферами сухого трения, на фрикционных фланцевых
соединениях, на фрикци-болтах (поглотители энергии) лежит принцип
который называется "рассеивание", "поглощение" вибрационной, сейсмической,
взрывной, энергии.
Использования Компенсатор тов. Сталина для трубопроводов на основе
фланцевых фрикционно - подвижных соединений (ФФПС), для Фланцевое
соединение растянутых элементов трубопровода с упругими демпферами
сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом
), имеет пару структурных элементов, соединяющих эти структурные
элементы со скольжением, разной шероховатостью поверхностей в виде
демпфирующих тросов или упругой гофры ( обладающие значительными
фрикционными характеристиками, с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии. Совместное скольжение
включает зажимные средства на основе friktion-bolt ( аналог американского
Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы !!!.
В результате взрыва, вибрации при землетрясении, происходит перемещение
(скольжение) фрагментов фланцевых фрикционно-подвижных соединений (
ФФПС) фланцевого соединение растянутых элементов трубопровода на
Фрикционно демпфирующий компенсаторах для трубопроводов с упругими
демпферами сухого трения, скользящих и демпфирующих закрепленных на
спиральной тоже демпфирующей опоры , по продольным длинным овальным
отверстиям .
Происходит поглощение энергии, за счет трения частей корпуса опоры при
сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и
раскачиваться спирально-демпфирующей и пружинистого фланцевого
94.
соединение растянутых элементов трубопровода на расчетное допустимоеперемещение, до 1-2 см или более согласно овального отверстия во фланце !!! (
по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых
элементов трубопровода , рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на
фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения, необходимо заменить, смятые троса ,вынуть из
контактирующих поверхностей, вставить опять в новые втулки (гильзы) ,
забить в паз латунной шпильки демпфирующего узла крепления, новые
упругопластичный стопорные обожженные медный многослойный клин
(клинья), с помощью домкрата поднять и выровнять фланцевое соединение
растянутых элементов трубопровода трубопровод и затянуть новые
фланцевые фрикци- болтовые соединения, с контрольным натяжением, на
начальное положение конструкции с фрикционными соединениями,
восстановить протяжного соединения на фланцевое соединение растянутых
элементов трубопровода , для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для надежной сейсмозащиты, виброизоляции от
многокаскадного демпфирования фланцевого соединение растянутых
элементов трубопровода с упругими демпферами сухого трения и усилить
основания под трубопровод, теплотрассу, агрегаты, оборудования, задний и
сооружений
Заявление в Государственный комитет по науке и технологиям Республики
Беларусь Национальный центр интеллектуальной собственности 220034 г
Минск ул Козлова 20 (017) 285-26-05 [email protected]
Для ведущего специалиста центра экспертизы промышленной собственности Н.М.Бортнику от 18 ноября 2021
Авторы изобретения Компенсатор тов. Сталина для трубопроводов
Мажиев Хасан Нажоеевич , Уздин Александр Михайлович и др
Компенсатор тов. Сталина для трубопроводов
Фиг 1 Компенсатор тов. Сталина для трубопроводов
95.
Фиг 2 Компенсатор тов. Сталина для трубопроводовФиг 3 Компенсатор тов. Сталина для трубопроводов
Фиг 4 Компенсатор тов. Сталина для трубопроводов
Фиг 5 Компенсатор тов. Сталина для трубопроводов
Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 6 Компенсатор тов. Сталина для трубопроводов
Фиг 7 Компенсатор тов. Сталина для трубопроводов
96.
Фиг 8 Компенсатор тов. Сталина для трубопроводовФиг 9 Компенсатор тов. Сталина для трубопроводов
Фиг 10 Компенсатор тов. Сталина для трубопроводов
Фиг 11 Компенсатор тов. Сталина для трубопроводов
Фиг 12 Компенсатор тов. Сталина для трубопроводов
Фиг 13 Компенсатор тов. Сталина для трубопроводов
97.
Фиг 14 Компенсатор тов. Сталина для трубопроводовПриложение к изобретению Компенсатор тов. Сталина для трубопроводов
ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ 2413820
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ
ЗНАКАМ
(11)
2 413 820
(13)
C1
(51) МПК
E04B 1/58 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Возможность восстановления: нет.
(22) Заявка: 2009139553/03,
26.10.2009
Дата начала отсчета срока
действия патента:
26.10.2009
оритет(ы):
Дата подачи
заявки: 26.10.2009
Опубликовано: 10.03.2011 Б
юл. № 7
Список документов,
цитированных в отчете о
поиске: КУЗНЕЦОВ В.В.
Металлические
конструкции. В 3 т. Стальные конструкции
зданий и сооружений
(Справочник
проектировщика). - М.:
АСВ, 1998, т.2. с.157,
рис.7.6. б). SU 68853 A1,
31.07.1947. SU 1534152 A1,
07.01.1990.
ес для переписки:
357212, Ставропольский
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий
Ильич (RU)
(73)
Патентообладатель(и
):
Марутян Александр
Суренович (RU)
98.
край, г. МинеральныеВоды, ул. Советская, 90,
кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых
элементов замкнутого профиля. Технический результат заключается в уменьшении массы конструкционного
материала. Фланцевое соединение растянутых элементов замкнутого профиля включает концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами. Фланцы установлены под углом 30°
относительно продольных осей стержневых элементов. Листовую прокладку составляют парные опорные
столики. Столики жестко скреплены с фланцами и в собранном соединении взаимно уперты друг в друга. 7
ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям растянутых элементов замкнутого профиля, и может быть использовано в монтажных стыках
поясов решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы стержневых элементов с фланцами, дополнительные ребра и стяжные болты, установленные по
периметру замкнутого профиля попарно симметрично относительно ребер (Металлические конструкции. В 3 т. Т.1. Общая часть. (Спр авочник проектировщика) / Под общ. ред. В.В.Кузнецова. - М.: Издво АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных деталей, что увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего (растянутого) пояса ферм из гнутосварных за мкнутых профилей, включающее концы
стержневых элементов с фланцами, дополнительные ребра, стяжные болты и листовую прокладку между фланцами для прикрепления стержней решетки фермы и связей между фермами (1.
Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.295, рис.9.27; 2. Металлические конструкции. В 3 т. Т.1. Элементы конст рукций: Учебник
для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов замкнутого профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого профиля, включающем концы стержн ей с фланцами, стяжные болты и листовую прокладку между
фланцами, фланцы установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в
собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так, его можно применить в монтажных ст ыках решетчатых конструкций из труб круглых, овальных,
эллиптических, прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве еще одного примера использования предлагаемого соединения можно привести аналогичные стыки
на монтаже элементов конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров, Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано предлагаемое фланцевое соединение растяну тых элементов замкнутого профиля, вид сверху; на фиг.2 то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая прикрепления элемента решетки, вид сбоку; на фиг.4 - фланцевое соединение растянутых элементов незамкнутого профиля, вид
сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных болтов в наружных зонах незамкнутого профиля; на фиг.7 - расчетная схема растянутого элемента замкнутого
профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит прикрепленные с помощью сварных шво в цельнолистовые фланцы 2, установленные под углом 30°
относительно продольных осей растянутых элементов. С фланцами 2 посредством сварных швов жестко скреплены опорные столики 3. В выступающих частях 4 фланцев 2 и опорных столиков 3
размещены соосные отверстия 5, в которых после сборки соединения на монтаже установлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные столики 3 продолжены за пределы в ыступающих частей 4 фланцев 2 таким образом, что в них
можно разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов незамкнутого профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные болты
6 могут быть расположены не только за пределами сечения (поперечного или косого) незамкнутого (открытого) профиля, но и в его внутренних зонах. При полном отсутствии стяжных болтов 6 в
наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы примыкания раскосов к поясу должны быть не менее 30° для обеспечения плотности участка сварного
шва со стороны острого угла (Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом соединении
растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные столики 3 установлены под углом 30° относительно продольных осей. В таком случае продольная сила F,
вызывающая растяжение элемента замкнутого профиля 1, раскладывается на две составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866 F, передающуюся на
опорные столики 3. Уменьшение болтовых усилий в два раза во столько же раз снижает моменты, изгибающие фланцы, а это позволяе т применять для них более тонкие листы, сокращая тем самым
расход конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно влияют возможные уменьшение диаметров стяжных болтов 6, снижение их ко личества или
комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового объекта принято типовое монтажное соединение на фланцах ферм покрытий из гнутосварных
замкнутых профилей системы «Молодечно» (Стальные конструкции покрытий производственных зданий пролетами 18, 24, 30 м с примен ением замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала сравниваемых вариантов приведен в таблице, из которой видно, что в новом решении о н уменьшился в
47,1/26,8=1,76 раза.
Масса, кг
Наименование
Размеры,
мм
Кол-во,
шт.
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
Сварные швы (1,5%)
1
всех стыка
шт.
47,1
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6 5,2 26,8
Сварные швы (1,5%)
*Учтена треугольная форма
Примеч.
Предлагаемое
решение
0,4
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и предлагаемом фланцевых соединениях колич ество стяжных болтов одинаково и составляет 8 шт. Если в
первом из них использованы болты М24, то во втором - M18 того же класса прочности. Тогда очевидно, что в новом решении расход материала снижен пропорционально уменьшению площади сечения
болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы с тержней с фланцами, стяжные болты и листовую прокладку между фланцами, отличающееся тем, что
фланцы установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку составляют парные оп орные столики, жестко скрепленные с фланцами и в собранном
соединении взаимно упертые друг в друга.
99.
100.
101.
Второй аналог - приложение к заявке на изобретение ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯРОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 820
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
E04B 1/58 (2006.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
Приоритет(ы):
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич (RU)
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ В.В. Металлические конструкции. В 3 т. - Стальные конструкции зданий
(73) Патентообладатель(и):
Марутян Александр
Суренович (RU)
102.
и сооружений (Справочник проектировщика). - М.: АСВ, 1998, т.2. с.157, рис.7.6. б). SU 68853 A1, 31.07.1947. SU 1534152 A1, 07.01.1990.Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская, 90, кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых элементов замкнутого профиля. Технический результат заключается в
уменьшении массы конструкционного материала. Фланцевое соединение растянутых элементов замкнутого профиля включает концы стержней с фланцами, стяжные болты
и листовую прокладку между фланцами. Фланцы установлены под углом 30° относительно продольных осей стержневых элементов. Листовую прокладку составляют
парные опорные столики. Столики жестко скреплены с фланцами и в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям растянутых элементов замкнутого профиля, и может быть
использовано в монтажных стыках поясов решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы стержневых элементов с фланцами, дополнительные ребра и стяжные
болты, установленные по периметру замкнутого профиля попарно симметрично относительно ребер (Металлические конструкции. В 3 т. Т.1. Общая часть. (Справочник
проектировщика) / Под общ. ред. В.В.Кузнецова. - М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных деталей, что увеличивает расход материала и трудоемкость
конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего (растянутого) пояса ферм из гнутосварных замкнутых профилей,
включающее концы стержневых элементов с фланцами, дополнительные ребра, стяжные болты и листовую прокладку между фланцами для прикрепления стержней
решетки фермы и связей между фермами (1. Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.295, рис.9.27;
2. Металлические конструкции. В 3 т. Т.1. Элементы конструкций: Учебник для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов замкнутого профиля, является уменьшение массы (расхода)
конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого профиля, включающем концы стержней с фланцами, стяжные болты и листовую
прокладку между фланцами, фланцы установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку составляют парные опорные
столики, жестко скрепленные с фланцами и в собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так, его можно применить в монтажных стыках решетчатых конструкций из
труб круглых, овальных, эллиптических, прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве еще одного примера использования
предлагаемого соединения можно привести аналогичные стыки на монтаже элементов конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров, Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано предлагаемое фланцевое соединение растянутых элементов замкнутого
профиля, вид сверху; на фиг.2 - то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая прикрепления элемента решетки, вид сбоку; на фиг.4 - фланцевое
соединение растянутых элементов незамкнутого профиля, вид сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных болтов в наружных зонах
незамкнутого профиля; на фиг.7 - расчетная схема растянутого элемента замкнутого профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит прикрепленные с помощью сварных швов цельнолистовые фланцы 2,
установленные под углом 30° относительно продольных осей растянутых элементов. С фланцами 2 посредством сварных швов жестко скреплены опорные столики 3. В
выступающих частях 4 фланцев 2 и опорных столиков 3 размещены соосные отверстия 5, в которых после сборки соединения на монтаже установлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные столики 3 продолжены за пределы выступающих частей 4 фланцев 2
таким образом, что в них можно разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов незамкнутого профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках
3, а также стяжные болты 6 могут быть расположены не только за пределами сечения (поперечного или косого) незамкнутого (открытого) профиля, но и в его внутренних
зонах. При полном отсутствии стяжных болтов 6 в наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы примыкания раскосов к поясу должны быть не менее 30° для обеспечения
плотности участка сварного шва со стороны острого угла (Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. С.296). Поэтому в предлагаемом фланцевом соединении растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные столики 3 установлены под
углом 30° относительно продольных осей. В таком случае продольная сила F, вызывающая растяжение элемента замкнутого профиля 1, раскладывается на две
составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866 F, передающуюся на опорные столики 3. Уменьшение болтовых усилий
в два раза во столько же раз снижает моменты, изгибающие фланцы, а это позволяет применять для них более тонкие листы, сокращая тем самым расход
конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно влияют возможные уменьшение диаметров стяжных болтов 6,
снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового объекта принято типовое монтажное соединение на фланцах ферм
покрытий из гнутосварных замкнутых профилей системы «Молодечно» (Стальные конструкции покрытий производственных зданий пролетами 18, 24, 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала сравниваемых вариантов
приведен в таблице, из которой видно, что в новом решении он уменьшился в 47,1/26,8=1,76 раза.
Наименование Размеры, мм Кол-во, шт.
Масса, кг
Примеч.
103.
1 шт. всех стыкаФланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5*
Сварные швы (1,5%)
4,0
47,1
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
Сварные швы (1,5%)
5,2
26,8 Предлагаемое решение
0,4
*Учтена треугольная форма
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и предлагаемом фланцевых соединениях количество стяжных болтов одинаково и
составляет 8 шт. Если в первом из них использованы болты М24, то во втором - M18 того же класса прочности. Тогда очевидно, что в новом решении расход материала
снижен пропорционально уменьшению площади сечения болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами,
отличающееся тем, что фланцы установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку составляют парные опорные
столики, жестко скрепленные с фланцами и в собранном соединении взаимно упертые друг в друга.
ИЗВЕЩЕНИЯ
MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 27.10.2011
Дата публикации: 20.08.2012
Изобретение стыковое соединение растянутых элементов
104.
Номер заявки на изобретение a 20210217 от 15 июля 2021 Минск Республика БеларусьЗаявка изобретение
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
105.
106.
107.
108.
Стыковое соединение растянутых элементов(19)
SU
(11)
109.
ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПОДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ
887 748
(13)
A1
(51) МПК
(12)
E04B 1/38 (2000.01)
E04B 1/58 (2000.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР
Статус: нет данных
(22) Заявка: 2808099, 16.07.1979
(71) Заявитель(и):
УРАЛЬСКИЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ИНСТИТУТ
Опубликовано: 07.12.1981
ИНЖЕНЕРОВ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА,
ес для переписки:
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ
02 620079 СВЕРДЛОВСК КОЛМОГОРОВА 66;
ИНСТИТУТ ОБОГАЩЕНИЯ И МЕХАНИЧЕСКОЙ
02 СВЕРДЛОВСК
ОБРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ
"УРАЛМЕХАНОБР"
(72) Автор(ы):
(54) Стыковое соединение растянутых элементов 887748
ЯГОФАРОВ ХАБИД,
КОТОВ ВАЛЕНТИН ЯКОВЛЕВИЧ
110.
111.
Известно, какие финансовые потери несут предприятия нефтегазового комплексавследствие утечек продукта через уплотнения фланцевых соединений
трубопроводов и технологического оборудования. Также не секрет, к каким порой
катастрофическим последствиям может привести авария на таком
предприятии, в том числе авария, связанная с повреждением уплотнения и
выбросом в атмосферу легковоспламеняющихся, взрывоопасных или токсичных
112.
веществ, а также сколько будет стоить останов производства, связанный сзаменой простой детали. Можно только добавить, что чем тяжелее условия, в
которых работает уплотнение, тем больше будет вероятность его повреждения
и серьезнее будут последствия.
И в этом контексте особый интерес вызывают Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие компенсаторы, ,
которые обеспечивают надежную герметичность и электрическую изоляцию
фланцев при высоком давлении, высокой температуре и агрессивной среде,
сохраняя работоспособность даже в условиях прямого воздействия пламени. В
основе технологии Фланцевого соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения , косых демпфирующих компенсаторов лежит изобретения проф дтн
ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616 простые стандартные
инженерные решения сухого трения
113.
Рис. 1. Фланцевое соединение растянутых элементов трубопровода соскошенными торцами с упругими демпферами сухого трения, косые демпфирующие компенсаторы
Однако, фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, которая изначально была
разработана организацией « Сейсмофонд» при ПГУПС для обеспечения надежной
герметизации и электрической изоляции самых ответственных фланцевых
соединений, работающих в самых тяжелых условиях (аббревиатура VCS
расшифровывается как Very Critical Service), особенно там, где использовались
фланцы RTG, для уплотнения которых применялись кольцевые прокладки типа
«Арм- ко» из фенолформальдегидной смолы, которые часто выходили из строя.
114.
После проведения серии сравнительных испытаний, продемонстрировавших, что,фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения с косым демпфирующим компенсатором
превосходит все имеющиеся аналоги, в 1991 г.
С тех пор сотни фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения прошли испытания узлов и
фрагментов в ПКТИ Афонская ул 2, и сейчас могут их используют практически
после испытания для нефтегазовых компании.
Исполнение Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, косые демпфирующего компенсатора в эксплуатацию ,требует доработки
и испытания, путем дополнения косому компенсатору, базовой конструкции
высоко огнезащиты фрикционно-подвижных болтовых соединений , который
обеспечивает герметичность соединения при температуре до 815 °С.
На всю продукцию Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения –косые демпфирующие компенсаторы получено разрешение
Минстроя РФ, в будущем планируется производство Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие
компенсаторы из нержавеющей стали, на которой нанесено изолирующее покрытие из
усиленной стекловолокном эпоксидной смолы, имеющее очень высокую прочность
на сжатие и изгиб, высокую электрическую плотность, низкое водопоглощение и
рабочую температуру до 200 °С.
На Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения –косые демпфирующие компенсаторы, создающий непроницаемый барьер для жидкости
и газа по всей толщине изолирующего покрытия.
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения –косые демпфирующие компенсаторы, обеспечивают герметизацию при низком
давлении. Когда давление среды возрастает и начинает действовать
непосредственно на уплотняющий элемент, кромки уплотнения, под
воздействием давления продукта трубопровода. Таким образом, с ростом
внутреннего давления в стыковочном узле герметичность соединения
увеличивается. При этом сохраняется и электрическая изоляция фланцев.
Применение Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения –косые демпфирующие компенсаторы, решает целый ряд проблем,
присущих данному типу соединений.
При использовании Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения –косые демпфирующие компенсаторы отсутствует зона контакта
рабочей среды с поверхностью фланцев, что предотвращает их коррозию и
115.
эрозию, особенно при наличии в трубопроводе песка, высоких концентраций H2S иCO2, прочих агрессивных сред. Нагрузка при затяжке болтов фланцевого
соединения с Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения –косые демпфирующие компенсаторы
распределяется равномерно, а не концентрируется в зоне впадины для
уплотнительного кольца (а это еще один положительный фактор для
возникновения коррозии во Фланцах и соединениях растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения –косые демпфирующие компенсаторы
что предохраняет от механических повреждений как сам фланец, так и
уплотнение, которое может быть использовано многократно. Еще одним
очевидным преимуществом использования косых компенсаторов, является
техническая возможность замены фланцев на протяжных фрикционно-подвижных
соединениях в том числе на устьевом нефтепромысловом оборудовании, более
компактными легкими и дешевыми (на 10-30%) фланцами с гладкой
уплотнительной поверхностью. Правда, для практической реализации указанного
преимущества требуется изменение соответствующих нормативных
документов, например СТО. Огнестойкое Фланцевое соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие компенсаторы, сочетает в
себе положительные качества технологии демпфирующих косых компенсаторов с
новейшим техническим решением,которое позволило данному уплотнению
пройти испытание на огнестойкость в соответствии с требованиями 3-й
редакции
В отличие от стандартной конструкции Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие компенсаторы,
косые компенсаторы имеет два ряда уплотняющих элементов : первичный –за счет
сухого трения и вторичный - в виде специального покрытия трущихся
поверхностей
Благодаря такому двойному уплотнению Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие компенсаторы - во
время пожара косые компенсаторы обеспечивает огнестойкость, повышенную
надежность и требует меньшего усилия затяжки болтов, чем уплотнения других
типов.
Изолирующие втулка –гильза для уплотнений шпильки изготавливаются из
закаленной углеродистой стали, на которую нанесено специальное непроводящее
покрытие. Такие шайбы не разрушаются под воздействием пламени, что
позволяет избежать ослабления затяжки фланцевого соединения во время
пожара.
Мы надеемся, что Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения –косые демпфирующие компенсаторы , найдут широкое применение
на нефтеперерабатывающих и нефтехимических предприятиях России.
116.
Более подробно об использовании для трубопроводов Фланцевое соединение растянутыхэлементов трубопровода со скошенными торцами с упругими демпферами сухого трения –косые демпфирующие
компенсаторы фрикционно- демпфирующий косых компенсаторов
на фрикционноподвижных соединениях , сери ФПС-2015- Сейсмофонд, для трубопроводов по
изобретению Андреева Борис Александровича № 165076 «Опора сейсмостойкая» и
патента № 2010136746 «Способ защиты зданий и сооружений с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему
демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической
энергии» , № 154506 «Панель противовзрывная» для газо -нефтяных
магистральных трубопроводов, Японо-Американской фирмой RUBBER BEARING
FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер,
который совмещает преимущества вращательного трения амортизируя с вертикальной поддержкой
эластомерного подшипника в виде вставной резины, которая не долговечно и теряет свои свойства при
контрастной температуре , а сам резина крошится.
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим
шарниром, трубчатого в вида
Seismic resistance GD Damper https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection Damper https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
На фотографии изобретатель СССР Андреев Борис Александрович, автор конструктивного
решения по использованию демпфирующих компенсаторов на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при термически
растягивающих нагрузках в трубопроводах , с зафиксированными запорными элементов в
штоке, по линии ударной нагрузки , согласно изобретения № 165076 «Опора
сейсмостойкая» для обеспечения надежности технологических трубопроводов ,
преимущественно при растягивающих и динамических нагрузках и улучшения
117.
демпфирующих свойств технологических трубопроводов , согласно изобретениям профПГУПС дтн проф Уздина А М №№ 1168755, 1174616, 1143895 и внедренные в США
Автор отечественной фрикционо- кинематической, демпфирующей
сейсмоизоляции и системы поглощения и рассеивания сейсмической и
взрывной энергии проф дтн ПГУПC Уздин А М, на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при термических
растягивающих нагрузках в трубопроводах
Shinkiсhi Suzuki -Президент фирмы Kawakin Япония, внедрил в Японии фрикционо-
кинематические, демпфирующие системы, на фрикционно-подвижных болтовых
соединениях, для восприятия усилий -за счет трения, при термически растягивающих
нагрузках в трубопроводах и конструктивные решения по применении виброгасящей
сейсмоизоляции, для сейсмозащиты железнодорожных мостов в Японии, с
системой поглощения и рассеивания сейсмической энергии проф дтн
ПГУПC Уздин А М в Японии, США , Тайване и Европе
Авторы США, американской фрикционо- кинематических внедрившие в
США изобретения проф дтн А.М.Уздина №№1143895, 1168755, 1174616,
165076 «Опора сейсмостойкая», 2010136746 «Способ защиты зданий и
сооружений при взрыве…» , демпфирующей и шарнирной сейсмоизоляци и
системы поглощения сейсмической энергии DAMPERS CAPACITIES AND
DIMENSIONS ученые США и Японии Peter Spoer, CEO Dr. Imad Mualla, CTO
https://www.damptech.com GET IN TOUCH WITH US!
118.
Руководитель и основатель Квакетека расположенного в Монреале, Канаде Джоаквим Фразаоhttps://www.quaketek.com/products-services/
Friction damper for impact absorption
https://www.youtube.com/watch?v=kLaDjudU0zg
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
https://www.youtube.com/watch?v=aSZa-SaRBY&feature=youtu.be&fbclid=IwAR38bf6R_q1Pu2TVrudkGJvyPTh4dr4xpd1jFtB4CJK2HgfwmKYOsYtiV2Q
ТКП 45-5.04-274-2012 "Стальные конструкции. Правила расчета"
https://dwg.ru/dnl/13468
119.
120.
121.
122.
123.
Приложения научные публикации доклады на научных конференция СПб ГАСУ https://yadi.sk/d/eg0nFjnEE2ZhMQПриложение патенты ,изобретения организации «Сейсмофонд при СПб ГАСУ
https://yadi.sk/i/2RJuRCYmFpougg
Р Е Ф Е Р А Т изобретения на полезную модель Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения предназначена для сейсмозащиты , виброзащиты трубопроводов ,
оборудования, сооружений, объектов, зданий от сейсмических, взрывных, вибрационных,
неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей опоры с
упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого
троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых
соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной
демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части подвижной в
вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью
фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением
фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных в длинных овальных
отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой
перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с многослойным из
склеенных пружинистых медных пластин клином, расположенной в коротком овальном отверстии
верха и низа корпуса опоры. https://findpatent.ru/patent/241/2413820.html
124.
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с упругимидемпферами сухого трения , содержащая трубообразный спиралевидный корпус-опору в виде
перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с ним подвижный узел из
контактирующих поверхностях между которыми проложен демпфирующий трос в пластмассой
оплетке с фланцевыми фрикционно-подвижными соединениями с закрепленными запорными
элементами в виде протяжного соединения.
Кроме того в трубопроводе со скошенными торцами , параллельно центральной оси, выполнено восемь
симметричных или более открытых пазов с длинными овальными отверстиями, расстояние от
торца корпуса, больше расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов трубопровода со
скошенными торцами, фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил
трения в сопряжении составных частей корпуса спиралевидной опоры и к увеличению усилия сдвига при
внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, представляют собой двойную фрикционную пару,
имеющую стабильный коэффициент трения по свинцовому листу в нижней и верхней части
виброизолирующих, сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой для
создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, с вбитыми в паз шпилек обожженными медными клиньями, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов
определяется с учетом воздействия собственного веса ( массы) оборудования, сооружения, здания,
моста и расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила
расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, выполнено со скошенными торцами в
виде , стаканчато-трубного вида на фланцевых, фрикционно – подвижных соединениях с фрикциболтами .
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами соединяется ,
на изготовлено из
фрикци-болтах, с тросовой втулкой (гильзой) - это вибропоглотитель пиковых ускорений (ВПУ) с
помощью которого поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях
и взрывной нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность работы
вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные трубопроводы
за счет уменьшения пиковых ускорений, за счет протяжных фрикционных соединений, работающих на
растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81*
п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение растянутых
элементов трубопровода со скошенными торцами , состоящая из стального троса в пластмассовой
оплетке или без пластмассовой оплетки, пружинит за счет трения между тросами, поглощает при
этом вибрационные, взрывной, сейсмической нагрузки , что исключает разрушения
сейсмоизолирующего основания , опор под агрегатов, мостов , разрушении теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации от ж/д . Надежность friction-bolt на
виброизолирующих опорах достигается путем обеспечения многокаскадного демпфирования при
динамических нагрузках, преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование,труопровоы, которое устанавливается на спиральных
сейсмоизолирующих опорах, с упругими демпферами сухого трения, на фланцевых фрикционноподвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 ,
опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко А.И, RU
125.
2413098 F 16 B 31/02 "Способ для обеспечения несущей способности металлоконструкций свысокопрочными болтами"
В основе фланцевое соединение растянутых элементов трубопровода со скошенными торцами ,с
упругими демпферами сухого трения, на фрикционных фланцевых соединениях, на фрикци-болтах
(поглотители энергии) лежит принцип который называется "рассеивание", "поглощение"
вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для Фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , с упругими демпферами сухого
трения, на фрикционно –болтовых и протяжных соединениях с демпфирующими узлами крепления
(ДУК с тросовым зажимом-фрикци-болтом ), имеет пару структурных элементов, соединяющих эти
структурные элементы со скольжением, разной шероховатостью поверхностей в виде
демпфирующих тросов или упругой гофры ( обладающие значительными фрикционными
характеристиками, с многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии.
Совместное скольжение включает зажимные средства на основе friktion-bolt ( аналог американского
Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение)
фрагментов фланцевых фрикционно-подвижных соединений ( ФФПС) фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, с упругими демпферами сухого
трения, скользящих и демпфирующих фрагментами спиральной , винтовой опоры , по продольным
длинным овальным отверстиям . Происходит поглощение энергии, за счет трения частей корпуса
опоры при сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и раскачиваться
спирально-демпфирующей и пружинистого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на расчетное допустимое перемещение, до 1-2 см ( по
расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых элементов трубопровода со
скошенными торцами, рассчитана на одно, два землетрясения или на одну взрывную нагрузку от
ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на фланцевое соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения, необходимо заменить, смятые троса ,вынуть из контактирующих поверхностей,
вставить опять в новые втулки (гильзы) , забить в паз латунной шпильки демпфирующего узла
крепления, новые упругопластичный стопорные обожженные медный многослойный клин (клинья), с
помощью домкрата поднять и выровнять фланцевое соединение растянутых элементов
трубопровода со скошенными торцами трубопровод и затянуть новые фланцевые фрикциболтовые соединения, с контрольным натяжением, на начальное положение конструкции с
фрикционными соединениями, восстановить протяжного соединения на фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , для дальнейшей эксплуатации после
взрыва, аварии, землетрясения для надежной сейсмозащиты, виброизоляции от многокаскадного
демпфирования фланцевого соединение растянутых элементов трубопровода со скошенными
торцами трубопровода с упругими демпферами сухого трения и усилить основания под
трубопровод, теплотрассу, агрегаты, оборудования, задний и сооружений
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами
126.
Фиг 1 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 3 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
127.
Фиг 4 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 6 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
128.
Фиг 8 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 9 Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
129.
Фиг 12 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 13 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами
130.
Фиг 1 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 3 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
131.
Фиг 4 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 6 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
132.
Фиг 8 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 9 Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
133.
Фиг 12 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 13 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
F0416L
Предлагаемое техническое решение предназначено для защиты магистральных
трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет использования
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, с
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
134.
упругими демпферами сухого трения установленных на пружинистую гофру с ломающимисядемпфирующими ножками при при многокаскадном демпфировании и динамических нагрузках
на протяжных фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое
соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например, болтовое соединение плоских деталей встык, патент Фланцевое
соединение растянутых элементов замкнутого профиля № 2413820, «Стыковое соедиение
рястянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D
66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148
805 G 01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения "
Изобретение относится к области строительства и может быть использовано для
фланцевых соединение растянутых элементов трубопровода со скошенными торцами для
технологических , магистральных трубопроводов. Система содержит фланцевое
соединение растянутых элементов трубопровода со скошенными торцами с разной
жесткостью, демпфирующий элемент стального листа свитого по спирали.
Использование изобретения позволяет повысить эффективность сейсмозащиты и
виброизоляции в резонансном режиме фланцевые соединения в растянутых элементов
трубопровода со скошенными торцами
Изобретение относится к строительству и машиностроению и может быть
использовано для виброизоляции магистральных трубопроводов, технологического
оборудования, агрегатов трубопроводов и со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является фланцевое
соединение растянутых элементов замкнутого профиля № 2413820 , Стыковое
соединение растянутых элементов № 887748 система по патенту РФ (прототип),
содержащая и описание работы фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
Недостатком известного устройства является недостаточная эффективность на
резонансе из-за отсутствия демпфирования колебаний. Технический результат повышение эффективности демпфирующей сейсмоизоляции в резонансном режиме и
упрощение конструкции и монтажа сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующем фланцевом соединение растянутых
элементов трубопровода со скошенными торцами , содержащей по крайней мер, за счет
демпфирующего фланцевого соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и сухого трения установлена с использованием фрикциболта с забитым обожженным медным упругопластичным клином, конце демпфирующий
элемент, а демпфирующий элемент выполнен в виде медного клина забитым в паз
латунной шпильки с медной втулкой, при этом нижняя часть штока соединена с
основанием спиральной опоры , жестко соединенным с демпирующей спиральной стальной
лентой на фрикционно –подвижных болтовых соединениях для обеспечения
демпфирования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами
На фиг. 1 представленk фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения с пружинистыми демпферами
сухого трения в овальных отверстиях
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения, виброизолирующая система для зданий и сооружений,
содержит основание 3 и 2 –овальные отверстия , для болтов по спирали и имеющих
135.
одинаковую жесткость и связанных с опорными элементами верхней части пояса зданийили сооружения я.
Система дополнительно содержит фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, к которая крепится фрикци-болтом с пропиленным
пазов в латунной шпильки для забитого медного обожженного стопорного клина ( не
показан на фигуре 2 ) и которая опирается на нижний пояс основания и демпфирующий
элемент 1 в виде спиральновидной сейсмоизолирующей опоры с упругими демпферами
сухого трения за счет применения фрикционно –подвижных болтовых соединениях,
выполненных по изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010 136746
«Способ защиты зданий», 165076 «Опора сейсмостойкая» В спиралевидную трубчатую
опору , после сжатия расчетной нагрузкой , внутрь заливается тощий по расчету
фибробетон по нагрузкой , сжатой спиральной сейсмоизолирующей опоры
Демпфирующий элемент фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения за счет фрикционноподвижных соединениях (ФПС)
При колебаниях грунта сейсмоизолирующая и виброизолирующее фланцевое соединение
растянутых элементов трубопровода со скошенными торцами, для демпфирующей
сейсмоизоляции трубопровода (на чертеже не показан) с упругими демпферами сухого
трения , для спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого
трения , элементы 1 и 4 воспринимают как вертикальные, так и горизонтальные нагрузки,
ослабляя тем самым динамическое воздействие на демпфирующею сейсмоизоляцию
объект, т.е. обеспечивается пространственную сейсмозащиту, виброзащиту и защита
от ударной нагрузки воздушной волны
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, как
виброизолирующая система работает следующим образом.
При колебаниях виброизолируемого объекта , фланцеве соединение растянутых элементов
трубопровода со скошенными торцами на основе фрикционо-подвижных болтовых
соединениях , расположенные в длинных овальных отверстиях воспринимают
вертикальные нагрузки, ослабляя тем самым динамическое воздействие на здание,
сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами 1, и
разрушение тощего фибробетона 4 расположенного внутри спиральной демпфирующей
опоры .
Предложенная виброизолирующая система является эффективной, а также отличается
простотой при монтаже и эксплуатации.
Упругодемпфирующая фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения работает следующим
образом.
При колебаниях объекта фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения , которые воспринимает
вертикальные нагрузки, ослабляя тем самым динамическое воздействие на здание ,
сооружение . Горизонтальные колебания гасятся за счет фрикци-болта расположенного в
при креплении опоры к основанию фрикци-болтом , что дает ему определенную степень
свободы колебаний в горизонтальной плоскости.
136.
При малых горизонтальных нагрузках фланцевого соединение растянутых элементовтрубопровода со скошенными торцами и силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов
фланцевого соединение растянутых элементов трубопровода со скошенными торцами или
прокладок относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий
для скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании , уже не работают
упруго. После того как все болты соединения дойдут до упора края, в длинных овальных
отверстий, соединение начинает работать упруго за счет трения, а затем происходит
разрушение соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг
по вертикали допускается 1 - 2 см или более
Недостатками известного решения аналога являются: не возможность использовать
фланцевого соединение растянутых элементов трубопровода со скошенными торцами,
ограничение демпфирования по направлению воздействия только по горизонтали и вдоль
овальных отверстий; а также неопределенности при расчетах из-за разброса по трению.
Известно также устройство для фрикционного демпфирования антиветровых и
антисейсмических воздействий, патент TW201400676(A)-2014-01-01. Restraint anti-wind and
anti-seismic friction damping device, E04B1/98, F16F15/10, патент США Structural stel bulding
frame having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" , RU № 2413820 "Фланцевое
соединение растянутых элементов замкнутого профиля", Украина № 40190 А "Устройство
для измерения сил трения по поверхностям болтового соединения" , Украина патент №
2148805 РФ "Способ определения коэффициента закручивания резьбового соединения"
Таким образом получаем фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения и виброизолирующею
конструкцию кинематической или маятниковой опоры, которая выдерживает вибрационные
и сейсмические нагрузки но, при возникновении динамических, импульсных растягивающих
нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения
Недостатками указанной конструкции являются: сложность конструкции и сложность
расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей и
надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, а
также повышение точности расчета при использования тросовой втулки (гильзы) на
фрикци- болтовых демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя пружинистого
троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами
сухого трения, выполнена из разных частей: нижней - корпус, закрепленный на фундаменте с
помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток
137.
сборный в виде, фланцевого соединение растянутых элементов трубопровода со скошеннымиторцами с упругими демпферами сухого трения, установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации и
виброизолирующего фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, под действием запорного элемента в виде стопорного фрикци-болта с
тросовой виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной шпильке и
забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов трубопровода со
скошенными торцами выполнены овальные длинные отверстия, и поперечные отверстия
(перпендикулярные к центральной оси), в которые скрепляются фланцевыми соединениями в
растянутых элементов трубопровода со скошенными торцами с установлением
запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с медным
клином, забитым в пропиленный паз стальной шпильки и с бронзовой или латунной втулкой (
гильзой), с тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами, параллельно центральной оси, выполнены восемь открытых длинных пазов,
которые обеспечивают корпусу возможность деформироваться за счет протяжных
соединений с фрикци- болтовыми демпфирующими, виброизолирующими креплениями в
радиальном направлении.
В теле фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами, вдоль
центральной оси, выполнен длинный паз ширина которого соответствует диаметру
запирающего элемента (фрикци- болта), а длина соответствует заданному перемещению
трубчатой, квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в
сопряжении опоры - корпуса, с продольными протяжными пазами с контролируемым
натяжением фрикци-болта с медным клином обмотанным тросовой виброизолирующей
втулкой (пружинистой гильзой) , забитым в пропиленный паз стальной шпильки и
обеспечивает возможность деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью перемещения только под
вибрационные, сейсмической нагрузкой, взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображено фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения на фрикционных соединениях
с контрольным натяжением ;
на фиг.2 изображен вид с боку фланцевого соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения со стопорным (тормозным)
фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным
стопорным клином;
финн 3 изображен вид с верху , фланцевого соединение растянутых элементов трубопровода
со скошенными торцами
фиг. 4 изображен разрез фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения виброизолирующею,
сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов трубопровода
со скошенными торцами
138.
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)фиг. 7 изображена вид с верху фланцевого соединение с овальными отверстиями
растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое соединение по замкнутому контуру растянутых
элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
фиг. 10 изображена формула расчет фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с косым демпфирующим компенсатором
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 13 изображен способ определения коэффициента закручивания резьбового соединения"
по изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента
закручивания резьбового соединения" и № 2413098 "Способ для обеспечения несущей
способности металлических конструкций с высокопрочными болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по подготовленным
поверхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление
на выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье
Рабера Л.М. Червинский А.Е "Пути соевршенствоания технологии выполнения фрикционных
соединений на высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 15 изображен образец для испытания и Определение коэффициента трения в ПК SCAD
между контактными поверхностями соединяемых элементов СТП 006-97 Устройство
соединений на высокопрочных болтах в стальных конструкциях мостов, СТАНДАРТ
ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ
КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научноисследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд.
техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М.
Мещеряков) для испытаний на вибростойкость, сейсмостойкость образца, фрагмента,
узлов крепления протяжных фрикционно подвижных соединений (ФПС) по изобретениям проф
ПГУПС А .М Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения, состоит из двух фланцев (нижний целевой), (верхний
составной), в которых выполнены вертикальные длинные овальные отверстия диаметром
«D», шириной «Z» и длиной . Нижний фланец охватывает верхний корпус трубы
(трубопровода) . При монтаже демпфирующего компенсатора, поднимается до верхнего
предела, фиксируется фрикци-болтами с контрольным натяжением, со стальной шпилькой
болта, с пропиленным в ней пазом и предварительно забитым в шпильке обожженным
медным клином. и тросовой пружинистой втулкой (гильзой) В стенке корпусов
виброизолирующей, сейсмоизолирующей кинематической опоры перпендикулярно оси корпусов
опоры выполнено восемь или более длинных овальных отверстий, в которых установлен
139.
запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой,пружинистой гильзой, с забитым в паз стальной шпильки болта стопорным ( пружинистым )
обожженным медным многослойным упругопластичнм клином, с демпфирующей свинцовой
шайбой и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов трубопровода со скошенными торцами ,
с упругими демпферами сухого трения, трубно вида в виде скользящих пластин , вдоль оси
выполнен продольный глухой паз длиной «h» (допустимый ход болта –шпильки )
соответствующий по ширине диаметру калиброванного фрикци - болта, проходящего через
этот паз. В нижней части демпфирующего компенсатора, выполнен фланец для фланцевого
подвижного соединения с длинными овальными отверстиями для крепления на фундаменте,
а в верхней части корпуса выполнен фланец для сопряжения с защищаемым объектом,
сооружением, мостом
Сборка фланцевого соединение растянутых элементов трубопровода со скошенными
торцами , заключается в том, что составной ( сборный) фланцевое соединение растянутых
элементов трубопровода со скошенными торцами, в виде основного компенсатора по
подвижной посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз
фланцевого соединение растянутых элементов трубопровода со скошенными торцами,,
совмещают с поперечными отверстиями трубчатой спиралевидной опоры в трущихся
спиралевидных стенок опоры , скрепленных фрикци-болтом (высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с контрольным натяжением до
заданного усилия в зависимости от массы трубопровода,агрегата. Увеличение усилия
затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров от
«Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной,
трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, зависит от
величины усилия затяжки гайки (болта) с контролируемым натяжением и для каждой
конкретной конструкции и фланцевого соединение растянутых элементов трубопровода со
скошенными торцами (компоновки, габаритов, материалов, шероховатости и
пружинистости стального тонкого троса уложенного между контактирующими
поверхностями деталей поверхностей, направления нагрузок и др.) определяется
экспериментально или расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов
трубопровода со скошенными торцами демпфирующего компенсатора , сверху и снизу
закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время вибрационных
нагрузок или взрыве за счет трения между верхним и нижним фланцевым соединением
растянутых элементов трубопровода со скошенными торцами, происходит поглощение
вибрационной, взрывной и сейсмической энергии. Фрикционно- подвижные соединения
состоят из скрученных пружинистых тросов- демпферов сухого трения и свинцовыми
(возможен вариант использования латунной втулки или свинцовых шайб) поглотителями
вибрационной , сейсмической и взрывной энергии за счет демпфирующих фланцевых
соединений в растянутых элементов трубопровода со скошенными торцами с тросовой
втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
140.
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительнозабиты в пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, представляют собой двойную фрикционную пару, имеющую
стабильный коэффициент трения по упругой многослойной .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов
определяется с учетом воздействия собственного веса трубопровода
Сама составное фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с фланцевыми фрикционно - подвижными болтовыми соединениями должна
испытываться на сдвиг 1- 2 см
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями
забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими
ключами или гайковертами на расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для стыкового демпфирующего косого соединения , фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, является
энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт
снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и при
взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы
трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных
фрикционных соединений, работающих на растяжение на фрикци- болтах, установленных в
длинные овальные отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикциболта при виброизоляции нагревается за счет трения между верхней составной и нижней
целевой пластинами (фрагменты опоры) до температуры плавления и плавится, при этом
поглощаются пиковые ускорения взрывной, сейсмической энергии и исключается разрушение
оборудования, ЛЭП, опор электропередач, мостов, также исключается разрушение
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, с упругими демпферами сухого трения на
фрикционных соединениях, на фрикци-болтах с тросовой втулкой, лежит принцип который,
на научном языке называется "рассеивание", "поглощение" сейсмической, взрывной,
вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на одну
сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной или
сейсмической нагрузки необходимо заменить смятые или сломанные гофрированное
виброиозирующее основание, в паз шпильки фрикци-болта, демпфирующего узла забить
141.
новые демпфирующий и пружинистый медные клинья, с помощью домкрата поднять,выровнять опору и затянуть болты на проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок превышающих
силы трения в сопряжении в фланцевом соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения, трубчатого вида , происходит
сдвиг трущихся элементов типа шток, корпуса опоры, в пределах длины спиралевидных
паза выполненного в составных частях нижней и верхней трубчатой опоры, без разрушения
оборудования, здания, сооружения, моста.
О характеристиках виброизолирующего демпфирующего компенсатора - фланцевого
соединение растянутых элементов трубопровода со скошенными торцами, сообщалось на
научной XXVI Международной конференции «Математическое и компьютерное
моделирование в механике деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ:
«Испытание математических моделей установленных на сейсмоизолирующих фланцевых
фрикционно-подвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на фланцевых фрикционно-подвижных соединений (ФПС) и демпфирующих узлов
крепления (ДУК) (без раскрывания новизны технического решения) можно ознакомиться: см.
изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame
having resilient connectors, TW201400676 Restraint anti-wind and anti-seismic friction damping device
(Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_
TechnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями демпфирующего косого компенсатора на основе фланцевого
соединение растянутых элементов трубопровода со скошенными торцами на основе
фланцевых фрикционно –подвижных соединений для виброизоирующей кинематической опоры
в ПКТИ Строй Тест , ул Афонская дом 2 можно ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующего косого компенсатора для трубопроводов на
основе фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, показаны следующие существенные
отличия:
1.Косое фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения выдерживает термические нагрузки от
перепада температуры при транспортировке по трубопроводу газа, кислорода в
больницк
2. Упругая податливость демпфирующего фланцевого соединение растянутых элементов
трубопровода со скошенными торцами регулируется прочностью втулки тросовой
4. В отличие от резиновых неметаллических прокладок, свойства которой ухудшаются со
временем, из-за старения резины, свойства фланцевое косое демпфирующее соединение
142.
растянутых элементов трубопровода со скошенными торцами, остаются неизменными вовремени, а долговечность их такая же, как у магистрального трубопровода.
Экономический эффект достигнут из-за повышения долговечности демпфирующей упругого
фланцевого соединение растянутых элементов трубопровода со скошенными торцами , так
как прокладки на фланцах быстро изнашивающаяся и стареющая резина , пружинные
сложны при расчет и монтаже. Экономический эффект достигнут также из-за удобства
обслуживания узла при эксплуатации фланцевого косого компенсатора соединение
растянутых элементов трубопровода со скошенными торцами
Литература которая использовалась для составления заявки на изобретение: фланцевого
соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов
расчетной оценки долговечности подкрановых путей производственных зданий.
Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27,
1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн"
23.02.1983
9. Захватное устройство
сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
143.
миллиарды»,9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления – дом на грунте. Строительство на пучинистых и
просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность городов» в
области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут
ли через четыре года планету
«Земля глобальные и разрушительные потрясения
«звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных
волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 19942004 гг. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного
опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен»
с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Формула изобретения косого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения
1. Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, демпфирующего косого
компенсатора для магиастрального трубопровода , содержащая: фланцевое
соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения на фрикционно-подвижных болтовых
соединениях, с одинаковой жесткостью с демпфирующий элементов при
многокаскадном демпфировании, для сейсмоизоляции трубопровода и поглощение
сейсмической энергии, в горизонтальнойи вертикальной плоскости по лини
нагрузки, при этом упругие демпфирующие косые компенсаторы , выполнено в
виде фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
2. Фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения , повышенной надежности с
улучшенными демпфирующими свойствами, содержащая , сопряженный с ним
подвижный узел с фланцевыми фрикционно-подвижными соединениями и упругой
втулкой (гильзой), закрепленные запорными элементами в виде протяжного
соединения контактирующих поверхности детали и накладок выполнены из
пружинистого троса между контактирующими поверхностями, с разных сторон,
отличающийся тем, что с целью повышения надежности демпфирующее
сейсмоизоляции, с демпфирующим эффектом с сухим трением, соединенные между
собой с помощью фрикционно-подвижных соединений с контрольным натяжением
фрикци-болтов с тросовой пружинистой втулкой (гильзы) , расположенных в
длинных овальных отверстиях , с помощью фрикци-болтами с медным
упругоплатичном, пружинистым многослойным, склеенным клином или тросовым
144.
пружинистым зажимом , расположенной в коротком овальном отверстии верха иниза косого компенсатора для трубопроводов
3. Способ фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, для обеспечения
несущей способности трубопровода на фрикционно -подвижного соединения с
высокопрочными фрикци-болтами с тросовой втулкой (гильзой), включающий,
контактирующие поверхности которых предварительно обработанные,
соединенные на высокопрочным фрикци- болтом и гайкой при проектном значении
усилия натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают
его с нормативной величиной показателя сравнения, далее, в зависимости от
величины отклонения, осуществляют коррекцию технологии монтажа
сейсмоизолирующей опоры, отличающийся тем, что в качестве показателя
сравнения используют проектное значение усилия натяжения высокопрочного
фрикци- болта с медным обожженным клином забитым в пропиленный паз
латунной шпильки с втулкой -гильзы из стального тонкого троса , а определение
усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, установленного на валу с возможностью соединения его с неподвижной
частью устройства и имеющего отверстие под нагрузочный болт, а между
выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующего антивибрационного косого
демпфирующего компенсатора , не производят, при отношении в диапазоне 0,500,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50,
кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с использованием цинконаполненной
грунтовокой ЦВЭС , которая используется при строительстве мостов
https://vmp-anticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Заявление в Государственный комитет по науке и технологиям Республики Беларусь
Национальный центр интеллектуальной собственности 220034 г Минск ул Козлова 20 (017)
285-26-05 [email protected]
Ведущему специалисту центра экспертизы промышленной собственности Н.М.Бортнику 9 мая 2021
Авторы изобретения Фланцевого соединение растянутых элементов трубопровода
со скошенными торцами ветеран боевых действий,
Уздин Александр Михайлович и
до аспиранты ПГУПС и СПб ГАСУ
Более подробно о применение косых демпфирующих компенсаторов
на фланцевых соединениях- растянутых элементов трубопровода,
145.
со скошенными торцами и упругими демпферами сухого трения . смпо ссылке https://ppt-online.org/906524 https://ppt-online.org/863664
Мажиев Х Н президент организации «Сейсмофонд» ИНН 2014000780 ОГРН
1022000000824, зам редактора газеты «Земля РОССИИ» ( свидетельство
регистрации П 031 от 16.05.94, выданное СЗ рег управлением Гос комитета РФ по
печати ( г СПб) [email protected] (921)962-67-78
Организация является разработчиком косого демпфирующего компенсатора,
фланцевого соединение растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого
трения
https://ppt-online.org/863664
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных
трубопроводов и предназнечено для защиты шаровых кранов и трубопровода от
возможных вибрационных , сейсмических и взрывных воздействий Конструкция
фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным
клином позволяет обеспечить надежный и быстрый погашение сейсмической
нагрузки при землетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт, состоит их
латунной шпильки , с забитым в пропиленный паз медного клина, которая
жестко крепится на фланцевом фрикционно- подвижном соединении (ФФПС) .
Кроме того между энергопоглощаюим клином вставляютмс свинффцовые шайбы
с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с медным
ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение»,
1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и
трубопроводов от сейсмических воздействий за счет использования фрикционное-
146.
податливых соединений. Известны фрикционные соединения для защитыобъектов от динамических воздействий. Известно, например, болтовое
фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением
нагрузки происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного
соедиения (ФФПС), при импульсных растягивающих нагрузках при многокаскадном
демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно
также устройство для фрикционного демпфирования и антисейсмических
воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и
несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие
пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах,
которые выдерживает сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических
нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений в виде фрикци -болта , а также повышение точности расчета при
использования фрикци- болтовых демпфирующих податливых креплений для
шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой ,
установленный с возможностью перемещения вдоль оси и с ограничением
перемещения за счет деформации трубопровода под действием запорного
элемента в виде стопорного фрикци-болта с пропиленным пазом в стальной
шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с
использованием латунной втулки или свинцовых шайб) поглотителями
сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают
смещение опорных частей фрикционных соединений на расчетную величину при
превышении горизонтальных сейсмических нагрузок от сейсмических воздействий
или величин, определяемых расчетом на основные сочетания расчетных нагрузок,
147.
сама опора при этом начет раскачиваться за счет выхода обожженных медныхклиньев, которые предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы оборудования, сохраняет каркас здания, моста,
ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за
счет использования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п.
14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых
элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4,
кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж
забивается медный обожженный клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта
с пропиленныым пазом , кужа забиваенься стопорный обожженный медный,
установленных на стержнях фрикци- болтов Медный обожженный клин может
быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в
отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим
или виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в
продольном направлении, осуществляется смянанием с энергопоглощением
забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами ,
расположенными между цилиндрическими выступами . При этом промежуток
между выступами, должен быть больше амплитуды колебаний вибрирующего
трубчатого элемента, Для обеспечения более надежной виброизоляции и
сейсмозащиты шарового кран с трубопроводом в поперечном направлении,
148.
можно установить медный втулки или гильзы ( на чертеже не показаны),которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения,
может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный
клин , который является амортизирующим элементом при многокаскадном
демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени
, выполненные из латунной шпильки с забиты с одинаковым усилием медный
обожженный клин , например латунная шпилька , по названием фрикци-болт .
Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами
устанавливаются также дополнительные упругие свинцовые шайбы ,
повышающие надежность виброизоляции и герметичность соединения в условиях
повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым
усилием , после чего производится стягивание соединения гайками с
контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин
на строго определенную величину, обеспечивающую рабочее состояние медного
обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с
двух сторон .
Материалы медного обожженного клина и медных обожженных втулок
выбираются исходя из условия, чтобы их жесткость соответствовала расчетной,
обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность
фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны)
повышает герметичность соединения и надежность его работы в тяжелых
условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта
определяется исходя из, частоты вынужденных колебаний вибрирующего
трубчатого элемента с учетом частоты собственных колебаний всего
соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент
динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
149.
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащеекрепежные элементы, подпружиненные и энергопоглощающие со стороны
одного из фланцев, амортизирующие в виде латунного фрикци -болта с
пропиленным пазом и забитым медным обожженным клином с медной
обожженной втулкой или гильзой , охватывающие крепежные элементы и
установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт ,
отличающееся тем, что, с целью расширения области использования соединения,
фланцы выполнены с помощью энергопоглощающего фрикци -болта , с забитимы
с одинаковм усилеи м медым обожженм коллином расположенными во фоанцемом
фрикционно-подвижном соедиении (ФФПС) , уплотнительными элемент выполнен
в виде свинцовых тонких шайб , установленного между цилиндрическими
выступами фланцев, а крепежные элементы подпружинены также на участке
между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным
энергопоголощающим клином установлены тонкие свинцовые или обожженные
медные шайбы, а в латунную шпильку устанавливает медная обожженная гильза
или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
150.
Фиг 6Фиг 7
Фиг 8
Фиг 9
151.
Продолжение см по ссылке : https://ppt-online.org/846042 https://engstroy.spbstu.ru/author/7179/ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
152.
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
153.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
и
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51
154.
1. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в частности,
сейсмическим нагрузкам исходит из целенаправленного проектирования предельных состояний конструкций. В
литературе [1, 2, 11, 18] такой подход получил название проектирования сооружений с заданными параметрами
предельных состояний. Возможны различные технические реализации отмеченного подхода. Во всех случаях в
конструкции создаются узлы, в которых от экстремальных нагрузок могут возникать неупругие смещения
элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как правило, нарушается, однако
исключается его обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были предложены
фрикционно-подвижные болтовые соединения.
Под фрикционно-подвижными соединениями (ФПС) понимаются соединения металлоконструкций
высокопрочными болтами, отличающиеся тем, что отверстия под болты в соединяемых деталях выполнены
овальными вдоль направления действия экстремальных нагрузок. При экстремальных нагрузках происходит
взаимная сдвижка соединяемых деталей на величину до 3-4 диаметров используемых высокопрочных болтов.
Работа таких соединений имеет целый ряд особенностей и существенно влияет на поведение конструкции в целом.
При этом во многих случаях оказывается возможным снизить затраты на усиление сооружения, подверженного
сейсмическим и другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа проектирования
мостовых конструкций с заданными параметрами предельных состояний. В 1985-86 г.г. эти соединения были
защищены авторскими свидетельствами [16-19]. Простейшее стыковое и нахлесточное соединения приведены на
рис.1.1. Как видно из рисунка, от обычных соединений на высокопрочных болтах предложенные в упомянутых
работах отличаются тем, что болты пропущены через овальные отверстия. По замыслу авторов при экстремальных
нагрузках должна происходить взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться
пиковое значение усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в упомянутых
работах овальные отверстия устраивались с целью упрощения монтажных работ. Для реализации принципа
проектирования конструкций с заданными параметрами предельных состояний необходимо фиксировать
предельную силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс натяжения N=2050 кН, что не позволяет прогнозировать несущую способность такого соединения по трению. При использовании
же высокопрочных болтов при том же N натяжение N= 200 - 400 кН, что в принципе может позволить задание и
регулирование несущей способности соединения. Именно эту цель преследовали предложения [3,14-17].
155.
Рис.1.1. Принципиальная схема фрикционно-подвижногосоединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания ФПС
показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной работы
конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных поверхностей
соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта. Отмеченные исследования
позволили выявить способы обработки соединяемых листов, обеспечивающих стабильную работу ФПС. В
частности, установлена недопустимость использования для ФПС пескоструйной обработки листов пакета,
рекомендованы использование обжига листов, нанесение на них специальных мастик или напыление мягких
металлов. Эти исследования показали, что расчету и проектированию сооружений должны предшествовать
детальные исследования самих соединений. Однако, до настоящего времени в литературе нет еще
систематического изложения общей теории ФПС даже для одноболтового соединения, отсутствует теория работы
многоболтовых ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в сейсмостойком
строительстве, однако, для этого необходимо детально изложить, а в отдельных случаях и развить теорию работы
таких соединений, методику инженерного расчета самих ФПС и сооружений с такими соединениями. Целью,
предлагаемого пособия является систематическое изложение теории работы ФПС и практических методов их
расчета. В пособии приводится также и технология монтажа ФПС.
156.
Стихи посвящаются в честь 142 й годовщины со днярождения Сталина о его роли в истории
Стихи о великом Сталине от русского народа !
При Сталине цены снижались, при Путине цены растут .
При Сталине нас уважали, при путине быдлом зовут
Жили мы тогда сложно- разруха после войны.
157.
Но Вождь умом надежным, вел руководство страныЗа роскошью не гонялся, одной с нами жизнью жил,
В кое -какой одежонке, всю свою жизнь проходил.
Яхты себе не строил, отелей не покупал.
В Америке деньги не прятал -Родине все отдавал !
С гор , как дурак не катался, если Отчизна в беде,
Делами страны занимался, порядок навел везде!
Сталин спасал всех детишек, оставшихся без матерей,
Сегодня буржуи на "запчасти" скупают несчастных детей.
А после в пьяном угаре , хвастает "новый крутой"
Как сатанинские козни творил он над сиротой.
Власти таких не накажут- они из колоды одной ,
За ними "права человека" и за кремлевской стеной.
При Сталине что продавалось, то с выгодой для страны.
При Путине , что продается идет мимо казны.
При Сталине , если воруешь в тюрьму, а предатель - в расход !
За это его ненавидит, весь "демократический " сброд
Сталин страну оставил -что мир весь завидовал нам !
Да не в те руки попала - иудам и холуям !
Много ума не надо- мертвого оскорблять.
Он же ему живому , были пятки готовы лизать.
Труды его не издаются. Враги продолжают хитрить.
Им , надо от молодежи, правду о гении скрыть.
Но, Как -бы ни измывался очередной подлей,
Сталин для нас был и будет -Вождь дорогой и Отец !
Когда наш Вождь скончался, рухнула будто стена
Зря человек не заплачет. О нем рыдала страна !
158.
159.
Несмотря на призывы Пу не переписывать историю, в самой России приактивном участии самого Пу вовсю идет переписывание советского периода
истории. Переписывание путем очернения, замалчивания и десоветизации всех
160.
знаковых побед и достижений СССР, начиная с объявленнойhttp://kremlin.ru/events/president/news/64406 самим Пу деидеологизации, а
значит десоветизации величайшего подвига советского строя и народа -- Победы
в Великой Отечественной войне.
И это в в первую очередь касается двух знаковых фигур советского периода:
основателя СССР -- Ленина, мавзолей которого с 2004 года всякий раз
закрывается фанерой на День Победы, а также создателя СССР -- Иосифа
Сталина, имя которого, если и упоминается властями, то исключительного в
негативном или уничижительном контексте. А в дни празднования Победы в
Великой Отечественной войне его будто и вовсе не существует для официальных
лиц из Кремля. В результате складывается просто неприличная ситуация, когда
мы – единственная в мире страна см продолжение :
https://vk.com/@ussr.today-v-142-u-godovschinu-so-dnya-rozhdeniya-stalina-o-egoroli-v
https://gulagu-net.ru/
В 142- ю годовщину со дня рождения Сталина : о его роли в истории просто
факты https://vk.com/@sulakshin-v-142-u-godovschinu-so-dnya-rozhdeniya-stalinao-ego-roli-v
https://burckina-new.livejournal.com/2306863.html
https://back-in-ussr.com/2018/02/30-interesnyh-faktov-o-staline.html
https://ok.ru/victoraryshev/topic/152526644907296
https://www.liveinternet.ru/community/lj_burckina_new/post478797566/
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
Мажиев Х.Н. Президент организации «Сейсмофонд» ОГРН : 1022000000824 ИНН2014000780 [email protected] Научные консультанты от СПб ГАСУ , ПГУПС :
203.
Х.Н.Мажиев, ученый секретарь кафедры ТСМиМ СПб ГАСУ , заместительруководителя ИЦ «СПб ГАСУ» И. У. Аубакирова ИНН 2014000780.
Изобретатель СССР Андреев Борис Александрович, автор конструктивного
решения по обеспечению термической стойкости теплотрасс , с креплением
косого компенсатора к трубопроводам с помощью фланцевых
фрикционноподвижных болтовых демпфирующих компенсаторов (ФПДК) с
контролируемым натяжением, расположенных в длинных овальных отверстиях по
изобретению проф. дтн ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076,
2010136746, 887748 «Стыковое соединение растянутых элементов» и
использования фрикционно -демпфирующих опор с зафиксированными запорными
элементов в штоке, по линии температурной нагрузки , согласно изобретения №
165076 «Опора сейсмостойкая» для обеспечения надежности технологических
трубопроводов , преимущественно при растягивающих и динамических нагрузках
и улучшения демпфирующих свойств технологических трубопроводов , согласно
изобретениям проф ПГУПС дтн проф Уздина А М №№ 1168755, 1174616, 1143895 и
внедренные в США
Автор отечественной фрикционо- кинематической, демпфирующего косого
компенсатора , для поглощения термической нагрузки, с креплением косого
компенсатора к трубопроводам с помощью фланцевых фрикционно-подвижных
болтовых демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях по изобретению проф. дтн ПГУП
А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое
соединение растянутых элементов» проф дтн ПГУПC Уздин А М
https://ppt-online.org/861718
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация
"Сейсмофонд" ОГРН: 1022000000824, ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул., д. 4, ИЦ «ПКТИ Строй-ТЕСТ», «Сейсмофонд»
ИНН: 2014000780 https://ppt-online.org/860558
https://ppt-online.org/825865
Материалы лабораторных испытаний фрагментов и узлов ФПС для
трубопроводо: Численное моделирование на сдвиг трубопровода в программном
комплексе SCAD Office, согласно изобретения №№ 2423820, 887743, демпфирующих
компенсаторов на фрикционно-подвижных болтовых соединениях, для восприятия
термических усилий, за счет трения , при растягивающих нагрузках в крепежных
элементах с овальными отверстиями, по линии нагрузки ( изобретения №№
1143895, 1168755, 1174616 ,165076, 2010136746 или формирование
прогрессирующего обрушения трубопроводов от взрыва газа, кислорода и
обеспечение надежности трубопроводов с использованием в стыковых
соединений труб в растянутых зонах, компенсаторов на фрикционно-подвижных
болтовых соединениях для обеспечения взрвостойкости трубопроводов и для
обеспечения многокаскадного демпфирования при импульсных растягивающих
нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина
204.
№№ 1143895, 1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746«Способ защиты зданий сооружений при взрыве с использованием
сдвигоустойсчивых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической
энергии»,887747 «Стыковое соединение растянутых зон», 2382151, 2208098 ,
2629514 и опыт применения программного комплекса SCAD Office для фрикционноподвижных соединениях - нелинейным методом расчета, методом оптимизации и
идентификации статических задач теории устойчивости трубопровода
Организация - Фонд поддержки и развития сейсмостойкого строительства
"Защита и безопасность городов» - «Сейсмофонд» ИНН – 2014000780 при СПб ГАСУ
хранятся в СПб ГАСУ на кафедре строительных конструкций [email protected]
(921) 962-67-78 и направлены в ЖКХ СПб и ЛО и МО 68 "Озеро Долгое" для
рассмотрения на Научном техническом Совете МО 68
Редактор газеты «Земля РОССИИ» Быченок Владимир Сергеевич, позывной «ВДВ»,
спецподразделение «ГРОМ», бригада "Оплот" г. Дебальцево, ДНР, Донецкая область. 1992 г.р,
участвовал в обороне города Иловайск http://www.gazetazemlyarossii6.narod.ru
Редактор ИА "Крестьянского информационного агентство" Данилику Павлу
Викторовичу, позывной "Ден" , 2 батальон 5 бригады "Оплот" ДНР.(участнику боя при обороне
Логвиново, запирая Дебальцевский котел, д.р 6.02.1983), сотрудник отдела Государственного
института «ГРОЗГИПРОНЕФТЕХИМ», мл. сержанту в/ч 21209 г.Грозный, специалист по
СПОСОБу УПРАВЛЕНИЯ РЕЖИМОМ СМЕЩЕНИЙ ВО ФРАГМЕНТАХ СЕЙСМОАКТИВНЫХ ТЕКТОНИЧЕСКИХ РАЗЛОМОВ № 2273035, направленным взрывом
в разломах, в среде вычислительного комплекса SCAD Offiсe [email protected]
С оригиналом свидетельством газеты «Земля РОССИИ» № П 0931 от 16 мая 1994
можно ознакомится по ссылке https://disk.yandex.ru/i/xzY6tRNktTq0SQ https://ppt-online.org/962861
С оригиналом свидетельство о регистрации «Крестьянского информационного
агентство» № П 4014 от 14 октября 1999 г можно ознакомится по ссылке
https://disk.yandex.ru/i/8ZF2bZg0sAs-Iw https://ppt-online.org/962861
Соглано Закона РФ от 27.12.1991 N 2124-1 (ред. от 01.07.2021) "О средствах массовой информации"
(с изм. и доп., вступ. в силу с 01.08.2021)
Статья 12. СМИ Освобождение от регистрации и не требуется регистрация: периодических печатных
изданий,
тиражом менее одной тысячи экземпляров;
Ознакомится с регистрацией в Управлении Роскомнадзора по Северо -западному
федеральному округу от 19 октября 2017 входящий № 20975/78-сми, основной документ 6
стр , приложение пакет документов ИА "Крестьянское информационное агентство" в
Роскомнадзоре СПб ул Галерная дом 27, 190000 тел 678-95-29 678-95-57 [email protected]
зам рук И.М.Парнас, исп Мельник Д.Ю 570-44-76 нач отдела С.Ю.Макаров, исп Толмачева Е.Н
315-36-83 см. ссылки https://disk.yandex.ru/i/UHk7529c3Uk6LA https://ppt-online.org/988149
Адрес электронной почты редакции газеты "Земля РОССИИ" и ИА "Крестьянское информационно
агентство"
205.
[email protected] [email protected]тел (911) 175-84-65,
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
206.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
и
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51
207.
2. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в частности,
сейсмическим нагрузкам исходит из целенаправленного проектирования предельных состояний конструкций. В
литературе [1, 2, 11, 18] такой подход получил название проектирования сооружений с заданными параметрами
предельных состояний. Возможны различные технические реализации отмеченного подхода. Во всех случаях в
конструкции создаются узлы, в которых от экстремальных нагрузок могут возникать неупругие смещения
элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как правило, нарушается, однако
исключается его обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после
экстремальных воздействий. Для обеспечения указанного принципа проектирования и были предложены
фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций
высокопрочными болтами, отличающиеся тем, что отверстия под болты в соединяемых деталях выполнены
овальными вдоль направления действия экстремальных нагрузок. При экстремальных нагрузках происходит
взаимная сдвижка соединяемых деталей на величину до 3-4 диаметров используемых высокопрочных болтов.
Работа таких соединений имеет целый ряд особенностей и существенно влияет на поведение конструкции в целом.
При этом во многих случаях оказывается возможным снизить затраты на усиление сооружения, подверженного
сейсмическим и другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа проектирования
мостовых конструкций с заданными параметрами предельных состояний. В 1985-86 г.г. эти соединения были
защищены авторскими свидетельствами [16-19]. Простейшее стыковое и нахлесточное соединения приведены на
рис.1.1. Как видно из рисунка, от обычных соединений на высокопрочных болтах предложенные в упомянутых
работах отличаются тем, что болты пропущены через овальные отверстия. По замыслу авторов при экстремальных
нагрузках должна происходить взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться
пиковое значение усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в
строительных конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в упомянутых
работах овальные отверстия устраивались с целью упрощения монтажных работ. Для реализации принципа
проектирования конструкций с заданными параметрами предельных состояний необходимо фиксировать
предельную силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс натяжения N=2050 кН, что не позволяет прогнозировать несущую способность такого соединения по трению. При использовании
же высокопрочных болтов при том же N натяжение N= 200 - 400 кН, что в принципе может позволить задание и
регулирование несущей способности соединения. Именно эту цель преследовали предложения [3,14-17].
208.
Рис.1.1. Принципиальная схема фрикционно-подвижногосоединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания ФПС
показали, что рассматриваемый класс соединений не обеспечивает в общем случае стабильной работы
конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных поверхностей
соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта. Отмеченные исследования
позволили выявить способы обработки соединяемых листов, обеспечивающих стабильную работу ФПС. В
частности, установлена недопустимость использования для ФПС пескоструйной обработки листов пакета,
рекомендованы использование обжига листов, нанесение на них специальных мастик или напыление мягких
металлов. Эти исследования показали, что расчету и проектированию сооружений должны предшествовать
детальные исследования самих соединений. Однако, до настоящего времени в литературе нет еще
систематического изложения общей теории ФПС даже для одноболтового соединения, отсутствует теория работы
многоболтовых ФПС. Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику
строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в сейсмостойком
строительстве, однако, для этого необходимо детально изложить, а в отдельных случаях и развить теорию работы
таких соединений, методику инженерного расчета самих ФПС и сооружений с такими соединениями. Целью,
предлагаемого пособия является систематическое изложение теории работы ФПС и практических методов их
расчета. В пособии приводится также и технология монтажа ФПС.
209.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСАРазвитие науки и техники в последние десятилетия показало, что надежные и
долговечные машины, оборудование и приборы могут быть созданы только при удачном
решении теоретических и прикладных задач сухого и вязкого трения, смазки и износа,
т.е. задач трибологии и триботехники.
Трибология – наука о трении и процессах, сопровождающих трение (трибос – трение,
логос – наука). Трибология охватывает экспериментально-теоретические результаты
исследований
физических
(механических,
электрических,
магнитных,
тепловых),
химических, биологических и других явлений, связанных с трением.
Триботехника – это система знаний о практическом применении трибологии при
проектировании, изготовлении и эксплуатации трибологических систем.
С трением связан износ соприкасающихся тел – разрушение поверхностных слоев
деталей подвижных соединений, в т.ч. при резьбовых соединениях. Качество соединения
определяется внешним трением в витках резьбы и в торце гайки и головки болта (винта)
с
соприкасающейся
деталью
или
шайбой.
Основная
характеристика
крепежного
резьбового соединения – усилие затяжки болта (гайки), - зависит от значения и
стабильности моментов сил трения сцепления, возникающих при завинчивании. Момент
сил
сопротивления
молекулярным
затяжке
воздействием
содержит
две
в
фактического
зоне
составляющих:
касания
одна
тел,
обусловлена
вторая
–
деформированием тончайших поверхностей слоев контактирующими микронеровностями
взаимодействующих деталей.
Расчет
этих
составляющих
осуществляется
по
формулам,
содержащим
ряд
коэффициентов, установленных в результате экспериментальных исследований. Сведения
об этих формулах содержатся в Справочниках «Трение, изнашивание и смазка» [22](в
двух томах) и «Полимеры в узлах трения машин и приборах» [13], изданных в 1978-1980
г.г. издательством «Машиностроение». Эти Справочники не потеряли своей актуальности
и научной обоснованности и в настоящее время. Полезный для практического
использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее трение,
пограничное трение; виды сухого трения.
210.
Трение–
физическое
явление,
возникающее
при
относительном
движении
соприкасающихся газообразных, жидких и твердых тел и вызывающее сопротивление
движению тел или переходу из состояния покоя в движение относительно конкретной
системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде, а также
при наличии смазки в области механического контакта твердых тел.
При учете трения (сухого или вязкого) различают внешнее трение и внутренне
трение.
Внешнее трение возникает при относительном перемещении двух тел, находящихся в
соприкосновении, при этом сила сопротивления движению зависит от взаимодействия
внешних поверхностей тел и не зависит от состояния внутренних частей каждого тела.
При внешнем трении переход части механической энергии во внутреннюю энергию тел
происходит только вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц одного и того
же тела (твердого, жидкого или газообразного). Например, внутреннее трение возникает
при изгибе металлической пластины или проволоки, при движении жидкости в трубе
(слой жидкости, соприкасающийся со стенкой трубы, неподвижен, другие слои движутся с
разными скоростями и между ними возникает трение). При внутреннем трении часть
механической энергии переходит во внутреннюю энергию тела.
Внешнее трение в чистом виде возникает только в случае соприкосновения твердых
тел без смазочной прослойки между ними (идеальный случай). Если толщина смазки 0,1
мм и более, механизм трения не отличается от механизма внутреннего трения в
жидкости. Если толщина смазки менее 0,1 мм, то трение называют пограничным (или
граничным). В этом случае учет трения ведется либо с позиций сухого трения, либо с
точки зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено представление о
внешнем трении. Понятие о внутреннем трении введено в науку в 1867 г. английским
физиком, механиком и математиком Уильямом Томсоном (лордом Кельвиным).1)
1)
*Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения в котором
перешел в Кембриджский университет и закончил его в 21 год; в 22 года он стал профессором математики. В 1896
г. Томсон был избран почетным членом Петербургской академии наук, а в 1851 г. (в 27 лет) он стал членом
Лондонского королевского общества и 5 лет был его президентом+.
211.
Законы сухого тренияСухое трение впервые наиболее полно изучал Леонардо да Винчи (1452-1519). В 1519
г. он сформулировал закон трения: сила трения, возникающая при контакте тела с
поверхностью другого тела, пропорциональна нагрузке (силе прижатия тел), при этом
коэффициент пропорциональности – величина постоянная и равна 0,25:
F 0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским механиком
и физиком Гийомом Амонтоном2), который ввел в науку понятие коэффициента трения как
французской константы и предложил формулу силы трения скольжения:
F f N.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной
плоскости) впервые предложил формулу:
f tg ,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения Леонарда да
Винчи – Амонтона:
F f N,
впервые получил формулу для случая прямолинейного равноускоренного движения
тела по наклонной плоскости:
f tg
2S
g t 2 cos 2
,
где t – промежуток времени движения тела по плоскости на участке длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами работ
ученых XIX и XX веков, которые более полно раскрыли понятия силы трения покоя (силы
сцепления) и силы трения скольжения, а также понятия о трении качения и трении
верчения.
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
212.
Многие десятилетия XX века ученые пытались модернизировать законы Кулона,учитывая все новые и новые результаты физико-химических исследований явления
трения. Из этих исследований наиболее важными являются исследования природы
трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность любого
твердого
тела
обладает
микронеровностями,
шероховатостью
[шероховатость
поверхности оценивается «классом шероховатости» (14 классов) – характеристикой
качества
обработки
поверхности:
среднеарифметическим
отклонением
профиля
микронеровностей от средней линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел – источник
трения. К этому добавляются силы молекулярного сцепления между частицами,
принадлежащими разным телам, вызывающим прилипание поверхностей (адгезию) тел.
Работа внешней силы, приложенной к телу, преодолевающей молекулярное
сцепление и деформирующей микронеровности, определяет механическую энергию тела,
которая
затрачивается
частично
на
деформацию
(или
даже
разрушение)
микронеровностей, частично на нагревание трущихся тел (превращается в тепловую
энергию), частично на звуковые эффекты – скрип, шум, потрескивание и т.п.
(превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и электромагнитное
поля молекул и атомов соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо учесть сухое
трение, достаточно использовать те законы сухого трения, которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона) даются в
следующем виде:
В случае изотропного трения сила трения скольжения тела А по поверхности тела В
всегда направлена в сторону, противоположную скорости тела А относительно тела В, а
сила сцепления (трения покоя) направлена в сторону, противоположную возможной
скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения скольжения
не совпадает с линией действия вектора скорости. (Изотропным называется сухое трение,
характеризующееся одинаковым сопротивлением движению тела по поверхности другого
тела в любом направлении, в противном случае сухое трение считается анизотропным).
213.
Сила трения скольжения пропорциональна силе давления на опорную поверхность(или нормальной реакции этой поверхности), при этом коэффициент трения скольжения
принимается
постоянным
и
определяется
опытным
путем
для
каждой
пары
соприкасающихся тел. Коэффициент трения скольжения зависит от рода материала и его
физических свойств, а также от степени обработки поверхностей соприкасающихся тел:
(рис. 2.1 в).
FСК fСК N
Y
Y
Fск
tg =fск
N
N
V
Fск
X
G
X
G
а)
N
Fсц
б)
в)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на опорную
поверхность (или нормальной реакции этой поверхности) и не может быть больше
максимального значения, определяемого произведением коэффициента сцепления на
силу давления (или на нормальную реакцию опорной поверхности):
FСЦ fСЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в момент
перехода тела из состояния покоя в движение, всегда больше коэффициента трения
скольжения для одной и той же пары соприкасающихся тел:
f СЦ f СК .
Отсюда следует, что:
max
FСЦ
FСК ,
поэтому график изменения силы трения скольжения от времени движения тела, к
которому приложена эта сила, имеет вид (рис.2.2).
При переходе тела из состояния покоя в движение сила трения скольжения за очень
max до F
короткий промежуток времени изменяется от FСЦ
СК (рис.2.2). Этим промежутком
времени часто пренебрегают.
214.
В последние десятилетия экспериментально показано, что коэффициент тренияскольжения зависит от скорости (законы Кулона установлены при равномерном движении
тел в диапазоне невысоких скоростей – до 10 м/с).
fсц
max
Fсц
Fск
fск
V
t
V0
Vкр
Рис. 2.2
Рис. 2. 3
Эту зависимость качественно можно проиллюстрировать графиком f СК ( v ) (рис.2.3).
v0
- значение скорости, соответствующее тому моменту времени, когда сила FСК
достигнет своего нормального значения FСК fСК N ,
v КР
- критическое значение скорости, после которого происходит незначительный
рост (на 5-7 %) коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот эффект
впоследствии был подтвержден исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в основном,
справедливы, на основе адгезионной теории трения предложил новую формулу для
определения
силы
трения
скольжения
(модернизировав
предложенную
Кулоном
формулу):
FСК fСК N S p0 .
[У Кулона: FСК fСК N А , где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел (контактная
площадь), р0 - удельная (на единицу площади) сила прилипания или сцепления, которое
надо преодолеть для отрыва одной поверхности от другой.
Дерягин также показал, что коэффициент трения скольжения зависит от нагрузки N
(при соизмеримости сил N
и
S p0 )
-
fСК ( N ) , причем при увеличении N он
уменьшается (бугорки микронеровностей деформируются и сглаживаются, поверхности
тел становятся менее шероховатыми). Однако, эта зависимость учитывается только в
очень тонких экспериментах при решении задач особого рода.
215.
Во многих случаях S p0 N , поэтому в задачах классической механики, в которыхследует учесть силу сухого трения, пользуются, в основном, законом Кулона, а значения
коэффициента трения скольжения и коэффициента сцепления определяют по таблице из
справочников физики (эта таблица содержит значения коэффициентов, установленных
еще в 1830-х годах французским ученым А.Мореном (для наиболее распространенных
материалов) и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии наук, автор
курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения скольжения
составляет с прямой, по которой направлена скорость материальной точки угол:
arctg
Fn
,
Fτ
где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и
касательную к траектории материальной точки, при этом модуль вектора FCK
определяется формулой: FCK Fn2 Fτ2 . (Значения Fn и Fτ определяются по методике
Минкина-Доронина).
Трение качения
При
качении
одного
тела
по
другому
участки
поверхности
одного
тела
кратковременно соприкасаются с различными участками поверхности другого тела, в
результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были проведены
эксперименты по определению сопротивления качению колеса вагона или локомотива по
рельсу, а также сопротивления качению роликов или шариков в подшипниках.
В
результате
экспериментального
изучения
этого
явления
установлено,
что
сопротивление качению (на примере колеса и рельса) является следствием трех
факторов:
1)
вдавливание
колеса
в
рельс
вызывает
деформацию
наружного
слоя
соприкасающихся тел (деформация требует затрат энергии);
2) зацепление бугорков неровностей и молекулярное сцепление (являющиеся в то же
время причиной возникновения качения колеса по рельсу);
216.
3) трение скольжения при неравномерном движении колеса (при ускоренном илизамедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное влияние всех трех факторов учитывается общим коэффициентом трения
качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу абсолютно твердого
тела надо отбросить и рассматривать деформацию соприкасающихся тел в области
контактной площадки.
Так как равнодействующая N реакций опорной поверхности в точках зоны контакта
смещена в сторону скорости центра колеса, непрерывно набегающего на впереди
лежащее микропрепятствие (распределение реакций в точках контакта несимметричное –
рис.2.4), то возникающая при этом пара сил N и G ( G - сила тяжести) оказывает
сопротивление качению (возникновение качения обязано силе сцепления FСЦ , которая
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
образует вторую составляющую полной реакции опорной поверхности).
Момент
Fсопр
Vс
C
пары
сил
N , G называется
моментом
сопротивления качению. Плечо пары сил «к» называется
коэффициентом трения качения. Он имеет размерность
длины.
Момент
формулой:
Fсц
N
Рис. 2.5
MC N k ,
сопротивления
качению
определяется
217.
где N - реакция поверхности рельса, равная вертикальной нагрузке на колесо сучетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению, которое можно
отразить силой сопротивления Fсопр , приложенной к центру колеса (рис.2.5), при этом:
Fсопр R N k , где R – радиус колеса,
откуда
Fсопр N
k
N h,
R
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h
k
R
во много раз меньше
коэффициента трения скольжения для тех же соприкасающихся тел, то сила Fсопр на
один-два порядка меньше силы трения скольжения. (Это было известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел
роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N
показывают без смещения в сторону скорости (колесо и рельс рассматриваются условно
как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления качению. Для
колеса железнодорожного экипажа и рельса рост сопротивления качению заметен после
скорости колесной пары 100 км/час и происходит по параболическому закону. Это
объясняется
деформациями
колес
и
гистерезисными
потерями,
что
влияет
на
коэффициент трения качения.
Трение верчения
Трение
верчения
возникает
при
вращении
тела,
опирающегося на некоторую поверхность. В этом случае
Fск
Fск
r
О
следует рассматривать зону контакта тел, в точках которой
возникают силы трения скольжения FСК (если контакт
происходит в одной точке, то трение верчения отсутствует –
Fск
Рис. 2.6.
идеальный случай) (рис.2.6).
218.
А – зона контакта вращающегося тела, ось вращения которого перпендикулярна кплоскости этой зоны. Силы трения скольжения, если их привести к центру круга (при
изотропном трении), приводятся к паре сил сопротивления верчению, момент которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех точек и во
всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или оси стрелки
компаса острием и опорной плоскостью. Момент сопротивления верчению стремятся
уменьшить, используя для острия и опоры агат, рубин, алмаз и другие хорошо
отполированные
очень
прочные
материалы,
для
которых
коэффициент
трения
скольжения менее 0,05, при этом радиус круга опорной площадки достигает долей мм. (В
наручных часах, например, М сопр менее 5 10 5 мм).
Таблица коэффициентов трения скольжения и качения.
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное сцепление приводит к образованию связей между трущимися парами.
При сдвиге они разрушаются. Из-за шероховатости поверхностей трения контактирование
пар происходит площадками. На площадках с небольшим давлением имеет место упругая,
а с большим давлением - пластическая деформация. Фактическая площадь соприкасания
пар представляется суммой малых площадок. Размеры площадок контакта достигают 3050 мкм. При повышении нагрузки они растут и объединяются. В процессе разрушения
контактных площадок выделяется тепло, и могут происходить химические реакции.
Различают три группы износа: механический - в форме абразивного износа,
молекулярно-механический
-
в
форме
пластической
деформации
или
хрупкого
219.
разрушения и коррозийно-механический - в форме коррозийного и окислительногоизноса. Активным фактором износа служит газовая среда, порождающая окислительный
износ. Образование окисной пленки предохраняет пары трения от прямого контакта и
схватывания.
Важным
фактором
является
температурный
режим
пары
трения.
Теплота
обусловливает физико-химические процессы в слое трения, переводящие связующие в
жидкие фракции, действующие как смазка. Металлокерамические материалы на железной
основе способствуют повышению коэффициента трения и износостойкости.
Важна быстрая приработка трущихся пар. Это приводит к быстрому локальному
износу и увеличению контурной площади соприкосновения тел. При медленной
приработке локальные температуры приводят к нежелательным местным изменениям
фрикционного материала. Попадание пыли, песка и других инородных частиц из
окружающей среды приводит к абразивному разрушению не только контактируемого
слоя,
но
и
более
глубоких
слоев.
Чрезмерное
давление,
превышающее
порог
схватывания, приводит к разрушению окисной пленки, местным вырывам материала с
последующим, абразивным разрушением поверхности трения.
Под
нагруженностью
фрикционной
пары
понимается
совокупность
условий
эксплуатации: давление поверхностей трения, скорость относительного скольжения пар,
длительность одного цикла нагружения, среднечасовое число нагружений, температура
контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают стабильность
коэффициента трения, высокую износостойкость пары трения, малые модуль упругости и
твердость материала, низкий коэффициент теплового расширения, стабильность физико-
химического состава и свойств поверхностного слоя, хорошая прирабатываемость
фрикционного материала, достаточная механическая прочность, антикоррозийность,
несхватываемость, теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии изготовления
фрикционных элементов; отклонения размеров отдельных деталей, даже в пределах
установленных допусков; несовершенство конструктивного исполнения с большой
чувствительностью к изменению коэффициента трения.
Абразивный износ фрикционных пар подчиняется следующим закономерностям.
Износ пропорционален пути трения s,
=ks s,
(2.1)
220.
а интенсивность износа— скорости тренияk s v
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу пути трения
пропорциональна удельной нагрузке р,
kp p
s
(2.3)
Мера интенсивности износа рv не должна превосходить нормы, определенной на
практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется интегральной
функцией времени или пути трения
t
s
k p pvdt k p pds .
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален работе сил
трения W
k w W
kp
f
s
W ; W Fds .
(2.5)
0
Здесь сила трения F=f N = f p ; где f – коэффициент трения, N – сила нормального
давления; - контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и окружающей
среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за период
колебаний Т == 2л/ определяется силой трения F и амплитудой колебаний а
W= 4F а.
(2.6)
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС
3.1. Исходные посылки для разработки методики расчета ФПС
221.
Исходными посылками для разработки методики расчета ФПС являютсяэкспериментальные исследования одноболтовых нахлесточных соединений
[13], позволяющие вскрыть основные особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг. были
выполнены экспериментальные исследования деформирования нахлесточных
соединений такого типа. Анализ полученных диаграмм деформирования
позволил выделить для них 3 характерных стадии работы, показанных на рис.
3.1.
На
первой
стадии
нагрузка
Т не превышает несущей способности
соединения [Т], рассчитанной как для обычного соединения на фрикционных
высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил трения по
контактным
плоскостям
соединяемых
элементов
при
сохраняющих
неподвижность шайбах высокопрочных болтов. При этом за счет деформации
болтов в них растет сила натяжения, и как следствие растут силы трения по
всем плоскостям контактов.
На третьей стадии происходит срыв с
места одной из
шайб
взаимное
смещение
элементов.
В
и
дальнейшее
соединяемых
процессе
подвижки
наблюдается интенсивный износ во всех
контактных
парах,
падением
натяжения
следствие,
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
сопровождающийся
болтов
снижение
и,
как
несущей
способности соединения.
В процессе испытаний наблюдались
следующие случаи выхода из строя ФПС:
значительные
взаимные
перемещения соединяемых деталей, в
результате которых болт упирается в край овального отверстия и в конечном
итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
222.
• значительные пластические деформации болта, приводящие к егонеобратимому удлинению и исключению из работы при “обратном ходе"
элементов соединения;
значительный
износ
контактных
поверхностей,
приводящий
к
ослаблению болта и падению несущей способности ФПС.
Отмеченные результаты экспериментальных исследований представляют
двоякий интерес для описания работы ФПС. С одной стороны для расчета
усилий и перемещений в элементах сооружений с ФПС важно задать диаграмму
деформирования соединения. С другой стороны необходимо определить
возможность перехода ФПС в предельное состояние.
Для
описания
диаграммы
деформирования
наиболее
существенным
представляется факт интенсивного износа трущихся элементов соединения,
приводящий
к
падению
сил
натяжения
болта
и
несущей
способности
соединения. Этот эффект должен определять работу как стыковых, так и
нахлесточных
ФПС.
Для
нахлесточных
ФПС
важным
является
и
дополнительный рост сил натяжения вследствие деформации болта.
Для оценки возможности перехода соединения в предельное состояние
необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае
исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент закрытия
зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие, что
закрытие зазора приводит к недопустимому росту ускорений в конструкции, то
проверки (б) и (в) заменяются проверкой, ограничивающей перемещения ФПС
и величиной фактического зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и подвижке в
соединении должно базироваться на задании диаграммы деформирования
соединения, представляющей зависимость его несущей способности Т от
подвижки в соединении s. Поэтому получение зависимости Т(s) является
основным для разработки методов расчета ФПС и сооружений с такими
223.
соединениями. Отмеченные особенности учитываются далее при изложениитеории работы ФПС.
3.2. Общее уравнение для определения несущей способности
ФПС
Для построения общего уравнения деформирования ФПС обратимся к
более сложному случаю нахлесточного соединения, характеризующегося
трехстадийной диаграммой деформирования. В случае стыкового соединения
второй участок на диаграмме Т(s) будет отсутствовать.
Первая
стадия
работы
ФПС
не
отличается
от
работы
обычных
фрикционных соединений. На второй и третьей стадиях работы несущая
способность соединения поменяется вследствие изменения натяжения болта. В
свою очередь натяжение болта определяется его деформацией (на второй
стадии деформирования нахлесточных соединений) и износом трущихся
поверхностей листов пакета при их взаимном смещении. При этом для
теоретического
описания
диаграммы
деформирования
воспользуемся
классической теорией износа [5, 14, 23], согласно которой скорость износа V
пропорциональна силе нормального давления (натяжения болта) N:
(3.1)
V K N,
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в виде:
(3.2)
N N0 a N1 N2
здесь N 0 - начальное -натяжение болта, а - жесткость болта;
a
EF , где l - длина болта, ЕF - его погонная жесткость,
l
N1 k f ( s ) - увеличение натяжения болта вследствие его деформации;
N2 ( s )
-
падение
натяжения
болта
вследствие
его
пластических
деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки N1 N 2 0 .
Если пренебречь изменением скорости подвижки, то скорость V можно
представить в виде:
224.
Vd d ds
V ср ,
dt
ds dt
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a k N0 к f ( s ) ( s ) ,
(3.4)
где k K / Vср .
Решение уравнения (3.4) можно представить в виде:
k N0 a
1
1 e
kas
k e ka( s z ) k f ( z ) ( z ) dz ,
s
0
или
s
0
k N0 a 1 e kas k k f ( z ) ( z ) ekazdz N0 a 1 .
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно упрощается,
так как в этом случае N 1 N 2 0 , и обращаются в 0 функции
f(z)
и ( z ) ,
входящие в (3.5). С учетом сказанного использование интеграла. (3.5)
позволяет получить следующую формулу для определения величины износа :
1 e kas k N0 a 1
(3.6)
Падение натяжения N при этом составит:
N 1 e kas k N0 ,
а
несущая
(3.7)
способность
соединений
определяется по формуле:
T T0 f N T0 f 1 e kas k N 0 a 1
T0 1 1 e kas k a 1 .
(3.8)
Как видно из полученной формулы
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
относительная
несущая
способность
соединения КТ =Т/Т0 определяется всего
двумя
параметрами
износа
k
и
-
коэффициентом
жесткостью
болта
на
225.
растяжение а. Эти параметры могут быть заданы с достаточной точностью инеобходимые для этого данные имеются в справочной литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24 мм и
коэффициента износа k~5×10-8 H-1 при различных значениях толщины пакета
l, определяющей жесткость болта а. При этом для наглядности несущая
способность соединения Т отнесена к своему начальному значению T0, т.е.
графические зависимости представлены в безразмерной форме. Как видно из
рисунка, с ростом толщины пакета падает влияние износа листов на несущую
способность соединений. В целом падение несущей способности соединений
весьма существенно и при реальных величинах подвижки s 2 3см составляет
для стыковых соединений 80-94%. Весьма
существенно на характер падений несущей
способности
соединения
сказывается
коэффициент износа k. На рис.3.3 приведены
зависимости
несущей
способности
соединения от величины подвижки s при
Рис.3.3. Падение несущей способности ФПС в
зависимости от величины подвижки для болта
24 мм при коэффициенте износа k=3 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
k~3×10-8 H-1.
Исследования показывают, что при k >
2 10-7
Н-1
падение
несущей
способности
соединения превосходит 50%. Такое падение
натяжения должно приводить к существенному росту взаимных смещений
соединяемых деталей и это обстоятельство должно учитываться в инженерных
расчетах. Вместе с тем рассматриваемый эффект будет приводить к снижению
нагрузки, передаваемой соединением. Это позволяет при использовании ФПС в
качестве сейсмоизолирующего элемента конструкции рассчитывать усилия в
ней, моделируя ФПС демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом функций
f(s) и >(s).Функция f(s) зависит от удлинения болта вследствие искривления
его оси. Если принять для искривленной оси аппроксимацию в виде:
u( x ) s sin
x
2l
,
(3.9)
226.
где x — расстояние от середины болта до рассматриваемой точки (рис. 3.3),то длина искривленной оси стержня составит:
1
L
1
1
1
2
2
2
2
du
1 dx
dx
1
s 2 2
1
2
cos
8l 2 1
2
2
1
s 2 2
x
1 s
cos dx 1
cos
dx
2
4l
2l
2l
8
l
1
2
2
2
2 x
s 2 2
dx 1
.
2l
8l
Удлинение болта при этом определится по формуле:
l L l
s 2 2
.
8l
Учитывая,
(3.10)
что
приближенность
представления
(3.9)
компенсируется
коэффициентом k, который может быть определен из экспериментальных
данных, получим следующее представление для f(s):
f(s) s
2
l
.
Для дальнейшего необходимо учесть, что деформирование тела болта
будет иметь место лишь до момента срыва его головки, т.е. при s < s0. Для
записи этого факта воспользуемся единичной функцией Хевисайда :
s2
f ( s ) ( s s0 ).
l
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо учесть
следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s некоторой
величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при котором
напряжения в стержне достигнут предела текучести, т.е.:
lim ( N0 кf ( s ) ( s )) 0 .
(3.12)
s
Указанным условиям удовлетворяет функция (s) следующего вида:
( s ) N пл ( NТ N пл ) ( 1 e q( s S пл ) ) 1 ( s s0 ) ( s S пл).
(3.13)
Подстановка
(3.5)
выражений
(3.11,
3.12)
в
интеграл
приводит
следующим зависимостям износа листов пакета от перемещения s:
при s<Sпл
s
N0
k
2
2
( 1 e k1as ) s 2
s
1 e k1as ,
a
al
k1a
k1a 2
(3.14)
к
227.
при Sпл< s<S0( s ) I ( Sпл ) k1(
( S пл s )
e
e
),
NT
N N пл
1 ek1a( S пл s ) T
k1a
k1 a
(3.15)
k1a( S пл s )
при s<S0
( s ) II ( S0 )
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
(3.16)
Несущая способность соединения определяется при этом выражением:
(3.17)
T T0 fv a .
Здесь fv— коэффициент трения, зависящий в общем случае от скорости
подвижки v. Ниже мы используем наиболее распространенную зависимость
коэффициента трения от скорости, записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная зависимость содержит 9 неопределенных параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны определяться из
данных эксперимента.
В отличие от стыковых соединений в формуле (3.17) введено два
коэффициента износа - на втором участке диаграммы деформирования износ
определяется
трением
между
листами
пакета
и
характеризуется
коэффициентом износа k1, на третьем участке износ определяется трением
между шайбой болта и наружным листом пакета; для его описания введен
коэффициент износа k2.
На рис. 3.4 приведен пример теоретической диаграммы деформирования
при реальных значениях параметров k1 = 0.00001; k2 =0.000016; kv = 0.15; S0 =
10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН. Как видно из рисунка, теоретическая
диаграмма
деформирования
экспериментальным диаграммам.
соответствует
описанным
выше
228.
Рис. 3.4Теоретическая диаграмма деформирования ФПС
229.
4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами 48 мм
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД.
Высокопрочные болты были изготовлены тензометрическими из стали 40Х "селект" в
соответствии с требованиями [6]. Контактные поверхности пластин были обработаны
протекторной цинкосодержащей грунтовкой ВЖС-41 после дробеструйной очистки. Болты
были предварительно протарированы с помощью электронного пульта АИ-1 и при сборке
соединений натягивались по этому же пульту в соответствии с тарировочными
зависимостями ручным ключом на заданное усилие натяжения N0.
ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
4. АНАЛИЗ
230.
Дляанализа
работы
ФПС
и
сооружений
с
такими
соединениями
необходимы фактические данные о параметрах исследуемых соединений.
Экспериментальные исследования работы ФПС достаточно трудоемки, однако в
1980-85 гг. такие исследования были начаты в НИИ мостов А.Ю.Симкиным
[3,11]. В частности, были получены записи Т(s) для нескольких одноболтовых и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами
диаметром 22, 24, 27 и 48 мм. Принятые размеры образцов обусловлены тем,
что диаметры 22, 24 и 27 мм являются наиболее распространенными. Однако
при этом в соединении необходимо размещение слишком большого количества
Рис. 4.1 Общий вид образцов ПС с болтами
48 мм
болтов, и соединение становится громоздким. Для уменьшения числа болтов
необходимо увеличение их диаметра. Поэтому было рассмотрено ФПС с
болтами наибольшего диаметра 48 мм. Общий вид образцов показан на рис.
4.1.
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД.
Высокопрочные болты были изготовлены тензометрическими из стали 40Х
"селект" в соответствии с требованиями [6]. Контактные поверхности пластин
были обработаны протекторной цинкосодержащей грунтовкой ВЖС-41 после
дробеструйной
очистки.
Болты
были
предварительно
протарированы
с
помощью электронного пульта АИ-1 и при сборке соединений натягивались по
этому же пульту в соответствии с тарировочными зависимостями ручным
ключом на заданное усилие натяжения N0.
231.
Испытания проводились на пульсаторах в НИИ мостов и на универсальномдинамическом
стенде
УДС-100
экспериментальной
базы
ЛВВИСКУ.
В
испытаниях на стенде импульсная нагрузка на ФПС обеспечивалась путем
удара движущейся массы М через резиновую прокладку в рабочую тележку,
связанную с ФПС жесткой тягой. Масса и скорость тележки, а также жесткость
прокладки подбирались таким образом, чтобы при неподвижной рабочей
тележке получился импульс силы с участком, на котором сила сохраняет
постоянное значение, длительностью около 150 мс. Амплитудное значение
импульса силы подбиралось из условия некоторого превышения несущей
способности
ФПС.
Каждый
образец
доводился
до
реализации
полного
смещения по овальному отверстию.
Во время испытаний на стенде и пресс-пульсаторах контролировались
следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
• абсолютные скорости сдвига пластин ФПС;
• ускорение движения пластин ФПС и ударные массы (для испытаний на
стенде).
После каждого нагружения проводился замер напряжения высокопрочного
болта.
Из
полученных
в
результате
замеров
данных
наибольший
интерес
представляют для нас зависимости продольной силы, передаваемой на
соединение (несущей способности ФПС), от величины подвижки S. Эти
зависимости могут быть получены теоретически по формулам, приведенным
выше в разделе 3. На рисунках 4.2 - 4.3 приведено графическое
232.
Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования ФПС для болтов 22мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из рисунков
видно, что характер зависимостей Т(s) соответствует в целом принятым
гипотезам и результатам теоретических построений предыдущего раздела. В
частности, четко проявляются три участка деформирования соединения: до
проскальзывания
элементов
соединения,
после
проскальзывания
листов
пакета и после проскальзывания шайбы относительно наружного листа пакета.
Вместе с тем, необходимо отметить существенный разброс полученных
диаграмм. Это связано, по-видимому, с тем, что в проведенных испытаниях
принят наиболее простой приемлемый способ обработки листов пакета.
Несмотря
на
наличие
существенного
разброса,
полученные
диаграммы
оказались пригодными для дальнейшей обработки.
В результате предварительной обработки экспериментальных данных
построены диаграммы деформирования нахлесточных ФПС. В соответствии с
ранее изложенными теоретическими разработками эти диаграммы должны
описываться уравнениями вида (3.14). В указанные уравнения входят 9
параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0 — коэффициент, определяющий влияние скорости на коэффициент
трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл — предельное смещение, при котором возникают пластические
деформации в теле болта;
233.
S0— предельное смещение, при котором возникает срыв шайбы болтаотносительно листа пакета;
к — коэффициент, характеризующий увеличение натяжения болта вследствие геометрической нелинейности его работы;
q
— коэффициент, характеризующий
уменьшение
натяжения
болта
вследствие его пластической работы.
Обработка экспериментальных данных заключалась в определении этих 9
параметров. При этом параметры варьировались на сетке их возможных
значений. Для каждой девятки значений параметров по методу наименьших
квадратов
вычислялась
экспериментальной
величина
диаграммами
невязки
между
деформирования,
расчетной
причем
и
невязка
суммировалась по точкам цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром 24 мм
последние варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с шагом 0.1
с/мм;
ьно
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом 1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
На рис. 4.4
и
4.5
приведены
характерные
диаграммы
деформирован
ия
ФПС,
полученные
Рис.4.4
и
соответствующие
экспериментал
Рис. 4.5
им
теоретические
диаграммы.
Сопоставление
расчетных и натурных данных указывают на то, что подбором параметров ФПС
удается добиться хорошего совпадения натурных и расчетных диаграмм
деформирования ФПС. Расхождение диаграмм на конечном их участке
обусловлено резким падением скорости подвижки перед остановкой, не
234.
учитываемым в рамках предложенной теории расчета ФПС. Для болтовдиаметром
24
мм
было
обработано
8
экспериментальных
диаграмм
деформирования. Результаты определения параметров соединения для каждой
из подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
5
14
35
0.1
8 4.2 0.0006
0.3 370 310
1
6
6
11
0.2 12
9 0.0000 0.3 120 100
7
8
20
0.2 19 16 0.0000
0.3 106 130
2
8
8
15
0.3
9 2.5 0.0002
0.35 154 75
1
8
Приведенные
в
таблице
4.1
результаты
вычислений
параметров
соединения были статистически обработаны и получены математические
ожидания и среднеквадратичные отклонения для каждого из параметров. Их
значения приведены в таблице 4.2. Как видно из приведенной таблицы,
значения параметров характеризуются значительным разбросом. Этот факт
затрудняет применение одноболтовых ФПС с рассмотренной обработкой
поверхности (обжиг листов пакета). Вместе с тем, переход от одноболтовых к
многоболтовым
соединениям
должен
снижать
разброс
в
параметрах
диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое
6я
1
ожидание
отклонение
k1 10 , КН9.25
2.76
6
1
k2 10 , кН21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
-1
q, мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
235.
165.688.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся
теоретические
и
экспериментальные
исследования
одноболтовых ФПС позволяют перейти к анализу многоболтовых соединений.
Для упрощения задачи примем широко используемое в исследованиях
фрикционных болтовых соединений предположение о том, что болты в
соединении работают независимо. В этом случае математическое ожидание
несущей способности T и дисперсию DT (или среднеквадратическое отклонение
T ) можно записать в виде:
T( s )
DT
(5.1)
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
( T T ) p1 p2 ... pk d 1d 2 ...d k
2
2
... T 2 p1 p2 ... pk d 1d 2 ...d k T
(5.2)
T DT
(5.3)
В приведенных формулах:
T ( s , 1 , 2 ,... k ) - найденная выше зависимость несущей способности T от
подвижки s и параметров соединения i; в нашем случае в качестве параметров
выступают коэффициент износа k, смещение при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по имеющимся
данным нам известны лишь среднее значение i и их стандарт (дисперсия).
Для
дальнейших
распределения
исследований
параметров
ФПС:
приняты
равномерное
два
в
возможных
некотором
закона
возможном
236.
диапазоне изменения параметров min i max и нормальное. Если учесть, что впредыдущих исследованиях получены величины математических ожиданий i
и стандарта
i , то соответствующие функции плотности распределения
записываются в виде:
а) для равномерного распределения
1
pi
при 3 3
2 i 3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
2
i ai
1
i 2
e
2 i 2
(5.5)
.
Результаты расчетного определения зависимостей T(s) и (s) при двух
законах распределения сопоставляются между собой, а также с данными
натурных испытаний двух, четырех, и восьми болтовых ФПС.
5.2. Построение уравнений деформирования стыковых
многоболтовых ФПС
Для
вычисления
рассматривается
более
несущей
простое
способности
соединение
соединения
встык.
Такое
сначала
соединение
характеризуется всего двумя параметрами - начальной несущей способностью
Т0 и коэффициентом износа k. При этом несущая способность одноболтового
соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание несущей
способности соединения из п болтов составит:
k T 3
dk
dT
kas
T
e
2 k 3 2 T 3
3 k T 3
T0 T 3
T n
T0 T
nT0 e kas
sh( sa k 3 )
sa k
(5.7)
.
При нормальном законе распределения математическое ожидание несущей
способности соединения из п болтов определится следующим образом:
237.
T nkas
Te
1
( T T ) 2
2 T 2
e
T 2
1
k 2
e
( k k )2
2 k 2
dkdT
( k k )2
( T T ) 2
2
2
1
1
2 k
2 T
kas
n
Te
dT
e
e
dk
.
T 2
k 2
Если учесть, что для любой случайной величины x с математическим
ожиданием x функцией распределения р(х} выполняется соотношение:
x x p( x ) dx ,
то первая скобка. в описанном выражении для вычисления несущей
способности соединения Т равна математическому ожиданию начальной
несущей способности Т0. При этом:
T nT0
kas
1
( k k )2
2 k 2
e
k 2
dk .
Выделяя в показателе степени полученного выражения полный квадрат,
получим:
T nT0
nT0
1
k 2
1
k 2
k k as k2 2 as k as k2
2 k2
e
2
dk
2
as 2
k k as k2
k
as k
2
2 k2
e
e
dk .
Подынтегральный член в полученном выражении с учетом множителя
1
k 2
представляет
не
что
иное,
как
функцию
плотности
нормального
распределения с математическим ожиданием k as k2 и среднеквадратичным
отклонением
k.
По
тождественно равен 1
этой
причине
интеграл
в
полученном
выражении
и выражение для несущей способности соединения
принимает окончательный вид:
T nT0 e
ask
a 2 s 2 k2
2
.
Соответствующие
составляют:
(5.8)
принятым
законам
распределения
дисперсии
238.
для равномерного закона распределенияT2
2
1 2 F ( 2 x ) F ( x ) ,
T0
2 2 ask
D nT0 e
где F ( x )
(5.9)
shx
; x sa k 3
x
для нормального закона распределения
2
2
2 1 A
A1
2
D n T0 T 1 ( A1 ) e T0 e 1 ( A ) ,
2
(5.10)
где A1 2 as( k2 as k ).
Представляет
аналогичными
интерес
сопоставить
зависимостями,
полученные
выведенными
выше
зависимости
для
с
одноболтовых
соединений.
Рассмотрим, прежде всего, характер изменения несущей способности ФПС
по мере увеличения подвижки s и коэффициента износа k для случая
использования
равномерного
закона
распределения
в
соответствии
с
формулой (5.4). Для этого введем по аналогии с (5.4) безразмерные
характеристики изменения несущей способности:
относительное падение несущей способности
sh( x )
kas
T
x
1
e
nT0
(5.11)
.
коэффициент перехода от одноболтового к многоболтовому соединению
T
1
nT0 e
kas
sh( x )
.
x
(5.12)
Наконец для относительной величины среднеквадратичного отклонения с
с использованием формулы (5.9) нетрудно получить
1
nT0 e kas
2
1
T2 sh2 x shx
1
.
2 2 x
n
x
T0
Аналогичные
зависимости
(5.13)
получаются
и
для
случая
нормального
распределения:
2
1 A
e 1 ( A ) ,
2
(5.14)
2 2
2
k s
1 2 kas
e
1 ( A ) ,
2
(5.15)
239.
22
T2
1
A1 1 A
1 2 1 ( A1 ) e e 1 ( A ) ,
n
2
T0
(5.16)
где
k2 s 2
A
2 s ka ,
2
A1 2 As ( k2 sa k ) ,
( A )
2
A
2
z
e dz .
0
На рис. 5.1 - 5.2 приведены зависимости i и i от величины подвижки s.
Кривые построены при тех же значениях переменных, что использовались
нами ранее при построении зависимости T/T0 для одноболтового соединения.
Как
видно
из
рисунков,
зависимости
i ( k , s ) аналогичны
зависимостям,
полученным для одноболтовых соединений, но характеризуются большей
плавностью, что должно благоприятно сказываться на работе соединения и
конструкции в целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода i ( k , a , s ) . По
своему смыслу математическое ожидание несущей способности многоболтового соединения T получается из
несущей способности одноболтового соединения Т1 умножением на , т.е.:
T T1
(5.17)
Согласно (5.12) lim x 1 . В частности, 1 при неограниченном увеличении математического
ожидания коэффициента износа k или смещения s. Более того, при выполнении условия
k k 3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s, что
противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения условием
(5.18).
Что касается нормального распределения, то возможность его применения определяется пределом:
lim 2
s
1
lim e ( kas A ) 1 ( A ) .
2 s
Для анализа этого предела учтем известное в теории вероятности соотношение:
x2
1 2 1
lim 1 x lim
e
.
x
x
x
2
240.
1=а)
2=Т/nT0
S, мм
Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины подвижки в
соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;
241.
1а)
S, мм
Коэффициент перехода 2
б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС от величины
подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм
С учетом сказанного получим:
A2
1
1 2 1
0.
lim 2 lim e kas A
e
s
s 2
A
2
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при любых
соотношениях k и k.
242.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что разбросзначений несущей способности ФПС для случая обработки поверхностей соединяемых листов путем нанесения
грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом случае применение ФПС вполне
приемлемо, если перейти от одноболтовых к многоболтовым соединениям. Как следует из полученных формул
(5.13, 5.16), для среднеквадратичного отклонения 1 последнее убывает пропорционально корню из числа болтов.
На рисунке 5.3 приведена зависимость относительной величины среднеквадратичного отклонения 1 от
безразмерного параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T
и T0 приняты в соответствии с данными выполненных экспериментальных исследований. Как видно из графика,
уже для 9-ти болтового соединения разброс значений несущей способности Т не превосходит 25%, что следует
считать вполне приемлемым.
Рис.5.3. Зависимость относительного разброса несущей
способности ФПС от величины подвижки при различном
числе болтов n
5.3. Построение уравнений деформирования нахлесточных
многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений достаточно громоздко
из-за большого количества случайных параметров, определяющих работу соединения. Однако с практической
точки зрения представляется важным учесть лишь максимальную силу трения Тmax, смещение при срыве
соединения S0 и коэффициент износа k. При этом диаграмма деформирования соединения между точками (0,Т0) и
(S0, Tmax) аппроксимируется линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция :
1 при 0 S S 0
0 при S S 0
S , S 0
При этом диаграмма нагружения ФПС описывается уравнением:
(5.20)
243.
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k , S0 ) 1 ( S , S0 ) ,где T1( S ) T0 ( Tmax T0 )
S
,
S0
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Математическое ожидание несущей способности нахлесточного соединения из n болтов определяется
следующим интегралом:
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax n I1 I 2
T n
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22) представления для Т1
согласно (5.20) интеграл I1 может быть представлен в виде суммы трех интегралов:
s
I 1 T0 ( Tmax T0 ) s , S 0 p( S 0 ) p( T0 ) p( Tmax )
S0
S0 T0 Tmax
dS 0 dT0 dTmax I 1,1 I 1,2 I 1,3
(5.23)
где
I1,1
T0 p( T0 ) ( s ,S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0 s , S0 p( S0 )dS0 Tmax p( Tmax )dTmax
T0
S0
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
p( x )dx 1
и
xp( x )dx x ,
то получим
I 1,1 T ( s , S0 )p( S0 ) dS0 .
S0
Аналогично
s
I1,2
Tmax S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T max
( s , S0 )
S0
S0
p( S0 ) dS0 .
s
I1,3
T0 S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T0
S0
( s , S0 )
S0
p( S0 ) dS0 .
Если ввести функции
1 ( s ) ( s , S 0 ) p( S 0 ) dS0
и
(5.24)
244.
( s , S0 )S0
1( s )
p( S 0 ) dS0 ,
(5.25)
то интеграл I1 можно представить в виде:
I 1 T 1( s ) ( T max T 0 )s 2 ( s ).
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся и примут вид:
1( s ) p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция 1 1 erf ( s ) , а функция
записывается в виде:
( S0 S 0 )2
2
s
e
2 s2
S0
dS0 .
(5.29)
Для равномерного распределения функции 1 и 2 могут быть представлены
аналитически:
1 при s S 0 s 3
1 S0 s 3 s при S 0 s 3 s S 0 s 3
0 при s S 0 s 3 .
(5.30)
S0 s 3
1
ln
при s S 0 s 3
2 s 3 S 0 s 3
S0 s 3
1
2
ln
при S 0 s 3 s S 0 s 3
s
2 s 3
0 при s S 0 s 3
(5.31)
Аналитическое представление для интеграла (5.23) весьма сложно. Для
большинства видов распределений его целесообразно табулировать; для
равномерного распределения интегралы I1 и I2 представляются в замкнутой
форме:
245.
S0 s 3S
ln
при S S 0 s 3
T 0 ( T max T 0 )
2
3
S
3
0
s
s
S0 s 3
S0 s 3
1
( T max T 0 )S ln
I1
T 0 S 0 s 3 S ln
(5.32)
s
s
2
3
s
при S 0 s 3 S S 0 s 3
0 при S S 0 3
s
0 при S S 0 s 3
I2 T m
F( S ) F( s 3 )
2 s 3
причем
(5.33)
при S S 0 s 3 ,
F ( x ) Ei ax( k k 3 ) Ei ax( k k 3 ) . В формулах (5.32, 5.33) Ei -
интегральная показательная функция.
Полученные формулы подтверждены результатами экспериментальных
исследований многоболтовых соединений и рекомендуются к использованию
при проектировании сейсмостойких конструкций с ФПС.
246.
6. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
диаметр по сечения
телу по резьбе
по
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
болта
16
201
157
12
15
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78
42
1386
1120
26
34
65
72,1
8
45
90
48
1810
1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в
соответствии с данными табл.6.2.
6.
РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС И
СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
247.
Технология изготовления ФПС включает выбор материала элементовсоединения,
подготовку
контактных
поверхностей,
транспортировку
и
хранение деталей, сборку соединений. Эти вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий контактных
поверхностей стальных деталей ФПС и опорных поверхностей
шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки
по ГОСТ 22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности
по указаниям раздела 6.4 настоящего пособия. Основные размеры в мм болтов,
гаек и шайб и расчетные площади поперечных сечений в мм2 приведены в
табл.6.1.
Таблица 6.1.
Номина Расчетная Высота Высот Разме Диамет
льный
диаметр
болта
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут
нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50
24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75
назначается в соответствии с данными табл.6.2.
248.
Таблица 6.2.Номинальна Длина резьбы 10 при номинальном диаметре
16 18 20 22 24 27 30 36 42 48
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50 *
65
38 42 46 50 54
70
38 42 46 50 54 60
75
38 42 46 50 54 60 66
80
38 42 46 50 54 60 66
85
38 42 46 50 54 60 66
90
38 42 46 50 54 60 66 78
95
38 42 46 50 54 60 66 78
100
38 42 46 50 54 60 66 78
105
38 42 46 50 54 60 66 78 90
110
38 42 46 50 54 60 66 78 90 102
115
38 42 46 50 54 60 66 78 90 102
120
38 42 46 50 54 60 66 78 90 102
125
38 42 46 50 54 60 66 78 90 102
130
38 42 46 50 54 60 66 78 90 102
140
38 42 46 50 54 60 66 78 90 102
150
38 42 46 50 54 60 66 78 90 102
160,
170,
190,
200, 44 48 52 56 60 66 72 84 96 108
180
240,260,280,
220знаком * отмечены болты с резьбой по всей длине стержня.
Примечание:
300
Для консервации контактных поверхностей стальных деталей следует
применять фрикционный грунт ВЖС 83-02-87 по ТУ. Для нанесения на
опорные
поверхности
шайб
методом
плазменного
напыления
антифрикционного покрытия следует применять в качестве материала
подложки интерметаллид ПН851015 по ТУ-14-1-3282-81, для несущей
структуры - оловянистую бронзу БРОФ10-8 по ГОСТ, для рабочего тела припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке хранения
несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В конструкциях соединений должна быть обеспечена возможность
свободной постановки болтов, закручивания гаек и плотного стягивания
пакета
болтами
во
всех
местах
их
динамометрических ключей и гайковертов.
постановки
с
применением
249.
Номинальные диаметры круглых и ширина овальных отверстий вэлементах для пропуска высокопрочных болтов принимаются по табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
х геометрию
Не
20
23
25
28
30
33
36
40
45
52
определяющи
Длины овальных отверстий в элементах для пропуска высокопрочных
х геометрию
болтов назначают по результатам вычисления максимальных абсолютных
смещений соединяемых
деталей для каждого ФПС по результатам
предварительных расчетов при обеспечении несоприкосновения болтов о
края овальных отверстий, и назначают на 5 мм больше для каждого
возможного направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные
отверстия
одной
детали
пакета
ФПС
могут
быть
не
сонаправлены.
Размещение
болтов
в
овальных
отверстиях
при
сборке
ФПС
устанавливают с учетом назначения ФПС и направления смещений
соединяемых элементов.
При необходимости в пределах одного овального отверстия может
быть размещено более одного болта.
Все контактные поверхности деталей ФПС, являющиеся внутренними
для ФПС, должны быть обработаны грунтовкой ВЖС 83-02-87 после
дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей деталей
ФПС, которые являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины
соединяемых пакета соединяемых деталей.
Во
всех
случаях
несущая
способность
основных
элементов
конструкции, включающей ФПС, должна быть не менее чем на 25%
больше несущей способности ФПС на фрикционно-неподвижной стадии
работы ФПС.
250.
Минимально допустимое расстояние от края овального отверстия докрая детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
В
соединениях
прокатных
профилей
с
непараллельными
поверхностями полок или при наличии непараллельности наружных
плоскостей
ФПС
должны
применяться
клиновидные
шайбы,
предотвращающие перекос гаек и деформацию резьбы.
Конструкции ФПС и конструкции, обеспечивающие соединение ФПС с
основными элементами сооружения, должны допускать возможность
ведения
последовательного
не
нарушающего
связности
сооружения
ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и
методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС должны
быть
подготовлены
посредством
либо
пескоструйной
очистки
в
соответствии с указаниями ВСН 163-76, либо дробеструйной очистки в
соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть удалены
заусенцы,
а
также
другие
дефекты,
препятствующие
плотному
прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под навесом,
или на открытой площадке при отсутствии атмосферных осадков.
Шероховатость поверхности очищенного металла должна находиться
в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел, воды и
других загрязнений.
Очищенные контактные поверхности должны соответствовать первой
степени удаления окислов и обезжиривания по ГОСТ 9022-74.
251.
Оценкавизуально
шероховатости
сравнением
с
контактных
эталоном
поверхностей
или
другими
производится
апробированными
способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним осмотром
поверхности при помощи лупы с увеличением не менее 6-ти кратного.
Окалина, ржавчина и другие загрязнения на очищенной поверхности при
этом не должны быть обнаружены.
Контроль
степени
обезжиривания
осуществляется
следующим
образом: на очищенную поверхность наносят 2-3 капли бензина и
выдерживают
не
менее
15
секунд.
К
этому
участку
поверхности
прижимают кусок чистой фильтровальной бумаги и держат до полного
впитывания бензина. На другой кусок фильтровальной бумаги наносят 2-3
капли бензина. Оба куска выдерживают до полного испарения бензина.
При
дневном
освещении
сравнивают
внешний
вид
обоих
кусков
фильтровальной бумаги. Оценку степени обезжиривания определяют по
наличию или отсутствию масляного пятна на фильтровальной бумаге.
Длительность перерыва между пескоструйной очисткой поверхности и
ее
консервацией
обнаруженные
на
не
должна
очищенных
превышать
3
часов.
Загрязнения,
поверхностях,
перед
нанесением
консервирующей грунтовки ВЖС 83-02-87 должны быть удалены жидким
калиевым
стеклом
или
повторной
очисткой.
Результаты
проверки
качества очистки заносят в журнал.
6.4. Приготовление и нанесение протекторной грунтовки
ВЖС 83-02-87. Требования к загрунтованной поверхности.
Методы контроля
Протекторная
грунтовка
ВЖС
83-02-87
представляет
собой
двуупаковочный лакокрасочный материал, состоящий из алюмоцинкового
сплава в виде пигментной пасты, взятой в количестве 66,7% по весу, и
связующего в виде жидкого калиевого стекла плотностью 1,25, взятого в
количестве 33,3% по весу.
252.
Каждая партия материалов должна быть проверена по документациина
соответствие
ТУ.
Применять
материалы,
поступившие
без
документации завода-изготовителя, запрещается.
Перед
смешиванием
составляющих
протекторную
грунтовку
ингредиентов следует довести жидкое калиевое стекло до необходимой
плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная часть и
связующее тщательно перемешиваются и доводятся до рабочей вязкости
17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4 (ГОСТ
9070-59) по методике ГОСТ 17537-72.
Перед и во время нанесения следует перемешивать приготовленную
грунтовку до полного поднятия осадка.
Грунтовка
ВЖС
83-02-87
сохраняет
малярные
свойства
(жизнеспособность) в течение 48 часов.
Грунтовка ВЖС 83-02-87 наносится под навесом или в помещении. При
отсутствии
атмосферных
осадков
нанесение
грунтовки
можно
производить на открытых площадках.
Температура воздуха при произведении работ по нанесению грунтовки
ВЖС 83-02-87 должна быть не ниже +5°С.
Грунтовка ВЖС 83-02-87 может наноситься методами пневматического
распыления, окраски кистью, окраски терками. Предпочтение следует
отдавать пневматическому распылению.
Грунтовка
ВЖС
перпендикулярным
83-02-87
наносится
направлениям
с
за
два
раза
по
взаимно
сушкой
между
сплошным
слоем,
промежуточной
слоями не менее 2 часов при температуре +18-20°С.
Наносить
грунтовку
следует
равномерным
добиваясь окончательной толщины нанесенного покрытия 90-110 мкм.
Время нанесения покрытия при естественной сушке при температуре
воздуха 18-20 С составляет 24 часа с момента нанесения последнего
слоя.
253.
Сушка загрунтованных элементов и деталей во избежание попаданияатмосферных осадков и других загрязнений на невысохшую поверхность
должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и другие
дефекты не допускаются. Высохшая грунтовка должна иметь серый
матовый цвет, хорошее сцепление (адгезию) с металлом и не должна
давать отлипа.
Контроль толщины покрытия осуществляется магнитным толщиномером
ИТП-1.
Адгезия определяется методом решетки в соответствии с ГОСТ 1514069 на контрольных образцах, окрашенных по принятой технологии
одновременно с элементами и деталями конструкций.
Результаты проверки качества
защитного покрытия
заносятся в
Журнал контроля качества подготовки контактных поверхностей ФПС.
6.4.1 Основные требования по технике безопасности при
работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные правила при окрасочных работах с применением ручных
распылителей" (Министерство здравоохранения СССР, № 991-72)
"Инструкцию
оборудования
по
санитарному
производственных
содержанию
предприятий"
помещений
и
(Министерство
здравоохранения СССР, 1967 г.).
При пневматическом методе распыления, во избежание увеличения
туманообразования и расхода лакокрасочного материала, должен строго
соблюдаться режим окраски. Окраску следует производить в респираторе
и защитных очках. Во время окрашивания в закрытых помещениях маляр
должен
располагаться
материала
имела
таким
образом,
направление
чтобы
струя
преимущественно
лакокрасочного
в
сторону
воздухозаборного отверстия вытяжного зонта. При работе на открытых
площадках маляр должен расположить окрашиваемые изделия так,
254.
чтобы ветер не относил распыляемый материал в его сторону и в сторонуработающих вблизи людей.
Воздушная
магистраль
и
окрасочная
аппаратура
должны
быть
оборудованы редукторами давления и манометрами. Перед началом
работы маляр должен проверить герметичность шлангов, исправность
окрасочной
аппаратуры
присоединения
и
воздушных
инструмента,
шлангов
к
а
также
надежность
краскораспределителю
и
воздушной сети. Краскораспределители, кисти и терки в конце рабочей
смены
необходимо
тщательно
очищать
и
промывать
от
остатков
грунтовки.
На каждом бидоне, банке и другой таре с пигментной частью и
связующим должна быть наклейка или бирка с точным названием и
обозначением этих материалов. Тара должна быть исправной с плотно
закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87 нужно
соблюдать осторожность и не допускать ее попадания на слизистые
оболочки глаз и дыхательных путей.
Рабочие и ИТР, работающие на участке консервации, допускаются к
работе только
после ознакомления с
настоящими
рекомендациями,
проведения инструктажа и проверки знаний по технике безопасности. На
участке
консервации
и
в
краскозаготовительном
помещении
не
разрешается работать без спецодежды.
Категорически запрещается прием пищи во время работы. При
попадании составных частей грунтовки или самой грунтовки на слизистые
оболочки глаз или дыхательных путей необходимо обильно промыть
загрязненные места.
255.
6.4.2 Транспортировка и хранение элементов и деталей,законсервированных грунтовкой
ВЖС 83-02-87
Укладывать,
элементы
и
механического
хранить
детали
и
транспортировать
нужно
повреждения
так,
и
чтобы
законсервированные
исключить
загрязнения
возможность
законсервированных
поверхностей.
Собирать можно только те элементы и детали, у которых защитное
покрытие
контактных
защитное
покрытие
поверхностей
контактных
полностью
высохло.
поверхностей
не
Высохшее
должно
иметь
загрязнений, масляных пятен и механических повреждений.
При наличии загрязнений и масляных пятен контактные поверхности
должны быть обезжирены. Обезжиривание контактных поверхностей,
законсервированных
ВЖС
83-02-87,
можно
производить
водным
раствором жидкого калиевого стекла с последующей промывкой водой и
просушиванием. Места механических повреждений после обезжиривания
должны быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного покрытия на
опорные поверхности шайб
Производится очистка только одной опорной поверхности шайб в
дробеструйной камере каленой дробью крупностью не более 0,1 мм. На
отдробеструенную поверхность шайб методом плазменного напыления
наносится подложка из интерметаллида ПН851015 толщиной . …..м. На
подложку из интерметаллида ПН851015 методом плазменного напыления
наносится несущий слой оловянистой бронзы БРОФ10-8. На несущий слой
оловянистой бронзы БРОФ10-8 наносится способом лужения припой ПОС60 до полного покрытия несущего слоя бронзы.
6.6. Сборка ФПС
256.
Сборка ФПС проводится с использованием шайб с фрикционнымпокрытием одной из поверхностей, при постановке болтов следует
располагать шайбы обработанными поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей ФПС.
Рекомендуется
использование
неочищенных
внешних
поверхностей
внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой, другую
под гайкой). Болты и гайки должны быть очищены от консервирующей
смазки, грязи и ржавчины, например, промыты керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания гайки от
руки на всю длину резьбы. Перед навинчиванием гайки ее резьба должна
быть покрыта легким слоем консистентной смазки.
Рекомендуется следующий порядок сборки:
совмещают
отверстия
в
деталях
и
фиксируют
их
взаимное
положение;
устанавливают болты и осуществляют их натяжение гайковертами на
90% от проектного усилия. При сборке многоболтового ФПС установку
болтов рекомендуется начать с болта находящегося в центре тяжести
поля установки болтов, и продолжать установку от центра к границам
поля установки болтов;
после проверки плотности стягивания ФПС производят герметизацию
ФПС;
болты
затягиваются
до
нормативных
динамометрическим ключом.
ответственностью «С К С Т Р О Й К О М П Л Е К
С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812705-00-65 E-mail: stanislav@stroycomplex-5. ru
http://www. stroycomplex-5. ru
усилий
натяжения
257.
РЕГЛАМЕНТМОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ
МОСТОВЫХ СООРУЖЕНИЙ
1. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного
строения от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов)
в оголовке опоры и диафрагме железобетонного пролетного строения или отверстий
в металле металлического или сталежелезобетонного пролетного строения с
составлением схемы (шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к
опоре и к пролетному строению в элементах амортизатора по шаблонам и, при
необходимости, райберовка или рассверловка новых отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж
амортизатора и пространства для его установки на опоре (под диафрагмой). При
необходимости, срубка выступающих частей бетона или устройство подливки на
оголовке опоры.
1.5. Устройство подмостей в уровне площадки, на которую устанавливается
амортизатор.
2. Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под
железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может
быть двух видов:
1) болты расположены внутри основания и при полностью смонтированном
амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы
фундаментных болтов выступают над поверхностью площадки, на которой
монтируется амортизатор;
2) болты расположены внутри основания и оканчиваются резьбовыми втулками,
верхние торцы которых расположены заподлицо с бетонной поверхностью;
3) болты расположены у края основания, которое совмещено с корпусом упора,
и после монтажа амортизатора доступ к болтам возможен, при этом концы
фундаментных болтов выступают над поверхностью площадки;
258.
4) болты расположены у края основания и оканчиваются резьбовыми втулками,как и во втором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае
приведена ниже.
а)Затяжка болтов ФПС на усилие, предусмотренное проектом.
б)Разборка соединения основания с корпусом упора, собранного на время
транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем
уровень площадки, на которой монтируется амортизатор, на высоту выступающего
конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для
крепления амортизатора с фундаментными болтами, опускание основания на
площадку, затяжка фундаментных болтов, при необходимости срезка выступающих над
гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на
подмости в уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения
отверстий под штифты и резьбовые отверстия под болты в основании с
соответствующими отверстиями в упоре, забивка штифтов в отверстия, затяжка и
законтривание болтов.
з)Завинчивание болтов крепления верхней плиты стержневой пружины в
резьбовые отверстия втулок анкерных болтов на диафрагме пролетного строения. Если
зазор между верхней плитой и нижней плоскостью диафрагмы менее 5мм,
производится затяжка болтов. Если зазор более 5 мм, устанавливается опалубка по
контуру верхней плиты, бетонируется или инъектирует- ся зазор, после набора
прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от
операций первого случая только тем, что основание амортизатора поднимается на
259.
подмости в уровне площадки, на которой монтируется амортизатор и надвигается досовпадения резьбовых отверстий во втулках фундаментных болтов с отверстиями под
болты в основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае
приведена ниже.
а)Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень
площадки, на которой монтируется амортизатор, на высоту выступающего конца
фундаментного болта.
260.
в) Снятие транспортных креплений.г)Надвижка амортизатора в проектное положение до совпадения отверстий для
его крепления с фундаментными болтами, опускание амортизатора на площадку,
затяжка фундаментных болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от
операций для третьего случая только тем, что амортизатор поднимается на подмости
в уровень площадки, на которой он монтируется и надвигается до совпадения
отверстий в амортизаторе с резьбовыми отверстиями во втулках.
амортизаторов с верхним расположением ФПС (под
металлические пролетные строения)
2.2.1. Последовательность и содержание операций по установке на опоры
амортизаторов как с верхним, так и с нижним расположением ФПС одинаковы.
2.2.2. К металлическому пролетному строению амортизатор прикрепляется
посредством горизонтального упора. После прикрепления амортизатора к опоре
выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора
к конструкциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются
вильчатые прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.2. Установка
2.3. Подъемка
амортизатора на подмости в уровне площадки, на которой он
будет смонтирован.
2.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Л.А. Ушакова
Согласовано:
Главный инженер проекта
ОАО «Трансмост»
Главный инженер проекта ОАО «Трансмост»
И.В. Совершаев
И.А. Мурох
261.
УГлавный инженер проекта
Общество с ограниченной ответственностью «С К С Т Р О Й К О М П Л
Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812-705-00-65 E-mail:
stanislav@stroycomplex-5. ru http://www. stroycomplex-5. ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ МОСТОВЫХ СООРУЖЕНИЙ
3. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения от загрязнений;
3.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в оголовке опоры и диафрагме железобетонного
пролетного строения или отверстий в металле металлического или сталежелезобетонного пролетного строения с составлением схемы (шаблона).
3.3. Проверка соответствия положения отверстий для крепления амортизатора к опоре и к пролетному строению в элементах амортизатора по
шаблонам и, при необходимости, райберовка или рассверловка новых отверстий.
3.4. Проверка высотных и горизонтальных параметров поступившего на монтаж амортизатора и пространства для его установки на опоре (под
диафрагмой). При необходимости, срубка выступающих частей бетона или устройство подливки на оголовке опоры.
3.5. Устройство подмостей в уровне площадки, на которую устанавливается амортизатор.
4. Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может быть двух видов:
4) болты расположены внутри основания и при полностью смонтированном амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы
фундаментных болтов выступают над поверхностью площадки, на которой монтируется амортизатор;
5) болты расположены внутри основания и оканчиваются резьбовыми втулками, верхние торцы которых расположены заподлицо с бетонной
поверхностью;
6) болты расположены у края основания, которое совмещено с корпусом упора, и после монтажа амортизатора доступ к болтам возможен, при
этом концы фундаментных болтов выступают над поверхностью площадки;
262.
4) болты расположены у края основания и оканчиваются резьбовыми втулками, как и во втором случае2.1.5. Последовательность операций по монтажу амортизатора в первом случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень площадки, на которой монтируется амортизатор, на высоту
выступающего конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для крепления амортизатора с фундаментными болтами, опускание
основания на площадку, затяжка фундаментных болтов, при необходимости срезка выступающих над гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на подмости в уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения отверстий под штифты и резьбовые отверстия под болты в основании с
соответствующими отверстиями в упоре, забивка штифтов в отверстия, затяжка и законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в резьбовые отверстия втулок анкерных болтов на диафрагме пролетного
строения. Если зазор между верхней плитой и нижней плоскостью диафрагмы менее 5мм, производится затяжка болтов. Если зазор более 5 мм, устанавливается
опалубка по контуру верхней плиты, бетонируется или инъектирует- ся зазор, после набора прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.6. Операции по монтажу амортизатора во втором случае отличаются от операций первого случая только тем, что основание амортизатора
поднимается на подмости в уровне площадки, на которой монтируется амортизатор и надвигается до совпадения резьбовых отверстий во втулках фундаментных
болтов с отверстиями под болты в основании.
2.1.7. Последовательность операций по монтажу амортизатора в третьем случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки, на которой монтируется амортизатор, на высоту выступающего
конца фундаментного болта.
263.
в) Снятие транспортных креплений.г) Надвижка амортизатора в проектное положение до совпадения отверстий для его крепления с фундаментными болтами, опускание амортизатора
на площадку, затяжка фундаментных болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от операций для третьего случая только тем, что амортизатор
поднимается на подмости в уровень площадки, на которой он монтируется и надвигается до совпадения отверстий в амортизаторе с резьбовыми отверстиями во
втулках.
2.3. Установка амортизаторов с верхним расположением ФПС (под металлические пролетные строения)
2.2.3. Последовательность и содержание операций по установке на опоры амортизаторов как с верхним, так и с нижним расположением ФПС
одинаковы.
2.2.4. К металлическому пролетному строению амортизатор прикрепляется посредством горизонтального упора. После прикрепления амортизатора
к опоре выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к конструкциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются вильчатые прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
4.3. Подъемка амортизатора на подмости в уровне площадки, на которой он будет смонтирован.
4.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Л.А. Ушакова
Согласовано:
Главный инженер проекта
ОАО «Трансмост»
Главный инженер проекта ОАО «Трансмост»
И.В. Совершаев
И.А. Мурох
264.
Главный инженер проектаВ.Л. Бобровский