20.14M
Категория: СтроительствоСтроительство
Похожие презентации:

Gumanitarnaya intelektualnaya injinernaya nauchnaya pomosh Kursku Bistrosobiraemiy peshexodniy most pereprava armeyskogo mostovogo sooruzhenoya reku Seysm Glushevskogo Kurskoy RU 2024100839 RU 167977 RU 2024106154 472

1.

ВЕСТНИК МЕЖДУНАРОДНОЙ АССОЦИАЦИИ ЭКСПЕРТОВ ПО СЕЙСМОСТОЙКОМУ СТРОИТЕЛЬСТВУ
DOI: 10.38054/iaeee-202201
1/2024(13)
Уздин А.М.1, Егорова О.А.2,
3 1 ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I
2
Коваленко А.И.
[email protected] ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ
3
УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I, [email protected] Организация Сейсмофонд СПБ ГАСУ [email protected]
УДК 624.042.7
Быстро собираемое пешеходное армейское мостовое сооружения пролетом 24 метра через реку Сейсм
Глушковском районе село Глушково Курской области по изобретениям RU 2024100839 "Способ усиления пролетного строения мостового сооружения
с использованием комбинированных пространственных структур (Новокисловодск) для сейсмоопасных районов ", RU 2024106154 « Способ усиления
основания пролетного стрроения использованием подвижных треугольных балочных ферм имени В В Путина», RU 167977 "Устройство для гашения
ударных и вибрационных воздействий» RU 2024106532 «Способ имени Уздина А М шпренгельного усиления пролетного строения мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных районов» RU 2023135557 «Антисейсмическое фланцевое соединение
фрикционно-подвижных соединений для пролетного строения мостового сооружения» RU 2022111669 RU 2022113052 RU2022113510 RU 2022115073
RU 2010136746 RU165076 RU 2023116900 RU 2018105803 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» RU
2021134630
Гуманитарная инженерная интеллектуальная помощь по восстановлению разрушенных мостовых сооружении в Курской области , ч ерез реку Сейсм, в селе
Званное, Глушковао, Карых и передача проектной документации организацией Сейсмофонд СПбГАСУ , для оторванных населенных пунктов от "большой
земли" для эксплуатации пролетных строений мостовых шпренгельных усилений с использованием треугольных балочных ферм для гид ротехнических
сооружений ( с использованием изобретения "Решетчато пространственный узел покрытия (перекрытия ) из перекрестных ферм типа "Новокисловодск" № 153753,
"Комбинированное пространственное структурное покрытие" № 80471, и с использованием типовой документации серия 1.460.3 -14 , с пролетами 18, 24, 30 метров, типа
Молодечно" , чертежи КМ ГПИ "Ленпроектстальконструкция" и изобретений проф дтн ПГУПС Уздина А М №№ 1143895, 1168755, 1174 616, заместителя организации
"Сейсмофонд" СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж Коваленко А.И №№ 167076, 1760020, 2010136746
https://ppt-online.org/1489482
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ ПЕРЕПРАВ МОСТОВ И ПЕРЕПРАВ стальных конструкций покрытий
производственных здании пролетами 18, 24 и 30 м с применением замкнутых гнутосварных профилей прямоугольного сечения типа
«Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов пешеходной части
армейского сборно-разборного пролетного надвижного строения шпренгельного мостового сооружения , с быстросъемными
упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей жесткостью.

2.

Доклад : ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ И ПЕРЕПРАВ
стальных конструкций покрытий производственных здании пролетами
18, 24 и 30 м с применением замкнутых гнутосварных профилей
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ
«Ленпроектстальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного
надвижного строения железнодорожного моста, с быстросъемными
упругопластичными компенсаторами, со сдвиговой фрикционнодемпфирующей жесткостью.

3.

СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием треугольных б алочных
ферм для сейсмоопасных районов МПК
E 01 D 22 /00

4.

ОПОРА СЕЙСМОСТОЙКАЯ
RU165 076
Комбинированное пространственное структурное
(51) МПКE04H 9/02 (2006.01) Коваленко Александр Иванович (RU)
покрытие № 80471
RU 167977 Уздин А М (812) 694-78-10

5.

Доклад зам Президента организации «Сейсмофонд» СПб ГАСУ Коваленко
А и ИНН2014000780 ОГРН 1022000000824

6.

Помощь для внедрения изобретения "Способ им Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием трехгранных
балочных ферм" , аналог "Новокисловодск" Марутян Александр Суренович
МПК Е01ВD 22/00, изобретателям пехотного армейского моста для Глушкоовского
Курской села Званное, Глушково, Карыж СБЕР карта МИР 2202 2056 3053 9333 тел привязан 911 175 84 65 Aleksandr Kovalenko (981) 739-44-97
[email protected] [email protected] https//t.me/resistance_test
Гуманитарная инженерная интеллектуальная помощь по восстановлению разрушенных мостовых сооружении в Курской области , ч ерез реку Сейсм, в селе
Званное, Глушковао, Карых и передача проектной документации организацией Сейсмофонд СПбГАСУ , для оторванных населенных пунктов от "большой
земли" для эксплуатации пролетных строений мостовых шпренгельных усилений с использованием треугольных балочных ферм для гид ротехнических
сооружений ( с использованием изобретения "Решетчато пространственный узел покрытия (перекрытия ) из перекрестных ферм типа "Новокисло водск" № 153753,
"Комбинированное пространственное структурное покрытие" № 80471, и с использованием типовой документаци и серия 1.460.3-14 , с пролетами 18, 24, 30 метров, типа
Молодечно" , чертежи КМ ГПИ "Ленпроектстальконструкция" и изобретений проф дтн ПГУПС Уздина А М №№ 1143895, 1168755, 1174 616, заместителя организации
"Сейсмофонд" СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж Коваленко А.И №№ 167076, 1760020, 2010136746
https://ppt-online.org/1489482

7.

8.

9.

10.

СБЕР карта МИР 2202 2006 4085 5233 Elena Kovalenko МИР карта 2202 2056 3053 9333
[email protected] (921) 944-67-10
тел привязан (911) 175 84 65 т/ф (812) 694-78-10 [email protected]
[email protected]

11.

Рассмотрены перспективы применения быстровозводимых мостов и переправ. Предложено создать
научно-исследовательскую лабораторию по изучению и проектированию быстровозводимых мостов и
переправ на базе учреждения образования организации «Сейсмофонд» при СПб ГАСУ.
Определены основные направления деятельности предлагаемой лаборатории. Представлены решенные
научно-практические задачи по совершенствованию и модернизации сборно-разборных мостовых
конструкций. Оценены возможности подготовки специалистов.
Введение. Мосты и переправы во все периоды истории человечества играли крупную и часто решающую
роль в развитии транспортной инфраструктуры страны. При этом характер переправоч но-мостовых
средств, а также условий и способов их использования, естественно, изменялись в соответствии с
развитием экономики и производительных сил человеческого общества.
В современных условиях возникновения локальных конфликтов, террористических угроз при ежегодно
возникающих чрезвычайных ситуациях (наводнения, пожары, землетрясения, промышленные и
транспортные аварии и т. д.) особое внимание необходимо обратить на развитие быстровозводимых
мостов и переправ. Это единственный возможный способ открытия сквозного движения в короткое
время на барьерном участке транспортной сети в случае его разрушения или временного строительства
нового мостового перехода.
Направления научных исследований.
Для продуктивной работы в области применения быстровозводимых мостов и переправ необходимо
объединить опытных ученых, имеющих свои научные школы по проведению фундаментальных
исследований, инженеров-мостовиков с опытом проектирования и строительства искусственных
сооружений, материальную базу. Назрела необходимость создания научно-исследовательской
лаборатории по изучению и проектированию быстровозводимых мостов и переправ на базе учреждения
образования «Сейсмофонд» при СПб ГАСУ
Основные направления деятельности предлагаемой лаборатории:
- исследование требований к временному строительству мостовых переходов;
- геодезическое исследование барьерных участков на транспортной сети, проектирование
искусственных сооружений с использованием разработанных методик и новых информационных

12.

технологий;
- применение современных табельных инвентарных конструкций временных мостов и переправ;
- обучение и подготовка кадров, способных решать оперативные и тактические задачи в интересах
развития и безопасной эксплуатации транспортной инфраструктуры Республики Беларусь;
Исследование требований к временному строительству мостовых переходов. К временным мостам и
переправам предъявляются соответствующие требования, которые излагаются в руководящих и
нормативных документах.
К временному строительству мостового перехода должны быть определены следующие требования:
- оперативно-тактические;
- технические;
- нормативные.
Оперативно тактические требования определяют:
- сроки открытия движения через водные преграды;
- пропускную способность, масса транспорта;
- сроки службы временных мостовых переходов;
- обеспечение живучести мостовых переходов;
- сроки замены вышедших из строя сооружений.
Технические требования определяют:
- вид и способ временного строительства мостового перехода, его этапы;
- вид тяги и длину поезда, вес автомобильной и гусеничной техники;
- подмостовой габарит, обеспечение судоходства;

13.

- обеспечение пропуска высоких вод и ледоходов;
- ширину колеи, проезжей части;
- скорость движения по мостам.
Нормативные требования определяют:
- конструктивные характеристики восстанавливаемых сооружений (расположение в плане и профиле,
допускаемые уклоны, основные требования к конструкции и конструированию, указания по расчету,
деформативные характеристики конструкций, расчетные характеристики материалов);
- технологию сооружения элементов мостов и переправ.
Существующие строительные нормы и правила, инструкции, технические условия по проектированию
не в полной мере отражают всю необходимую информацию, учитывающую особенности временного
строительства быстровозводимых мостов и переправ. Необходимо учесть требования к современным
нагрузкам, условия применения временного строительства, организации на которых будут возложены
задачи, переработать документы и принять их к руководству. Данная работа уже проводится, но с
учетом ограничения распространения информации в открытой печати, не может быть изложена в
полном объеме.
Геодезическое исследование барьерных участков на транспортной сети, проектирование
искусственных сооружений с использованием разработанных методик и новых информационных технологий.
При проведении геодезических исследований барьерных участков на транспортной сети было
выяснено, что в связи с климатическими изменениями произошли естественные изменения в районе
мостовых переходов. Русла рек обмелели, появились заболоченности, существенно поменялась высота
берегов и т. д. Имеются расхождения с существующими данными проводимой ранее технической
разведкой. Уже сегодня необходимо приступать к геодезическому исследованию, начиная с наиболее
важных мостовых переходов. Эти данные должны использоваться для составления более обоснованных
проектных соображений с учетом применения новых сборно-разборных мостовых конструкций.

14.

15.

16.

17.

18.

19.

20.

21.

(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
136 746
(51) МПК E04C 2/00 (2006.01) Коваленко Александр Иванович (RU)
(911) 175-84-65, (921) 944-67-10
78
RU 2010
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 944-67-10,
[email protected] [email protected] СБЕР карта 2202 2006 4085 5233 Elena Kovalenko привязан телефон (921) 962-67-

22.

Reinforcement structure of trus https://ppt-online.org/1489072
s

23.

24.

ridge or arch bridge https://patents.google.com/patent/EP1396582A2/es https://patentimages.storage.googleapis.com/a3/0b/99/68bda2d0c463eb/EP1396582A2.pdf https://patents.google.com/patent/EP1396582B1/en
https://t.me/resistance_test т/ф (812) 694-78-10,
[email protected]
(921) 962-67-78,
(911) 175-84-65,
(981) 739-44-97
[email protected]
[email protected] [email protected]
При строительстве и восстановлении искусственных сооружений на железных и автомобильных
дорогах широко используются неоднородные слоистые, в том числе трехслойные, элементы
конструкций. Эти конструкции изготавливают из различных материалов, среди которых в настоящее
время широко распространено применение полимерных, композиционных, функционально-градиентных
материалов, ауксетиков и т. д. Вопросам расчета напряженно-деформированного состояния слоистых

25.

стержней, пластин и оболочек уделяется большое внимание, так как во многих случаях эти конструкции
являются элементами сложных и ответственных сооружений.
На практике приходится сталкиваться со случаями, когда конструкция не полностью опирается на
основание. Причиной появления зазора между конструкцией и основанием могут быть как техногенные
условия в зоне строительства, так и природные условия. Это приводит к изменению расчетной схемы и
напряженно-деформированного состояния рассматриваемого элемента, что в ряде случаев может
привести к его преждевременному разрушению.
Разработаны электронные модели, включающие компьютерные программы, написанные в
программной среде SCAD для численного анализа напряженно-деформированного состояния слоистых
конструкций. Эти программы позволяют определять перемещения, деформации и напряжения в
трехслойных конструкциях с различными геометрическими и механическими характеристиками слоев,
жестком и шарнирном закреплении или без него, наличии и отсутствии диафрагм на торцах, при
различных видах нагрузок, жесткости упругого основания, размерах участков опирания и оценивать
прочность и жесткость конструкций .
Разработанные методики и компьютерные программы могут использоваться в проектных
организациях строительного и машиностроительного профиля при расчетах сборно-разборных
настилов, SIP-панелей при возведении жилых зданий и хозяйственных ангаров, панелей из пенометаллов
для строительства бронемашин и авиастроения, мостовых конструкций.
BIM-технологии в проектировании и строительстве мостов с каждым годом используются всѐ более
широко. Как правило, это типовые мосты (они составляют около 90 % от всех мостов); на стадии
планирования созданы необходимые функции управления персоналом. На стадии проектирования
проводится построение моделей и визуализация, анализ проектирования и детализация); на стадии
строительства - расчет и изготовление конструкций).
Применение полученных собственных научных разработок, новых программных комплексов, позволит
существенно ускорить работу инженеров при создании и совершенствовании мостовых конструкций.
Применение современных табельных инвентарных конструкций временных мостов и переправ.
Российская Федерация является современным независимым демократическим государством,
способным защитить свой народ и территориальную целостность в случае возникновения агрессии.
Анализ современных конфликтов показал, что в первую очередь противник будет уничтожать
транспортные коммуникации.

26.

Наиболее сложным и трудоемким видом работ является восстановление мостов через широкие и
глубокие реки. Расчетное время восстановления движения через водные преграды по железной дороге не
должно превышать 3-4 суток. Силы и средства Министерства транспорта и коммуникаций не имеют
возможностей по восстановлению объектов в установленные сроки. Поэтому многократно возрастает
роль транспортных войск при выполнении задач восстановления инфраструктуры транспорта с
использованием инвентарного имущества: наплавных железнодорожных мостов (НЖМ-56), рамноэстакадных мостов (РЭМ-500), сборно-разборных пролетных строений (СРП), других материалов и
конструкций.
Один из недостатков рамно-эстакадных мостов (РЭМ-500) и сборно-разборных пролетных строений
(СРП) - отсутствие инвентарного автодорожного проезда под совмещенную езду железнодорожного и
автомобильного транспорта. Эта проблема не дает эксплуатировать восстановленные
железнодорожные мосты с помощью вышеуказанных конструкций для одновременного пропуска
автомобилей и поездов. При строительстве двух мостов многократно увеличиваются затраты во
времени и ресурсах.
С целью экономии денежных средств, необходимых для закупки новых дорогостоящих быстровозводимых мостов, была проведена научная работа в области прикладных исследований, с целью
создания новых дорожно-мостовых инвентарных конструкций для пропуска по железнодорожному
временному мосту и РЭМ-500 автомобильной и гусеничной техники.
Для приспособления верхнего строения пути пролетных строений при необходимости пропуска по
железнодорожному мосту автомобильной и гусеничной техники была рассчитана и спроектирована
новая конструкция сборно-разборного автодорожного настила . По результатам исследования получены
патенты на изобретение № 19687 «Сборно -разборный дорожный настил» и полезную модель № 10312
«Сборно-разборный автодорожный настил» .
Быстровозводимые инвентарные мостовые конструкции: металлическая сборно-разборная эстакада
РЭМ-500; наплавной железнодорожный мост НЖМ-56; инвентарное мостовое имущество ИМИ-60;
рамно-винтовые опоры (РВО); сборно-разборные пролетные строения (СРП) и другие несмотря на
большой срок эксплуатации и хранения предоставляют собой самое эффективное средство для
скоростного восстановления мостовых переходов.
Новые дорогостоящие быстровозводимые мосты и переправы могут позволить себе организации,

27.

обладающие достаточно большими финансовыми возможностями. Существующие сборно-разборные
мосты не стоит списывать раньше времени. Благодаря научному обоснованию, проведенной
модернизации и испытаниям, конструкции временных мостов прослужат еще долгие годы. За это время
будут изучены все слабые и сильные стороны новых быстровозводимых мостов, сделаны правильные
выводы при их разработке, изготовлению или закупки.
Обучение и подготовка кадров, способных решать оперативные и тактические задачи в интересах
развития и безопасной эксплуатации транспортной инфраструктуры Киевской Руси
Выводы. Перспективы применения быстровозво- димых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической базы, задачи по быстрому временному
восстановлению
Приведена краткая характеристика быстровозводимых мостов, временных мостовых сооружений и
обоснована необходимость их применения в экстремальных условиях (стихийных бедствиях, техногенных
катастрофах и т. п.). Представлен анализ современных сборно-разборных конструкций мостов и
переправ.
Мостовой переход (мост) является сложным инженерным сооружением, состоящим из отдельных
объектов (опор, пролетных строений, эстакад, подходных насыпей и т. д.), капитальный ремонт или
новое строительство которых требует значительного времени, что определено требованиями
безопасности к данного вида коммуникациям. Необходимо отметить, что «фактор времени»
строительства мостового перехода может быть приоритетным, особенно при ликвидации последствий
чрезвычайных ситуаций (наводнений, природных и техногенных катастроф и т. п.), когда происходит его
разрушение и необходимо в кратчайшие сроки восстановить его или построить новое сооружение, а
также оказать помощь пострадавшим районам, количество которых в результате паводков и
стихийных бедствий постоянно увеличивается.
Киевская Русь имеет значительные водные ресурсы, разнообразие рельефов местности, поэтому
подвержена опасным стихийным гидрологическим явлениям: паводкам, половодьям, наводнениям,
заторам во время ледохода.

28.

Наводнения наблюдаются каждый год на территории страны и занимают первое место в ряду
стихийных бедствий по повторяемости и площади распространения. В многоводные годы водность рек
может увеличиваться на 30 %. Половодье на юго-западе Киевской Руси начинается в первой половине
марта, на юго-востоке - в конце марта - начале апреля и продолжается от 30 до 120 дней. На крупных
реках половодье может затягиваться до 2-2,5 месяцев. При этом подъем воды в белорусских реках всегда
идет более быстрыми темпами, чем ее спад и продолжается в среднем 14-20 суток, а спад - около 30-40
суток. Особенно затягивается спад в центральной части Полесья - до конца мая - начала июня,
постепенно переходя в летние паводки. Так, весной 2018 года на Киевской Руси зафиксированы сильные
паводки во многих областях страны.
Причиной данных природных катаклизмов стало глобальное потепление на планете. При этом следует
учитывать, можно сказать, «возрастные проблемы» мостов, построенных в ХХ веке и не рассчитанных
на современные условия их эксплуатации при изменившимся температурном режиме, который отличает
резкий перепад, например с 16 до 31 °С. Так, максимальный вес большегрузного автомобиля в конце ХХ
века составлял 18 т, а современный автопоезд весит 60 т, и к этому обстоятельству необходимо
добавить поток легковых автомобилей, количество которых выросло в сотни раз за истекший период и,
как следствие, оказало значительное влияние на долговечность конструкций мостов, многие из которых
находятся в аварийном состоянии, что подтверждается последствиями, чрезвычайной ситуации, когда
полотно проезжей части просело примерно на полметра по всей его ширине и на стыке образовался
поперечный разлом шириной 5 см.
Таким образом, как показала практика, визуальные обследования являются непременным условием
выполнения работ по обследованию и испытанию мостов, что позволяет фиксировать видимые разрывы
отдельных элементов конструкции, различные дефекты поверхностного слоя вследствие влияния
коррозионных процессов или механических статических и динамических нагрузок. Натурные
обследования железобетонных мостов и анализ технической литературы также показали, что уже на
стадии строительства в них могут появляться трещины различного вида, через которые в полотно
поступают пыль, реагенты против скольжения и обледенения, смазочные материалы и топливо от
транспортных средств, способствуя тем самым разрушению конструкции. Продольные трещины
образуются от непрочности дорожной конструкции из-за недостаточного уплотнения или осадки

29.

дорожного полотна. Мелкие сетки трещин образуются вследствие высокой влажности грунта и
недостаточной прочности основания. Помимо этого, после 10-11 лет эксплуатации площадь сеток
трещин резко увеличивается, а через 15 лет становится почти сплошным покрытием. Все это приводит
к сезонным изменениям транспортных связей и сводится к замене не только транспортных средств, но и
видов транспорта, а также маршрутов его следования, создавая тем самым неудобства для населения.
Отличительной особенностью функционирования транспортных связей в таких условиях является
неравномерность интенсивности грузоперевозок. При этом, естественно, повышается значение
транспортных коммуникаций, особенно мостов, являющихся иногда единственным средством
обеспечения жизнедеятельности населенных пунктов, в которых в результате наводнения и отсутствия
транспортных связей появляется возможность заражения и загрязнения местности, заболачивания
территории, что ведет к увеличению заболеваемости. Наводнение влияет на снабжение
продовольствием и состояние жилья и тем самым отрицательно сказывается на здоровье населения. С
другой стороны, неотложная помощь населению пострадавших районов способствует улучшению
санитар но - гигиенических условий и снабжения продовольствием.
Таким образом, мост как инженерное сооружение, независимо от конструкции, требует постоянно
мониторинга и в случае необходимости его восстановления или строительства нового. Поэтому
применение быст- ровозводимых мостов и переправ является актуальным направлением исследований.
Анализ показал, что при сохранении опор возможно использование как временных, так и капитальных
металлических и железобетонных пролетных строений, которые являются надежным способом
восстановления транспортного сообщения.
Однако для монтажа практически всех без исключения существующих временных сооружений
применяется тяжелая техника, что требует дополнительное время на ее доставку.
Более подробно : Перспективы применения быстровозводимых мостов и
переправ очевидны. Не имея хорошей методической, научной,
технической и практической базы, задачи по быстрому временному
восстановлению мостовых переходов будут невосполнимы. Это

30.

приведет к непредсказуемым потерям. Белорусский государственный
университет транспорта . г.Гомель А.А.Поддубный , А.В.Яровая
https://bsut.by/images/BottomMenuFiles/GazetyIJurnaly/vestnik/2017/1_2017/5
novye/poddupny.pdf
http://elib.bsut.by/bitstream/handle/123456789/872/Поддубный%20А.%20А.%2
0Мониторинг%20применения%20быстровозводимых%20мостов%20и%20
переправ%20в%20Республике%20Беларусь.pdf?sequence=1&isAllowed=y
https://ppt-online.org/1220966
https://vk.com/wall375418020_1669
https://elibrary.ru/item.asp?id=30123630
https://www.dissercat.com/content/sovershenstvovanie-konstruktivnotekhnologicheskikh-parametrov-sistemy-nesushchikh-elementov
NET razvitiya friktsionno-podvijnix sdvigovix kompensatorov
obespecheniya seysmostoykosti TAYPAN-UZDIN 426 str
https://studylib.ru/doc/6353283/net-razvitiya-friktsionno-podvijnix-sdvigovixkompensator...
https://vk.com/wall441435402_1959

31.

https://vk.com/wall375418020
NET razvitiya friktsionno-podvijnix sdvigovix kompensatorov
Список литературы 1
1 Поддубный, А. А. Теоретическое и экспериментальное определение перемещений трехслойной балки
при неполном контакте с упругим основанием / А. А. Поддубный, А. В. Яровая // Мир транспорта и
технологических машин. - 2015. - № 3 (50). - С. 256-262.
2 Яровая, А. В. Деформирование упругой трехслойной балки, частично опертой на упругое основание,
под действием равномерно распределенной нагрузки / А. В. Яровая, А. А. Поддубный // Теоретическая и
прикладная механика. - 2016. - № 31. - С. 242-246.
3 Напряженно-деформированное состояние трехслойной балки, частично опертой на упругое
основание: регистрационное свидетельство № 5301403768 от 03 марта 2014 г. / А. В. Яровая, А. А.
Поддубный / Государственный регистр информационных ресурсов НИРУП ИППС. - 2014.
4 Напряженно-деформированное состояние трехслойной пластины, частично опертой на упругое
основание, при цилиндрическом изгибе: регистрационное свидетельство № 5301403769 от 03 марта 2014
г / А. В. Яровая, А. А. Поддубный / Государственный регистр информационных ресурсов НИРУП ИППС. 2014.
5 Сборно-разборный дорожный настил : пат. BY 19687 / А. В. Яровая, А. А. Поддубный. - Опубл.
30.12.2015.
6 Сборно-разборный автодорожный настил: полез. модель BY 10312 / А. В. Яровая, А. А. Поддубный. Опубл. 30.10.2014.
7 Опорная часть моста: полез. модель u 20160085 / С. И. Новиков, А. В. Яровая, А. А. Поддубный [и
др.]. - Регистр. № 11366 - 01.02.2017.
Список литературы 2
1 Поддубный, А. А. Перспективы применения быстро- возводимых мостов / А. А. Поддубный, А. В.
Яровая // Вестник БелГУТа: Наука и транспорт. - 2017. - № 1(34). - С. 83-86.
2 Сборно-разборный дорожный настил : пат. BY 19687 / А. В. Яровая, А. А. Поддубный. - Опубл.
30.12.2015.

32.

3 Сборно-разборный автодорожный настил : полез. модель BY 10312 / А. В. Яровая, А. А. Поддубный. Опубл. 30.10.2014.
4 Опорная часть моста : полез. модель u 20160085 / С. И. Новиков, А. В. Яровая, А. А. Поддубный [и
др.]. - Регистр. № 11366 - 01.02.2017.
5 Амиров, Т. Ж. Трещины на асфальтобетонных покрытиях: причины образования и отрицательные
последствия / Т. Ж. Амиров, О. З. Зафаров, Ж. М. Юсупов // Молодой ученый. - 2016. - № 6. - С. 74-75.
МОНИТОРИНГ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ И ПЕРЕПРАВ
В РЕСПУБЛИКЕ БЕЛАРУСЬ
Перспективы применения быстровозводимых мостов и переправ
очевидны. Не имея хорошей методической, научной, технической и
практической базы, задачи по быстрому временному восстановлению
мостовых переходов будут невосполнимы. Это приведет к
непредсказуемым потерям. Белорусский государственный
университет транспорта . г.Гомель А.А.Поддубный , А.В.Яровая
https://bsut.by/images/BottomMenuFiles/GazetyIJurnaly/vestnik/2017/1_2017/5
novye/poddupny.pdf
http://elib.bsut.by/bitstream/handle/123456789/872/Поддубный%20А.%20А.%2
0Мониторинг%20применения%20быстровозводимых%20мостов%20и%20
переправ%20в%20Республике%20Беларусь.pdf?sequence=1&isAllowed=y
https://ppt-online.org/1220966
https://vk.com/wall375418020_1669

33.

https://elibrary.ru/item.asp?id=30123630
https://www.dissercat.com/content/sovershenstvovanie-konstruktivnotekhnologicheskikh-parametrov-sistemy-nesushchikh-elementov
NET razvitiya friktsionno-podvijnix sdvigovix kompensatorov
obespecheniya seysmostoykosti TAYPAN-UZDIN 426 str
https://studylib.ru/doc/6353283/net-razvitiya-friktsionno-podvijnix-sdvigovixkompensator...
https://vk.com/wall441435402_1959
https://vk.com/wall375418020
NET razvitiya friktsionno-podvijnix sdvigovix kompensatorov

34.

Поддубный А. А. Мониторинг применения быстровозводимых
мостов и переправ в Республике Беларусь (1)
ISSN 2227-1120. Вестник Белорусского государственного университета
транспорта: Наука и транспорт. 2018. № 1 (36)
УДК 539.3
А. А. ПОДДУБНЫЙ, кандидат физико-математических наук, А. В. ЯРОВАЯ,
доктор физико-математических
наук, Белорусский государственный университет транспорта, г. Гомель
МОНИТОРИНГ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ И
ПЕРЕПРАВ
В РЕСПУБЛИКЕ БЕЛАРУСЬ
Приведена краткая характеристика быстровозводимых мостов, временных
мостовых сооружений и обоснована необходимость их применения в экстремальных условиях (стихийных бедствиях,
техногенных катастрофах и т. п.). Представлен анализ
современных сборно-разборных конструкций мостов и переправ.
остовой переход (мост) является сложным
инженерным сооружением, состоящим из отдельных объектов (опор, пролетных строений, эстакад,
подходных насыпей и т. д.), капитальный ремонт или

35.

новое строительство которых требует значительного
времени, что определено требованиями безопасности к
данного вида коммуникациям. Необходимо отметить,
что «фактор времени» строительства мостового перехода может быть приоритетным, особенно при ликвидации последствий чрезвычайных ситуаций (наводнений,
природных и техногенных катастроф и т. п.), когда происходит его разрушение и необходимо в кратчайшие
сроки восстановить его или построить новое сооружение, а также оказать помощь пострадавшим районам,
количество которых в результате паводков и стихийных
бедствий постоянно увеличивается.
Республика Беларусь имеет значительные водные
ресурсы, разнообразие рельефов местности, поэтому
подвержена опасным стихийным гидрологическим явлениям: паводкам, половодьям, наводнениям, заторам
во время ледохода. Наводнения наблюдаются каждый
год на территории страны и занимают первое место в
ряду стихийных бедствий по повторяемости и площади
распространения. В многоводные годы водность рек
может увеличиваться на 30 %. Половодье на юго-западе
Республики Беларусь начинается в первой половине
марта, на юго-востоке – в конце марта – начале апреля и
продолжается от 30 до 120 дней. На крупных реках половодье может затягиваться до 2–2,5 месяцев. При этом

36.

подъем воды в белорусских реках всегда идет более
быстрыми темпами, чем ее спад и продолжается в среднем 14–20 суток, а спад – около 30–40 суток. Особенно
затягивается спад в центральной части Полесья – до
конца мая – начала июня, постепенно переходя в летние
паводки. Так, весной 2018 года на территории Беларуси
зафиксированы сильные паводки во многих областях
страны. При этом особенно выделяются пять районов
Гомельской области (Петриковский, Мозырский, Житковичский, Ветковский и Гомельский), в Минской области отмечено более полусотни подтоплений, а в
Столбцовском районе выход воды из некоторых рек
превысил 15 м. Помимо этого в Гродненской области
смыло мост через реку Неман и паводок разрушил
большую часть 70-метровой переправы. В результате
внезапного ледохода практически уничтожен деревянный мост, соединявший прибрежную д. Корытница с
районным центром.
Причиной данных природных катаклизмов стало
глобальное потепление на планете. При этом следует
учитывать, можно сказать, «возрастные проблемы» мостов, построенных в ХХ веке и не рассчитанных на современные условия их эксплуатации при изменившимся температурном режиме, который отличает резкий перепад, например с 16 до 31 ºС. Так, максималь-

37.

ный вес большегрузного автомобиля в конце ХХ века
составлял 18 т, а современный автопоезд весит 60 т, и к
этому обстоятельству необходимо добавить поток легковых автомобилей, количество которых выросло в
сотни раз за истекший период и, как следствие, оказало
значительное влияние на долговечность конструкций
мостов, многие из которых находятся в аварийном состоянии, что подтверждается последствиями Житковичской чрезвычайной ситуации, когда полотно проезжей
части просело примерно на полметра по всей его ширине и на стыке образовался поперечный разлом шириной 5 см. Данный случай не единственный, таких
типовых мостов, построенных в 1980-е годы, в стране
пять, из них два находятся в Гомельской области, два –
в Могилевской и один – в Витебской. При этом в Гомельской области они наиболее длинные и, как оказалось, наиболее проблемные (рисунок 1).
а)
б)
Рисунок 1 – Повреждение железобетонного коробчатого пролетного строения автодорожного моста через реку
Припять между г. п. Житковичи и Туров:
а – трещина (вид снаружи); б – трещина (внутри моста)
М
131

38.

Как видно из рисунка 1, на мосту имеются трещины, которые являются признаками разрушения опорной
поверхности под двумя крайними пролетными строениями. Отличительной особенностью конструкции мостов
этого типа является армирующая функция натягивающих стальных тросов внутри бетонного основания. Однако, как выяснилось сегодня, полости, в которых
находились тросы и натягивающие их элементы, не были заполнены бетоном, что привело к попаданию туда
влаги и, как следствие, вызвало коррозию металла. Мониторинг показал, что в контрольных зонах повреждены от 30 до 40 % тросов. Помимо этого выявлены
наиболее часто встречающиеся дефекты железобетонных мостов, проявляющиеся в виде трещин (таблица 1).
Таблица 1 – Краткая характеристика видов трещин
Виды
трещин
Причина
появления
Опасность
проявления
Вертикальные
(температурные)

39.

Заклинивание подвижных опорных
частей
Ослабление соединения опорной
части и пролетного строения
Вертикальные
силовые в растянутых зонах
Образование растянутых и изгибаемых
элементов в обычной арматуре
Ржавление рабочей арматуры (более 0,2 мм в агрессивной среде и более 0,3 мм в неагрессивной)
Усадочные
Недостаточный уход
за бетоном в процессе его твердения (образование мелкой

40.

сетки с раскрытием
до 0,2 мм)
Задерживание влаги и разрушение
защитного слоя бетона
Наклонные
(ошибка армирования на
стадии расчета)
Образование в приопорных участках
растягивающих, усадочных и температурных напряжений
Снижение несущей способности,
недостаточная
трещиностойкость
конструкции
Продольные
между плитой и ребром
элемента

41.

Нарушение технологии укладки и
уплотнения бетонной смеси
Нарушение целостности конструкции
Продольные в
торцах преднапряженных
элементов
Возникновение значительных местных
растягивающих напряжений в районе
анкеров напрягаемой арматуры (недостаточное натяжение арматуры)
Ржавление анкеров и напрягаемой
арматуры
Продольные
вдоль арматурных пуч-

42.

ков в преднапряженных
элементах
Образование больших сжимающих
напряжений в бетоне при натяжении
арматуры (чрезмерное натяжение арматуры из-за нарушения технологии изготовления)
Интенсивная коррозия арматуры
при раскрытии более 0,2 мм
Таким образом, как показала практика, визуальные
обследования являются непременным условием выполнения работ по обследованию и испытанию мостов, что
позволяет фиксировать видимые разрывы отдельных
элементов конструкции, различные дефекты поверхностного слоя вследствие влияния коррозионных процессов или механических статических и динамических
нагрузок. Натурные обследования железобетонных мо-

43.

стов и анализ технической литературы также показали,
что уже на стадии строительства в них могут появляться трещины различного вида, через которые в полотно
поступают пыль, реагенты против скольжения и обледенения, смазочные материалы и топливо от транспортных средств, способствуя тем самым разрушению
конструкции. Продольные трещины образуются от непрочности дорожной конструкции из-за недостаточного уплотнения или осадки дорожного полотна. Мелкие
сетки трещин образуются вследствие высокой влажности грунта и недостаточной прочности основания. Помимо этого, после 10–11 лет эксплуатации площадь
сеток трещин резко увеличивается, а через 15 лет становится почти сплошным покрытием. Все это приводит к сезонным изменениям транспортных связей и
сводится к замене не только транспортных средств, но
и видов транспорта, а также маршрутов его следования,
создавая тем самым неудобства для населения. Отличительной особенностью функционирования транспортных
связей в таких условиях является неравномерность интенсивности грузоперевозок. При этом, естественно, повышается значение транспортных коммуникаций, особенно
мостов, являющихся иногда единственным средством
обеспечения жизнедеятельности населенных пунктов, в
которых в результате наводнения и отсутствия транспорт-

44.

ных связей появляется возможность заражения и загрязнения местности, заболачивания территории, что ведет к
увеличению заболеваемости. Наводнение влияет на снабжение продовольствием и состояние жилья и тем самым
отрицательно сказывается на здоровье населения. С другой стороны, неотложная помощь населению пострадавших районов способствует улучшению санитарногигиенических условий и снабжения продовольствием.
Таким образом, мост как инженерное сооружение,
независимо от конструкции, требует постоянно мониторинга и в случае необходимости его восстановления
или строительства нового. Поэтому применение быстровозводимых мостов и переправ является актуальным
направлением исследований. Рассмотрим варианты решений по временному восстановлению движения при
разрушении мостов в Республике Беларусь (таблица 2).
Анализ показал, что при сохранении опор возможно
использование как временных, так и капитальных металлических и железобетонных пролетных строений,
которые являются надежным способом восстановления
транспортного сообщения. Однако для монтажа практически всех без исключения существующих временных сооружений применяется тяжелая техника, что
требует дополнительное время на ее доставку.
В таблице 3 приведены этапы восстановления по-

45.

врежденного пролетного строения железнодорожного
капитального моста в результате техногенной аварии в
районе станции Прибор Гомельской области.
132
Таблица 2 – Краткая характеристика быстровозводимых мостов и
переправ, применяемых в Республике Беларусь
Тип быстровозводимых мостов
Место
расположения
Грузоподъемность, т
Время на возведение моста
из полного комплекта, ч
Большой автодорожный разборный мост
(БАРМ)
Река Ведрич,
Речицкий район,
Гомельская область
60 24
Большой автодорожный разборный мост
(БАРМ)
Река Днепр,
Шкловский район,
Могилевская
область
60 24

46.

Малый автодорожный разборный мост (МАРМ)
Река Друйка,
Браславский район,
Минская область
50 8
Временный наплавной автодорожный мост
Река Западная
Двина,
г. п. Бешенковичи
Минская область
60 4–6
Таблица 3 – Этапы восстановления поврежденного пролетного строения
железнодорожного капитального моста в результате техногенной аварии в районе станции Прибор Гомельской области
с учетом скорости движения поездов
Повреждение пролетного строения железнодорожного капитального моста
Этапы восстановления
Установка сборно-разборных
металлических эстакад на
ближнем обходе (20–30 м
от оси разрушения)
Открытие движения
со скоростью 30 км/ч

47.

Организация движения
со скоростью 58 км/ч
133
Таким образом, быстровозводимые мосты и переправы имеют, хотя и преимущественно узкоцелевое
назначение и применяются в качестве инвентарных
конструкций для возведения постоянных мостов или
пролетных строений временных мостов, но очень важное социальное значение. Помимо этого необходимо
отметить, что их отличают относительно небольшая
продолжительность строительства (весь цикл составляет несколько часов), низкая себестоимость по сравнению с аналогичным железобетонным или металическим мостом (экономия средств 20–30 %), а также
минимальные эксплуатационные затраты, связанные с
отсутствием металла и, как следствие, с отсутствием
коррозии и необходимости в текущем ремонте.
Список литературы
1 Поддубный, А. А. Перспективы применения быстровозводимых мостов / А. А. Поддубный, А. В. Яровая //
Вестник БелГУТа: Наука и транспорт. – 2017. – № 1(34). –
С. 83–86.
2 Сборно-разборный дорожный настил : пат. BY 19687 /
А. В. Яровая, А. А. Поддубный. – Опубл. 30.12.2015.
3 Сборно-разборный автодорожный настил : полез. модель

48.

BY 10312 / А. В. Яровая, А. А. Поддубный__________. – Опубл. 30.10.2014.
4 Опорная часть моста : полез. модель u 20160085 /
С. И. Новиков, А. В. Яровая, А. А. Поддубный [и др.]. –
Регистр. № 11366 – 01.02.2017.
5 Амиров, Т. Ж. Трещины на асфальтобетонных покрытиях: причины образования и отрицательные последствия /
Т. Ж. Амиров, О. З. Зафаров, Ж. М. Юсупов // Молодой ученый. – 2016. – № 6. – С. 74–75.
Получено 26.04.2018
A. A. Poddubny, A. V. Yarovaya. Monitoring of the application of prefabricated
bridges and crossings in Belarus.
A brief description of prefabricated bridges, temporary bridge structures is given
and the necessity of their use in extreme conditions
(natural disasters, man-made disasters, etc.) is justified. The analysis of modern
prefabricated structures of bridges and crossings is
presented.
Поддубный А. А. Мониторинг применения быстровозводимых мостов и переправ в
Республике Беларусь (1)
Вестник Белорусского государственного университета транспорта:
Наука и транспорт. 2017. № 1 (34)
УДК 539.3

49.

А. А. ПОДДУБНЫЙ, кандидат физико-математических наук, А. В. ЯРОВАЯ,
доктор физико-математических наук
Белорусский государственный университет транспорта, г. Гомель
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ
И ПЕРЕПРАВ
Рассмотрены перспективы применения быстровозводимых мостов и
переправ. Предложено создать научно-исследовательскую
лабораторию по изучению и проектированию быстровозводимых мостов и
переправ на базе учреждения образования «Белорусский
государственный университет транспорта». Определены основные
направления деятельности предлагаемой лаборатории. Представлены решенные научно-практические задачи по совершенствованию и
модернизации сборно-разборных мостовых конструкций. Оценены возможности подготовки специалистов.
ведение. Мосты и переправы во все периоды
истории человечества играли крупную и часто
решающую роль в развитии транспортной инфраструктуры страны. При этом характер переправочно-мостовых средств, а также условий и способов их

50.

использования, естественно, изменялись в соответствии
с развитием экономики и производительных сил человеческого общества.
В современных условиях возникновения локальных
конфликтов, террористических угроз при ежегодно
возникающих чрезвычайных ситуациях (наводнения,
пожары, землетрясения, промышленные и транспортные аварии и т. д.) особое внимание необходимо обратить на развитие быстровозводимых мостов и переправ.
Это единственный возможный способ открытия сквозного движения в короткое время на барьерном участке
транспортной сети в случае его разрушения или временного строительства нового мостового перехода.
Направления научных исследований.
Для продуктивной работы в области применения
быстровозводимых мостов и переправ необходимо
объединить опытных ученых, имеющих свои научные
школы по проведению фундаментальных исследований,
инженеров-мостовиков с опытом проектирования и
строительства искусственных сооружений, материальную базу. Назрела необходимость создания науч-

51.

но-исследовательской лаборатории по изучению и проектированию быстровозводимых мостов и переправ на
базе учреждения образования «Белорусский государственный университет транспорта».
Основные направления деятельности предлагаемой
лаборатории:
– исследование требований к временному строительству мостовых переходов;
– геодезическое исследование барьерных участков на транспортной сети, проектирование искусственных сооружений с использованием разработанных методик и новых информационных технологий;
– применение современных табельных инвентарных конструкций временных мостов и переправ;
– обучение и подготовка кадров, способных решать оперативные и тактические задачи в интересах
развития и безопасной эксплуатации транспортной
инфраструктуры Республики Беларусь;
Исследование требований к временному строительству мостовых переходов. К временным мостам и переправам предъявляются соответствующие
требования, которые излагаются в руководящих и

52.

нормативных документах.
К временному строительству мостового перехода
должны быть определены следующие требования:
– оперативно-тактические;
– технические;
– нормативные.
Оперативно тактические требования определяют:
– сроки открытия движения через водные преграды;
– пропускную способность, масса транспорта;
– сроки службы временных мостовых переходов;
– обеспечение живучести мостовых переходов;
– сроки замены вышедших из строя сооружений.
Технические требования определяют:
– вид и способ временного строительства мостового перехода, его этапы;
– вид тяги и длину поезда, вес автомобильной и
гусеничной техники;
– подмостовой габарит, обеспечение судоходства;
– обеспечение пропуска высоких вод и ледоходов;
– ширину колеи, проезжей части;
– скорость движения по мостам.

53.

Нормативные требования определяют:
– конструктивные характеристики восстанавливаемых сооружений (расположение в плане и профиле, допускаемые уклоны, основные требования к
конструкции и конструированию, указания по расчету,
деформативные характеристики конструкций, расчетные характеристики материалов);
– технологию сооружения элементов мостов и
переправ.
Существующие строительные нормы и правила,
инструкции, технические условия по проектированию не в полной мере отражают всю необходимую
информацию, учитывающую особенности временного строительства быстровозводимых мо стов и переправ. Необходимо учесть требования к современным
нагрузкам, условия применения временного стро ительства, организации на которых будут возложены
задачи, переработать документы и принять их к руководству. Данная работа уже проводится, но с учетом ограничения распространения информации в открытой печати, не может быть изложена в полном
объеме.

54.

Геодезическое исследование барьерных участков на транспортной сети, проектирование искусственных сооружений с использованием разрабоВ
84
танных методик и новых информационных технологий.
При проведении геодезических исследований барьерных участков на транспортной сети было выяснено, что в связи с климатическими изменениями произошли естественные изменения в районе мостовых
переходов. Русла рек обмелели, появились заболоченности, существенно поменялась высота берегов и т. д.
Имеются расхождения с существующими данными
проводимой ранее технической разведкой. Уже сегодня
необходимо приступать к геодезическому исследованию,
начиная с наиболее важных мостовых переходов. Эти
данные должны использоваться для составления более
обоснованных проектных соображений с учетом применения новых сборно-разборных мостовых конструкций.
При строительстве и восстановлении искусствен-

55.

ных сооружений на железных и автомобильных дорогах
широко используются неоднородные слоистые, в том
числе трехслойные, элементы конструкций. Эти конструкции изготавливают из различных материалов,
среди которых в настоящее время широко распространено применение полимерных, композиционных,
функционально-градиентных материалов, ауксетиков и
т. д. Вопросам расчета напряженно-деформированного
состояния слоистых стержней, пластин и оболочек уделяется большое внимание, так как во многих случаях
эти конструкции являются элементами сложных и ответственных сооружений.
На практике приходится сталкиваться со случаями,
когда конструкция не полностью опирается на основание. Причиной появления зазора между конструкцией и
основанием могут быть как техногенные условия в зоне
строительства, так и природные условия. Это приводит
к изменению расчетной схемы и напряженно-деформированного состояния рассматриваемого
элемента, что в ряде случаев может привести к его
преждевременному разрушению [1, 2].
Разработаны электронные модели, включающие

56.

компьютерные программы, написанные в программной
среде Mathcad для численного анализа напряженно-деформированного состояния слоистых конструкций.
Эти программы позволяют определять перемещения,
деформации и напряжения в трехслойных конструкциях
с различными геометрическими и механическими характеристиками слоев, жестком и шарнирном закреплении или без него, наличии и отсутствии диафрагм на
торцах, при различных видах нагрузок, жесткости
упругого основания, размерах участков опирания и
оценивать прочность и жесткость конструкций [3, 4].
Разработанные методики и компьютерные программы могут использоваться в проектных организациях строительного и машиностроительного профиля при расчетах сборно-разборных настилов,
SIP-панелей при возведении жилых зданий и хозяйственных ангаров, панелей из пенометаллов для
строительства бронемашин и авиастроения, мостовых конструкций.
BIM-технологии в проектировании и строительстве мостов с каждым годом используются всѐ более
широко. Как правило, это типовые мосты (они со-

57.

ставляют около 90 % от всех мостов); на стадии планирования созданы необходимые функции управления персоналом. На стадии проектирования проводится построение моделей и визуализация, анализ
проектирования и детализация); на стадии строительства – расчет и изготовление конструкций).
Применение полученных собственных научных
разработок, новых программных комплексов, позволит существенно ускорить работу инженеров при создании и совершенствовании мостовых конструкций.
Применение современных табельных инвентарных конструкций временных мостов и переправ.
Республика Беларусь является современным независимым демократическим государством, способным защитить свой народ и территориальную целостность в случае возникновения агрессии. Анализ
современных конфликтов показал, что в первую очередь противник будет уничтожать транспортные
коммуникации. В нашей республике вероятность
разрушения объектов по барьерным рубежам рек Сож,
Днепр, Друть, Березина, Птичь, Неман составит:
больших мостов – до 100 %, средних мостов – до

58.

50 %, малых мостов – до 10 %, крупных железнодорожных узлов – до 100 %.
Наиболее сложным и трудоемким видом работ
является восстановление мостов через широкие и
глубокие реки. Расчетное время восстановления
движения через водные преграды по железной дороге
не должно превышать 3–4 суток. Силы и средства
Белорусской железной дороги и департамента «Белавтодор» Министерства транспорта и коммуникаций
Республики Беларусь не имеют возможностей по
восстановлению объектов в установленные сроки.
Поэтому многократно возрастает роль транспортных
войск при выполнении задач восстановления инфраструктуры транспорта с использованием инвентарного
имущества: наплавных железнодорожных мостов
(НЖМ-56), рамно-эстакадных мостов (РЭМ-500),
сборно-разборных пролетных строений (СРП), других
материалов и конструкций.
Один из недостатков рамно-эстакадных мостов
(РЭМ-500) и сборно-разборных пролетных строений
(СРП) – отсутствие инвентарного автодорожного
проезда под совмещенную езду железнодорожного и

59.

автомобильного транспорта. Эта проблема не дает
эксплуатировать восстановленные железнодорожные
мосты с помощью вышеуказанных конструкций для
одновременного пропуска автомобилей и поездов.
При строительстве двух мостов многократно увеличиваются затраты во времени и ресурсах.
С целью экономии денежных средств, необходимых для закупки новых дорогостоящих быстровозводимых мостов, была проведена научная работа
в области прикладных исследований, с целью создания новых дорожно-мостовых инвентарных конструкций для пропуска по железнодорожному временному мосту и РЭМ-500 автомобильной и гусеничной техники. При выполнении НИР «Сэндвич» в
интересах Департамента транспортного обеспечения
МО Республики Беларусь была рассчитана и спроектирована новая конструкция сборно-разборного дорожного настила, который может быть использован
для устройства проезжей части колейного или сплошного типа (рисунок 1).
85
Рисунок 1 – Конструкция сборно-разборного

60.

дорожного настила:
а – плита настила, вид сбоку; б – стыковой замок, вид сбоку и сверху;
1 – плита; 2 – наружные несущие листы; 3 – заполнитель; 4 – трапециевидные поперечные ребра противоскольжения; 5 – болты;
6 – П-образные торцевые усиления; 7 – зуб; 8 – вилка; 10 – разборный
штырь; 11 – соединительный штырь; 12 – цепочка; 13 – стопорная
булавка; 14 – верхнее отверстие; 15 – нижнее отверстие; 16 – нижний
вырез
Для приспособления верхнего строения пути пролетных строений при необходимости пропуска по железнодорожному мосту автомобильной и гусеничной
техники была рассчитана и спроектирована новая конструкция сборно-разборного автодорожного настила
(рисунок 2). По результатам исследования получены
патенты на изобретение № 19687 «Сборно-разборный
дорожный настил» и полезную модель № 10312
«Сборно-разборный автодорожный настил» [5, 6].
Рисунок 2 – Конструкция сборно-разборного автодорожного
настила:
1 – мостовое полотно на деревянных брусьях (усиленный тип)
20×24 см; 2 – рельс Р-43, Р-50, Р-65; 3 – сборно-разборная дорожная
площадка; 4 – контр уголок 160×100×14 мм; 5 – противоугонный

61.

(охранный) уголок 160×100×12 мм; 6 – межколейный брус; 7 – колесоотбойный брус 15×20 см; 8 – противоугонный брус 15×20 см;
9 – врубка 3 см
Быстровозводимые инвентарные мостовые конструкции: металлическая сборно-разборная эстакада
РЭМ-500; наплавной железнодорожный мост НЖМ-56;
инвентарное мостовое имущество ИМИ-60; рамно-винтовые опоры (РВО); сборно-разборные пролетные строения (СРП) и другие несмотря на большой
срок эксплуатации и хранения предоставляют собой
самое эффективное средство для скоростного восстановления мостовых переходов.
Существуют в Республике Беларусь и принципиально новое имущество мост-лента МЛЖ-ВТ-ВФ, которое разработано и серийно выпускается в Российской
Федерации для железнодорожных войск.
В 2016 году проведена научная работа в области прикладных исследований и решена научно-практическая
задача по комбинированию пролетных строений инвентарных мостов НЖМ-56, РЭМ-500, с рамно-винтовыми
опорами из имущества МЛЖ-ВТ-ВФ. Разработан и запатентован соединительный элемент (марка ПТ 9/71)

62.

[7]. По своим конструктивным особенностям он выполняет функцию опорной части комбинированного
моста (рисунок 3).
1
6
3
2
5
4
Рисунок 3 – Соединительный элемент ПТ 9/71
Данный элемент моста предназначен для установки
пролетных строений из имущества РЭМ-500 на инвентарные опоры имущества МЛЖ-ВТ-ВФ. Соединительный элемент крепится к ригелю опоры из имущества
МЛЖ-ВТ-ВФ при помощи четырех болтов. После
установки соединительного элемента производится
установка пролетного строения из имущества РЭМ-500.
Использование соединительного элемента дает
возможность компоновать между собой пролетные
строения инвентарных мостов РЭМ-500, НЖМ-56 с
рамно-винтовыми опорами из имущества МЛЖ-ВТ-ВФ.
Это техническое решение позволяет комбинировать

63.

инвентарные конструкции между собой при сооружении временного мостового перехода через водную преграду (рисунок 4).
Рисунок 4 – Схема комбинированного моста
с использованием имущества РЭМ-500 и МЛЖ-ВТ-ВФ
Такая схема позволит увеличить грузоподъемность
и устойчивость инвентарного имущества РЭМ-500.
Новые дорогостоящие быстровозводимые мосты и
переправы могут позволить себе организации, обладающие достаточно большими финансовыми возможностями. Существующие сборно-разборные мосты не
стоит списывать раньше времени. Благодаря научному
обоснованию, проведенной модернизации и испытаниям, конструкции временных мостов прослужат еще
долгие годы. За это время будут изучены все слабые и
сильные стороны новых быстровозводимых мостов,
сделаны правильные выводы при их разработке, изготовлению или закупки.
а)
б)
86
Обучение и подготовка кадров, способных ре-

64.

шать оперативные и тактические задачи в интересах развития и безопасной эксплуатации транспортной инфраструктуры Республики Беларусь.
Сегодня в учреждении образования «Белорусский
государственный университет транспорта» проводится
обучение специалистов в интересах Департамента
транспортного обучения Министерства обороны Республики Беларусь и Государственного пограничного
комитета Республики Беларусь. Материальная база
позволяет готовить высококлассных инженеров транспорта, обладающих специальными знаниями и навыками. На собственном учебном полигоне есть все современные образцы быстровозводимых мостов и переправ. Практические навыки у обучаемых закрепляются
при выполнении учебно-практических задач на реальных объектах транспортной инфраструктуры.
Для подготовки специалистов по использованию
инвентарных конструкций быстровозводимых мостов и
переправ в интересах Белорусской железной дороги и
департамента «Белавтодор» Министерства транспорта и
коммуникаций Республики Беларусь нужно организовать курсы повышения квалификации с руководящим

65.

составом указанных организаций в университете. После
обучения должностных лиц необходимо ежегодно проводить совместные тренировки и учения с целью приобретения практических навыков у специалистов и организации взаимодействия между транспортными
структурами.
Выводы. Перспективы применения быстровозводимых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической
базы, задачи по быстрому временному восстановлению
мостовых переходов будут невыполнимы. Это приведет
к предсказуемым потерям.
Работа выполнена при поддержке БРФФИ (проект
Т16Р-010).
Список литературы
1 Поддубный, А. А. Теоретическое и экспериментальное
определение перемещений трехслойной балки при неполном
контакте с упругим основанием / А. А. Поддубный, А. В. Яровая // Мир транспорта и технологических машин. – 2015. –
№ 3 (50). – С. 256–262.
2 Яровая, А. В. Деформирование упругой трехслойной
балки, частично опертой на упругое основание, под действи-

66.

ем равномерно распределенной нагрузки / А. В. Яровая,
А. А. Поддубный // Теоретическая и прикладная механика. –
2016. – № 31. – С. 242–246.
3 Напряженно-деформированное состояние трехслойной
балки, частично опертой на упругое основание: регистрационное свидетельство № 5301403768 от 03 марта 2014 г. /
А. В. Яровая, А. А. Поддубный / Государственный регистр
информационных ресурсов НИРУП ИППС. – 2014.
4 Напряженно-деформированное состояние трехслойной
пластины, частично опертой на упругое основание, при цилиндрическом изгибе: регистрационное свидетельство
№ 5301403769 от 03 марта 2014 г. / А. В. Яровая, А. А. Поддубный / Государственный регистр информационных ресурсов НИРУП ИППС. – 2014.
5 Сборно-разборный дорожный настил : пат. BY 19687 /
А. В. Яровая, А. А. Поддубный. – Опубл. 30.12.2015.
6 Сборно-разборный автодорожный настил: полез. модель BY 10312 / А. В. Яровая, А. А. Поддубный. – Опубл.
30.10.2014.
7 Опорная часть моста: полез. модель u 20160085 /
С. И. Новиков, А. В. Яровая, А. А. Поддубный [и др.]. – Регистр. № 11366 – 01.02.2017.

67.

Получено 05.05.2017
A. A. Poddubny, A. V. Yarovaya. Prospects for the use of pre-fabricated bridges
and crossings.
The prospects of the use of pre-fabricated bridges and crossings. Asked to create a
research laboratory for the study and design of
prefabricated bridges and crossings on the basis of educational institution
"Belarusian state University of transport". The main directions of
the activities of the proposed lab. Presents solved scientific and practical problems
on the improvement and modernization of prefabricated
bridge structures. The assessment of the possibility of training.__
poddupny
Фигуры сборно разборные пешеходный мост

68.

Фигуры сборно разборные пешеходный мост 1

69.

Фигуры сборно разборные пешеходный мост 2
Фигуры сборно разборные пешеходный мост 3

70.

Фигуры сборно разборные пешеходный мост 3
Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

71.

Фигуры сборно разборные пешеходный мост

72.

Фигуры сборно разборные пешеходный мост

73.

Фигуры сборно разборные пешеходный мост

74.

Фигуры сборно разборные пешеходный мост

75.

Фигуры сборно разборные пешеходный мост

76.

Фигуры сборно разборные пешеходный мост

77.

Фигуры сборно разборные пешеходный мост

78.

Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

79.

Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

80.

Фигуры сборно разборные пешеходный мост

81.

Фигуры сборно разборные пешеходный мост

82.

Фигуры сборно разборные пешеходный мост

83.

Фигуры сборно разборные пешеходный мост

84.

85.

Фигуры сборно разборные пешеходный мост

86.

Фигуры сборно разборные пешеходный мост
Описание формула Реферат
Сборно разборный пешеходный мост

87.

Фигуры сборно разборные пешеходный мост

88.

Реферат:
Изобретение относится к области мостостроения и, в частности, к временным сборно -разборным низководным мостам,
используемым для пропуска армейского подвижного состава и скоростной наводки совмещенных пешеходный и армейских мостовых
переправ через широкие и неглубокие водные преграды на период разрушении, реконструкции или восстановлении разрушенных
капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного характера. Технический
результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного
моста, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на его возведение с использованием
бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов, железнодорожных шпал и рельс. Сборноразборный железнодорожный мост состоит из рамных плоских опор, башенных опор, установленных непосредственно на грунт и
пролетных строений, рамные плоские опоры и башенные опоры выполнены из списанных бывших в употреблении железнодорожных
полувагонов с демонтированными рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении
железобетонных шпал. В промежутках между шпалами засыпан щебень и вертикально установл ены трубы, верх которых выступает
для подачи в них цементно-песчаного раствора. Трубы выполнены с равномерно расположенными по высоте отверстиями для
обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры. Пролетные строения
выполнены из рамных надвижных экскаватором по опорным каткам рамным
конструкциям выполненные из стальных
конструкций с применением
серии 1.460.3-14 ГПИ «Ленпроектстальконструкция» с применением гнутосварных профилей
прямоугольного сечения типа «Молодечно», «Кисловодск» МАРХИ ПСПК с устроенным по верху рам настилом под рельсы пути из
металлических шпал, установленных с определенным шагом и выполненных из металлических рам от цистерн. По верху
металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения
автомобильной и гусеничной техники, и для передвижения личного состава. По краям пролетного строения установлено ограждение,
выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал. , 6 ил.
Формула изобретения Сборно –разборный пешеходный мост
Формула изобретения
1. Сборно-разборный железнодорожный мост, состоящий из рамных стержневых пространственных конструкций серии 1.460.3-14
ГПИ «Ленпроектстальконструкция» для покрытия производственных зданий пролетами 18, 24, и 30 метров с применением замкнутых
гнутосварных профилей прямоугольного сечения типа «Молодечно» ( смотри Чертежи КМ ) для восстановления разрушенных
железнодорожных и автодорожных железобетонных мостов из надвижных пространственных рам экскаватором на опоры
сейсмостойкие ( № 165076 «Опора сейсмостойкая» , по катковых опор, установленных непосредственно на гравийное основание, и
пролетных строений, отличающийся тем, что рамные плоские опоры и телескопические или спиралевидные опоры выполнены
согласно типовые откорректированных чертежей серии 1.460.3-14 ГПИ «Ленпроектстальконструкция» типа «Молодечно» ,
«Кисловодск» , МАРХИ ПСПК , собранными из замкнутых гнутосварных профилей прямоугольного или круглого сечения типа
«Молодечно» , при этом в промежутках между рамные конструкции надвигаются экскаватором по специальным каткам , которых
заменяются сейсмостойкими опорам № 165076 «Опора сейсмостойкая» , причем затяжка болтовых фланцевых соединений
осуществляется по изобретениям проф дтн ПГУПС Уздина А М патент №№ 1143895, 1168755, 1174616 «Болтовые соединения»
выполненными с из латунной шпильки , с овальными отверстиями в узлах крепления или соединений пролетной рамы , с медной
гильзой или тросовой обмоткой латунной или стальной шпильки (болта с медной гильзой ) для обеспечения высокой надежности
рамных пролетных строений

89.

2. Сборно-разборный железнодорожный мост по п. 1, отличающийся тем, что пролетные строения выполнены из рамных
комбинированных сбороно –разборных пролетных строений , из стержневых пространственных конструкций типа «Молодечно»,
«Кисловодск», МАРХИ ПСПК с устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с
определенным шагом и выполненных из металлических рам серии 1.460.3-14 ГПИ «Ленпроектстальконструкция» , и по верху
пролетных рам , укладываются металлические шпалы выполненные из деревянного настила из бывших в употреблении списанных
деревянных шпал для движения автомобильной и гусеничной техники, и для передвижения личного состава, по краям пролетного
строения установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных
деревянных шпал.
Описание изобретения Сбороно- разборный железнодорожный мост
Изобретение относится к области мостостроения и в частности к временным сборно-разборным низководным мостам,
используемым для пропуска железнодорожного подвижного состава и скоростной наводки совмещенных железнодорожных и
автодорожных мостовых переправ через широкие и не глубокие водные преграды на период разрушении, реконструкции или
восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного
характера.
Заявленное техническое решение относится к низководным мостам и может быть использо вано для оперативного возведения
переправы для автомобилей, гусеничной техники и железнодорожных составов.
Известна «Средняя секция наводочной балки пролетного строения» по патенту на изобретение RU 2717445 С1 от 23.05.2019, МПК
E01D 15/12 [1], которая выполнена из углепластика в виде полой балки с прямоугольным сечением и разъемными межсекционными
соединениями, а межсекционное соединение из полой вставки прямоугольного сечения на болтах. На нижних болтовых соединениях
двух смежных секций наводочной балки установлены две силовые тяги, выполненные из титана.
Недостатком «Средней секции наводочной балки пролетного строения» является значительное время на доставку секции к месту
устройства моста и высокая стоимость из-за применения дорогих материалов углепластика и титана.
Известна «Опора из массивных блоков и способ ее сооружения» по патенту на изобретение RU 94027969 от 18.07.1994, МПК E01D
19/02 (1995.01) [2], которая может быть использована при временном восстановлении или сооружении опор железнодорожных мос тов.
Опора возводится из массивных блоков с усеченной четвертью, имеющих на своих гранях штыри и гнезда, противоположно
расположенные на примыкающих гранях соседних блоков, а монтаж опоры осуществляется таким образом, чтобы внутренние блоки
нижнего яруса усеченной частью образовывали пространство, по всему объему равное объему массивного элемента, а внешние блоки
своей целой гранью вплотную примыкали к целым граням внутренних.
Недостатком «Опоры из массивных блоков и способа ее сооружения» является значительное время на доставку конструкций к
месту устройства моста, сложность и трудозатратность при производстве массивных блоков. Массивные блоки из -за своих габаритов
сложны в доставке и монтаже.
Известна «Мостовая секция» по патенту на изобретение RU 92008311 от 25. 11. 1992, МПК E01D 15/12 (1995. 01) [3], которая
содержит балки, с колесоотбоями, стыковыми узлами, шарнирно соединенные с балками межколейной панели в виде силовой балки и
угловыми распорками. При этом межколейная панель и балки имеют в поперечном сечении треугольную форму, а боковая наружная
сторона колесоотбоев выполнена скошенной в сторону межколейной панели под углом, обеспечивающим в транспортном положении
параллельность ее поверхности верхней плоскости панели.
Недостатком «Мостовой секции» является значительное время на доставку конструкций к месту устройства моста, сложность и
трудозатратность при производстве мостовых секций, которые из-за своих габаритов сложны в доставке и монтаже.

90.

Известен «Складной блок моста» по патенту на изобретение RU 94 025 034 от 04. 07. 1994, МПК E01D 15/12 (1995. 01) [4], который
включает две нижние и две верхние полубалки, соединенные продольными шарнирами с верхней и нижней плитами проезжей части,
расположенными в транспортном положении одна на другой, плиты проезжей части с одного транца соединены поперечными
шарнирами, а на другом имеют прорезь, в которую в транспортном положении входит киль платформы транспортного автомобиля.
Недостатком «складного блока моста» является сложность и высокая металлоемкость конструкции. Элементы мостового перехода
требуют время на доставку к месту установки.
Известен «Двухколейный механизированный мост» по патенту на изобретение RU 2267572 от 12.04.2004, МПК T01D 15/12
(2006.01) [5], включающий соединенные межколейными стяжками две колеи, каждая из которых состоит из двух шарнирно связанных
секций, выполненных в виде каркасных коробчатых ферм сварной конструкции, содержащих верхний и нижний настилы, боковые
стенки, поперечные диафрагмы, элементы крепления механизма раскрывания моста, детали механизма установки моста, имеющего
увеличенную длину мостовой конструкции, сниженную массу моста, повышенный запас прочности и устойчивости без уменьшения
грузоподъемности моста.
Недостатком «двухколейного механизированного моста» является значительное время на доставку конструкций к месту устройства
моста, сложность и трудозатратность при производстве мостовых секций, которые из -за своих габаритов сложны в доставке и
монтаже.
Известен «Способ сооружения фундамента временной опоры моста и опалубка для его реализации» по патенту на изобретение RU
94027085 от 18.07.1994, МПК E01D 19/02 (1995.01) [6], при котором опалубка изготавливается из секций потопов и погружается на
дно путем заполнения понтона водой, бетонируется и при наборе соответст вующей прочности снимается подачей в понтоны воздуха.
Недостатком «способ сооружения фундамента временной опоры моста и опалубка для его реализации» является значительное время
на доставку конструкций к месту устройства моста и впоследствии вывозу с места работ, получаемые фундаменты материалоемки и
трудозатраты.
Известен инвентарный мост - сборно-разборная металлическая эстакада РЭМ-500 [7], выбранный в качестве прототипа, состоящий
из пролетных строений, рамных (плоских) опор, башенных опор, установленных непосредственно на грунт, предназначенная для
быстрого устройства мостовых переходов через широкие, неглубокие водотоки. Рамы состоят из стоек, ригелей, башмаков,
горизонтальных распорок и талрепов.
Недостатками конструкции сборно-разборной металлической эстакады РЭМ-500 являются то, что при сборке моста требуется
высококвалифицированный личный состав, значительное время на доставку и сборку конструкций, при этом необходимы
значительные материальные и трудовые затраты. При слабых грунтах речного дна эстака ду использовать нельзя.
Недостатки прототипа и аналогов ставят задачу создания «сборно-разборного железнодорожного моста» для пропуска
железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или реконструкции капитальных мостов
через водные преграды простой конструкции, позволяющей наводиться переправе за короткое время с использованием
незначительных материальных и трудовых затрат.
Ограничительные признаки заявленного технического решения общие с устройством прототипа следующие: с борно-разборный
мост, состоящий из рамных плоских опор, башенных опор, установленных непосредственно на грунт, пролетных строений,
предназначенный для быстрого устройства мостовых переходов через широкие, неглубокие водотоки.
Предполагается, что заявленный «Сборно-разборный железнодорожный мост» можно использовать при устройстве переправы для
пропуска железнодорожного подвижного состава, колесной и гусеничной техники при разрушении или реконструкции капитальных
мостов через неглубокие несудоходные водные преграды.
При этом для его реализации предполагается применить:
- рамные плоские опоры и башенные опоры выполнены из списанных, бывших в употреблении, железнодорожных полувагонов с
демонтированными рамами и тележками, заполненных блоками, собранными из спис анных, бывших в употреблении, железобетонных

91.

шпал, при этом в промежутках между шпалами засыпан щебень и вертикально установлены трубы, верх которых выступает для
подачи в них цементно-песчаного раствора, причем трубы снабжены равномерно выполненными по вы соте отверстиями для
обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры.
- пролетные строения выполнены из списанных, бывших в употреблении рам фитинговых платформ с устроенным по верху рам
настилом под рельсы пути из металлических шпал, установленных с определенным шагом и выполненных из металлических рам от
цистерн, по верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для
движения автомобильной и гусеничной техники, и для передвижения личного состава, по краям пролетного строения установлено
ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал.
Сущность заявленного технического решения заключается в том, что сборно-разборный железнодорожный мост формируется из
опор и пролетных строений. При этом опоры собираются из списанных бывших в употреблении - полувагонов и шпал. Пролетные
строения формируются из металлических рам от фитинговых платформ.
Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного
железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на его возведение
с использованием бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов, железнодорожных
шпал и рельс.
Бывшие в употреблении списанные вагоны и рельсы переплавляются (утилизируются) и используются для изготовления новых
металлических конструкций. Процесс утилизации и изготовления новых конструкций влечет значительные трудовые, материальные и
энергетические затраты, которых можно избежать, используя списанные материалы железнодорожной инфраструктуры для устройства
«сборно-разборного железнодорожного моста». Ежегодно списывается значительное количество материалов, в 2020 году
планировалось списать 8 тыс. фитинговых платформ [8], в 2018 году РЖД заменило 2 тысяч километров железнодорожных путей [9], в
2017 году списано 10380 цистерн [10].
В настоящее время в России насчитывается более 10 тыс. железнодорожных мостов. Значительное количество из них мосты через
неглубокие водные преграды, и они требуют прикрытия на случай разрушения во время ведения боевых действий или возникновения
чрезвычайной ситуации. Для обеспечения непрерывности движения через широкие и неглубокие водные преграды имеется парк
временных мостов, по количество их ограничено, и они требуют значительного времени на доставку и сборку.
Использование материалов железнодорожной инфраструктуры в конкретном месте позволяет заблаговременно определить
необходимые для устройства моста материалы и конструкции. При этом значительно сокращается время возведения, т.к. хранение
сборно-разборного железнодорожного моста на берегу у места его возведения сокращает вр емя возведения до минимума.
Заблаговременно монтируются и подъездные пути из бывших в употреблении, списанных рельс и шпал. Использование бывших в
употреблении, списанных материалов железнодорожной инфраструктуры позволяет значительно снизить материальные и трудовые
затраты на устройство переправы.
Заявленное техническое решение иллюстрируется чертежами:
На фиг. 1а) изображен вариант реализации заявленного «сборно-разборного железнодорожного моста» в США для пропуска
железнодорожного состава, а на фиг. 1) - разрез пролетного строения по А-А.
На фиг. 2) - изображен блок из надвижной рамы по каткам из стержневых пространсвенных конструкций ГПИ
«Ленпроектстальконструкция», типа «Молодечно» серия 1.460.3-14 , .
На фиг. 3а) представлен вид рамы сборно-разборного моста блока НАТО , Великобритании , США из сборных пространственных
конструкций типа «Молодечно»
На фиг. 4 представлено изображение реализации второго этапа - предварительных работ по устройству «сборно-разборного
железнодорожного моста» изображен блок из надвижной рамы по каткам из стержневых пространственных конструкций ГПИ
«Ленпроектстальконструкция», типа «Молодечно» серия 1.460.3-14 , .

92.

На фиг. 5) представлен вид рамы сборно-разборного моста блока НАТО , Великобритании , США и Новой Зеландии из сборных
пространственных конструкций типа «Молодечно»
На фиг. 6) представлен вид рамы сборно-разборного моста блока НАТО , Великобритании , США, Новой Зеландии из сборных
пространственных конструкций типа «Молодечно»
Дополнительно на фигурах 1…4 обозначены вид рамы сборно-разборного моста блока НАТО , Великобритании , США из сборных
пространственных конструкций типа «Молодечно»
скрутки из отожженной проволоки для скрепления железобетонных шпал (2); 4 - петли для монтажа блоков (6) из обожженной
проволоки;ил , блок из железобетонных шпал, опоры сейсмостойкие , изобретение № 165076 , расположенных крест-накрест, в два
ряда и соединенными между собой скрутками из отожженной проволоки; - пролетное строение из рам фитинговых платформ;
рельсовый путь; - обратная засыпка из щебня; металлические шпалы из рам стальных конструкций типа Молодечно трубы с
отверстиями; 12 - ограждение пролетного строения; 13 - настил из деревянных шпал; 14 - колесоотбойник из деревянных шпал.
Порядок возведения сборно-разборного железнодорожного моста
На нервом этапе выбирается место посадки сборно-разборного железнодорожного моста, определяются его габариты в зависимости
от рельефа прибрежной зоны и глубин водной преграды, составляется п роект, заготавливаются необходимые материалы из бывших в
употреблении вагонов и элементов пути металлических рам цистерн, рам фитинговых платформ , рельс , полувагонов ,
железобетонных шпал и деревянных шпал .
На втором этапе выполняются предварительные работы сборка и надвижка трактором собраннйо рамы по каткам (фиг.1, 2), в ходе
которых разрабатываются котлованы под полувагоны , монтируются первая и вторая (от берега) опоры пролетных строений из
полувагонов , заполненных блоками из железобетонных шпал .
В промежутки между шпалами вертикально устанавливаются трубы с отверстиями и засыпают щебень , который вытесняя воду,
заполняет пазухи. В трубы с отверстиями подается цементно-песчаный раствор и формируется монолитная железобетонная
конструкция опоры.
Пролетное строение из рам фитинговых платформ из стальных конструкций типа «Молодечно» серия 1.460ю3-14 ГПИ
«Ленпромстальконструкция» устанавливают на опоры из по изобретению № 165076 «Опора сейсмостойкая» для надвижко рамы по
каткам на опоры организации «Сейсмофонд» при СПб ГАСУ над водной поверхностью. По верху рамы устраивается настил из
металлических шпал, установленных с определенным шагом, выполненных из металлических рам от цистерн под рельсы пути. По
верху металлических шпал устраивается деревянный настил из бывших в употреблении, списанных деревянных шпал для движения
автомобильной и гусеничной техники, а также для передвижения личного состава. По краям пролетного строения устраивается
ограждение, выполненное из лестниц от железнодорожных цистерн и устанавливаются колесоотбойники .
Далее, на большей глубине, превышающей высоту полувагона, устанавливаются спаренные опоры из полувагонов ( фиг 1 ) для
устройства нижней части опоры. Спаренные опоры из полувагонов (фиг 4) объединяются сваркой или болтами в единую конструкцию
с заполнением внутреннего объема так же, как и для рассмотренных выше опор. Для монтажа в проектное положение разрабатывается
котлован под полувагоны. Полувагоны, смонтированные на втором этапе, устанавливаются в проектн ое положение заблаговременно и
могут находиться в воде продолжительное время, поэтому выполняется их защита от коррозии, о даже в случае полного разрушения
от ржавления металла полувагона, конструкция опоры обеспечит целостность за счет объединения блоков из железобетонных шпал в
единую монолитную, железобетонную конструкцию.

93.

На третьем, завершающем этапе, который наступает после выхода из строя основного моста, на смонтированные ранее спаренные
опоры устанавливаются верхние части опор пролетных строений из полувагонов , заполненных блоками из железобетонных шпал с
заполнением внутреннего объема так же, как и для рассмотренных выше опор. Пролетное строение из рам фитинговых платформ
устанавливают на опоры из полувагонов возвышающиеся над водной поверхност ью. Рамы сплачивают между собой и с опорой
болтовыми соединениями. По верху рамы устраивается настил из металлических шпал, установленных с определенным шагом,
выполненных из металлических рам от цистерн под рельсы пути. По верху металлических шпал устраив ается деревянный настил из
бывших в употреблении, списанных деревянных шпал для движения автомобильной и гусеничной техники, а также для передвижения
личного состава. По краям пролетного строения устраивается ограждение, выполненное из рамных конструкций
МАРХИ ПСПК , КИСЛОВОДСК, «Молодечно» и устанавливаются колесоотбойники .
При заблаговременном устройстве сборно-разборного железнодорожного моста устраиваются подъездные пути и 1 и 2 -я (при
пологом дне и последующие) опоры с пролетными строениями между ними. В мирное время для обеспечения надзора и в целях
маскировки, полученные конструкции можно использовать для причаливания катеров и небольших судов.
Таким образом, использование предложенной схемы позволяет возвести в сжатые сроки сборно -разборный железнодорожный мост,
не требующий значительных трудовых и материальных затрат с использованием списанных, бывших в употреблении элементов
железнодорожного пути - металлических рам цистерн и фитинговых платформ, рельсов и шпал.
При данном способе устройства сборно-разборного железнодорожного моста получаем гидротехническое сооружение, не
требующее для возведения специально изготовленных заводских конструкций, что важно в условиях возникновения чрезвычайных
ситуаций и снабжении войск при ведении боевых действий.
Предлагаемое решение сборно-разборного железнодорожного моста проверено расчетом на прочность и несущую способность.
Расчеты показали, что пролетное строение из фитинговой платформы и опоры из полувагонов заполненных железобетоном обладают
требуемой прочность и несущую способность на нагрузку от железнодорожного состава.
Значительная экономия средств в мирное время достигается за счет использования списанных, бывшие в употреблении,
железнодорожных полувагонов и железобетонных шпал, а в случае войны и изъят ых у железной дороги или получивших повреждения
в ходе боевых действий.
Предлагаемое техническое решение конструкции направлено на решение логистических задач при возникновении чрезвычайных
ситуаций и при ведении боевых действий и соответствует критерию «н овизна».
Вышеприведенная совокупность отличительных признаков не известна на данном уровне развития техники и не следует из
общеизвестных правил конструирования сборно-разборных железнодорожных мостов, что доказывает соответствие критерию
«изобретательский уровень».
Конструктивная реализация заявляемого технического решения с указанной совокупностью существенных признаков не
представляет никаких конструктивно-технических и технологических трудностей, откуда следует соответствие критерию
«промышленная применимость».
Литература
1. Патент на изобретение RU 2717445 С1 от 23.05.2019, МПК E01D 15/12 - «Средняя секция наводочной балки пролетного
строения».
2. Патент на изобретение RU 94027969 С1 от 18.07.1994, МПК E01D 19/02 - «Опора из массивных блоков и способ се сооружения».
3. Патент на изобретение RU 92008311 C от 25.11.1992, МПК E01D 15/12 - «Мостовая секция».
4. Патент на изобретение RU 94025034 С1 от 04.07.1994, МПК E01D 15/12 - «Складной блок моста».
5. Патент на изобретение RU 2267572 С1 от 12.04.2004, МПК E01D 15/12 - «Двухколейный механизированный мост».

94.

6. Патент на изобретение RU 94027085 С1 от 18.07.1994, МПК E01D 19/02 - «Способ сооружения фундамента временной опоры
моста и опалубка для его реализации».
7. Металлическая эстакада РЭМ-500. Техническое описание и инструкции но монтажу, перевозке, хранению и эксплуатации.
ГУЖДВ, 1976 г., Воениздат. - прототип.
8. https://www.rzd-partner.ru/zhd-transport/opinions/spisanie-spelsializirovannogo-podvizhnogo-sostava-dolzhno-kompensirovalsya-vblizhayshie-4-goda/.
9. https://vgudok.com/lcnta/rclsy-rclsy-cifry-cifry-rzhd-otchityvayutsya-o-zakupkah-putevyh-materialov-no-umalchivayut.
10. https://vgudok.com/lenta/podvizhnyy-sostav-vypusk-spisanie-stoimost-stavki-obzor-parka-ps-na-seti-rzhd.
Фигуры сборно- разборные железнодорожный мост
Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост 1

95.

Фигуры сборно разборные пешеходный мост 2
Фигуры сборно разборные пешеходный мост 3

96.

Фигуры сборно разборные пешеходный мост 3
Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

97.

Фигуры сборно разборные пешеходный мост

98.

Фигуры сборно разборные пешеходный мост

99.

Фигуры сборно разборные пешеходный мост

100.

Фигуры сборно разборные пешеходный мост

101.

Фигуры сборно разборные пешеходный мост

102.

Фигуры сборно разборные пешеходный мост

103.

Фигуры сборно разборные пешеходный мост

104.

Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

105.

Фигуры сборно разборные пешеходный мост
Фигуры сборно разборные пешеходный мост

106.

Фигуры сборно разборные пешеходный мост

107.

Фигуры сборно разборные пешеходный мост

108.

Фигуры сборно разборные пешеходный мост

109.

Фигуры сборно разборные пешеходный мост

110.

111.

Фигуры сборно разборные пешеходный мост

112.

Фигуры сборно разборные пешеходный мост
Описание формула Реферат
Сборно разборный пешеходный мост

113.

Фигуры сборно разборные пешеходный мост

114.

Фигуры
сборно разборные пешеходный мост

115.

Спец воен вестник «Армия Защитников Отечество" № 7 22.08.2
Газета «Армия защитников Отечества» имеет свидетельство о регистрации № П 0931 от 16.05.94 г.
Настоящее свидетельство выдано :Начальником Северо-западного регионального управления
государственного комитета Российской Федерации по печати ( г СПб) Ю.В Третьяковым )Учредитель
организация "Сейсмофонд" ОГРН ;1022000000824, ИНН ;2014000780 т/ф: (812) 694-78-10, [email protected]
[email protected]
https://t.me/resi
197371, СПб, а/я газета "Земля РОССИИ" тел (921) 962-67-78, ( 911) 175-84-6
67-10 . (981) 739-44-98 [email protected] [email protected]

116.

Уздин
А.М.1, Егорова О.А.2, Коваленко А.И.31 ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА [email protected]ПЕТЕРБУРГСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I, [email protected] 3Организация Сейсмофонд СПБ ГАСУ
[email protected]
Восстановление разрушенного моста через реку Сейсм в Курской области Глушковском районе
пролетного строения автомобильного мостового сооружения шпренгельным способом с
использованием устройство для гашения ударных и вибрационных воздействий (RU 167977) RU
1143895, 1168755, 1174616, 2010136746, 165076, 1760020, 858604, 2550777) на основании расчета и
технологии применения теории трения , фрикционно- подвижных соединений, с использованием
гнутосварных замкнутых профилей прямоугольного сечения типа "Моло дечно"(серия 1.460.3.14)
для сейсмоопасных районов МПК E 01 D 22 /00 RU 2024106532 (Способ Уздина) RU
2024106154 (имени В В Путина) RU 2023135557 (Антисейсммическое фланцевое) RU 2023121476
(Пластический шарнир повышение сейсмостойкости ) RU 2024100839 (Новокисловодск)

117.

СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения
с использованием треугольных балочных ферм для сейсмоопасных
Доклад для V Международной научно-практической конференции по сейсмостойкому строительству 9-14 сентября 2024 г., г. Бишкек и Иссык-Куль,
Кыргызская Республика Место проведения разделено
на две части: первая часть в г. Бишкек «Sofia International Hotel» - торжественное открытие, заказные и пленарные доклады; выставка; награждения;
круглые столы; техническая экскурсия; вторая часть на
Иссык-Куле - секционные заседания; культурная программа; заключительное пленарное заседание с принятием резолюции [email protected]
[email protected]
СПб ГАСУ "Сейсмофонд" https:/t.me/resistance_test [email protected] [email protected] [email protected]
[email protected] [email protected] т/ф (812) 694-78-10 (921) 962-67-78 (911) 175-84-65 (981) 739-44- 97 Зам президента ОО "Сейсмофонд" СПб ГАСУ
Коваленко Елена Ивановна Для конференции ICSBE 2024
"Устойчивое развитие при проектировании мостов" Лондон 09 -10 декабря 2024 ICSBE 2024: 18. International Conference on Sustainability in Bridge Engineering
[email protected]
26‒27 сентября 2024 года в Санкт-Петербурге в отеле Азимут Сити (Лермонтовский просп., 43/1)
состоится 3-я международная конференция и выставка «Дорожное строительство в России: мосты и искусственные
сооружения».
Уздин А.М.1, Егорова О.А.2, Коваленко А.И.31
.
СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I
ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ
[email protected]ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I,
[email protected] 3Организация Сейсмофонд СПБ ГАСУ [email protected]
Восстановление разрушенного моста через реку Сейсм в Курской области Глушковском районе пролетного строения
автомобильного мостового сооружения шпренгельным способом с использованием устройство для гашения
ударных и вибрационных воздействий (RU 167977) RU 1143895, 1168755, 1174616, 2010136746, 165076, 1760020,
858604, 2550777) на основании расчета и технологии применения теории трения , фрикционно- подвижных
соедеинеий, с ипользованием гнутосварных замкнутых профилей прямоугольного сечения типа

118.

"Молодечно"(серия 1.460.3.14) для сейсмоопасных районов МПК E 01 D 22 /00 RU 2024106532 (Способ
Уздина) RU 2024106154 (имени В В Путина) RU 2023135557 (Антисейсммическое фланцевое) RU 2023121476
(Пластический шарнир повышение сейсмостойкости ) RU 2024100839 (Новокисловодск)
Именно через эти мосты осуществляется снабжение нашей группировки (а также через них
осуществляется эвакуация гражданских лиц). Потеря этих мостов может привести к захвату противником
всего района, который представляет для него интерес (южнее реки Сейм). Более 30 населённых пунктов
оказались отрезаны, эвакуация мирного населения теперь возможна лишь по воде. Кроме того, ВСУ
наносят удары по мосту в селе Званное.
Тезисы доклада организации "Сейсмоофнд" СПб ГАСУ: "Способ
шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм, для сейсмоопасных
районов" Для дистнционного доклада на VII Международной конференции
для заводов металлоконструкций, проектировщиков и подрядчиков, которая
пройдет 25-26 марта 2024 года, [email protected]
[email protected] (996) 785-62-76, (921)944-67-10, (911) 175-84-65,
т/ф (812) 694-78-10 https://t.me/resistance_test СПб ГАСУ
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения
с использованием треугольных балочных ферм для сейсмоопасных

119.

А.М. Уздин , О.А. Егорова, И.А.Богданова, А.И.Коваленко, В.К.Елисеева,
Я.К.Елисеева, Е.И.Коваленко, Политехнический Университет , ПГУПС,
СПб ГАСУ, организация «Сейсмофонд»
Аннотация: В статье способ шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов, рассматривается
проблема реконструкции мостовых сооружений, а именно
восстановление грузоподъемности, снизившейся в процессе
многолетней эксплуатации. Отмечена актуальность исследования, его
цели и задачи. Предложена классификация конструкций усиления по
различным признакам. Разобраны часто используемые на практике
ввиду усилений мостов их достоинства и недостатки. Изложенный
материал иллюстрирован фотографиями объектов. Представлен
современный способ усиления на основе использования углеродного
композита. Отмечены значительные недостатки этого способа для
усиления мостов и его модификация, использующая натяжное
устройство для закрепления и натяжения углеродных ламелей.

120.

Представлены основные выводы.
Ключевые слова: мост, усиление, реконструкция, шпренгель,
углеродный композит, ламель, грузоподъёмность, несущая
способность, натяжение.
Введение
Развитие автомобильного транспорта в Российской Федерации
остается приоритетной задачей и сейчас и в будущем.
Железнодорожный транспорт может конкурировать с автомобильным
только при перевозках на очень большие расстояния. В других случаях
выигрыш остается за автотранспортом и по времени, и в стоимости.
Для успешного функционирования автомобильного транспорта
необходимо поддерживать в хорошем состоянии существующие
дороги и развивать современную сеть автомобильных дорог. Есть
устойчивое экспертное мнение, и с ним согласны экономисты, что нет
ни одного случая успешного экономического развития региона без
опережающего развития национальной сети автомобильных дорог
высшей технической категории.

121.

Это мнение основано на детальных экономических исследованиях,
проводимых по итогам реализации проекта Highway Interstate System
в США. Еще более мощные позитивные эффекты обеспечит
реализация аналогичного китайского проекта National Trunk Road
System of China. Этот проект позволил создать суммарную
протяженность сети межрегиональных дорог высших технических
категорий к концу 2015 года 120 тыс. км *1+.
Строительство автодорог высшей технической категории требует
огромных капиталовложений, поэтому экономное расходование
средств на обслуживание существующей инфраструктуры дорог
является актуальной проблемой. Мостовые сооружения на дорогах,
построенные десятки лет назад, не исчерпали свой ресурс, но
перестали удовлетворять предъявляемым к ним требованиям
частично из-за физического износа, частично из-за изменившихся
требований. Вернуть мостовым сооружениям их функциональные
качества при незначительных финансовых затратах - задача
эксплуатирующих организаций, и, в целом, дорожного комплекса.

122.

Цели и задачи исследования способа шпренгельного усиления
пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов
Мосты и в прежние времена ремонтировали и реконструировали.
Сложнейшей задачей реконструкции является восстановление или
увеличение его грузоподъемности. В современных условиях выбрать
подходящий способ увеличения грузоподъемности - сложная задача
проектирования. Требуется провести обзор имеющихся способов
увеличения грузоподъемности мостов, выявить их достоинства и
недостатки. Здесь следует учитывать не только особенности
усиливаемого сооружения, многообразие известных способов
усиления, но и квалификацию и имеющееся оборудование подрядной
организации, выполняющей комплекс необходимых работ.
Работы по усилению пролетных строений мостов выполняются наряду
с ремонтными работами, исправляя накопившиеся дефекты. Для

123.

выявления и фиксации дефектов проводится обследование мостового
сооружения и его диагностика *2,3+.
В задачи обследования входят также изучение условий работы
мостового сооружения, выявление причин, вызывающих появления
неисправностей и их влияние на долговечность, безопасность и
грузоподъемность. Целью все этих мероприятий является
восстановление эксплуатационных качеств мостовых сооружений в
сложившихся условиях *4+.
Материалы и методы исследования Конструкции усиливающие
пролетные строения мостов можно рассматривать в соответствии с
предлагаемой классификацией, представленной в таблице 1.
Эта классификация позволяет провести анализ конструкций усиления с
разных точек зрения.

124.

таблица 1 Классификация конструкций усиления мостов
таблица 1 Классификация конструкций усиления мостов
1
По материалу
металлическое
неметаллическое
2
По толщине
до 2 см
конструкции
до 10 см
до 20 см
более 20 см
3
По способу
не напрягаемые
работы усиления
напрягаемые
4
По расчетной
с изменением расчетной схемы
схеме
конструкции
усиления
без изменения расчетной схемы
5
По способности
только временные нагрузки
воспринимать
постоянные
нагрузки
сооружения
постоянные и временные нагрузки
1 По материалу металлическое неметаллическое

125.

2 По толщине конструкции до 2 см
до 10 см до 20 см более 20 см
3 По способу работы усиления
не напрягаемые напрягаемые
4 По расчетной схеме конструкции усиления
с изменением расчетной схемы без изменения расчетной схемы
5 По способности воспринимать постоянные нагрузки сооружения
только временные нагрузки постоянные и временные нагрузки
Усиление пролетных строений с увеличением площади поперечного
сечения несущих конструкций. Эти способы увеличивают несущую
способность конструкций, незначительно снижают подмостовой
габарит. Вместе с тем ликвидируют все дефекты сечения, такие, как
сколы, трещины, отслоение и разрушение защитного слоя бетона. Нет
необходимости и выполнять ремонтные работы.

126.

К недостаткам относятся увеличение собственного веса, «мокрые»
процессы, необходимость опалубки, сложности укладки бетонной
смеси и ее вибрирование. А также сама конструкция усиления не
воспринимает усилия от постоянного веса сооружения, что в
железобетонных мостах является большей частью полной нагрузки.
Этот способ применен для усиления крайних (наиболее напряженных)
арок Астраханского моста в Волгограде (Рис.1) при его реконструкции.
Применить другие способы усиления здесь не представлялось
возможным из-за кривизны профиля.
Рис. 1. Усиление крайних арок моста в Волгограде
Усиление балочных пролетных строений шпренгелями способно, в
зависимости от конструктивной схемы, воспринимать не только
изгибающие моменты, но и поперечные силы в приопорных зонах.

127.

Здесь нет «мокрых» процессов, поэтому работы можно проводить в
любое время года. Конструкция усиления представлена на рисунке 2:
многоэлементная,
Рис. 2. Шпренгельное усиление мостовой балки *5+. крепится к балке
(1) анкерами (3) и состоит из стального стержня или троса (4),
соединяемого муфтой (2).

128.

Стержню придают заданную форму стойки (5) и раскосы (6). Муфта
имеет резьбу и при закручивании создает усилие в стержне - выбирает
люфты. Усилие в тросе определяется расчетом статически
неопределимой системы методом сил.
Такую конструкцию необходимо защищать от коррозии. К
недостаткам относится значительная высота усиления, что уменьшает
подмостовой габарит. Не следует использовать на путепроводах.
Существует несколько модификаций шпренгельных затяжек:
треугольные, линейные, укороченные.
Все они расчитываются, устраиваются и работают одинаково.
Возможно устройство прямых шпренгелей, которые не уменьшают

129.

подмостовой габарит. Однако такое усиление воспринимает меньший
изгибающий момент за счёт малого плеча используемых усилений
является усиление наклеиванием швеллера на

130.

Рис. 3. Усиление балок путепровода в Волгограде. ребро мостовой
балки (Рис. 3).
Этот вид усиления наиболее прост в исполнении, не уменьшает
габарит.
Может применяться только на балках из обычного железобетона и
воспринимать небольшие изгибающие моменты из-за малого плеча
внутренней пары и использования швеллера из обычной стали.
Одним из лучших усилений следует считать усиление напрягаемыми
пучками высокопрочной проволоки, представленной на рисунке

131.

4. Это усиление воспринимает как временную нагрузку, так и
постоянную. При соответствующем креплении и усилии натяжения оно
способно значительно повысить несущую способность пролетного
строения. Так можно усиливать любые балки мостов. Однако
натяжение - сложный процесс, требует грамотного инженерного
решения и исполнения.
Сложности связаны с креплением троса и установкой домкратов, а
также с равномерностью передачи усилия натяжения. Поэтому этот
способ не всегда применяется или часто реализуется не в полном
объеме с недогрузкой пролетных строений *6+.

132.

Рис. 4. Усиление напрягаемым пучком *7+.
В последнее десятилетие активно развиваются способы усиления
строительных конструкций, основанные на использовании
композиционных материалов *8, 9+. Композиционные материалы в

133.

виде лент из углеродных волокон применяются при реконструкции
мостовых сооружений, чему посвящено целый ряд исследований *1013].
Преимуществами способ шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов, по сравнению с
традиционными материалами и методами усиления являются малый
собственный вес элементов усиления, малые габаритные размеры,
высокая коррозионная стойкость, простота исполнения, проведение
работ по усилению без перерыва движения по мостам.
Мостостроительные организации, для того, чтобы легализовать
применение углеродных лент и ламелей, провели испытания
усиленных конструкций и создали свои ведомственные нормативные
документы (Стандарт организации. СТО - 01 - 2011).

134.

Однако до сих пор нет государственного стандарта на прочностные
качества углеволокна, есть только рекомендации производителя, а это
не одно и то же. Усиление углеволоконными лентами не может
воспринимать постоянные нагрузки от сооружения и обычные
временные, так как работы ведутся без остановки движения по мосту.
Таким образом усиление не разгружает перенапряженные несущие
конструкции, а только предохраняет от возможно большего
нагружения. Перед применением такого усиления необходимо
выполнить ремонт пролетных строений, так как ленты наклеиваются
на ровную поверхность. Ленты закрепляются приклеиванием к
усиливаемой конструкции, и если в процессе эксплуатации
произойдет отклеивание, то возможно разрушение пролетного
строения.
Можно устранить ряд недостатков традиционного использования
углеволоконных ламелей и нового способ шпренгельного усиления
пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов если

135.

использовать устройство их натяжения, предложенного в
исследовании *14+.
Способ шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов с использованием, натяжение ламели
устранит угрозу отклеивания, позволит воспринять частично усилия от
временной и постоянной нагрузки и повысит надежность конструкции
усиления, и в целом мостового сооружения.
Выводы
1. Многообразие способов увеличения грузоподъемности мостов с
использованием способа А.М.Уздина (ПГУПС) шпренгельного
усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм для сейсмоопасных

136.

районов позволяет избрать наиболее эффективный , это способ
шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов.
2. При выборе способа усиления следует рассматривать все
подходящие способы с учетом особенностей сооружения условий
эксплуатации и квалификацию исполнителя.
3. Неверный выбор способа усиления и напряжения в тросах не
способствует разгружению несущих конструкций пролетного строения,
которые продолжают испытывать завышенные напряжения и,
накапливая дефекты, постепенно разрушаются.
4. При устройстве усиления выбранным способом, всегда следует
предусматривать мероприятия по разгрузке пролетного строения, с
тем, чтобы конструкция усиления в своей работе могла воспринимать
как временную нагрузку, так и часть постоянной.

137.

138.

Саботаж без прикрас Рецидивы тоталитарного либеразма в ФИПСе
Способ усиления основания пролетного строения мостового
сооружения с иcпользованием подвижных треугольных балочных
ферм для сейсмоопасных районов имени В В Путина RU 2024106154
МПК Е 01 D 21/06
A method for strengthening the base of the superstructure of a bridge structure using movable triangular girder trusses for earthquake-prone areas named after V.
V. Putin
Наш номер ФИПС Роспатент 2024106154 20 013574 При переписке
просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Федеральная служба по интеллектуальной собственности
Федеральное государственное бюджетное
> учреждение
ff «Федеральный институт ' промышленной собственности» (ФИПС)

139.

Бережковская наб., 30, корп. 1, Москва, Г -59, ГСП-3, 125993 Телефон
(8-499) 240- 60- 15. Факс (8-495) 531-63- 18
На № - от Наш № 2024106154/20(013574)
При переписке просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Коваленко А.И. пр. Королева, 30, корп. 1, кв. 135
Санкт-Петербург 197371

140.

Современные технологии и проектирование
строительства и эксплуатации пролетных строений
мостовых шпренгельных усилений с использованием
треугольных балочных ферм для гидротехнических
сооружений ( с использованием изобретения "Решетчато
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО
УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм
для сейсмоопасных районов МПК
E 01 D 22 /00
пространственный узел покрытия (перекрытия ) из
перекрестных ферм типа "Новокисловодск" № 153753,
"Комбинированное пространственное структурное покрытие"
№ 80471, и с использованием типовой документации серия
1.460.3-14 , с пролетами 18, 24, 30 метров, типа Молодечно" ,
чертежи КМ ГПИ "Ленпроектстальконструкция" и
изобретений проф дтн ПГУПС Уздина А М №№ 1143895,
1168755, 1174616, заместителя организации "Сейсмофонд"
СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж
The Uzdin
A M METHOD OF SPRENGTHENING THE
SUPERSTRUCTURE of a bridge structure using triangular
girder trusses for earthquake-prone areas IPC
Коваленко А.И №№ 167076, 1760020, 2010136746
ОПОРА СЕЙСМОСТОЙКАЯ
076
RU165
(51) МПКE04H 9/02 (2006.01) Коваленко
Александр Иванович (RU)
Комбинированное пространственное структурное
покрытие № 80471 RU 167977 Уздин А М (812) 694-78-10

141.

(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ П
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВ
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
136 746
RU 20
(51) МПК E04C 2/00 (2006.
Коваленко Александр Иванович (RU)
https://t.me/resistance_test т/ф (812) 694-78-10,
10, (911) 175-84-65, (921) 944-67-10 6947810
[email protected] СБЕР карта 2202 200
Elena Kovalenko привязан телефон (921) 962-67
Reinforcement structure of trus
Помощь для внедрения изобретения "Способ им Уздина А.
М. шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм"
, аналог "Новокисловодск" Марутян Александр Суренович
МПК Е01ВD 22/00 для ветерана боевых действий , инвалида
второй группы по общим заболеваниям , изобретателю
пехотного армейского моста по СБЕР карта МИР 2202 2056
3053 9333 тел привязан 911 175 84 65 Aleksandr Kovalenko
(981) 739-44-97 [email protected]
[email protected] https//t.me/resistance_test
[email protected] [email protected]
[email protected] [email protected] СБЕР карта МИР
2202 2006 4085 5233 Elena Kovalenko МИР карта 2202 2056 3053 9333
тел привязан (911) 175 84 65 т/ф (812) 694-78-10 [email protected]
[email protected] [email protected] (921) 944-67-10
bridge or arch bridge https://patents.google.com/patent/EP13965
https://patentimages.storage.googleapis.com/a3/0b/99/68bda2d0c4
.pdf

142.

https://t.me/resistance_test т/ф (812) 694-78-10,
[email protected]
(921) 962-67-78,
(911) 175-84-65,
(981) 739-44-97
[email protected]
[email protected] [email protected]

143.

144.

145.

146.

147.

Братья и Сестры Кто готов помочь помогайте Общественная организация
Сейсмофонд СПбГАСУ для морпехов Севастополя выпустила проект- чертежи
сборно разборные быстро собираемые армейские переправы многократного
применения из стальных конструкций покрытий производственных здании
пролетами 18, 24 и 30 м с применением замкнутых гнутосварных профилей
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14
ГПИ «Ленпроектстальконструкция» ) Нужна помощь

148.

для системы несущих элементов и элементов проезжей
части армейского сборно-разборного пролетного
надвижного строения железнодорожного моста, с
быстросъемными упругопластичными компенсаторами со
сдвиговой фрикционно-демпфирующей жесткостью
Редакция газеты Армия Защитников Отечества и ИА "Русская

149.

народная дружина, никогда не были в стороне от людского горя,
всегда приходили на помощь. Пришли и сейчас.
Спасибо всем, кто оказывает помощь каналу!
Оказать поддержку по реквизитам
СберБанк 2202205630539333
В сообщении писать "благотворительность. Курск".
СБП: Сбербанк, телефон привязан + 911-175-84-65 (921) 96267-78 Благотворительность. Курск". Александр Коваленко подпишись! [email protected]
https://t.me/resistance_test [email protected]
[email protected]
ВСУ разрушили мост через реку Сейм в селе Карыж третий и
последний мост в Глушковском районе Курской области. Ранее противник
сложил мосты в сѐлах Званном и Глушково. Таким образом, врагу удалось

150.

добиться транспортной изоляции района, который с трех сторон зажат между
подконтрольными ВСУ территориями. Одновременно значительно возросла
активность врага в районе села Апанасовка. ВСУ удалось завести в него
крупные силы, по которым в течение дня активно работала
https://dzen.ru/a/ZsQ1H61Ten4XBT1k
Военный обозреватель Царьграда Влад Шлепченко
рассказывает о следующем этапе Курской битвы: ВСУ
разрушили мост через реку Сейм в селе Карыж, оставив
Глушковский район изолированным. Апанасовка стала
базой для противника, готового наступать на район с
востока. Подробности в материале.
"ВСУ разрушили мост через реку Сейм в селе Карыж – третий
и последний мост в Глушковском районе Курской области.

151.

Ранее противник сложил мосты в сѐлах Званном и Глушково.
Таким образом, врагу удалось добиться транспортной
изоляции района, который с трех сторон зажат между
подконтрольными ВСУ территориями.
Одновременно значительно возросла активность врага в
районе села Апанасовка. ВСУ удалось завести в него крупные
силы, по которым в течение дня активно работала
артиллерия.
Апанасовка интересна противнику, поскольку дает
возможность действовать как во фланг, так и в тыл нашим
силам, удерживающим село Снагость, прикрывающее
Коренево. Кроме того, Апанасовка и Внезапное дают

152.

возможность развернуть широким фронтом наступление на
Глушковский район с востока", - сообщает Влад Шлепченко.
"Прибывший на подмогу подрастрепанным частям 22-ой
механизированной бригады ВСУ 501-ый батальон 36
бригады морской пехоты вновь занял, Апанасьевку. И она
стала для противника базой для дальнейших попыток
двигаться вперед (на Комаровку)", – отмечает военный
обозреватель Юрий Подоляка.
"Сегодня же просроченный президент так называемой
Украины заявил, что целью нападения на Курскую область,
оказывается, было создание буферной зоны. Ранее в Киеве
заявляли, что хотели этой операцией:
– заставить Россию оттянуть силы с других направлений;

153.

– показать Западу, что ВСУ ещѐ могут наступать, если дать
им оружие;
– обеспечить себе более выгодные позиции на будущих
переговорах.
Совокупность военных факторов с изменившейся риторикой
врага говорит о том, что в ближайшие несколько дней ВСУ
будут наступать на Глушковский район, чтобы срезать его
ударом с востока и тем получить еще одну перемогу без
больших вложений.
Удастся ли врагу осуществить этот план – в значительной
степени зависит от эффективности наших разведывательных

154.

беспилотников, а также от скорости и точности ракетнобомбовых ударов", - заключил Влад Шлепченко.
https://dzen.ru/a/ZsQ1H61Ten4XBT1k
УНИЧТОЖЕНО ТРИ МОСТА ЧЕРЕЗ СЕЙМ. ВНЕЗАПНАЯ АТАКА
ВСУ "НА ВСЕХ УЧАСТКАХ ОДНОВРЕМЕННО": ПОСЛЕДНИЕ
НОВОСТИ О КУРСКОЙ ОБЛАСТИ НА УТРО 19 АВГУСТА
Минувшая ночь на Курском направлении оказалась весьма
непростой для наших бойцов. Генерал Алаудинов
рассказал о внезапной атаке ВСУ "на всех участках
одновременно". Так, была попытка жѐстко продавить
участок, где располагался спецназ "Ахмат". Сообщается и
о попытке проникновения врага в Белгородскую область.
Массовая контратака в Липцах. Уничтожено уже три моста
через реку Сейм - противник пытается отрезать нашу
логистику и сформировать ударный кулак для

155.

наступления на Курскую АЭС. Последние новости о
Курской области на утро 19 августа.
Отрезать Глушковский район и Тёткино
В Курской области продолжаются ожесточѐнные бои противник пытается пробиться вперѐд, предпринимая
массовые наскоки на наши позиции, но, не добившись
никакого результата, кроме крупных потерь, вынужденно
отступает и перегруппировывается за счѐт просочившихся
резервов.
Easibridge – Lightweight Tactical Bridging
Innovation
No other system comes close to the span range, portability or breadth of capability of EasiBridge platforms, British innovation at
its finest
Twitter
Facebook
LinkedIn
Reddit
Print
EasiBridge offers the world‟s first truly man-portable, long-span rescue/assault bridging system. Exploiting the inherent flexibility of the
EasiBridge systems, a further eight engineer/infantry “Super-Kit” capabilities can be used.

156.

Key benefits include;
Portability; weighing just 4kg/m the EasiBridge sections can be easily carried by dismounted personnel and handled without mechanical assistance,
Span Length; gaps of up to 18m can be installed by a single person, with access from one side only,
Low Cost; EasiBridge is significantly lower cost than comparable infantry assault bridges,
Versatility; using common components a wide range of demanding requirements can be addressed.
EasiBridge components are 85% lighter and 80% more compact than incumbent Infantry Assault Bridges. EasiBridge is expandable to
offer a universal, ground-breaking solution for gap crossing, infantry carriage support, troop protection, logistics handling – even manportable SVBIED barriers. A multi-function super-kit, ideally suited for the challenges of urban warfare, as well as special forces, engineer
and dismounted infantry operations.
EasiBridge is supported by a Rapid Innovation Grant from the UK Defence and Security Accelerator with first military orders now secured.

157.

It promises to be revolutionary.
Strategic Trends and Operations in Urban Areas
The 5 Edition of the Global Strategic Trends document describes future urbanisation trends;
th
With 70% of the global population likely to live in cities by 2045, urbanisation will be a particularly important theme in developing countries.
Urbanisation is likely to enhance economic and social development, but – without mitigation measures – may also lead to pressure on
infrastructure (and the environment) which could contribute to social tensions within the urban population. Urbanisation and the effects of
climate change are likely to result in an increase in the magnitude of humanitarian crises, particularly since the majority of urban areas will
almost certainly be either on, or near the coast, making these cities vulnerable to flooding.
Building on this, in September 2017, the Ministry of Defence‟s (MOD‟s) think tank, the Development, Concepts and Doctrine Centre
(DCDC), published Future Force Concept (JCN 1/17).
]Joint Concept Note (JCN) 1/17 is the authoritative, high level, analytical concept, it aims to shape the design and development of the
future force to 2035 and beyond. It is aimed at those involved in policy and strategy formulation; by military capability and acquisition staff;
by operational commanders and their staff; by staff and students at the staff colleges. and by all those, including allies and partners,
interested in the development of the future force.
On the challenges of operating in urban environments.
We will need to exploit the information and data systems being integrated into ever more populated, connected and complex cities. Within
the urban environment the tasks of armour and air manoeuvre will remain, but how they are delivered will evolve. Combat and armoured
engineers teamed with unmanned systems will be key enablers to manoeuvre and counter-mobility in urban terrain. Quad-copter and
small jet engine technology developments able to transport individuals may expand the range of systems available to land forces for
vertical manoeuvre in constrained urban space.
The Modern Warfare Institute defines the challenge of operating in urban environments:
Enemy forces-whether state-based, terrorist, proxy, or something else-have learned that they can greatly reduce technological and other
advantages of state-based military forces by pulling them into densely populated urban areas.
The subject is vast, with an equally diverse range of observations and lessons to learn, but common to all is the need for dismounted
personnel to traverse the hugely variable terrain found in urban areas.
It is this terrain variability that poses significant challenges for forces in urban operations as they seek to gain a manoeuvre advantage,
avoid obvious ambush locations, exploit observation vantage points and prevent detection. Urban environments consist of multiple layers;
on the ground, above ground and below ground, and each of these will have access constraints for dismounted personnel. Gaining access
to subterranean environments such as sewers and tunnels, moving between buildings above ground and reaching roof areas for example.

158.

To do so effectively, currently requires a range of different systems and in many cases, mechanical plant and vehicular transport.
Entering target buildings through normal ground-level entry routes can be hazardous. Some advantages may be gained by scaling
buildings using ropes or ladders but both techniques can be slow and predictable, leaving personnel exposed and vulnerable. Rope
access requires continual training to maintain skill levels and safety. An element of surprise can be gained by entering the target building
at high level with access from adjacent „safe‟ buildings, rooftop-to-rooftop, or window-to-window. This allows ground-level assaults to be
focussed on adjacent “safe” buildings, rather than more fortified “target” buildings. The “safe” building can be retained as an emergency
entry/evacuation route.
Current access systems between buildings (ladders) are generally limited to around 6m spans. Longer footbridge systems exist but are
impractical for rapid assaults or evacuations in urban areas. Rapid assaults require something much quicker and lighter.
EasiBridge solves many of these challenges with the world‟s first man-portable, long-span rescue/assault bridge that can also be utilised
to access subterranean and above-ground environments in the vertical plane. In short, the EasiBridge system combines capability with
versatility to minimise the amount of equipment needed to be carried by dismounted personnel.
The EasiBridge System
EasiBridge uses 1.5m long, optimised ladder sections with a bespoke (EasiLock) jointing system to ensure no loss of strength or stiffness
at multiple section joints. Combined with a rope-stiffening system, telescopic masts and variable tensioning elements, EasiBridge
structures are half the weight and treble the span of incumbent systems.
Simple short spans, up to 6m, can be formed from plain ladder sections with just three sets of EasiLock joints. Longer spans, up to 18m,
use a link tensioning system common to innovative military bridges like the Medium Girder Bridge and General Support Bridge.

159.

160.

EasiBridge, therefore, caters for any span from 1 to 18m using common components.
Key attributes are;
All EasiBridge structures are man-portable; a 12m bridge can be transported by a single person, 18m bridges transported by just 2 personnel
18m bridges can be installed and crossed by a single person in under 20 seconds, with no prior access to the far bank
Bridges are “launched” into place using a Patented cantilever launch/inversion technique
Installation is completed entirely from the home bank and in near silence
Bridges can be recovered and extracted for re-use as quickly as they are installed.
EasiBridge is a modular system with maximum component lengths of 1.5m, making bridges extremely versatile, and easy to transport by
dismounted personnel.
EasiBridge is compatible with confined space installation, bridges can be carried up building staircases, through „mouse holes‟ and
transported over long distances by just a single operative, then used to covertly cross gaps between buildings or other obstacles, access
tunnels and roof areas.

161.

Urban environments require personnel to move in the horizontal and vertical planes, EasiBridge provides a common set of components to
address both, offering a step-change improvement over existing products and techniques. EasiBridge packs to 10% of the size of the
current Infantry Assault Bridge, offering considerable cost and logistics savings. EasiBridge is 20 times stiffer and offers 3 times the span
range of incumbent ladder systems. An innovative cantilever launch/inversion technique is critical to this capability.
EasiBridge components are simple to use and maintain. A typical bridge is formed of 5-to-15 components, each costing less than £1000
to replace. Bridges take less than 5 minutes to assemble. And 20 seconds to install. The training time of just 1 hour has been shown to
be sufficient for trial troops.
EasiBridge is capable of operating in a range of extreme environments, including extreme cold. EasiBridge remains operational in CBRN
environments. Extreme heat and fire present the only environmental constraint – bridge components may experience a loss of integrity if
directly exposed to fire.
EasiBridge can be adapted to form 10 wider structural functions, via a common “Super-Kit” of parts, offering significant cost and logistics
efficiencies compared to multiple ranges of disparate, single-function equipment.
Tactical Assault Bridge
The Tactical Assault Bridge (TAB) is the core EasiBridge configuration.
Tactical Assault bridges are designed to be man-portable, with typical system weights 1.5 kg per foot of span, for a design load of 200 kg.
A 50-foot bridge weighs 75kg and can be carried by as few as 2 personnel using carriers formed from bridge components themselves.
EasiBridge structures are half the weight and treble the span of the incumbent OCS system.

162.

A single Tactical Assault Bridge is designed for low centre-of-gravity trolley loading. The low centre of gravity permits a narrow structure
width for maximum portability, even for long-span bridges.
The trolley is used for two purposes; launch and recovery, and personnel movement across the bridge. Walking upright on a ladder over a
gap is difficult, especially when encumbered. Adding handrails would mitigate some of the dangers but they add weight and take time to
deploy. The trolley lowers the centre of gravity and allows an encumbered person to move quickly and safely across the gap.

163.

What sets the EasiBridge Tactical Assault Bridge (TAB) apart from incumbent systems like the Inch‟On GCS or Atlas Tactical Ladder is
the long span capability, ease of deployment and low centre of the gravity trolley system.
The videos below show launch and crossing techniques for the Atlas REBS ladder system

164.

165.

…and the Atlas Tactical Ladder.
In the context of urban operations, gaps are likely to be wider and personnel encumbered with weapons, radios, ammunition and other
stores, making traversing open ladders dangerous and slow. For vertical access, the same components are used. Un-tensioned, to a
height of 10m and with the tensioning systems, 18m. In most cases, personnel would simply use the ladder sections in a conventional
manner.
EasiBridge‟ rope tensioning system also allows ladders to be installed at flatter angles, enabling winch or rope ascender movement of
stores and weapons, or stretchers via the trolley system.
Shown below during trials

166.

EasiBridge Super-Kit accessories offer further vertical access capabilities:
Access towers – footbridge decking over ladder towers and platforms.
Marine boarding ladders – detachable end hooks offer considerable space savings over incumbent systems – supporting RIB-assaults.
Manhole/tunnel access systems using modular ladder components and detachable top hooks.
Underbridge access systems, combining marine-boarding hooks, bridging elements and decking platforms.
Although this article is focused on the military applications of the EasiBridge system, it also has a number of applications in the civilian
market. EasiBridge offers further capabilities in fire evacuation, flood-, mud- and mountain- rescue. The addition of a back-pack/infantry
carrier system makes the system ideal for remote access, offering significantly improved portability over vehicle-based rescue rafts.
For mountaineering, EasiBridge completely redefines conventional crevasse crossing systems and techniques, bringing ground-breaking
improvements in span range, portability and operational safety.

167.

Launch and Recovery
A key EasiBridge innovation is its method of installation – a patented cantilever launch/inversion technique, allowing a single person to
install and cross a complete 18m span in under 20 seconds. Bridges are designed for one-man assembly and installation, without
engineer support, and with no prior access to the far „bank‟.
Although the trolley is used for moving personnel, its main function is not to move people, but to move the bridge itself. During installation,
the structure and the trolley are both inverted. Turning the bridge and trolley upside down transforms the structure from a bridge into a
cantilever boom on rollers, giving the structure incredible range. This time, the trolley is static – it is the bridge that moves.
The resulting structure is light and virtually frictionless.
A single operator can launch the bridge to an adjacent building, with up to 18m range. The bridge is then inverted to form a robust truss
structure, the trolley placed back on the bridge, and crossed as shown in this video:

168.

All this was completed in near silence and in under 20 seconds. Bridges can also be recovered for relocation and re-use by simply
reversing the installation procedure:

169.

A full video of Royal Engineer trials of the system is available here:

170.

Confined space launch allows a 12m sectional bridge to be launched with 2m of internal space, bridges being assembled as they are
launched.

171.

A demonstration of Urban Access Capabilities is available here:

172.

EasiBridge structures are so light, they are also compatible with aerial emplacement using light helicopters and heavy lift UAV‟s or drones.
The UK designed and built Malloy Aeronautics Hoverbike that can single-handedly lift an 18m Tactical Assault Bridge.

173.

A pair of such devices can lift a 10.5m Infantry Assault Bridge, complete with handrails and decking.

174.

175.

Anti-sniper screens can be suspended from the Tactical Assault Bridge.
Transportation and Carriage
EasiBridge is at its core, a man-portable system, components are designed and built to be as low weight as possible, dismounted
personnel are increasingly likely to be overburdened so every kg of carried weight is important.
Intra and inter theatre transportation has also been considered as part of the design process.
Tactical
For transport and carriage in a tactical environment, all Easibridge components are designed to be man-portable with each section
weighing only 6kg. Ropes, pulleys and clutches are also designed to balance weight with durability.
For portability inside a building, bridges will be broken down into 2 ladders/men. The 2-ladder standard stacking pattern uses one ladder
inverted relative to the next, with clamps inverted on the top unit, relative to the lower unit. Ladders then carried inside Hard-Case-Carrier,
supported about the centre rung.

176.

The Infantry Carrier System (ICS) can be used to transport complete (disassembled) bridges over longer distances where mechanical
assistance is not available. It features a launch nose and wheel system and can also be used to carry Bergen‟s, ammunition and other
equipment. The ICS reduces carriage burdens by more than 50%, allowing greater loads to be carried over much longer distances, with
reduced operator fatigue, and improved combat readiness

177.

The Carrier System avoids the “dead weight” problem associated with alternative carriers if the infantry bridge was being carried anyway.
The Carrier attaches to MOLLE on the operator‟s hips via quick-release fasteners. ICS allows a single operative to transport a complete
10.5m bridge, or two personnel – bridges up to 18m. The system is reversible to form heavy-duty sack trucks for short-range logistics
handling.

178.

The EasiBridge Infantry carrier offers an Infantry mobility breakthrough. Reducing carriage loads on personnel, whilst simultaneously
enhancing forward mobility, emergency evacuation and force protection capabilities.
Where mechanical assistance is available and for carriage over longer distances, light vehicles can be used, right down to quad bike style
ATV‟s, a single ATV, for example, can transport a complete 10.5m bridge.

179.

Inter and Intratheatre Transport
EasiBridge components are easily transported vertically on NATO pallets with going over 1.87m in height using pallet wrapping or collars.
They can also be easily carried using 463L pallets, air despatch pallet systems and as a door bundle if needed.
Additional TAB Applications
The wheeled Carrier System also unlocks a unique MEDEVAC/CASEVAC capability, allowing mid-range casualty evacuation by just a
single operative. The ladder-stretcher is adaptable for carriage by two or more operatives in a horizontal position when required.

180.

Using ropes and attachment points, the stretcher assembly can be lowered from buildings or raised from below-ground areas, either using
winching equipment or manually.
Using easily deployed brackets and lightweight powder actuated fixings, Easibridge TAB sections can be used to create barriers across
doorways, mouse-holes and other openings when moving through an urban or underground environment. A similar arrangement can also
be used to create rope anchors and lifting spreaders. Stable weapon platforms inside buildings can be constructed of Easibridge TAB
sections.
Extending Utility – EasiBridge Super-Kits
Military feedback has stimulated the development of a range of wider EasiBridge capabilities. Individual capabilities are discussed in
subsequent sections. All capabilities form part of standard “SuperKit” enhancements of the standard bridging system.
Fence Breaching System

181.

Using the EasiBridge Fence Breaching System personnel can scale fences up to 4m high without contacting the fence, ensuring no
damage or detection at the point of entry. A bespoke mast, central hinge and quick-release rope attachment is used and is based on the
inclined cantilever launch/inversion technique.
The Fence Breaching System is a valuable alternative to vehicle-based systems and a significant improvement over improvised climbing
ladders.
Infantry Assault Foot Bridge
The man-portable modular footbridge (span range 0-18m) is formed via System II Super-Kit, placing 2 standard EasiBridge Tactical
Assault Bridges side-by-side, then, connecting bridges together via tie-rods fed through ladder rungs and underslung torsion bars.

182.

A video of the EasiBridge Infantry Assault Bridge system is available here:

183.

This limits relative displacement between the two bridges and mobilises the torsional stiffness of both spans, mitigating any tendency for
bridges to overturn under (high centre-of-gravity) walkway loads. Two further Tactical Assault Bridges, on their sides, form the structure
handrails. Virendeel stiffness of the ladder handrail also enhances overall bending strength alleviating local bending stresses in the deck.

184.

The Easibridge IAB is half the weight of the incumbent Infantry Assault Bridge, reducing or negating requirements for vehicle
transportation. Footbridges are formed from 1.5m x 7kg ladder sections. 90% more compact, and 88% lighter than the incumbent IAB. A
dismounted footbridge capability offers a significant enhancement on current vehicle-based systems, whilst maintaining full interoperability
with the core assault bridge platform.
The twin TAB with handrail configuration can accommodate pack animals and stretcher trolleys.
Infantry Assault Pontoon Bridge
For wide and wet gaps, the standard Easibridge IAB can be used with demountable pontoons fitted between the mast knee-braces.

185.

186.

Even with the pontoons, the EasiBridge Infantry Assault Pontoon Bridge is deployable and transportable without vehicles or mechanical
handling equipment, a significant advantage over the incumbent IAB and one that results in a 75% volume saving compared to the current
IAB
Quad Bike Crossing and Pontoon/Raft
The existing General Dynamics Quad Bike Bridge (QBB) is quick and easy to use but it can span very short spans.
For dismounted patrols supported by quad bikes, any gap wider than 2.5m must be provided by Royal Engineer bridging support, the next
step up from the QBB is either REBS or an Air Portable Ferry Bridge, both requiring considerable support and resources.
Using the EasiBridge system, an 18m long-span „trackway‟ type bridge can be built quickly, without any engineering plant, with minimal
personnel and launched from the home bank.

187.

The infantry patrols‟ quad bikes can be simply pulled across on the launch trolley.

188.

Longer spans can use pontoons, and where applicable, the EasiBridge system can be converted into a „ferry‟ using pontoons and
outboard propulsion
Close Support Bridge
EasiBridge is a modular system. The Close support Bridge (CSB) extends the application of the IAB system by placing 3 or more standard
EasiBridge Tactical Assault Bridges side-by-side – allowing bridges of any width to be achieved.

189.

Increasing bridge width increases load rating, giving standard Tactical Assault Bridges a light-vehicle capability, suitable for direct
trafficking by quad-bikes and LTMP/SMET transporters.

190.

A video of the EasiBridge Close-Support Bridge system is available here:
https://youtu.be/0IdvuQiQbCg
Maximum spans of 18m can be achieved using just a 1.5m (7kg) ladder and decking sections. The CSB is also compatible with
autonomous LTMP/SMET placement and vehicle crossing – another unique EasiBridge capability.
Simple spans up to 6m can be formed from plain ladder sections – no rope tensioning at all, offering very shallow construction depth.

191.

Light Cavalry Vehicle Bridge
The Light Cavalry Vehicle (LCV) Bridge uses enhanced ladder sections to form an 8-tonne capacity bridge – the bridge weighing less than
a ½ tonne, dismantling to 4m sections, carried on a vehicle roof. The bridge assembled from (enhanced) 4m EasiBridge sections,
assembled and crossed in under 5 minutes. Maximum span range 12m. 4m composite decking planks, spanning between main truss node
positions limits local bending in ladders.

192.

The load rating of Close Support Bridges could be increased in a similar manner through the use of enhanced LCV ladder sections.
Strike Vehicle Bridging
EasiBridge has developed concepts for a new range of Strike Vehicle Bridging platforms. Bridge installation is powered entirely by gravity
– no mechanical plant or power is required. Bridges up to twice the vehicle length can be carried on lightly-modified Strike vehicles.

193.

EasiBridge Strike Vehicle Bridging could transform rapid mobility capabilities for a host of new Strike Vehicle platforms
Force Protection
EasiBridge combines bridging with extensive force-protection and counter-mobility capabilities. Overhead protection and vehicle barriers
can be constructed using EasiBridge sections. Force protection capabilities include basic systems for overhead trench protection to blastresistant roofing systems for troop-shelters and man-portable troop accommodation and disaster-relief shelters.

194.

Basic cover protection systems utilise bridging ladders and decking panels to form trench cover structures up to 3m spans. Ladder
sections can be combined with sheet materials to support 300mm of earth fill as shown in two left-side images below. For wider positions,
ladder sections and joints can be used to create pitched support. The support can be secured by tie rods, thrust blocks or pickets driven
into the ground, two right-side images below.
More complex roof structures can be constructed for use with Hesco or Defencell, or engineering plant excavated defence positions. Troop
shelters use a wire-tensioning system to increase roof span up to 6m – double the span of incumbent systems.
EasiBridge creates an affordable range of rapid-assembly building frameworks, ideally suited for blast-resistant troop shelters, disasterrelief and humanitarian-aid shelters.

195.

196.

All systems formed from 1.5m x 7kg (man-portable) bridging ladders and footbridge decking panels, compatible with plant/equipment-free
transport and installation. All components can be placed entirely by hand – no power or mechanical plant required. Earth-fill can be
placed by EasiBridge materials-handling (trolley) conveyor, allowing easy placement of blast-protection fill from the ground to the roof
apex.
Overhead protection and vehicle barriers can be constructed using Easibridge sections. Troop shelters use a wire-tensioning system to
increase roof span up to 6m – double the span of incumbent systems.

197.

EasiBridge can also be used to construct combined Trench Side-Support and Cover Protection frameworks. Ladders and decking panels
offering flooring, side supports and blast-resistant roof covering, accommodating 300mm of earth-fill over. Standard Tactical Assault
Bridge and footbridge components were used throughout.
In complex urban terrain, contemporary threats include suicide bomber vehicle-borne improvised explosive devices (SBVBIED). Creating a
physical barrier at checkpoints, road intersections and other vulnerable points is a key element of any operational concept. These barriers
have traditionally been prefabricated concrete or gabion type (Hesco and Defencell). The former requires a lot of logistics and engineering
support and the latter needs a great deal of fill material and engineering support.

198.

EasiBridge can also be used for counter-mobility. Placing EasiBridge on its side creates a man-portable, long-span, lightweight barrier.
A more robust barrier configuration can be formed by adding a second span, complete with decking, earth-fill and cross-ties to create a
dual-skin, earth-filled (cavity) barrier for heavy, concentrated loads, such as SVBIED barriers. The EasiBridge cavity-barrier forms an
extremely robust, yet highly portable force protection barrier system, all elements weighing less than 7kg, with 1.5m component lengths.
EasiBridge Wire Rope Tensioning system can also be used to reinforce gravity barriers like Hesco or Defencell.

199.

This approach allows fill volume to be reduced by 50%, making barriers significantly quicker to deploy and less resource-intensive. Barrier
deformation under impact is reduced and the barrier can be quickly recovered and re-deployed (leaving the gravity barrier in place)
Engineer Access Platform
The conventional means of accessing underneath bridges to inspect or place demolition charges is with either a vehicle-mounted access
platform or a combination of ladders and rope access techniques.

200.

EasiBridge can form under-bridge access platforms for Engineer inspection and demolition activities.
The Easibridge Engineer Access Platform is an adaption of the Tactical Assault Bridge (TAB), with a 6m platform configured without a
TAB mast and up to 12m with a TAB mast. As with the Tactical Assault bridge (TAB), all components are man-portable and easily moved
with light transport vehicles such as quad bikes and small ATV‟s.

201.

202.

203.

Access platforms are designed for remote placement from above deck level via a cantilever (gravity-fed, boom-out) launch technique, or
via suspension ropes slung over the side of the existing structure. A significant safety innovation, offering plant-free, manual installation.
EasiBridge platforms are self-anchored structures – no requirement for sizeable end anchorages. Suspension ropes from deck level
replace/reinforce normal EasiBridge mast/rope tensioning systems. Suspension ropes provide vertical and torsional restraint to high
centre-of-gravity platform loads.

204.

Platforms can be fitted with optional decking and handrails, as Infantry Assault Bridges for enhanced safety and stability. End boarding
ladders provide access and positional fixity. Additional components such as stabiliser struts further enhance lateral and torsional fixity.
A range of platforms is available, from simple, light-duty, single spans, providing single-user (200kg) capacity, to grillages of heavier duty,
multiple-access walkways.
EasiBridge can also be used as utility support structures. Utility structures are available in single or multiple ladder width options, with or
without handrails and decking – system weights from 4.5 kg/m on undecked or 11 kg/m on decked structures. Maximum loadings from 40100 kg/m/span.
Summary and Look Forward
EasiBridge provides a universal, ground-breaking solution for gap crossing, infantry carriage support, troop protection, logistics handling –
even man-portable SVBIED barrier protection.
EasiBridge offers the world‟s first truly man-portable, long-span rescue/assault bridge. A state-of-the-art solution derived from the novel
application of post-tensioning techniques in lightweight materials with an innovative method of installation and operation.
EasiBridge offers four unique user benefits:
1.
2.
3.
4.
Portability – user-portable bridges, weighing 4 kg/m of span, complete with Infantry carrier /CASEVAC capability.
Span – 18m span bridges installed by a single operative, with access from one side, only.
Cost – Significantly cheaper than incumbent vehicle-borne Infantry Assault Bridges.
Versatility – a common building block for personnel bridging, quad-bike bridging, Infantry Assault Bridging, carriage-support, force protection shelters, flood barrier,
portable ammunition conveyors, fence-breaching and portable access platforms.
Bridges are designed for personnel and quad-bike loading with maximum 1.5m x 7kg components, compatible with personnel/quad-bike
carriage. All EasiBridge systems are man-portable and do not require plant or power to operate or install.
EasiBridge provides rapid, covert access between buildings, up to 18m apart – an entirely new means of an emergency building
evacuation, as well as high-level entry, for counter-terrorism, urban warfare and emergency services. Existing bridges are impractical for
rapid assaults or evacuations in urban areas.
EasiBridge caters for any span from 1-18m, using short (1.5m x 7kg) ladder sections. Bridges are installed by a single operative with
access from one side, only – no plant or power required. Bridges can be carried inside building stairwells and launched from a 2m internal
space – a unique, highly portable, new access capability. A step-change improvement over current products and techniques.
Feedback from military trials has inspired the development of numerous wider capabilities. EasiBridge can transform troop mobility and
force protection by using short-section ladders as a common building block for a range of military engineering applications. Extended
“Super-Kit” capabilities include:
Infantry-carrier system for dismounted personnel
Gap-crossing system for dismounted personnel – personnel & quad-bikes

205.

Assault-bridge for urban environments – rooftop-to-rooftop, or through windows, ideally suited for urban warfare and counter-terrorism applications
Rescue access platform for fire, flood, mud & mountain rescue
A new range of Infantry assault bridges, 90% more compact than existing systems
Close-support foot/light-vehicle bridges, including autonomous LTMP installation capability
A versatile range of floating pontoon bridges and access platforms
Modular rafts for amphibious assaults
Ladder or conveyor to climb walls (climb heights up to 12m)
MEDEVAC stretcher platform, offering single-handed casualty evacuation
Vehicle-portable, light-cavalry bridges
Lightweight, high-portability access platforms for Engineer inspection and demolition activities
Utility support structures
Goods conveyor to move casualties and ammunition from ground-to-roof level
Troop protection shelters for dismounted personnel
Rapid installation vehicle (SVBIED), munition protection and flood defence barriers
The system provides a unique, modular-building system, offering simple, realistic and affordable solutions to a broad range of mobility,
access and troop protection challenges. It offers a common platform to service each requirement, negating the need for numerous,
independent ranges of single-function equipment. A multi-purpose system at a fraction of the size and cost of incumbent systems.
No other system comes close to the span range, portability or breadth of capability of EasiBridge platforms. EasiBridge could transform
techniques employed in military engineering for generations to come.
EasiBridge strength and range of capabilities are unique.
It promises to be revolutionary.
Options for Advancing the Project
EasiBridge has been developed by Bright Structures Ltd, a micro-SME founded in January 2016.
Doctor Stephen Bright is the sole director and employee, with no other stakeholders. All work-to-date has been financed in-house, with
recent support from Innovate UK and MoD DASA Accelerator development grants.
Scale-up funding is now sought to bring the Tactical Assault Bridge and wider Super-Kit capabilities to market. EasiBridge offers an
exceptional business case for private sector investment. Expressions of interest from prospective backers are now sought – contact
[email protected].
First sales revenue has now been secured, with a sizable order for Engineer Trials from the UK MoD. By 2020, all further growth and R&D
activity is expected to be organic & self-financing – EasiBridge® is expected to be self-sufficient from the 2nd quarter of 2019.
New product development will remain a core business activity – Bright Structures was founded on innovation. The broad product range
ensures Bright Structures offers an innovative business capable of sustained innovation.

206.

The Army could benefit from a significant increase in capability. EasiBridge is an ideal candidate for streamlined low-cost procurement,
capabilities being acquired incrementally as operational circumstances evolve.
Additional videos are at the link below
https://www.youtube.com/channel/UCDYa_fkwp3Kq7msL4sNCcPA/
Table of Contents
1.
Strategic Trends and Operations in Urban Areas
2.
The EasiBridge System
3.
Extending Utility – EasiBridge Super-Kits
4.
Summary and Look Forward
5.
Options for Advancing the Project
https://www.thinkdefence.co.uk/easibridge-lightweight-tactical-bridging-innovation/

207.

208.

209.

210.

211.

Рис На рисунке показан узел гасителе динамических колебаний для применения испытания
демпфирующих сдвиговых компенсаторов для строительных конструкций, покрытых повышение
сейсмостойкости и взрывостойкости достигается за счет перемещения ,сдвига - сдвиговых
компенсаторов строительных систем , выполненных в виде болтовых соединений, в которых анкер,
расположенный в изолирующей трубе или в свинцовой обойме, снабжен скользящим тросовым
дугообразным зажимом и амортизирующими элементами в виде свинцового или из красной меди
стопорного энергопоглощающего клина, забитого в паз анкера, пропиленного в нижней части ( шпильки )
последнего.
При землетрясении или взрыве тросовой зажим начинает скользить по анкеру, расположенному в
свинцовой обойме ( медной или тросовой гильзы вокруг шпильки) и стопорного клина, поглощая при
этом сейсмическую, предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов
В районах с сейсмичностью более 9 баллов при динамических, импульсных растягивающих нагрузках для
поглощения сейсмической энергии необходимо использование фрикционно-демпфирующих
компенсаторов, соединенных с помощью фланцевых фрикционно-подвижных демпфирующих
компенсаторов (с учетом сдвиговой прочности), согласно заявки на изобретение: " Фрикционно демпфирующий компенсатор для трубопроводов" F 16L 23/00 , регистрационный № 2021134630 (ФИПС),
от 25.11.2021, входящий № 073171, "Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами", Минск № а 20210217 от 28 декабря 2021 , "Компенсатор для трубопроводов "
Минск , регистрационный № а 20210354 от 27 декабря 2021. , при импульсных растягивающих нагрузках
с использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением из
латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными
лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде
вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755,
1174616 При сбрасывании, сдвиге строительных конструкций , с применением фрикционно-

212.

подвижных болтовых соединений для обеспечения сейсмостойкости конструкций здания: масса
строительной системы уменьшается, частота собственных колебаний увеличивается, а
сейсмическая нагрузка падает

213.

214.

215.

216.

217.

218.

219.

Электронный документ

220.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

221.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
46
Транспортировка
и
47
хранение
элементов
и
деталей,

222.

законсервированных грунтовкой ВЖС 83-02-87
6.5
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51

223.

1. ВВЕДЕНИЕ
Современный подход к проектированию сооружений, подверженных экстремальным, в частности, сейсмическим нагрузкам исходит из
целенаправленного проектирования предельных состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название
проектирования сооружений с заданными параметрами предельных состояний. Возможны различные технические реализации отмеченного
подхода. Во всех случаях в конструкции создаются узлы, в которых от экстремальных нагрузок могут возникать неупругие смещения
элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как правило, нарушается, однако исключается его обрушение.
Эксплуатационные качества сооружения должны легко восстанавливаться после экстремальных воздействий. Для обеспечения указанного
принципа проектирования и были предложены фрикционно-подвижные болтовые соединения.
Под фрикционно-подвижными соединениями (ФПС) понимаются соединения металлоконструкций высокопрочными болтами,
отличающиеся тем, что отверстия под болты в соединяемых деталях выполнены овальными вдоль направления действия экстремальных
нагрузок. При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на величину до 3-4 диаметров используемых
высокопрочных болтов. Работа таких соединений имеет целый ряд особенностей и существенно влияет на поведение конструкции в целом.
При этом во многих случаях оказывается возможным снизить затраты на усиление сооружения, подверженного сейсмическим и другим
интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа проектирования мостовых конструкций с
заданными параметрами предельных состояний. В 1985-86 г.г. эти соединения были защищены авторскими свидетельствами [16-19].
Простейшее стыковое и нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных соединений на высокопрочных
болтах предложенные в упомянутых работах отличаются тем, что болты пропущены через овальные отверстия. По замыслу авторов при
экстремальных нагрузках должна происходить взаимная подвижка соединяемых деталей вдоль овала, и за счет этого уменьшаться пиковое
значение усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в строительных конструкциях и ранее,
например, можно указать предложения [8, 10 и др]. Однако в упомянутых работах овальные отверстия устраивались с целью упрощения
монтажных работ. Для реализации принципа проектирования конструкций с заданными параметрами предельных состояний необходимо
фиксировать предельную силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс натяжения N=20-50 кН, что не позволяет
прогнозировать несущую способность такого соединения по трению. При использовании же высокопрочных болтов при том же N
натяжение N= 200 - 400 кН, что в принципе может позволить задание и регулирование несущей способности соединения. Именно эту цель
преследовали предложения [3,14-17].

224.

Рис.1.1. Принципиальная схема фрикционно-подвижного
соединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания ФПС показали, что рассматриваемый
класс соединений не обеспечивает в общем случае стабильной работы конструкции. В процессе подвижки возможна заклинка соединения,
оплавление контактных поверхностей соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта. Отмеченные
исследования позволили выявить способы обработки соединяемых листов, обеспечивающих стабильную работу ФПС. В частности,
установлена недопустимость использования для ФПС пескоструйной обработки листов пакета, рекомендованы использование обжига листов,
нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали, что расчету и проектированию

225.

сооружений должны предшествовать детальные исследования самих соединений. Однако, до настоящего времени в литературе нет еще
систематического изложения общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых ФПС.
Сложившаяся ситуация сдерживает внедрение прогрессивных соединений в практику строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в сейсмостойком строительстве, однако, для
этого необходимо детально изложить, а в отдельных случаях и развить теорию работы таких соединений, методику инженерного расчета
самих ФПС и сооружений с такими соединениями. Целью, предлагаемого пособия является систематическое изложение теории работы ФПС
и практических методов их расчета. В пособии приводится также и технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что надежные и долговечные машины,
оборудование и приборы могут быть созданы только при удачном решении теоретических и прикладных задач
сухого и вязкого трения, смазки и износа, т.е. задач трибологии и триботехники.
Трибология – наука о трении и процессах, сопровождающих трение (трибос – трение, логос – наука).
Трибология охватывает экспериментально-теоретические результаты исследований физических (механических,
электрических, магнитных, тепловых), химических, биологических и других явлений, связанных с трением.
Триботехника – это система знаний о практическом применении трибологии при проектировании,
изготовлении и эксплуатации трибологических систем.
С трением связан износ соприкасающихся тел – разрушение поверхностных слоев деталей подвижных
соединений, в т.ч. при резьбовых соединениях. Качество соединения определяется внешним трением в витках
резьбы и в торце гайки и головки болта (винта) с соприкасающейся деталью или шайбой. Основная
характеристика крепежного резьбового соединения – усилие затяжки болта (гайки), - зависит от значения и
стабильности моментов сил трения сцепления, возникающих при завинчивании. Момент сил сопротивления
затяжке содержит две составляющих: одна обусловлена молекулярным воздействием в зоне фактического

226.

касания тел, вторая – деформированием тончайших поверхностей слоев контактирующими микронеровностями
взаимодействующих деталей.
Расчет этих составляющих осуществляется по формулам, содержащим ряд коэффициентов, установленных
в результате экспериментальных исследований. Сведения об этих формулах содержатся в Справочниках
«Трение, изнашивание и смазка» [22](в двух томах) и «Полимеры в узлах трения машин и приборах» [13],
изданных в 1978-1980 г.г. издательством «Машиностроение». Эти Справочники не потеряли своей
актуальности и научной обоснованности и в настоящее время. Полезный для практического использования
материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее трение, пограничное трение; виды
сухого трения.
Трение

физическое
явление,
возникающее
при
относительном
движении
соприкасающихся
газообразных, жидких и твердых тел и вызывающее сопротивление движению тел или переходу из состояния
покоя в движение относительно конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде, а также при наличии смазки в
области механического контакта твердых тел.
При учете трения (сухого или вязкого) различают внешнее трение и внутренне трение.
Внешнее трение возникает при относительном перемещении двух тел, находящихся в соприкосновении,
при этом сила сопротивления движению зависит от взаимодействия внешних поверхностей тел и не зависит от

227.

состояния внутренних частей каждого тела. При внешнем трении переход части механической энергии во
внутреннюю энергию тел происходит только вдоль поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц одного и того же тела (твердого,
жидкого или газообразного). Например, внутреннее трение возникает при изгибе металлической пластины или
проволоки, при движении жидкости в трубе (слой жидкости, соприкасающийся со стенкой трубы, неподвижен,
другие слои движутся с разными скоростями и между ними возникает трение). При внутреннем трении часть
механической энергии переходит во внутреннюю энергию тела.
Внешнее трение в чистом виде возникает только в случае соприкосновения твердых тел без смазочной
прослойки между ними (идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не
отличается от механизма внутреннего трения в жидкости. Если толщина смазки менее 0,1 мм, то трение
называют пограничным (или граничным). В этом случае учет трения ведется либо с позиций сухого трения,
либо с точки зрения вязкого трения (это зависит от требуемой точности результата).
В истории развития понятий о трении первоначально было получено представление о внешнем трении.
Понятие о внутреннем трении введено в науку в 1867 г. английским физиком, механиком и математиком
Уильямом Томсоном (лордом Кельвиным).1)
Законы сухого трения
1)
*Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения в котором перешел в Кембриджский университет и
закончил его в 21 год; в 22 года он стал профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии наук, а в 1851 г.
(в 27 лет) он стал членом Лондонского королевского общества и 5 лет был его президентом+.

228.

Сухое трение впервые наиболее полно изучал Леонардо да Винчи (1452-1519). В 1519 г. он сформулировал
закон трения: сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна
нагрузке (силе прижатия тел), при этом коэффициент пропорциональности – величина постоянная и равна
0,25:
F 0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским механиком и физиком Гийомом
Амонтоном2), который ввел в науку понятие коэффициента трения как французской константы и предложил
формулу силы трения скольжения:
F f N.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной плоскости) впервые предложил
формулу:
f tg ,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения Леонарда да Винчи – Амонтона:
F f N,
впервые получил формулу для случая прямолинейного равноускоренного движения тела по наклонной
плоскости:
f tg
2S
g t 2 cos 2
,
где t – промежуток времени движения тела по плоскости на участке длиной S;
g – ускорение свободно падающего тела.
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.

229.

Окончательную формулировку законов сухого трения дал в 1781 г. Шарль Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами работ ученых XIX и XX веков,
которые более полно раскрыли понятия силы трения покоя (силы сцепления) и силы трения скольжения, а
также понятия о трении качения и трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы Кулона, учитывая все новые и
новые результаты физико-химических исследований явления трения. Из этих исследований наиболее важными
являются исследования природы трения.
Кратко о природе сухого трения можно сказать следующее. Поверхность любого твердого тела обладает
микронеровностями, шероховатостью [шероховатость поверхности оценивается «классом шероховатости» (14
классов) – характеристикой качества обработки поверхности: среднеарифметическим отклонением профиля
микронеровностей от средней линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел – источник трения. К этому
добавляются силы молекулярного сцепления между частицами, принадлежащими разным телам, вызывающим
прилипание поверхностей (адгезию) тел.
Работа внешней силы, приложенной к телу, преодолевающей молекулярное сцепление и деформирующей
микронеровности, определяет механическую энергию тела, которая затрачивается частично на деформацию
(или даже разрушение) микронеровностей, частично на нагревание трущихся тел (превращается в тепловую
энергию), частично на звуковые эффекты – скрип, шум, потрескивание и т.п. (превращается в акустическую
энергию).
В последние годы обнаружено влияние трения на электрическое и электромагнитное поля молекул и
атомов соприкасающихся тел.
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук

230.

Для решения большинства задач классической механики, в которых надо учесть сухое трение, достаточно
использовать те законы сухого трения, которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона) даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по поверхности тела В всегда направлена в
сторону, противоположную скорости тела А относительно тела В, а сила сцепления (трения покоя) направлена
в сторону, противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения скольжения не совпадает с
линией действия вектора скорости. (Изотропным называется сухое трение, характеризующееся одинаковым
сопротивлением движению тела по поверхности другого тела в любом направлении, в противном случае сухое
трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную поверхность (или нормальной
реакции этой поверхности), при этом коэффициент трения скольжения принимается постоянным и
определяется опытным путем для каждой пары соприкасающихся тел. Коэффициент трения скольжения
зависит от рода материала и его физических свойств, а также от степени обработки поверхностей
соприкасающихся тел:
FСК fСК N
(рис. 2.1 в).

231.

Y
Y
Fск
tg =fск
N
N
V
Fск
X
G
X
G
а)
N
Fсц
б)
в)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на опорную поверхность (или
нормальной реакции этой поверхности) и не может быть больше максимального значения, определяемого
произведением коэффициента сцепления на силу давления (или на нормальную реакцию опорной
поверхности):
FСЦ fСЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в момент перехода тела из
состояния покоя в движение, всегда больше коэффициента трения скольжения для одной и той же пары
соприкасающихся тел:
f СЦ f СК .
Отсюда следует, что:
max
FСЦ
FСК ,
поэтому график изменения силы трения скольжения от времени движения тела, к которому приложена эта
сила, имеет вид (рис.2.2).

232.

При переходе тела из состояния покоя в движение сила трения скольжения за очень короткий промежуток
max до F
времени изменяется от FСЦ
СК (рис.2.2). Этим промежутком времени часто пренебрегают.
В последние десятилетия экспериментально показано, что коэффициент трения скольжения зависит от
скорости (законы Кулона установлены при равномерном движении тел в диапазоне невысоких скоростей – до
fсц
max
Fсц
Fск
fск
V
t
V0
Рис. 2.2
Vкр
Рис. 2. 3
10 м/с).
v0
Эту зависимость качественно можно проиллюстрировать графиком f СК ( v ) (рис.2.3).
- значение скорости, соответствующее тому моменту времени, когда сила FСК достигнет своего
нормального значения FСК fСК N ,
v КР
- критическое значение скорости, после которого происходит незначительный рост (на 5-7 %)
коэффициента трения скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот эффект впоследствии был
подтвержден исследованиями других ученых).

233.

Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в основном, справедливы, на основе
адгезионной теории трения предложил новую формулу для определения силы трения скольжения
(модернизировав предложенную Кулоном формулу):
FСК fСК N S p0 .
[У Кулона: FСК fСК N А , где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел (контактная площадь), р0 - удельная (на
единицу площади) сила прилипания или сцепления, которое надо преодолеть для отрыва одной поверхности
от другой.
Дерягин также показал, что коэффициент трения скольжения зависит от нагрузки N (при соизмеримости
сил N
и
S p0 )
-
fСК ( N ) , причем при увеличении
N он уменьшается (бугорки микронеровностей
деформируются и сглаживаются, поверхности тел становятся менее шероховатыми). Однако, эта зависимость
учитывается только в очень тонких экспериментах при решении задач особого рода.
Во многих случаях S p0 N , поэтому в задачах классической механики, в которых следует учесть силу
сухого трения, пользуются, в основном, законом Кулона, а значения коэффициента трения скольжения и
коэффициента сцепления определяют по таблице из справочников физики (эта таблица содержит значения
коэффициентов, установленных еще в 1830-х годах французским ученым А.Мореном (для наиболее
распространенных материалов) и дополненных более поздними экспериментальными данными. [Артур Морен
(1795-1880) – французский математик и механик, член Парижской академии наук, автор курса прикладной
механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения скольжения составляет с прямой, по
которой направлена скорость материальной точки угол:

234.

arctg
Fn
,

где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и касательную к траектории
материальной точки, при этом модуль вектора FCK определяется формулой: FCK Fn2 Fτ2 . (Значения Fn и Fτ
определяются по методике Минкина-Доронина).
Трение качения
При качении одного тела по другому участки поверхности одного тела кратковременно соприкасаются с
различными участками поверхности другого тела, в результате такого контакта тел возникает сопротивление
качению.
В конце XIX и в первой половине XX века в разных странах мира были проведены эксперименты по
определению сопротивления качению колеса вагона или локомотива по рельсу, а также сопротивления
качению роликов или шариков в подшипниках.
В результате экспериментального изучения этого явления установлено, что сопротивление качению (на
примере колеса и рельса) является следствием трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя соприкасающихся тел (деформация
требует затрат энергии);
2) зацепление бугорков неровностей и молекулярное сцепление (являющиеся в то же время причиной
возникновения качения колеса по рельсу);
3) трение скольжения при неравномерном движении колеса (при ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное влияние всех трех факторов учитывается общим коэффициентом трения качения.

235.

Изучая трение качения, как это впервые сделал Кулон, гипотезу абсолютно твердого тела надо отбросить
и рассматривать деформацию соприкасающихся тел в области контактной площадки.
Так как равнодействующая N реакций опорной поверхности в точках зоны контакта смещена в сторону
скорости центра колеса, непрерывно набегающего на впереди лежащее микропрепятствие (распределение
реакций в точках контакта несимметричное – рис.2.4), то возникающая при этом пара сил N и G ( G - сила
тяжести) оказывает сопротивление качению (возникновение качения обязано силе сцепления FСЦ , которая
образует вторую составляющую полной реакции опорной поверхности).
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
Fсопр

C
Момент пары сил N , G называется моментом сопротивления качению.
Плечо пары сил «к» называется коэффициентом трения качения. Он имеет
размерность длины.
Fсц
N
Рис. 2.5
Момент сопротивления качению определяется формулой:

236.

MC N k ,
где N - реакция поверхности рельса, равная вертикальной нагрузке на колесо с учетом его веса.
Колесо, катящееся по рельсу, испытывает сопротивление движению, которое можно отразить силой
сопротивления Fсопр , приложенной к центру колеса (рис.2.5), при этом: Fсопр R N k , где R – радиус колеса,
откуда
Fсопр N
k
N h,
R
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h k во много раз меньше коэффициента трения
R
скольжения для тех же соприкасающихся тел, то сила Fсопр на один-два порядка меньше силы трения
скольжения. (Это было известно еще в древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел роликовый и шариковый
подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N показывают без смещения в
сторону скорости (колесо и рельс рассматриваются условно как абсолютно твердые тела).
Повышение
угловой
скорости
качения
вызывает
рост
сопротивления
качению.
Для
колеса
железнодорожного экипажа и рельса рост сопротивления качению заметен после скорости колесной пары 100
км/час и происходит по параболическому закону. Это объясняется деформациями колес и гистерезисными
потерями, что влияет на коэффициент трения качения.
Трение верчения

237.

Трение верчения возникает при вращении тела, опирающегося на некоторую
поверхность. В этом случае следует рассматривать зону контакта тел, в точках
которой возникают силы трения скольжения FСК (если контакт происходит в одной
Fск
Fск
r
О
точке, то трение верчения отсутствует – идеальный случай) (рис.2.6).
А – зона контакта вращающегося тела, ось вращения которого перпендикулярна
Fск
к плоскости этой зоны. Силы трения скольжения, если их привести к центру круга
(при изотропном трении), приводятся к паре сил сопротивления верчению, момент
Рис. 2.6.
которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или оси стрелки компаса острием и
опорной плоскостью. Момент сопротивления верчению стремятся уменьшить, используя для острия и опоры
агат, рубин, алмаз и другие хорошо отполированные очень прочные материалы, для которых коэффициент
трения скольжения менее 0,05, при этом радиус круга опорной площадки достигает долей мм. (В наручных
часах, например, М сопр менее 5 10 5 мм).
Таблица коэффициентов трения скольжения и качения.
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01

238.

Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
Молекулярное сцепление приводит к образованию связей между трущимися парами. При сдвиге они
разрушаются. Из-за шероховатости поверхностей трения контактирование пар происходит площадками. На
площадках с небольшим давлением имеет место упругая, а с большим давлением - пластическая деформация.
Фактическая площадь соприкасания пар представляется суммой малых площадок. Размеры площадок контакта
достигают 30-50 мкм. При повышении нагрузки они растут и объединяются. В процессе разрушения контактных
площадок выделяется тепло, и могут происходить химические реакции.
Различают три группы износа: механический - в форме абразивного износа, молекулярно-механический - в
форме пластической деформации или хрупкого разрушения и коррозийно-механический - в форме
коррозийного и окислительного износа. Активным фактором износа служит газовая среда, порождающая
окислительный износ. Образование окисной пленки предохраняет пары трения от прямого контакта и
схватывания.
Важным фактором является температурный режим пары трения. Теплота обусловливает физикохимические процессы в слое трения, переводящие связующие в жидкие фракции, действующие как смазка.
Металлокерамические материалы на железной основе способствуют повышению коэффициента трения и
износостойкости.
Важна быстрая приработка трущихся пар. Это приводит к быстрому локальному износу и увеличению
контурной площади соприкосновения тел. При медленной приработке локальные температуры приводят к

239.

нежелательным местным изменениям фрикционного материала. Попадание пыли, песка и других инородных
частиц из окружающей среды приводит к абразивному разрушению не только контактируемого слоя, но и
более глубоких слоев. Чрезмерное давление, превышающее порог схватывания, приводит к разрушению
окисной пленки, местным вырывам материала с последующим, абразивным разрушением поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий эксплуатации: давление
поверхностей трения, скорость относительного скольжения пар, длительность одного цикла нагружения,
среднечасовое число нагружений, температура контактного слоя трения.
Главные требования, предъявляемые к трущимся парам, включают стабильность коэффициента трения,
высокую износостойкость пары трения, малые модуль упругости и твердость материала, низкий коэффициент
теплового расширения, стабильность физико-химического состава и свойств поверхностного слоя, хорошая
прирабатываемость фрикционного материала, достаточная механическая прочность, антикоррозийность,
несхватываемость, теплостойкость и другие фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии изготовления фрикционных элементов;
отклонения размеров отдельных деталей, даже в пределах установленных допусков; несовершенство
конструктивного исполнения с большой чувствительностью к изменению коэффициента трения.
Абразивный износ фрикционных пар подчиняется следующим закономерностям. Износ пропорционален
пути трения s,
=ks s,
(2.1)
а интенсивность износа— скорости трения
k s v
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу пути трения пропорциональна
удельной нагрузке р,

240.

kp p
s
(2.3)
Мера интенсивности износа рv не должна превосходить нормы, определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется интегральной функцией времени
или пути трения
t
s
k p pvdt k p pds .
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален работе сил трения W
k w W
kp
f
s
W ; W Fds .
(2.5)
0
Здесь сила трения F=f N = f p ; где
f – коэффициент трения, N – сила нормального давления; -
контурная площадь касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за период колебаний Т == 2л/
определяется силой трения F и амплитудой колебаний а
W= 4F а.
(2.6)
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС

241.

3.1. Исходные посылки для разработки методики расчета ФПС
Исходными посылками для разработки методики расчета ФПС являются экспериментальные
исследования одноболтовых нахлесточных соединений [13], позволяющие вскрыть основные
особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг. были выполнены
экспериментальные исследования деформирования нахлесточных соединений такого типа.
Анализ полученных диаграмм деформирования позволил выделить для них 3 характерных стадии
работы, показанных на рис. 3.1.
На
первой
стадии
нагрузка
Т не превышает несущей способности соединения [Т],
рассчитанной как для обычного соединения на фрикционных
высокопрочных болтах.
На второй стадии Т > [Т] и происходит преодоление сил
трения по контактным плоскостям соединяемых элементов
при сохраняющих неподвижность шайбах высокопрочных
болтов. При этом за счет деформации болтов в них растет
сила натяжения, и как следствие растут силы трения по всем
плоскостям контактов.
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
На третьей стадии происходит срыв с места одной из шайб и
дальнейшее взаимное смещение соединяемых элементов. В
процессе подвижки наблюдается интенсивный износ во всех
контактных парах, сопровождающийся падением натяжения

242.

болтов и, как следствие, снижение несущей способности соединения.
В процессе испытаний наблюдались следующие случаи выхода из строя ФПС:
• значительные взаимные перемещения соединяемых деталей, в результате которых болт
упирается в край овального отверстия и в конечном итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
• значительные пластические деформации болта, приводящие к его необратимому удлинению
и исключению из работы при “обратном ходе" элементов соединения;
• значительный износ контактных поверхностей, приводящий к ослаблению болта и падению
несущей способности ФПС.
Отмеченные результаты экспериментальных исследований представляют двоякий интерес
для описания работы ФПС. С одной стороны для расчета усилий и перемещений в элементах
сооружений с ФПС важно задать диаграмму деформирования соединения. С другой стороны
необходимо определить возможность перехода ФПС в предельное состояние.
Для описания диаграммы деформирования наиболее существенным представляется факт
интенсивного износа трущихся элементов соединения, приводящий к падению сил натяжения
болта и несущей способности соединения. Этот эффект должен определять работу как стыковых,
так и нахлесточных ФПС. Для нахлесточных ФПС важным является и дополнительный рост сил
натяжения вследствие деформации болта.
Для оценки возможности перехода соединения в предельное состояние необходимы
следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент закрытия зазора ФПС;

243.

г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие, что закрытие зазора
приводит к недопустимому росту ускорений в конструкции, то проверки (б) и (в) заменяются
проверкой, ограничивающей перемещения ФПС и величиной фактического зазора в соединении
u0 .
Решение вопроса об износе контактных поверхностей ФПС и подвижке в соединении должно
базироваться на задании диаграммы деформирования соединения, представляющей зависимость
его несущей способности Т от подвижки в соединении s. Поэтому получение зависимости Т(s)
является основным для разработки методов расчета ФПС и сооружений с такими соединениями.
Отмеченные особенности учитываются далее при изложении теории работы ФПС.
3.2. Общее уравнение для определения несущей способности ФПС
Для построения общего уравнения деформирования ФПС обратимся к более сложному случаю
нахлесточного соединения, характеризующегося трехстадийной диаграммой деформирования. В
случае стыкового соединения второй участок на диаграмме Т(s) будет отсутствовать.
Первая стадия работы ФПС не отличается от работы обычных фрикционных соединений. На
второй и третьей стадиях работы несущая способность соединения поменяется вследствие
изменения натяжения болта. В свою очередь натяжение болта определяется его деформацией (на
второй стадии деформирования нахлесточных соединений) и износом трущихся поверхностей
листов пакета при их взаимном смещении. При этом для теоретического описания диаграммы
деформирования воспользуемся классической теорией износа [5, 14, 23], согласно которой
скорость износа V пропорциональна силе нормального давления (натяжения болта) N:

244.

(3.1)
V K N,
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в виде:
(3.2)
N N0 a N1 N2
здесь N 0 - начальное -натяжение болта, а - жесткость болта;
a
EF , где l - длина болта, ЕF - его погонная жесткость,
l
N1 k f ( s ) - увеличение натяжения болта вследствие его деформации;
N2 ( s ) - падение натяжения болта вследствие его пластических деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки N1 N 2 0 .
Если пренебречь изменением скорости подвижки, то скорость V можно представить в виде:
V
d d ds
V ср ,
dt
ds dt
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a k N0 к f ( s ) ( s ) ,
где k K / Vср .
Решение уравнения (3.4) можно представить в виде:
k N0 a
1
1 e
kas
k e ka( s z ) k f ( z ) ( z ) dz ,
s
0
или
(3.4)

245.

s
0
k N0 a 1 e kas k k f ( z ) ( z ) ekazdz N0 a 1 .
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно упрощается, так как в этом
случае N 1 N 2 0 , и обращаются в 0 функции f ( z ) и ( z ) , входящие в (3.5). С учетом сказанного
использование интеграла. (3.5) позволяет получить следующую формулу для определения
величины износа :
1 e kas k N0 a 1
(3.6)
Падение натяжения N при этом составит:
N 1 e kas k N0 ,
а
несущая
(3.7)
способность
соединений
определяется
по
формуле:
T T0 f N T0 f 1 e kas k N 0 a 1
Как
видно
(3.8)
T0 1 1 e kas k a 1 .
из
полученной
формулы
относительная
несущая способность соединения КТ =Т/Т0 определяется всего
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
двумя параметрами - коэффициентом износа k и жесткостью
болта на растяжение а. Эти параметры могут быть заданы с
достаточной точностью и необходимые для этого данные
имеются в справочной литературе.

246.

На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24 мм и коэффициента износа
k~5×10-8 H-1 при различных значениях толщины пакета l, определяющей жесткость болта а. При
этом для наглядности несущая способность соединения Т отнесена к своему начальному значению
T0, т.е. графические зависимости представлены в безразмерной форме. Как видно из рисунка, с
ростом толщины пакета падает влияние износа листов на несущую способность соединений. В
целом падение несущей способности соединений весьма существенно и при реальных величинах
подвижки s 2 3см составляет для стыковых соединений 80-94%. Весьма существенно на
характер падений несущей способности соединения сказывается коэффициент износа k. На
рис.3.3 приведены зависимости несущей способности соединения
от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение
несущей
способности
соединения
превосходит
50%.
Такое
падение натяжения должно приводить к существенному росту
взаимных смещений соединяемых деталей и это обстоятельство
Рис.3.3. Падение несущей способности ФПС в
зависимости от величины подвижки для болта
24 мм при коэффициенте износа k=3 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
должно учитываться в инженерных расчетах. Вместе с тем
рассматриваемый эффект будет приводить к снижению нагрузки,
передаваемой соединением. Это позволяет при использовании
ФПС в качестве сейсмоизолирующего элемента конструкции
рассчитывать усилия в ней, моделируя ФПС демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС

247.

Для
нахлесточных
ФПС
общее
решение
(3.5)
определяется
видом
функций
f(s) и
>(s).Функция f(s) зависит от удлинения болта вследствие искривления его оси. Если принять для
искривленной оси аппроксимацию в виде:
u( x ) s sin
x
2l
(3.9)
,
где x — расстояние от середины болта до рассматриваемой точки (рис. 3.3), то длина
искривленной оси стержня составит:
1
L
2
1
1
2
1
2
2
du
1 dx
dx
1
s 2 2
1
2
cos
8l 2 1
2
1
s 2 2
x
1 s
cos dx 1
cos
dx
2
4l
2l
2l
8
l
1
2
2
2
2 x
s 2 2
dx 1
.
2l
8l
2
Удлинение болта при этом определится по формуле:
l L l
s 2 2
.
8l
(3.10)
Учитывая, что приближенность представления (3.9) компенсируется коэффициентом k,
который
может
быть
определен
из
экспериментальных
данных,
получим
следующее
представление для f(s):
f(s) s
2
l
.
Для дальнейшего необходимо учесть, что деформирование тела болта будет иметь место
лишь до момента срыва его головки, т.е. при s < s0. Для записи этого факта воспользуемся
единичной функцией Хевисайда :

248.

f(s)
s2
( s s0 ).
l
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо учесть следующие ее
свойства:
1. пластика проявляется лишь при превышении подвижкой s некоторой величины Sпл, т.е. при
Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при котором напряжения в
стержне достигнут предела текучести, т.е.:
lim ( N0 кf ( s ) ( s )) 0 .
(3.12)
s
Указанным условиям удовлетворяет функция (s) следующего вида:
( s ) N пл ( NТ N пл ) ( 1 e q( s S пл ) ) 1 ( s s0 ) ( s S пл).
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к следующим зависимостям
износа листов пакета от перемещения s:
при s<Sпл
s
N0
k
2
2
( 1 e k1as ) s 2
s
1 e k1as ,
a
al
k1a
k1a 2
(3.14)
при Sпл< s<S0
( s ) I ( Sпл ) k1(
),
NT
N N пл
1 ek1a( S пл s ) T
k1a
k1 a
(3.15)
e ( S пл s ) ek1a( S пл s )
при s<S0
( s ) II ( S0 )
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
(3.16)

249.

Несущая способность соединения определяется при этом выражением:
(3.17)
T T0 fv a .
Здесь fv— коэффициент трения, зависящий в общем случае от скорости подвижки v. Ниже мы
используем
наиболее
распространенную
зависимость
коэффициента
трения
от
скорости,
записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная зависимость содержит 9 неопределенных параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны определяться из данных эксперимента.
В отличие от стыковых соединений в формуле (3.17) введено два коэффициента износа - на
втором участке диаграммы деформирования износ определяется трением между листами пакета и
характеризуется коэффициентом износа k1, на третьем участке износ определяется трением
между шайбой болта и наружным листом пакета; для его описания введен коэффициент износа
k2.
На рис. 3.4 приведен пример теоретической диаграммы деформирования при реальных
значениях параметров k1 = 0.00001; k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 =
300 кН. Как видно из рисунка, теоретическая диаграмма деформирования соответствует
описанным выше экспериментальным диаграммам.

250.

Рис. 3.4 Теоретическая диаграмма
деформирования ФПС

251.

26
4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами 48 мм

252.

ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы фактические
данные о параметрах исследуемых соединений. Экспериментальные исследования работы ФПС
достаточно трудоемки, однако в 1980-85 гг. такие исследования были начаты в НИИ мостов
А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s) для нескольких одноболтовых и
четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24, 27 и 48
мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм являются
наиболее распространенными. Однако при этом в соединении необходимо размещение слишком
большого количества болтов, и соединение становится громоздким. Для уменьшения числа
болтов необходимо увеличение их диаметра. Поэтому было рассмотрено ФПС с болтами
Рис. 4.1 Общий вид образцов

253.

наибольшего диаметра 48 мм. Общий вид образцов показан на рис. 4.1.
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД. Высокопрочные
болты
были
требованиями
изготовлены
[6].
тензометрическими
Контактные
поверхности
из
стали
40Х
пластин
были
"селект"
в
обработаны
соответствии
с
протекторной
цинкосодержащей грунтовкой ВЖС-41 после дробеструйной очистки. Болты были предварительно
протарированы с помощью электронного пульта АИ-1 и при сборке соединений натягивались по
этому же пульту в соответствии с тарировочными зависимостями ручным ключом на заданное
усилие натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на универсальном динамическом
стенде УДС-100 экспериментальной базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка
на ФПС обеспечивалась путем удара движущейся массы М через резиновую прокладку в рабочую
тележку, связанную с ФПС жесткой тягой. Масса и скорость тележки, а также жесткость
прокладки подбирались таким образом, чтобы при неподвижной рабочей тележке получился
импульс силы с участком, на котором сила сохраняет постоянное значение, длительностью около
150 мс. Амплитудное значение импульса силы подбиралось из условия некоторого превышения
несущей способности ФПС. Каждый образец доводился до реализации полного смещения по
овальному отверстию.
Во время испытаний на стенде и пресс-пульсаторах контролировались следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
• абсолютные скорости сдвига пластин ФПС;
• ускорение движения пластин ФПС и ударные массы (для испытаний на стенде).
После каждого нагружения проводился замер напряжения высокопрочного болта.

254.

Из полученных в результате замеров данных наибольший интерес представляют для нас
зависимости продольной силы, передаваемой на соединение (несущей способности ФПС), от
величины подвижки S. Эти зависимости могут быть получены теоретически по формулам,
приведенным выше в разделе 3. На рисунках 4.2 - 4.3 приведено графическое
Рис. 4.2, 4.3 Экспериментальные диаграммы
представление
полученных
ФПС. Из рисунков видно, что характер
деформирования
ФПС длядиаграмм
болтов 22деформирования
мм и 24 мм.
зависимостей Т(s) соответствует в целом принятым гипотезам и результатам теоретических
построений предыдущего раздела. В частности, четко проявляются три участка деформирования
соединения: до проскальзывания элементов соединения, после проскальзывания листов пакета и
после проскальзывания шайбы относительно наружного листа пакета. Вместе с тем, необходимо
отметить существенный разброс полученных диаграмм. Это связано, по-видимому, с тем, что в
проведенных испытаниях принят наиболее простой приемлемый способ обработки листов пакета.
Несмотря на наличие существенного разброса, полученные диаграммы оказались пригодными
для дальнейшей обработки.

255.

В результате предварительной обработки экспериментальных данных построены диаграммы
деформирования нахлесточных ФПС. В соответствии с ранее изложенными теоретическими
разработками эти диаграммы должны описываться уравнениями вида (3.14). В указанные
уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0 — коэффициент, определяющий влияние скорости на коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
k2— коэффициент износа по контакту листа и шайбы;
Sпл — предельное смещение, при котором возникают пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы болта относительно листа
пакета;
к — коэффициент, характеризующий увеличение натяжения болта вследствие геометрической
нелинейности его работы;
q

коэффициент,
характеризующий
уменьшение
натяжения
болта
вследствие
его
пластической работы.
Обработка экспериментальных данных заключалась в определении этих 9 параметров. При
этом параметры варьировались на сетке их возможных значений. Для каждой девятки значений
параметров по методу наименьших квадратов вычислялась величина невязки между расчетной и
экспериментальной диаграммами деформирования, причем невязка суммировалась по точкам
цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром 24 мм последние
варьировались в следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с шагом 0.1 с/мм;

256.

S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом 1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
На рис. 4.4 и 4.5 приведены
характерные
диаграммы
деформирования
ФПС,
полученные экспериментально и
соответствующие
теоретические
Сопоставление
Рис.4.4
Рис. 4.5
им
диаграммы.
расчетных
и
натурных данных указывают на
то, что подбором параметров ФПС
удается добиться хорошего совпадения натурных и расчетных диаграмм деформирования ФПС.
Расхождение диаграмм на конечном их участке обусловлено резким падением скорости подвижки
перед остановкой, не учитываемым в рамках предложенной теории расчета ФПС. Для болтов
диаметром 24 мм было обработано 8 экспериментальных диаграмм деформирования. Результаты
определения параметров соединения для каждой из подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f 0 N0 , к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
1

257.

Приведенные
в
5
6
7
8
14
6
8
8
35
11
20
15
таблице
4.1
результаты
статистически обработаны
и получены
0.1
0.2
0.2
0.3
8
12
19
9
4.2
9
16
2.5
0.0006 0.3 370 310
0.0000 0.3 120 100
0.0000
0.3 106 130
2
0.0002
0.35
154 75
1
8
вычислений
параметров
математические ожидания
соединения
были
и среднеквадратичные
отклонения для каждого из параметров. Их значения приведены в таблице 4.2. Как видно из
приведенной таблицы, значения параметров характеризуются значительным разбросом. Этот
факт затрудняет применение одноболтовых ФПС с рассмотренной обработкой поверхности (обжиг
листов пакета). Вместе с тем, переход от одноболтовых к многоболтовым соединениям должен
снижать разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое

1
ожидание
отклонение
k1 10 , КН9.25
2.76
6
1
k2 10 , кН21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
-1
q, мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38

258.

5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования одноболтовых ФПС позволяют
перейти к анализу многоболтовых соединений. Для упрощения задачи примем широко
используемое в исследованиях фрикционных болтовых соединений предположение о том, что
болты в соединении работают независимо. В этом случае математическое ожидание несущей
способности T и дисперсию DT (или среднеквадратическое отклонение T ) можно записать в виде:
T( s )
DT
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
( T T ) p1 p2 ... pk d 1d 2 ...d k
(5.1)
2
2
... T 2 p1 p2 ... pk d 1d 2 ...d k T
(5.2)
T DT
(5.3)
В приведенных формулах:

259.

T ( s , 1 , 2 ,... k )
- найденная выше зависимость несущей способности T от подвижки s и
параметров соединения i; в нашем случае в качестве параметров выступают коэффициент
износа k, смещение при срыве соединения S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по имеющимся данным нам
известны лишь среднее значение i и их стандарт (дисперсия).
Для дальнейших исследований приняты два возможных закона распределения параметров
ФПС: равномерное в некотором возможном диапазоне изменения параметров min i max и
нормальное. Если учесть, что в предыдущих исследованиях получены величины математических
ожиданий
i и
стандарта
i ,
то
соответствующие
функции
плотности
распределения
записываются в виде:
а) для равномерного распределения
pi
1
при 3 3
2 i 3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
1
i 2
e
a
i i
2 i 2
2
.
(5.5)
Результаты расчетного определения зависимостей T(s) и (s) при двух законах распределения
сопоставляются между собой, а также с данными натурных испытаний двух, четырех, и восьми
болтовых ФПС.
5.2. Построение уравнений деформирования стыковых многоболтовых ФПС

260.

Для вычисления несущей способности соединения сначала рассматривается более простое
соединение встык. Такое соединение характеризуется всего двумя параметрами - начальной
несущей
способностью
Т0 и коэффициентом износа k. При этом несущая способность
одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание несущей способности
соединения из п болтов составит:
k T 3
dk
dT
kas
T
e
2 k 3 2 T 3
3 k T 3
T0 T 3
T n
T0 T
nT0 e kas
sh( sa k 3 )
sa k
(5.7)
.
При нормальном законе распределения математическое ожидание несущей способности
соединения из п болтов определится следующим образом:
T n
kas
Te
1
T 2
e
( T T ) 2
2 T 2
1
k 2
e
( k k )2
2 k 2
dkdT
( k k )2
( T T ) 2
2
2
1
1
2 k
2 T
kas
n
Te
dT
e
e
dk
.
T 2
k 2
Если учесть, что для любой случайной величины x с математическим ожиданием x функцией
распределения р(х} выполняется соотношение:
x x p( x ) dx ,

261.

то первая скобка. в описанном выражении для вычисления несущей способности соединения
Т равна математическому ожиданию начальной несущей способности Т0. При этом:
T nT0
kas
1
( k k )2
2 k 2
e
k 2
dk .
Выделяя в показателе степени полученного выражения полный квадрат, получим:
T nT0
nT0
1
k 2
1
k 2
k k as k2 2 as k as k2
2 k2
e
2
dk
2
as 2
k k as k2
k
as k
2
2 k2
e
e
dk .
Подынтегральный член в полученном выражении с учетом множителя
1
k 2
представляет не
что иное, как функцию плотности нормального распределения с математическим ожиданием
k as k2
и среднеквадратичным отклонением k . По этой причине интеграл в полученном
выражении тождественно равен 1 и выражение для несущей способности соединения принимает
окончательный вид:
T nT0 e
ask
a 2 s 2 k2
2
.
(5.8)
Соответствующие принятым законам распределения дисперсии составляют:
для равномерного закона распределения

262.

T2
2
1 2 F ( 2 x ) F ( x ) ,
T0
2 2 ask
D nT0 e
где F ( x ) shx ; x sa k
x
(5.9)
3
для нормального закона распределения
2
2
2 1 A
A1
2
D n T0 T 1 ( A1 ) e T0 e 1 ( A ) ,
2
(5.10)
где A1 2 as( k2 as k ).
Представляет интерес сопоставить полученные зависимости с аналогичными зависимостями,
выведенными выше для одноболтовых соединений.
Рассмотрим,
прежде
всего,
характер
изменения
несущей
способности
ФПС
по
мере
увеличения подвижки s и коэффициента износа k для случая использования равномерного закона
распределения в соответствии с формулой (5.4). Для этого введем по аналогии с (5.4)
безразмерные характеристики изменения несущей способности:
относительное падение несущей способности
sh( x )
kas
T
x
1
e
nT0
.
(5.11)
коэффициент перехода от одноболтового к многоболтовому соединению
1
T
nT0 e
kas
sh( x )
.
x
(5.12)
Наконец для относительной величины среднеквадратичного отклонения с с использованием
формулы (5.9) нетрудно получить

263.

1
nT0 e kas
2
1
T2 sh2 x shx
1
.
2 2 x
n
x
T
0
(5.13)
Аналогичные зависимости получаются и для случая нормального распределения:
2
1 A
e 1 ( A ) ,
2
(5.14)
2 2
2
k s
1 2 kas
e
1 ( A ) ,
2
2
(5.15)
2
T2
1
1 A
A
1 2 1 ( A1 ) e 1 e 1 ( A ) ,
n
2
T0
(5.16)
где
2s2
A k 2 s ka ,
2
A1 2 As ( k2 sa k ) ,
( A )
2
A
e
z2
dz .
0
На рис. 5.1 - 5.2 приведены зависимости i и i от величины подвижки s. Кривые построены при
тех же значениях переменных, что использовались нами ранее при построении зависимости T/T0
для
одноболтового
зависимостям,
соединения.
полученным
для
Как
видно
одноболтовых
из
рисунков,
соединений,
зависимости
но
i ( k , s ) аналогичны
характеризуются
большей
плавностью, что должно благоприятно сказываться на работе соединения и конструкции в целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода i ( k , a , s ) . По своему смыслу математическое
ожидание несущей способности многоболтового соединения T получается из несущей способности одноболтового соединения Т1
умножением на , т.е.:
T T1
(5.17)

264.

Согласно (5.12) lim x 1 . В частности, 1 при неограниченном увеличении математического ожидания коэффициента
износа k или смещения s. Более того, при выполнении условия
k k 3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s, что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения условием (5.18).
Что касается нормального распределения, то возможность его применения определяется пределом:
lim 2
s
1
lim e ( kas A ) 1 ( A ) .
2 s
Для анализа этого предела учтем известное в теории вероятности соотношение:
x2
1 2 1
lim 1 x lim
e
.
x
x
x
2

265.

1=
а)
S, мм

266.

2=Т/nT0
Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины подвижки в соединении при различной
толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;

267.

1
а)
S, мм

268.

Коэффициент перехода 2
б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС от величины подвижки в соединении
при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм
С учетом сказанного получим:
A2
1
1 2 1
0.
lim 2 lim e kas A
e
s
s 2
A
2
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при любых соотношениях k и k.

269.

Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что разброс значений несущей способности
ФПС для случая обработки поверхностей соединяемых листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако
даже в этом случае применение ФПС вполне приемлемо, если перейти от одноболтовых к многоболтовым соединениям. Как следует из
полученных формул (5.13, 5.16), для среднеквадратичного отклонения 1 последнее убывает пропорционально корню из числа болтов. На
рисунке 5.3 приведена зависимость относительной величины среднеквадратичного отклонения 1 от безразмерного параметра х для
безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и T0 приняты в соответствии с данными выполненных
экспериментальных исследований. Как видно из графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не
превосходит 25%, что следует считать вполне приемлемым.
Рис.5.3. Зависимость относительного разброса несущей
способности ФПС от величины подвижки при различном
числе болтов n

270.

5.3. Построение уравнений деформирования нахлесточных многоболтовых
соединений
Распространение использованного выше подхода на расчет нахлесточных соединений достаточно громоздко из-за большого количества
случайных параметров, определяющих работу соединения. Однако с практической точки зрения представляется важным учесть лишь
максимальную силу трения Тmax, смещение при срыве соединения S0 и коэффициент износа k. При этом диаграмма деформирования
соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется линейной зависимостью. Для учета излома графика T(S) в точке S0 введена
функция :
1 при 0 S S 0
0 при S S 0
S , S 0
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k , S0 ) 1 ( S , S0 ) ,
где T1( S ) T0 ( Tmax T0 )
S
,
S0
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Математическое ожидание несущей способности нахлесточного соединения из n болтов определяется следующим интегралом:
T n
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax n I1 I 2
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22) представления для Т1 согласно (5.20) интеграл I1 может
быть представлен в виде суммы трех интегралов:
s
I 1 T0 ( Tmax T0 ) s , S 0 p( S 0 ) p( T0 ) p( Tmax )
S0
S0 T0 Tmax
dS 0 dT0 dTmax I 1,1 I 1,2 I 1,3
(5.23)

271.

где
I1,1
T0 p( T0 ) ( s ,S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0 s , S0 p( S0 )dS0 Tmax p( Tmax )dTmax
T0
S0
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
p( x )dx 1
и
xp( x )dx x ,
то получим
I 1,1 T ( s , S0 )p( S0 ) dS0 .
S0
Аналогично
I1,2
s
Tmax S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T max
( s , S0 )
S0
S0
p( S0 ) dS0 .
s
I1,3
T0 S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T0
S0
( s , S0 )
S0
p( S0 ) dS0 .
Если ввести функции

272.

1 ( s ) ( s , S 0 ) p( S 0 ) dS0
(5.24)
и
( s , S0 )
S0
1( s )
p( S 0 ) dS0 ,
(5.25)
то интеграл I1 можно представить в виде:
I 1 T 1( s ) ( T max T 0 )s 2 ( s ).
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся и примут вид:
1( s ) p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция 1 1 erf ( s ) , а функция записывается в виде:
( S0 S 0 )2
2
s
e
2 s2
S0
dS0 .
(5.29)
Для равномерного распределения функции 1 и 2 могут быть представлены аналитически:
1 при s S 0 s 3
1 S0 s 3 s при S 0 s 3 s S 0 s 3
0 при s S 0 s 3 .
(5.30)

273.

S0 s 3
1
ln
при s S 0 s 3
2 s 3 S 0 s 3
S0 s 3
1
2
ln
при S 0 s 3 s S 0 s 3
s
2
3
s
0 при s S 0 s 3
(5.31)
Аналитическое представление для интеграла (5.23) весьма сложно. Для большинства видов
распределений его целесообразно табулировать; для равномерного распределения интегралы I1 и
I2 представляются в замкнутой форме:
S0 s 3
S
ln
при S S 0 s 3
T 0 ( T max T 0 )
2 s 3 S 0 s 3
S0 s 3
S0 s 3
1
( T max T 0 )S ln
I1
T 0 S 0 s 3 S ln
(5.32)
s
s
2
3
s
при S 0 s 3 S S 0 s 3
0 при S S 0 3
s
0 при S S 0 s 3
I2 T m
F( S ) F( s 3 )
2 s 3
причем
(5.33)
при S S 0 s 3 ,
F ( x ) Ei ax( k k 3 ) Ei ax( k k 3 ) .
В
формулах
(5.32,
5.33)
Ei
-
интегральная
экспериментальных
исследований
показательная функция.
Полученные
многоболтовых
формулы
соединений
подтверждены
и
сейсмостойких конструкций с ФПС.
результатами
рекомендуются
к
использованию
при
проектировании

274.

6. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ
ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
диаметр по сечения
телу по резьбе
по
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
болта
16
201
157
12
15
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78

275.

ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения, подготовку
контактных поверхностей, транспортировку и хранение деталей, сборку соединений. Эти вопросы
освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ 22354-74,
шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям раздела 6.4 настоящего
пособия. Основные размеры в мм болтов, гаек и шайб и расчетные площади поперечных сечений
в мм2 приведены в табл.6.1.
Таблица 6.1.
Номина Расчетная Высота Высот Разме Диамет
льный
диаметр
болта
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут
нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50

276.

24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в
соответствии с данными табл.6.2.
Таблица 6.2.
Номинальна Длина резьбы 10
16 18 20 22
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50
65
38 42 46 50
70
38 42 46 50
75
38 42 46 50
80
38 42 46 50
85
38 42 46 50
90
38 42 46 50
95
38 42 46 50
100
38 42 46 50
105
38 42 46 50
110
38 42 46 50
115
38 42 46 50
120
38 42 46 50
125
38 42 46 50
при номинальном диаметре
24 27 30 36 42 48
*
54
54
54
54
54
54
54
54
54
54
54
54
54
60
60
60
60
60
60
60
60
60
60
60
60
66
66
66
66
66
66
66
66
66
66
66
78
78
78
78
78
78
78
78
90
90
90
90
90
102
102
102
102

277.

130
38 42 46 50 54 60 66 78 90 102
140
38 42 46 50 54 60 66 78 90 102
150
38 42 46 50 54 60 66 78 90 102
160,
170,
190,
200, 44 48 52 56 60 66 72 84 96 108
180
240,260,280,
Примечание: знаком220
* отмечены болты с резьбой по всей длине стержня.
300
Для консервации контактных поверхностей стальных деталей следует применять
фрикционный грунт ВЖС 83-02-87 по ТУ. Для нанесения на опорные поверхности шайб
методом плазменного напыления антифрикционного покрытия следует применять в
качестве материала подложки интерметаллид ПН851015 по ТУ-14-1-3282-81, для несущей
структуры - оловянистую бронзу БРОФ10-8 по ГОСТ, для рабочего тела - припой ПОС-60 по
ГОСТ.
Примечание:
Приведенные
данные
действительны
при
сроке
хранения
несобранных
конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В
конструкциях
соединений
должна
быть
обеспечена
возможность
свободной
постановки болтов, закручивания гаек и плотного стягивания пакета болтами во всех
местах их постановки с применением динамометрических ключей и гайковертов.
Номинальные диаметры круглых и ширина овальных отверстий в элементах для
пропуска высокопрочных болтов принимаются по табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
х геометрию

278.

Не
20
23
25
28
30
33
36
40
45
52
элементах
для
пропуска
определяющи
Длины овальных
х геометрию
отверстий
в
высокопрочных
болтов
назначают по результатам вычисления максимальных абсолютных смещений соединяемых
деталей для каждого ФПС по результатам предварительных расчетов при обеспечении
несоприкосновения болтов о края овальных отверстий, и назначают на 5 мм больше для
каждого возможного направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС устанавливают с учетом
назначения ФПС и направления смещений соединяемых элементов.
При необходимости в пределах одного овального отверстия может быть размещено
более одного болта.
Все контактные поверхности деталей ФПС, являющиеся внутренними для ФПС, должны
быть обработаны грунтовкой ВЖС 83-02-87 после дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей деталей ФПС, которые
являются внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины соединяемых пакета
соединяемых деталей.
Во всех случаях несущая способность основных элементов конструкции, включающей
ФПС, должна быть не менее чем на 25% больше несущей способности ФПС на фрикционнонеподвижной стадии работы ФПС.

279.

Минимально допустимое расстояние от края овального отверстия до края детали
должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
В соединениях прокатных профилей с непараллельными поверхностями полок или при
наличии непараллельности наружных плоскостей ФПС должны применяться клиновидные
шайбы, предотвращающие перекос гаек и деформацию резьбы.
Конструкции ФПС и конструкции, обеспечивающие соединение ФПС с основными
элементами сооружения, должны допускать возможность ведения последовательного не
нарушающего связности сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и методы ко нтроля.
Рабочие контактные поверхности элементов и деталей ФПС должны быть подготовлены
посредством либо пескоструйной очистки в соответствии с указаниями ВСН 163-76, либо
дробеструйной очистки в соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть удалены заусенцы, а также
другие дефекты, препятствующие плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под навесом, или на открытой
площадке при отсутствии атмосферных осадков.
Шероховатость поверхности очищенного металла должна находиться в пределах 25-50
мкм.
На очищенной поверхности не должно быть пятен масел, воды и других загрязнений.

280.

Очищенные контактные поверхности должны соответствовать первой степени удаления
окислов и обезжиривания по ГОСТ 9022-74.
Оценка шероховатости контактных поверхностей производится визуально сравнением с
эталоном или другими апробированными способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним осмотром поверхности при
помощи лупы с увеличением не менее 6-ти кратного. Окалина, ржавчина и другие
загрязнения на очищенной поверхности при этом не должны быть обнаружены.
Контроль степени обезжиривания осуществляется следующим образом: на очищенную
поверхность наносят 2-3 капли бензина и выдерживают не менее 15 секунд. К этому
участку поверхности прижимают кусок чистой фильтровальной бумаги и держат до полного
впитывания бензина. На другой кусок фильтровальной бумаги наносят 2-3 капли бензина.
Оба
куска
сравнивают
выдерживают
внешний
обезжиривания
до
вид
определяют
полного
испарения
обоих
кусков
по
наличию
бензина.
фильтровальной
или
При
дневном
бумаги.
отсутствию
освещении
Оценку
масляного
степени
пятна
на
фильтровальной бумаге.
Длительность перерыва между пескоструйной очисткой поверхности и ее консервацией
не должна превышать 3 часов. Загрязнения, обнаруженные на очищенных поверхностях,
перед нанесением консервирующей грунтовки ВЖС 83-02-87 должны быть удалены
жидким калиевым стеклом или повторной очисткой. Результаты проверки качества очистки
заносят в журнал.
6.4. Приготовление и нанесение протекторной грунтовки ВЖС 83 -02-87.
Требования к загрунтованной поверхности. Методы контроля

281.

Протекторная
грунтовка
ВЖС
83-02-87
представляет
собой
двуупаковочный
лакокрасочный материал, состоящий из алюмоцинкового сплава в виде пигментной пасты,
взятой в количестве 66,7% по весу, и связующего в виде жидкого калиевого стекла
плотностью 1,25, взятого в количестве 33,3% по весу.
Каждая партия материалов должна быть проверена по документации на соответствие
ТУ.
Применять
материалы,
поступившие
без
документации
завода-изготовителя,
запрещается.
Перед смешиванием составляющих протекторную грунтовку ингредиентов следует
довести жидкое калиевое стекло до необходимой плотности 1,25 добавлением воды.
Для приготовления грунтовки ВЖС 83-02-87 пигментная часть и связующее тщательно
перемешиваются и доводятся до рабочей вязкости 17-19 сек. при 18-20°С добавлением
воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4 (ГОСТ 9070-59) по
методике ГОСТ 17537-72.
Перед и во время нанесения следует перемешивать приготовленную грунтовку до
полного поднятия осадка.
Грунтовка ВЖС 83-02-87 сохраняет малярные свойства (жизнеспособность) в течение 48
часов.
Грунтовка ВЖС 83-02-87 наносится под навесом или в помещении. При отсутствии
атмосферных осадков нанесение грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению грунтовки ВЖС 83-02-87
должна быть не ниже +5°С.

282.

Грунтовка ВЖС 83-02-87 может наноситься методами пневматического распыления,
окраски кистью, окраски терками. Предпочтение следует отдавать пневматическому
распылению.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно перпендикулярным
направлениям с промежуточной сушкой между слоями не менее 2 часов при температуре
+18-20°С.
Наносить грунтовку следует равномерным сплошным слоем, добиваясь окончательной
толщины нанесенного покрытия 90-110 мкм. Время нанесения покрытия при естественной
сушке при температуре воздуха 18-20 С составляет 24 часа с момента нанесения
последнего слоя.
Сушка загрунтованных элементов и деталей во избежание попадания атмосферных
осадков и других загрязнений на невысохшую поверхность должна проводится под
навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и другие дефекты не
допускаются. Высохшая грунтовка должна иметь серый матовый цвет, хорошее сцепление
(адгезию) с металлом и не должна давать отлипа.
Контроль толщины покрытия осуществляется магнитным толщиномером ИТП-1.
Адгезия
определяется
методом
решетки
в
соответствии
с
ГОСТ
15140-69
на
контрольных образцах, окрашенных по принятой технологии одновременно с элементами и
деталями конструкций.
Результаты проверки качества защитного покрытия заносятся в Журнал контроля
качества подготовки контактных поверхностей ФПС.

283.

6.4.1 Основные требования по технике безопасности при работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные правила при окрасочных работах с применением ручных распылителей"
(Министерство здравоохранения СССР, № 991-72)
"Инструкцию
по
санитарному
содержанию
помещений
и
оборудования
производственных предприятий" (Министерство здравоохранения СССР, 1967 г.).
При пневматическом методе распыления, во избежание увеличения туманообразования
и расхода лакокрасочного материала, должен строго соблюдаться режим окраски. Окраску
следует производить в респираторе и защитных очках. Во время окрашивания в закрытых
помещениях маляр должен располагаться таким образом, чтобы струя лакокрасочного
материала имела направление преимущественно в сторону воздухозаборного отверстия
вытяжного зонта. При работе на открытых площадках маляр должен расположить
окрашиваемые изделия так, чтобы ветер не относил распыляемый материал в его сторону и
в сторону работающих вблизи людей.
Воздушная
магистраль
и
окрасочная
аппаратура
должны
быть
оборудованы
редукторами давления и манометрами. Перед началом работы маляр должен проверить
герметичность шлангов, исправность окрасочной аппаратуры и инструмента, а также
надежность присоединения воздушных шлангов к краскораспределителю и воздушной
сети. Краскораспределители, кисти и терки в конце рабочей смены необходимо тщательно
очищать и промывать от остатков грунтовки.

284.

На каждом бидоне, банке и другой таре с пигментной частью и связующим должна быть
наклейка или бирка с точным названием и обозначением этих материалов. Тара должна
быть исправной с плотно закрывающейся крышкой.
При
приготовлении
и
нанесении
грунтовки
ВЖС
83-02-87
нужно
соблюдать
осторожность и не допускать ее попадания на слизистые оболочки глаз и дыхательных
путей.
Рабочие и ИТР, работающие на участке консервации, допускаются к работе только
после ознакомления с настоящими рекомендациями, проведения инструктажа и проверки
знаний по технике безопасности. На участке консервации и в краскозаготовительном
помещении не разрешается работать без спецодежды.
Категорически запрещается прием пищи во время работы. При попадании составных
частей грунтовки или самой грунтовки на слизистые оболочки глаз или дыхательных путей
необходимо обильно промыть загрязненные места.

285.

6.4.2 Транспортировка и хранение элементов и деталей,
законсервированных грунтовкой
ВЖС 83-02-87
Укладывать, хранить и транспортировать законсервированные элементы и детали
нужно так, чтобы исключить возможность механического повреждения и загрязнения
законсервированных поверхностей.
Собирать можно только те элементы и детали, у которых защитное покрытие
контактных поверхностей полностью высохло. Высохшее защитное покрытие контактных
поверхностей не должно иметь загрязнений, масляных пятен и механических повреждений.
При наличии загрязнений и масляных пятен контактные поверхности должны быть
обезжирены. Обезжиривание контактных поверхностей, законсервированных ВЖС 83-0287, можно производить водным раствором жидкого калиевого стекла с последующей
промывкой
водой
и
просушиванием.
Места
механических
повреждений
после
обезжиривания должны быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного покрытия на опорные
поверхности шайб
Производится очистка только одной опорной поверхности шайб в дробеструйной камере
каленой дробью крупностью не более 0,1 мм. На отдробеструенную поверхность шайб
методом плазменного напыления наносится подложка из интерметаллида ПН851015
толщиной . …..м. На подложку из интерметаллида ПН851015 методом плазменного

286.

напыления наносится несущий слой оловянистой бронзы БРОФ10-8. На несущий слой
оловянистой бронзы БРОФ10-8 наносится способом лужения припой ПОС-60 до полного
покрытия несущего слоя бронзы.
6.6. Сборка ФПС
Сборка ФПС проводится с использованием шайб с фрикционным покрытием одной из
поверхностей,
при
постановке
болтов
следует
располагать
шайбы
обработанными
поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей ФПС. Рекомендуется
использование неочищенных внешних поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой, другую под гайкой). Болты
и гайки должны быть очищены от консервирующей смазки, грязи и ржавчины, например,
промыты керосином и высушены.
Резьба болтов должна быть прогнана путем провертывания гайки от руки на всю длину
резьбы. Перед навинчиванием гайки ее резьба должна быть покрыта легким слоем
консистентной смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное положение;
устанавливают болты и осуществляют их натяжение гайковертами на 90% от
проектного усилия. При сборке многоболтового ФПС установку болтов рекомендуется
начать с болта находящегося в центре тяжести поля установки болтов, и продолжать
установку от центра к границам поля установки болтов;

287.

после проверки плотности стягивания ФПС производят герметизацию ФПС;
болты затягиваются до нормативных усилий натяжения динамометрическим ключом.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО- КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ
ФЕДЕРАЦИИ Х.Н. Мажиеву
[email protected]
(МИНСТРОЙ РОССИИ) Садовая-Самотечная ул., д. 10, строение 1, Москва, 127994 тел. (495) 647-15-80,
факс (495) 645-73-40 www. т instroyrf.gov. г и
04.07.2022 s 13466-ОГ/08 На Ns Уважаемый Хасан Нажоевич!
В Департаменте градостроительной деятельности и архитектуры Министерства строительства и
жилищно-коммунального хозяйства Российской Федерации на рассмотрении находится Ваше обращение
от 10 июня 2022 г. № П-116755, направленное письмом Аппарата Правительства Российской Федерации
от 10 июня 2022 г. № П48-116755 (зарегистрировано в Минстрое России 10 июня 2022 г. № 13169-ОГ), с
предложениями по проектированию и строительству сборно-разборных железнодорожных мостов.
А.Ю. Степанов
Исп. Зайцева Д.Н. +7(495)647-15-80 доб. 61061
В связи с направлением запроса в Минобороны России и Минтранс России, а также необходимостью
дополнительной проработки вопросов, содержащихся в обращении, Минстрой России в целях
обеспечения объективного и всестороннего рассмотрения обращения в соответствии с пунктами 1 и 2
части 1 статьи 10 Федерального закона от 2 мая 2006 г. № 59-ФЗ «О порядке рассмотрения обращений
граждан Российской Федерации» на основании части 2 статьи 12 указанного Федерального закона
уведомляет о продлении срока рассмотрения обращения на 30 дней.
Заместитель Директора Департамента градостроительной деятельности и архитектуры
Подлинник электронного документа, подписанного ЭП, хранится в системе электронного
документоборота Минстроя России СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП Владелец: Степанов Александр
Юрьевич
от Сертификат: 48E1E0B65FD1483255FD22CA16644735E5D3B408 Действителен: 06.10.2021 до
06.01.2023
https://diary.ru/~krestyaninformspbyandexru/p221261089_perspektivy-primeneniya-bystrovozvodimyh-mostov-ipereprav-iz-stalnyh-konstrukcij.htm

328.

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ И ПЕРЕПРАВ из стальных
конструкций покрытий производственных здании
пролетами 18, 24 и 30 м с применением замкнутых
гнутосварных профилей прямоугольного сечения типа
«Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборноразборного пролетного надвижного строения
железнодорожного моста, с быстросъемными
упругопластичными компенсаторами, со сдвиговой
фрикционно-демпфирующей жесткостью.

329.

Счет получателя СБЕР № 4081781045503040

330.

[email protected] [email protected] [email protected] [email protected] [email protected] [email protected] (994) 434-44-70,
(911) 175-84-65, (921) 962-67-78
СБЕР 2202
2006 4085 5233
Шпренгельное усиление пролетного строения металлических
железнодорожных мостов с использованием устройство для гашения
ударных и вибрационных воздействий, с ездой по низу на безбалластных
плитах мостового полотна пролетами 33 -110 метров (Пролетное строение
пролетами 33 -55 метра), с использованием демпфирующих
амортизаторов из автопокрышек заполненных окатанной галькой и с
болтовым креплением к металлической ферме для поглощения
пиковых напряжений (нагрузки) для рассеивания напряжений за
счет проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4
СПбГАСУ "Сейсмофонд" ОГРН: 1022000000824 ИНН 2014000780
Повышение грузоподъемности мостового сооружения и учебное пособие
для
студентов строительных вузов разработано организацией «Сейсмофонд»

331.

СПбГАСУ по усиление и реконструкция пролетного строения мостового
сооружения с использованием комбинированных пространственных
структур для сейсмоопасных районов
Прилагаются тезисы доклада организации "Сейсмофонд" СПб ГАСУ:
"Способ шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм, для
сейсмоопасных районов" Для дистанционного доклада
[email protected] (921)944-67-10, (911) 175-84-65, т/ф (812) 694-7810 https://t.me/resistance_test СПб ГАСУ
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ
мостового сооружения с использованием треугольных балочных ферм для
сейсмоопасных
А.М. Уздин , О.А. Егорова, И.А.Богданова, А.И.Коваленко,
В.К.Елисеева, Я.К.Елисеева, Е.И.Коваленко, Политехнический
Университет , ПГУПС, СПб ГАСУ, организация «Сейсмофонд»
Аннотация: В статье способ шпренгельного усиления пролетного
строения мостового сооружения с использованием устройство для

332.

гашения ударных и вибрационных воздействий, и с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов.
Рассматривается проблема реконструкции мостовых сооружений, а
именно восстановление грузоподъемности, снизившейся в процессе
многолетней эксплуатации. Отмечена актуальность исследования, его
цели и задачи. Предложена классификация конструкций усиления по
различным признакам. Разобраны часто используемые на практике
ввиду усилений мостов их достоинства и недостатки. Изложенный
материал иллюстрирован фотографиями объектов. Представлен
современный способ усиления на основе использования с
использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к

333.

металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов
Отмечены значительные недостатки этого способа для усиления
мостов и его модификация, с использованием демпфирующих
амортизаторов из автопокрышек заполненных окатанной галькой и с
болтовым креплением к металлической ферме для поглощения
пиковых напряжений (нагрузки) для рассеивания напряжений за
счет проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
Представлены основные выводы.

334.

Ключевые слова: мост, усиление, реконструкция, шпренгель,
углеродный композит, ламель, грузоподъѐмность, несущая
способность, натяжение. с использованием устройство для гашения
ударных и вибрационных воздействий, и с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой, болтовым креплением, металлической ферме,
поглощения пиковых напряжений (нагрузки) , рассеивания
напряжений , проскальзывания фланцевых , фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов
Введение
Развитие автомобильного транспорта в Российской Федерации
остается приоритетной задачей и сейчас и в будущем.
Железнодорожный транспорт может конкурировать с автомобильным
только при перевозках на очень большие расстояния. В других случаях
выигрыш остается за автотранспортом и по времени, и в стоимости.

335.

Для успешного функционирования автомобильного транспорта
необходимо поддерживать в хорошем состоянии существующие
дороги и развивать современную сеть автомобильных дорог. Есть
устойчивое экспертное мнение, и с ним согласны экономисты, что нет
ни одного случая успешного экономического развития региона без
опережающего развития национальной сети автомобильных дорог
высшей технической категории.
Это мнение основано на детальных экономических исследованиях,
проводимых по итогам реализации проекта Highway Interstate System в
США. Еще более мощные позитивные эффекты обеспечит реализация
аналогичного китайского проекта National Trunk Road System of China.
Этот проект позволил создать суммарную протяженность сети
межрегиональных дорог высших технических категорий к концу 2015
года 120 тыс. км [1].
Строительство автодорог высшей технической категории требует
огромных капиталовложений, поэтому экономное расходование
средств на обслуживание существующей инфраструктуры дорог
является актуальной проблемой. Мостовые сооружения на дорогах,

336.

построенные десятки лет назад, не исчерпали свой ресурс, но
перестали удовлетворять предъявляемым к ним требованиям частично
из-за физического износа, частично из-за изменившихся требований.
Вернуть мостовым сооружениям их функциональные качества при
незначительных финансовых затратах - задача эксплуатирующих
организаций, и, в целом, дорожного комплекса.
Цели и задачи исследования способа шпренгельного усиления
пролетного строения мостового сооружения с использованием
устройство для гашения ударных и вибрационных воздействий, и с
использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов для
сейсмоопасных районов

337.

Мосты и в прежние времена ремонтировали и реконструировали.
Сложнейшей задачей реконструкции является восстановление или
увеличение его грузоподъемности. В современных условиях выбрать
подходящий способ увеличения грузоподъемности - сложная задача
проектирования. Требуется провести обзор имеющихся способов
увеличения грузоподъемности мостов, выявить их достоинства и
недостатки. Здесь следует учитывать не только особенности
усиливаемого сооружения, многообразие известных способов
усиления, но и квалификацию и имеющееся оборудование подрядной
организации, выполняющей комплекс необходимых работ.
Работы по усилению пролетных строений мостов выполняются наряду
с ремонтными работами, исправляя накопившиеся дефекты. Для
выявления и фиксации дефектов проводится обследование мостового
сооружения и его диагностика [2,3].
В задачи обследования входят также изучение условий работы
мостового сооружения, выявление причин, вызывающих появления
неисправностей и их влияние на долговечность, безопасность и

338.

грузоподъемность. Целью все этих мероприятий является
восстановление эксплуатационных качеств мостовых сооружений в
сложившихся условиях [4].
Материалы и методы исследования конструкции усиливающие
пролетные строения мостов и повышение грузоподъемности
мостового сооружения ,можно рассматривать в соответствии с
предлагаемой классификацией, представленной в таблице 1.
Эта классификация позволяет провести анализ конструкций усиления с
разных точек зрения, в том числе с использованием устройство для
гашения ударных и вибрационных воздействий, и с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов

339.

таблица 1 Классификация конструкций усиления мостов с
использованием устройство для гашения ударных и вибрационных
воздействий,
1 По способу работы усиления не напрягаемые с использованием
устройство для гашения ударных и вибрационных воздействий
2 По расчетной схеме конструкции усиления с использованием
устройство для гашения ударных и вибрационных воздействий, с
изменением расчетной схемы без изменения расчетной схемы
3 По способности воспринимать постоянные нагрузки сооружения
только временные нагрузки постоянные и временные нагрузки с
использованием устройство для гашения ударных и вибрационных
воздействий
Усиление пролетных строений шпренгельным способом, с
увеличением площади поперечного сечения несущих конструкций с
использованием устройство для гашения ударных и вибрационных
воздействий, Эти способы увеличивают несущую способность

340.

конструкций, незначительно снижают подмостовой габарит. Вместе с
тем ликвидируют все дефекты сечения, такие, как сколы, трещины,
отслоение и разрушение защитного слоя бетона. Нет необходимости и
выполнять ремонтные работы.
К недостаткам относятся увеличение собственного веса, «мокрые»
процессы, необходимость опалубки, сложности укладки бетонной
смеси и ее вибрирование. А также сама конструкция усиления не
воспринимает усилия от постоянного веса сооружения, что в
железобетонных мостах является большей частью полной нагрузки.
Этот способ применен для усиления крайних (наиболее напряженных)
арок Астраханского моста в Волгограде при его реконструкции с
использованием устройство для гашения ударных и вибрационных
воздействий,.
Применить другие способы усиления здесь не представлялось
возможным из-за кривизны профиля, например с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме

341.

для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов
Рис. 1. Усиление крайних арок моста в Японии патент US 6 902 410 B2
Усиление балочных пролетных строений шпренгелями способно, в
зависимости от конструктивной схемы, воспринимать не только
изгибающие моменты, но и поперечные силы в приопорных зонах с
использованием устройство для гашения ударных и вибрационных
воздействий.
Здесь нет «мокрых» процессов, поэтому работы можно проводить в
любое время года. Конструкция усиления представлена на рисунке 2:
многоэлементная,

342.

Рис. 2. Шпренгельное усиление мостовой балки [5]. крепится к балке
(1) анкерами (3) и состоит из стального стержня или троса (4),
соединяемого муфтой (2). с использованием демпфирующих
амортизаторов из автопокрышек заполненных окатанной галькой и с
болтовым креплением к металлической ферме для поглощения
пиковых напряжений (нагрузки) для рассеивания напряжений за
счет проскальзывания во фланцевых фрикционно –подвижных
соединений с использованием устройство для гашения ударных и
вибрационных воздействий и с овальными отверстиями на

343.

высокопрочных ботовых соединениях с контролируемым натяжением
для сейсмоопасных районов
Стержню придают заданную форму стойки (5) и раскосы (6). Муфта
имеет резьбу и при закручивании создает усилие в стержне - выбирает
люфты. Усилие в тросе определяется расчетом статически
неопределимой системы методом сил с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях с использованием устройство для гашения
ударных и вибрационных воздействий ис контролируемым натяжением
для сейсмоопасных районов

344.

Такую конструкцию необходимо защищать от коррозии. К
недостаткам относится значительная высота усиления, что уменьшает
подмостовой габарит. Не следует использовать на путепроводах.
Существует несколько модификаций шпренгельных затяжек:
треугольные, линейные, укороченные. с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов
Все они расчитываются, устраиваются и работают одинаково.
Возможно устройство прямых шпренгелей, которые не уменьшают
подмостовой габарит. Однако такое усиление воспринимает меньший
изгибающий момент за счѐт малого плеча используемых усилений
является усиление наклеиванием швеллера на или с использованием

345.

демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях с ис пользованием устройство для гашения
ударных и вибрационных воздействий и с контролируемым натяжением
для сейсмоопасных районов

346.

347.

Рис. 3. Усиление балок путепровода в Волгограде. ребро мостовой
балки с использованием устройство для гашения ударных и вибрационных
воздействий
(Рис. 3).

348.

Этот вид усиления наиболее прост в исполнении, не уменьшает
габарит , однако лучше использовать демпфирующие амортизаторы
из автопокрышек заполненных окатанной галькой и с болтовым
креплением к металлической ферме для поглощения пиковых
напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
с использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов

349.

Может применяться только на балках из обычного железобетона и
воспринимать небольшие изгибающие моменты из-за малого плеча
внутренней пары и использования швеллера из обычной стали.
Одним из лучших усилений следует считать усиление напрягаемыми
пучками высокопрочной проволоки, представленной на рисунке с
использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов

350.

4. Это усиление воспринимает как временную нагрузку, так и
постоянную. При соответствующем креплении и усилии натяжения
оно способно значительно повысить несущую способность пролетного
строения. Так можно усиливать любые балки мостов. Однако
натяжение - сложный процесс, требует грамотного инженерного
решения и исполнения, особенно с использованием демпфирующих
амортизаторов из автопокрышек заполненных окатанной галькой и с
болтовым креплением к металлической ферме для поглощения
пиковых напряжений (нагрузки) для рассеивания напряжений за

351.

счет проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
Сложности связаны с креплением троса и установкой домкратов, а
также с равномерностью передачи усилия натяжения. Поэтому этот
способ не всегда применяется или часто реализуется не в полном
объеме с недогрузкой пролетных строений [6]. Лучше использовать
демпфирующие амортизаторы, из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для

352.

сейсмоопасных районов

353.

354.

355.

356.

357.

358.

359.

Рис. 4. Усиление напрягаемым пучком [7]., без использования
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных

360.

ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов
В последнее десятилетие активно развиваются способы усиления
строительных конструкций, основанные на использовании
композиционных материалов [8, 9]. Композиционные материалы в
виде лент из углеродных волокон применяются при реконструкции
мостовых сооружений, чему посвящено целый ряд исследований [1013].
Преимуществами способ шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов, по сравнению с
традиционными материалами и методами усиления являются малый
собственный вес элементов усиления, малые габаритные размеры,
высокая коррозионная стойкость, простота исполнения, проведение
работ по усилению без перерыва движения по мостам с
использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к

361.

металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов
Мостостроительные организации, для того, чтобы легализовать
применение углеродных лент и ламелей, провели испытания
усиленных конструкций и создали свои ведомственные нормативные
документы , с использованием демпфирующих амортизаторов из
автопокрышек заполненных окатанной галькой и с болтовым
креплением к металлической ферме для поглощения пиковых
напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов

362.

(Стандарт организации. СТО - 01 - 2011).

363.

364.

365.

366.

367.

Однако до сих пор нет государственного стандарта на прочностные
качества углеволокна, есть только рекомендации производителя, а это

368.

не одно и то же. Усиление углеволоконными лентами не может
воспринимать постоянные нагрузки от сооружения и обычные
временные, так как работы ведутся без остановки движения по мосту.
Таким образом усиление не разгружает перенапряженные несущие
конструкции, а только предохраняет от возможно большего
нагружения. Перед применением такого усиления необходимо
выполнить ремонт пролетных строений, так как ленты наклеиваются
на ровную поверхность. Ленты закрепляются приклеиванием к
усиливаемой конструкции, и если в процессе эксплуатации произойдет
отклеивание, то возможно разрушение пролетного строения. Поэтому
лучше использовать демпфирующие амортизаторы из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов

369.

Можно устранить ряд недостатков традиционного использования
углеволоконных ламелей и нового способ шпренгельного усиления
пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов если
использовать устройство их натяжения, предложенного в
исследовании [14]. с использованием демпфирующих амортизаторов
из автопокрышек заполненных окатанной галькой и с болтовым
креплением к металлической ферме для поглощения пиковых
напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
Способ шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов с использованием, натяжение ламели

370.

устранит угрозу отклеивания, позволит воспринять частично усилия от
временной и постоянной нагрузки и повысит надежность конструкции
усиления, и в целом мостового сооружения. с использованием
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных
ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов

371.

Выводы
1. Многообразие способов увеличения грузоподъемности мостов с
использованием способа А.М.Уздина (ПГУПС) шпренгельного
усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм для сейсмоопасных
районов позволяет избрать наиболее эффективный , это способ
шпренгельного усиления пролетного строения мостового
сооружения с использованием демпфирующих амортизаторов из
автопокрышек заполненных окатанной галькой и с болтовым
креплением к металлической ферме для поглощения пиковых
напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных
соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных
районов
трехгранных балочных ферм для сейсмоопасных районов.
2. При выборе способа усиления следует рассматривать все
подходящие способы с учетом особенностей сооружения условий

372.

эксплуатации и квалификацию исполнителя Сейсмофонд СПбГАСУ
для использования демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов
3. Неверный выбор способа усиления и напряжения в тросах не
способствует разгружению несущих конструкций пролетного
строения, которые продолжают испытывать завышенные напряжения
и, накапливая дефекты, постепенно разрушаются, без использования
демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме
для поглощения пиковых напряжений (нагрузки) для рассеивания
напряжений за счет проскальзывания во фланцевых фрикционно –
подвижных соединений с овальными отверстиями на высокопрочных

373.

ботовых соединениях . с контролируемым натяжением для
сейсмоопасных районов
4. При устройстве усиления выбранным способом, всегда следует
предусматривать мероприятия по разгрузке пролетного строения, с
тем, чтобы конструкция усиления в своей работе могла воспринимать
как временную нагрузку, так и часть постоянной, за счет с
использования демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к
металлической ферме для поглощения пиковых напряжений
(нагрузки) для рассеивания напряжений за счет проскальзывания
во фланцевых фрикционно –подвижных соединений с овальными
отверстиями на высокопрочных ботовых соединениях . с
контролируемым натяжением для сейсмоопасных районов

374.

375.

376.

377.

378.

379.

380.

381.

382.

Литература
1. Блинкин М. Вечные ценности: почему нужно строить дороги за
пределами городов. URL: rbc.ru/opinions/economics/17/03/2016/
56ea97339a79477c5c6cfaa3?from=materials_on_subject
2. Макаров А.В., Крошнева Е.В., Файзалиев А.Ф., Павлова М.А.,
Лепехина Д.М. Обследование мостовых сооружений с помощью
современного оборудования. Инженерный вестник Дона. 2021. № 7.
URL: ivdon.ru/ru/magazine/archive/n7y2021/7095.
3. Makarov AV., Kalinovsky S.A., Ereschenko N.V., Pavlova M.A.
Some aspects of the bridges' functional qualities restoration. IOP
Conference Series: Materials Science and Engineering. Vol. 1083:
International Scientific Conference «Construction and Architecture: Theory
and Practice of Innovative Development» (CATPID 2020, p. II). IOP
Publishing, 2021. 7 p. (012069). URL:
iopscience.iop.org/article/10.1088/1757-899X/1083/1/012069/pdf. Doi:10.1088/1757-899X/1083/1/012069.
4. Макаров А.В., Гулуев Г.Г., Шатлаев С.В. Реконструкция
путепровода как требование безопасности. Инженерный вестник Дона.
2017. № 2. URL: ivdon.ru/ru/magazine/archive/N2y2017/4161.

383.

5. StudFiles. Файловый архив студентов. URL:
studfile.net/preview/4306357/page:48/
6. Белый А.А., Зайцев В.М., Карапетов Э.С. Опыт эксплуатации
усиленных железобетонных мостовых сооружений Санкт-Петербурга.
Интернет-журнал «Науковедение», Том 9, №3. URL:
naukovedenie.ru/PDF/08TVN317.pdf.
7. Усиления мостов - фото. URL: stranabolgariya.ru/foto/usileniyamostov.html.
8. Маяцкая И. А. Федченко А. Е. Беляева Д. А. Применение новых
материалов при усилении строительных конструкций подземных
сооружений и мостовых переходов. Молодой исследователь Дона.
2018. №5. URL: mid- journal.ru/publications/5-2018
9. Васильев В.В. Композиционные материалы. Справочник. М.
Машиностроение. 1990. 512 с.
10. Кугаевский Н.М., Овчинников И.И. Оценка эффективности
усиления железобетонных балок пролетных строений автодорожных
мостовых сооружений полимерными композиционными материалами.
Вестник Евразийской науки, 2021. Т 13. №2. URL: esj
.today/PDF/09SAVN221 .pdf

384.

11. Хрюкин А.А., Смолина М.В. Оценка напряженнодеформированного состояния пролетных строений моста, усиленного
композитными материалами. Наука и образование. 2016. №4. URL:
cyberleninka.ru/article/n/otsenka-napryazhenno-deformirovannogosostoyaniya- proletnyh-stroeniy-mosta-usilennogo-kompozitnymimaterialami/viewer
12. Бокарев С.А., Смердов Д.Н. Экспериментальные исследования
изгибаемых железобетонных элементов, усиленных КМ. Известия
Вузов. Строительство. 2010, №2. С. 112-124.
13. Овчинников И.И., Овчинников И.Г., Чесноков Г.В.,
Михалдыкин Е.С. Анализ экспериментальных исследований по
усилению железобетонных конструкций полимерными композитными
материалами. Часть 1 Отечественные эксперименты при статическом
нагружении. Интернет- журнал «Науковедение» Том 8, 2016. №3.
URL: naukovedenie.ru/PDF/24TVN316.pdf
14. Makarov A.V., Rekunov S.S. Strengthening bridge spans by
composite materials. IOP Conference Series: Materials Science and
Engineering. Vol. 687: International Conference on Construction,
Architecture and Technosphere Safety (ICCATS-2019) Issue 3:
Construction, buildings and structures. [Published by IOP

385.

Publishing], 2019. 7 p. URL: iopscience.iop.org/article/10.1088/1757899X/687/3/033038/pdf. Doi:10.1088/1757-899X/687/3/033038.
References
14. Способ Уздина А. М. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов
1. Blinkin M. Vechny'e cennosti: pochemu nuzhno stroit dorogi za
predelami gorodov. [Eternal values: why it is necessary to build roads
outside cities] URL: rbc.ru/opinions/economics/17/03/2016/56ea97339a
79477c5c6cfaa3?from=materials on subject
2. Makarov A.V., Kroshneva E.V., Fajzaliev A.F., Pavlova M.A.,
Lepexina D.M. Inzhenernyj vestnik Dona. 2021. № 7. URL:
ivdon.ru/ru/magazine/archive/n7y2021/7095.
3. MakarovA.V., Kalinovsky S.A., Ereschenko T.V., Pavlova M.A.
Some aspects of the bridges' functional qualities restoration. IOP
Conference Series: Materials Science and Engineering. Vol. 1083:
International Scientific Conference «Construction and Architecture: Theory
and Practice of Innovative Development» (CATPID 2020, p. II). IOP

386.

Publishing, 2021. 7 p. (012069). URL:
iopscience.iop.org/article/10.1088/1757899X/1083/1/012069/pdf.Doi:10.10
88/175 7-899X/1083/1/012069.
4. Makarov A.V., Guluev G.G., Shatlaev S.V. Inzhenernyj vestnik Dona.
2017. № 2. URL: ivdon.ru/ru/magazine/archive/N2y2017/4161.
5. StudFiles. Fajlovy'j arxiv studentov. [Student File Archive]. URL:
studfile.net/preview/43063 57/page:48/
6. Bely'j A.A., Zajcev V.M., Karapetov E'.S. Internet-zhurnal
«Naukovedenie». Tom 9. №3. URL: naukovedenie.ru/PDF/08TVN317.pdf.
7. Usileniya mostov - foto. [Bridge Reinforcements - Photo]. URL:
stranabolgariya.ru/foto/usileniya-mo stov.html.
8. Mayaczkaya I. A. Fedchenko A. E. Belyaeva D. A. Molodoj
issledovateF Dona. 2018. №5. URL: mid-journal.ru/publications/5-2018/
9. Vasil'ev V.V. Kompozicionny'e materialy' spravochnik. [Composite
materials reference book] M. Mashinostroenie. 1990. 512 p.
10. Kugaevskij N.M., Ovchinnikov I.I. Vestnik Evrazijskoj nauki, 2021.
T 13. №2. URL: esj.today/PDF/09SAVN221.pdf
11. Hryukin A.A., Smolina M.V. Nauka i obrazovanie. 2016. №4. URL:
cyberleninka.ru/article/n/otsenka-napryazhenno-deformirovannogo-

387.

sostoyaniya- proletnyh-stroeniy-mosta-usilennogo-kompozitnymimaterialami/viewer
12. Bokarev S.A., Smerdov D.N. Izvestiya Vuzov. Stroitel'stvo. 2010,
№2, pp. 112-124.
13. Ovchinnikov I.I., Ovchinnikov I.G., CHesnokov G.V., Mihaldykin
E.S. Internet-zhurnal «Naukovedenie» Tom 8, 2016. №3. URL:
naukovedenie.ru/PDF/24TVN316.pdf
14. Makarov A.V., Rekunov S.S. Strengthening bridge spans by
composite materials. IOP Conference Series: Materials Science and
Engineering. Vol. 687: International Conference on Construction,
Architecture and Technosphere Safety (ICCATS-2019) Issue 3:
Construction, buildings and structures. [Published by IOP Publishing],
2019. 7 p. URL: iopscience.iop.org/article/10.1088/1757899X/687/3/033038/pdf. Doi:10.1088/1757-899X/687/3/033038.
Инженерный вестник Дона, №10 (2023)
ivdon.ru/ru/magazine/archive/n10y2023/8767
Изобретатели организации Сейсмофонд СПб ГАСУ направляют
пояснительную записку аннотацию описание пояснение изобретение
Способ усиление мостов имени В В Путина RU 2024106154 для ОАО

388.

РЖД РОСДОРНИИ Минтранса Федеральный центр нормирования
стандартизации и технической оценке соответствия в строительстве
Минстроя изобретенный 40 лет назад в СССР поглотитель пиковых
напряжений за счет проскальзывания и равномерного распределения
нагрузки в овальных отверстиях в аварийных металлических
конструкция , фермах железнодорожных мостовых сооружений для
повышения грузоподъемности мостового полотна, что экономит
строительные материалы на 50 процентов , а грузоподъемность
увеличивается пролетного строения в два раза Реконструкция моста
без остановки поездов или автотранспорта 20 лет назад изобретение
проф дтн ПГУПС Уздина А М внедрено в Японии, КНР, США
Президенту Российской Федерации
:
Фамилия, имя, отчество: Улубаев Солт-Ахмад Хаджиевич
Организация: Твореческий Союз Изобрететелей СПб ОО ТСИ ОГРН
1037858027547 ИНН 7809023460
Адрес электронной почты: [email protected]
Телефон: 8126947810
Тип: обращение
Текст

389.

Изобретатели организации Сейсмофонд СПб ГАСУ направляют
пояснительную записку аннотацию описание пояснение изобретение
Способ усиление мостов имени В В Путина RU 2024106154 для ОАО
РЖД РОСДОРНИИ Минтранса Федеральный центр нормирования
стандартизации и технической оценке соответствия в строительстве
Минстроя изобретенный 40 лет назад в СССР поглотитель пиковых
напряжений за счет проскальзывания и равномерного распределения
нагрузки в овальных отверстиях в аварийных металлических
конструкция , фермах железнодорожных мостовых сооружений для
повышения грузоподъемности мостового полотна, что экономит
строительные материалы на 50 процентов , а грузоподъемность
увеличивается прол5етного строения в два раза Реконструкция моста
без остановки поездов или автотранспорта 20 лет назад изобретение
проф дтн ПГУПС Уздина А М внедрено в Яронии, КНР, США
Отправлено: 27 мая 2024 года, 12:44
Авторы изобртения поглотитель пиковых нагрузок (напряжений) для
повышенной грузоподьемности, за счет шпренгельного усиления, с
повышением грузоподъемности в два раза, пролетного
железнодорожного строение существующего мостовых сооружений, с

390.

использованием устройство для гашения ударных и вибрационных
воздействий (RU 167977) или демпфирующих амортизаторов(( RU
1760020) . Расчеты и проект выполнен, учеными Сейсмофонд
СПбГАСУ (ИНН 2014000780 ОГРН 1022000000824 ) для
реконструкции старых мостов с использованием шпренгельного
усиления пролетного железнодорожного реконструируемого
существующего мостового строения, с повышением в два раза
грузоподъемности скрипучего моста, без остновки дижения поездов и
автотранспорта, благодаря большим перемещениям , за счет
использования фланцевызх фрикциооно-подвижных соединений с
овальными отверстиями проф дтн А.М.Уздина,Богданова И.А ,
Коваленко А.И. Егорова О А, Коваленко Е И, выполненную по
изобретению" «Антисейсмическое фланцевое фрикционно -подвижное
соединение с овальными отверстиями, для мостовых сооружений ( RU
№ 2018105803/20 (008844) 15.02.2018 ) для сейсмоопасных районов" :
ДНР, ЛНР, Херсона, Мариуполя, Бахмута, Донецской, Луганской,
Херсонской обл Приобрести альбом " ШИФР 2948358 для
реконструкции пролетного строения железнодорожного моста и
автомобильного транспорта, для пролетных строений металлических
железнодорожных мостов, с ездой по низу на безбалластных плитах

391.

мостового полотна, пролетами 33-110 , для пролетного строения
пролеитом 33-55 метров шпренгельным способо м ипользванием
амортизаторов АМ-1, АМ-2 или использования устрост для гашения
ударных и вибрационных воздействи ( RU 167977) выполенных
изобретателями: Коваленко А. И, Егоровой
О.А,Уз https://i.ibb.co/yB1XdZT/PGUPS-seysmofond-spbgasu-rek.., А. М,
Богдановой И.А, тел/факс (812)694-78-10, (921) 962-67-78, (911) 17584-65 [email protected] МИР социальная СБЕР 2202 2056 3053 9333
тел привязан (911) -175-84-65 https;//t.me/resistance_test Aleksandr
kovalenko Счет получателя 40817 810 5 5503 1236845 Вся стоимость
альбома и проектной документации 5 тыс
руб [email protected] [email protected] 694781
[email protected] (981) 276-49-92 ( 981) 8865742 https://t.me/resistance_test СПб ГАСУ (921) 4422336 [email protected]
"СПОСОБ усиления основания пролетного строения мостовго
сооружения с использованием подвижных треугольных балочных
ферм для сейсмоопасных районв имени В.В.Путина" RU 2024106154
МПК E 01 D 21 /06 https://t.me/resistance_test Фонд поддержки и
развития сейсмостойкого строительства «Защита и безопасность

392.

городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780 ОГРН :
1022000000824 [email protected] Счет получателя СБЕР №
40817 810 5 5503 1236845 СБЕР 2202 2056 3053 9333 тел привязан
(911) 175-84-65 (812) 694-78-10
"СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ
ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием
треугольных балочных ферм для сейсмоопасных районов" RU
2024106532 E01D22/00
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 962-67-78, (911)
175-8465, [email protected] [email protected] t89219626778
@gmail.com [email protected] (921) 944-67-10 , (921) 357-71-04
PGUPS Temnov SPbGASU kovalenko UZDIN PUTIN EGOROVA vestnik
obyavlenie skripuchiy most pokrishkax рroizvodim seysmostoykiy
mostovix 2 str.
https://disk.yandex.ru/i/wtoMEvfRkfuySg
https://mega.nz/file/fJdxTbIb#huqoVttCla3BRtce5PNnetE..
https://mega.nz/file/SYUD0ArJ#R5UHKQOv59kSkBKEQSRqV_G..
PGUPS seysmofond spbgasu reklama obyavlenie vestnik skripuchiy most
gashenie udarnikh vibrashionnikh vozdeystviy 2 str

393.

https://ppt-online.org/1534224
PGUPS seysmofond spbgasu reklama obyavlenie vestnik skripuchiy most
gashenie udarnikh vibrashionnikh vozdeystviy 2 str..docx
PGUPS seysmofond spbgasu reklama obyavlenie vestnik skripuchiy most
gashenie udarnikh vibrashionnikh vozdeystviy 2 str..pdf
Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 369 str.pdf
Егоровой ссылки ТЕХНИЧЕСКИЙ ПАСПОРТ МОСТА проф ПГУПС
Уздина А.docx 4 стр.docx
STU shprengelnoe usilenie proletnogo stroeniya mostovogo sooruzheniya
ustroustvo gacheniya udarnikh vibrozashitmikh vozdeystviy 280 str.docx
STU shprengelnoe usilenie proletnogo stroeniya mostovogo sooruzheniya
ustroustvo gacheniya udarnikh vibrozashitmikh vozdeystviy 280 str.pdf
Организация Сейсмофонд СПб ГАСУ по требованию ОАО
РОСЖЕЛДОРа РОСДОРНИИ Минтранса направляет технический
паспорт с рабочими чертежами по повышению 6 cnh.docx
Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 546 str.docx
Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 546 str.pdf

394.

poysnitelnaya zaiska shprengelnogo usilenie povishenie gruzopodemnosti
zheleznodorozhnikh mostovogo sooruzheniy gasheniya udarnikh
vosdeystviy 280 str.docPGUPS seysmofond spbgasu reklama obyavlenie
vestnik skripuchiy most gashenie udarnikh vibrashionnikh vozdeystviy 2
str..docx
PGUPS seysmofond spbgasu reklama obyavlenie vestnik skripuchiy most
gashenie udarnikh vibrashionnikh vozdeystviy 2 str..pdf
Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 369 str.pdf
Егоровой ссылки ТЕХНИЧЕСКИЙ ПАСПОРТ МОСТА проф ПГУПС
Уздина А.docx 4 стр.docx
STU shprengelnoe usilenie proletnogo stroeniya mostovogo sooruzheniya
ustroustvo gacheniya udarnikh vibrozashitmikh vozdeystviy 280 str.docx
STU shprengelnoe usilenie proletnogo stroeniya mostovogo sooruzheniya
ustroustvo gacheniya udarnikh vibrozashitmikh vozdeystviy 280 str.pdf
Организация Сейсмофонд СПб ГАСУ по требованию ОАО
РОСЖЕЛДОРа РОСДОРНИИ Минтранса направляет технический
паспорт с рабочими чертежами по повышению 6 cnh.docx
Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 546 str.docx

395.

Texnicheskiy pasport zheleznodorozhnogo mosta shprengelnim usileniem
dempfiruyushie amortizatori Uzdina 546 str.pdf
poysnitelnaya zaiska shprengelnogo usilenie povishenie gruzopodemnosti
zheleznodorozhnikh mostovogo sooruzheniy gasheniya udarnikh
vosdeystviy 280 str.doc
https://wdfiles.ru/ipsearch.html
poysnitelnaya zaiska shprengelnogo usilenie povishenie gruzopodemnosti
zheleznodorozhnikh mostovogo sooruzheniy gasheniya udarnikh
vosdeystviy 280 str.pdf
SEISMOFOND Katalozhnie listi povishenie gruzopodemnosti mostovogo
zheleznodoroznogo sooruzheniya sprengelnim sposobom 921 .docx
SEISMOFOND Katalozhnie listi povishenie gruzopodemnosti mostovogo
zheleznodoroznogo sooruzheniya sprengelnim sposobom 921 .pdf
TS Amortizatorami avtopokrishki Skripuchiy most Texnicheskoe
svidetelstvo povishenie gruzopodemnosti proletnogo 30 str 3.docx
TS Amortizatorami avtopokrishki Skripuchiy most Texnicheskoe
svidetelstvo povishenie gruzopodemnosti proletnogo 30 str 3.pdf
SPbGASU seismofond povishenie gruzopodemnosti zheleznodoroznogo
metallicheskogo mostovogo zheleznodoroznogo sooruzheniya 691 str.docx

396.

SPbGASU seismofond povishenie gruzopodemnosti zheleznodoroznogo
metallicheskogo mostovogo zheleznodoroznogo sooruzheniya 691 str.pdf
povishenie gruzopodemnosti zheleznodoroznogo metallicheskogo
mostovogo sooruzheniya 38 str.docx
povishenie gruzopodemnosti zheleznodoroznogo metallicheskogo
mostovogo sooruzheniya 38 str.pdf
Мостопад без прикрасс при либеральном тоталитаризме или ужастный
развал мостостроения 9 стр.docx
12
https://wdfiles.ru/ipsearch.html?page=2
https://ibb.co/bRZPQCh
https://i.ibb.co/yB1XdZT/PGUPS-seysmofond-spbgasu-rek..
Ленинградцы изобрели поглотитель пиковых напряжений для
рассеивания нагрузки в металлических железнодорожных мостовых
сооружениях за счет проскальзывания в овальных отверстиях
Поглотители пиковых напряжений нагрузок рассеивание за счет
проскальзывания
https://ppt-online.org/1505580 Ученые общественной организации

397.

Сейсмофонд СПб ГАСУ изобрели поглотитель пиковых напряжений
(нагрузок), за счет проскальзывания в овальных отверстиях (RU
1143895, RU 1168755, RU 1174616) и изобрели устройство для
гашения ударных и вибрационных воздействий и согласны выполнить
проектные работы, расчет в ПК SCAD, экспертиза заключение ,
обследование, авторский надзор по повышению грузоподъемности
аварийных автомобильных и железнодорожных металлических
мостовых сооружений, без остановки автотранспорт и поездов, со
шпренгельным усилением мостового сооружения имени проф Уздина
А М ( RU 2024106532) и с использованием изобртения: "Способ
усиления основания пролетного строения мостового сооружения
имени В В Путина" (RU 2024106154 ) , с использованием патента :
"Устройство для гашения и ударных и вибрационных воздействий" (
RU 167977) , с ездой понизу на безбаластных плитах мостового
полотна, пролетом 33-110 м. ШИФР 2948358 Тел СПб ГАСУ
"Сейсмофонд": ОГРН 10202000000824, ИНН 2014000780, КПП
201401001 (812) 694-7810 https://t.me/resistance_test [email protected] spb6947
[email protected] [email protected] [email protected] (921) 94467-10 (911) 175-84-65 МИР социальная Главный инженер проекта

398.

Коваленко Елена Ивановна (921) 962-67-78 Стоимость альбома
"Повышению грузоподъемности пролетного строения мостового
сооружения шпренгельным усилением с использованием устройство
для гашения ударных вибрационных воздействий" для восстановления
ускоренным способом разрушенных мостов в ДНР, ЛНР, Мариуполе,
Херсонской области" ШИФР 2948353 и повышение грузоподъемности
старых мостов 10 тыс руб Аванс 5 тыс руб Все для Фронта Все для
Победы СБЕР 2202 2056 3053 9333 Счет получателя 40817 810 5 5503
1236845 Корреспондентский счет 30101 810 5 0000 0000653
Более подробно об поглотителе для рассеивания пиковых напряжений
(нагрузки от тяжелой военной техники) и пиковых поглощений со
скрипом по овальным отверстиям и с медной обожженной гильзой или
тросовой гильзы без оплетки, с высокой степени рассеивания пиковых
нагрузок на железнодорожный мост, что экономит до 50 процентом
строительных материалов и повышает грузоподъемность моста без
остановки поездов и автомашин в два раза , поэтом японские ,
китайские, американские, канадские компаньоны заинтересовались,
изучили, уворовали и внедрили изобретения проф дтн А.М.Уздина в
странах блока НАТО, и это очень печально и обидно
! https://dzen.ru/a/ZlLS-2KaCFXjpz-T

399.

Сдвиговые энергопоглотители энергопоглощающие шарниры или
обеспечение устойчивости существующих лестниц от особых
воздействиях за счет упругопластических шарниров, на примере
обрушения части дом от взрыва газа под аркой, жилого дома № 164, по
проспекту Карла Маркса, город Магнитогорск
https://ru.scribd.com/document/471362356/PGUPS-SPb.....
https://yadi.sk/i/h7josnIlG1FZ7g
https://cloud.mail.ru/home/[email protected]..
https://docs.google.com/document/d/1GlASAiKawWYnhDfAJ..
https://ru.files.fm/filebrowser#/SPbGASU-c99953547.....
https://dropmefiles.com.ua/ru/delete/w57DPa/sAD6MLW4EY
https://stihi.ru/login/messages.html?sertifikatsiy

400.

https://proza.ru/login/messages.html?sertifikatsiya
http://sertifikatsiyaproduktsii.mozello.ru/m/blog-.....
https://sertifikatsiyaproduktsii.blogspot.com/2020.....
https://sertifikatsiyaproduktsii.blogspot.com/2020.....
Испытательного центра СПбГАСУ, аккредитован Федеральной
службой по аккредитации (аттестат № RA.RU.21СТ39, выдан
27.05.2015), ОО "Сейсмофонд" ОГРН: 1022000000824
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул. д 4,
Президент организации «Сейсмофонд», Мажиев Хасан Нажоевич
Президент организации «Сейсмофонд»ИНН
2014000780 [email protected]
O.A.Малафеев доктор физико-математических наук, профессор

401.

кафедры моделирования социально-экономических систем,
заведующий кафедрой Санкт-Петербургский государственный
университет
Инж –мех ЛПИ им Калинина Е.И.Андреева , зам президента
организации «Сейсмофонд» ОГРН
1022000000824 [email protected] тел 999-535 47 29
https://www.liveinternet.ru/users/c9995354729yandexru..
Поглотители пиковых напряжений нагрузок рассеивание за счет
проскальзывания Для Петербуржского Дневника Вечернего
Петербурга и муниципальной ...
Устойчивое развитие при проектировании мостов
https://ppt-online.org/1511854
Шпренгельного усиления пролетного строения мостового сооружения
для сейсмоопасных районов
https://ppt-online.org/1507849
Ваше обращение в адрес Правительства Российской Федерации
поступило на почтовый сервер и будет рассмотрено отделом по работе
с обращениями граждан. Номер Вашего обращения 2314165.
https://vk.com/wall792365847_3877

402.

"СПОСОБ имени Уздина А М ШПРЕНГЕЛЬ
УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мосто
сооружения с использованием треугольных бал
для сейсмоопасных районов" RU 2024106532 E
"СПОСОБ усиления основания пролетного
строения мостовго сооружения с
использованием подвижных треугольных
балочных ферм для сейсмоопасных районв
имени В.В.Путина" RU 2024106154 МПК
E
01 D 21 /06 https://t.me/resistance_test
Фонд поддержки и развития сейсмостойкого
строительства «Защита и безопасность

403.

городов» «Сейсмофонд» при СПб ГАСУ ИНН
: 2014000780 ОГРН : 1022000000824
[email protected] Счет получателя СБЕР
№ 40817 810 5 5503 1236845 СБЕР 2202 2056 3053
9333 тел привязан (911) 175-84-65 (812) 694-78-10
Авторы изобртения поглотитель пиковых нагрузок (напряжений)
грузоподьемности, за счет шпренгельного усиления, с повышени
грузоподъемности в два раза, пролетного железнодорожного стро
мостовых сооружений, с использованием устройство для гашения
вибрационных воздействий (RU 167977) или демпфирующих аморт
1760020) . Расчеты и проект выполнен, учеными Сейсмофонд СПбГ
2014000780 ОГРН 1022000000824 ) для реконструкции старых мост
использованием шпренгельного усиления пролетного железнодорож
реконструируемого существующего мостового строения, с повыш
грузоподъемности скрипучего моста, без остновки дижения поездо
автотранспорта, благодаря большим перемещениеи, за счет испо
фланцевызх фрикциооно-подвижных соединений с овальными отве
А.М.Уздина,Богданова И.А , Коваленко А.И. Егорова О А, Е.И.Ковал
по изобретению" «Антисейсмическое фланцевое фрикционно -п
соединение с овальными отверстиями, для мостовых сооружени
2018105803/20 (008844) 15.02.2018 ) для сейсмоопасных районо
Херсона, Мариуполя, Бахмута, Донецской, Луганской, Херсонской об
альбом " ШИФР 2948358 для реконструкции пролетного строени
железнодорожного моста и автомобильного транспорта, для про
металлических железнодорожных мостов, с ездой по низу на безба
мостового полотна, пролетами 33-110 , для пролетного строения
метров шпренгельным способо м ипользванием амортизаторов АМ
использования устрост для гашения ударных и вибрационных возд
выполенных изобретателями: Коваленко А. И, Егоровой О.А,Уздин
Богдановой И.А, тел/факс (812)694-78-10, (921) 962-67-78, (911) 17
[email protected] МИР социальная СБЕР 2202 2056 3053 9333 тел при
65 https;//t.me/resistance_test Aleksandr kovalenko Счет получателя 4
1236845 Вся стоимость альбома и проектной документации 5 тыс руб
[email protected] [email protected] 6947810@
49-92 ( 981) 886-5742 https://t.me/resistance_test СПб ГАСУ (921) 442
[email protected]

404.

Доклад для железнодорожных и инженерных войск на совещании Совета
общероссийского офицерского собрания 13 июня в 13 -00 представили
проекты организации Сейсмофонд СПб ГАСУ по вопросу повышения
грузоподъемности аварийных железнодорожных мостовых сооружений с
использованием шпренгельного усиления с использованием устройства для
гашения ударных вибрационных воздействий и усиления основания
пролетного строения металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна пролетами 33-110 метра мостового
сооружения в России http://t.me/resiwstance_test
[email protected] [email protected]

405.

406.

407.

408.

409.

410.

Seriya-3-501-1-165-vi
pusk-1-3.pdf

411.

501-166-1.pdf
501-166-3.pdf
501-166-2.pdf

412.

413.

414.

415.

416.

417.

Просим направить для рассмотрения и анализа в Экспертный совет
ОЦК исчерпывающие материалы по предлагаемой технологии

418.

техническое описание предложения с детальным техникоэкономическим обоснованием, включающим, в том числе, результаты
лабораторных исследований и натурных наблюдений за опытными
участками, анализ и преимущества по сравнению с традиционно
применяемыми техническими решениями, заключения научных,
проектных и других организаций, предложения по технологическому
применению при опытно-экспериментальном внедрении, другие
обосновывающие материалы
Либеральный сегмент ФАУ РОСДОРНИИ Минтранса разбушевался ! Рецидивы
тоталитарного либерализма Саботаж без прикрас Либеральный сегмент РОСДОРНИИ и
Минтранс юлят исподтишка противостоят курсу государства и Президента В. В. Путина и
не желают помогать восстанавливать разрушенные мосты и принимать гуманитарную,
инженерную, интеллектуальную, научную , конструкторскую, благотворительную , помощь,
от организации Сейсмофонд СПб ГАСУ, для быстрого восстановления разрушенных
мостовых пролетов автомобильных мостов через реку Сейсм в Глушковском районе село
:Глушково, Званное, Карыж русским людям и крестьянам отрезанных от "большой" земли в
Курской области

419.

Protokol ispitaniy Polozitelniy otziv Minoboroni liberalniy segment FAU ROSDORNII MINTRAS
razbushvalis ekspertniy sovet napravit ischrpivayushie materiali polozhitelnoe zaklyuchenie
minoboroni MCHS blagodarnost 653 стр
https://disk.yandex.ru/i/cujpd44UBqQ47Q
https://disk.yandex.ru/i/6lSXyX6X48uy-A
https://mega.nz/file/KC5jiQ4Q#DSbI0eJmUVgunwvhXJ1AdZg1j2DMiXgjslVy7Ir2XoY
Protokol ispitaniy Polozitelniy otziv Minoboroni liberalniy segment FAU ROSDORNII MINTRAS razbushvalis ekspertniy sovet napravit
ischrpivayushie materiali polozhitelnoe zaklyuchenie minoboroni MCHS blagodarnost 653 стр.docx
Protokol ispitaniy Polozitelniy otziv Minoboroni liberalniy segment FAU ROSDORNII MINTRAS razbushvalis ekspertniy sovet napravit
ischrpivayushie materiali polozhitelnoe zaklyuchenie minoboroni MCHS blagodarnost 653 стр.pdf
Армейский быстро собираемый пешеходный мост переправа пролетом 24 метра через реку Сейсм Глушковском районе село
Глушково Курской области по изобретениям RU 2024100839 17 стр.docx
kovalenko KITAY Pryamoy uprugoplastichniy raschet SCAD avtomobilnogo mosta strukturnix MARXI Kislovodsk ferm 272 str.docx
Гуманитарная интеллектуальная научная инженерная конструкторская помощь жителям русским людям Курской области
Глушковского района села Званное Глушково Карыж по восстановлению пешеходной 19 cnh.docx
Uzdin Egorova Kovalenko Sborno razborniy peshexodniy most RU 2022111669 RU 2022113052 2022113510 RU 2022115073 RU 2010136746
RU 1760020 RU 165076 RU 154506 [email protected] 717 str.docx
Uzdin Egorova Kovalenko Sborno razborniy peshexodniy most RU 2022111669 RU 2022113052 2022113510 RU 2022115073 RU 2010136746
RU 1760020 RU 165076 RU 154506 [email protected] 717 str.pdf
Gumanirnaya itellektualnaya inzhenernaya nauchnaya pomosh Kursku UZDIN EGOROVA Seismofond SPbGASU Sborno razborniy
peshekhodniy most avtori FIPS formula FIGURI referat 294 str.docx
Gumanirnaya itellektualnaya inzhenernaya nauchnaya pomosh Kursku UZDIN EGOROVA Seismofond SPbGASU Sborno razborniy
peshekhodniy most avtori FIPS formula FIGURI referat 294 str.pdf
Информационный вестник газеты Армия Защитников Отечества номер 1 от 07 сентября 2024 Гуманитарная инженерная
интеллектуальная 8 стр.docx
https://wdfiles.ru/ipsearch.html
Военно политическая газета Русская Народная Дружина номер 2 от 07 сентября 2024 Гуманитарная инженерная интеллектуальная
научная помощь по восстановлению разрушенных мостовых 8 стр.docx
Гуманитарная инженерная интеллектуальная помощь по восстановлению разрушенных мостов в Глушковской районе через реку
Сейсм 10 стр.doc
Seismofond SPbGASU Figuri zayavka na izobretenie poleznaya peshekhodniy most dvtori Uzdi Egorova Kovalenkom RU 2022113510 RU
2022111669 ru2022113510 ru 2022115073 283 str.pdf

420.

Seismofond SPbGASU Figuri zayavka na izobretenie poleznaya peshekhodniy most dvtori Uzdi Egorova Kovalenkom RU 2022113510 RU
2022111669 ru2022113510 ru 2022115073 283 str.docx
Gumanitarnaya inzinernaya intellektualnaya pomosh krestyanam sela Gluchkovo Zvannoe Karizh Zayavka FIPS Sborno razbornii
peshekhodniy most Kursk reka Seism Glushkovskiy rayon avtori Uzdin Egorova Kovalenko278 str.docx
Gumanitarnaya inzinernaya intellektualnaya pomosh krestyanam sela Gluchkovo Zvannoe Karizh Zayavka FIPS Sborno razbornii
peshekhodniy most Kursk reka Seism Glushkovskiy rayon avtori Uzdin Egorova Kovalenko278 str.pdf
Zadanie proektirovaniya Predlozheniya programme natsionalnie standarti FAU FSHS minstroya Predlozhenie sborno-razborniy peshexodni
armeyskiy most pereprava Kursk Gluxavskoy reka seysm 687 str.docx
Zadanie proektirovaniya Predlozheniya programme natsionalnie standarti FAU FSHS minstroya Predlozhenie sborno-razborniy peshexodni
armeyskiy most pereprava Kursk Gluxavskoy reka seysm 687 str.pdf
Zayavka izobretenie FIPS Rospatent Sborno razborniy peshekhodniy armeysk most reku Seism Gluskovskogo Kurskoy Uzdin RU 202211669
RU 2022113052 RU 2022115073 RU 167977 gasheniya udarniki vibratsionnikh vozdeystviy 290 str.docx
Zayavka izobretenie FIPS Rospatent Sborno razborniy peshekhodniy armeysk most reku Seism Gluskovskogo Kurskoy Uzdin RU 202211669
RU 2022113052 RU 2022115073 RU 167977 gasheniya udarniki vibratsionnikh vozdeystviy 290 str.pdf
https://wdfiles.ru/ipsearch.html?page=2
Protokol Polozitelniy Minoboroni liberalniy segment FAU ROSDORNII MINTRAS razbushvalis
ekspertniy sovet napravit ischrpivayushie materiali polozhitelnoe zaklyuchenie minoboroni MCHS 461
стр
https://ppt-online.org/1557516
Приложение № 1 к Приказу ОО "Сейсмофонд" СПб ГАСУ к Акту о соответствии
параметров,законченного объекта проектной документации
https://ppt-online.org/1551438
Просим направить для рассмотрения и анализа в Экспертный совет
ОЦК исчерпывающие материалы по предлагаемой технологии,
техническое описание предложения с детальным техникоэкономическим обоснованием, включающим, в том числе, результаты

421.

лабораторных исследований и натурных наблюдений за опытными
участками, анализ и преимущества по сравнению с традиционно
применяемыми техническими решениями, заключения научных,
проектных и других организаций, предложения по технологическому
применению при опытно-экспериментальном внедрении, другие
обосновывающие материалы
Вестник международной ассоциации экспертов по сейсмостойкому строительству
https://ppt-online.org/1545040
ЗАКЛЮЧЕНИЕ ПОЛОЖИТЕЛЬНОЕ Согласно протокола испытании узлов и
фрагментов соединения в напряженно –деформируемом состоянии трехгранной
фермы –балки с неразрезными поясами пятигранного составного профиля
состоящего из трехгранной фермы с предварительным напряжением для плоских
покрытия и сдвигового упругопластического сдвигового шарнира с большими
перемещениями и приспособляемостью крепления решетчатых пространственных
узлов покрытия (перекрытия) из перекрестных ферм типа «Новокисловодск»,
комбинированных пространственных структур для, сборки трехгранных
неразрезных комбинированных пространственных структур, ферм-балок,

422.

приставных пилонов с предварительным напряжением № 568 от 16.06.2023 (ИЛ
ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, организация «Сейсмофонд»
при СПб ГАСУ ИНН 2014000780, для надстройка пятиэтажного здания при
реконструкции, без выселения и без крановой сборки комбинированных
пространственных структурных ферм -покрытия для реконструкции пятиэтажек (
хрущевок) с использованием пространственных структурных ферм - покрытий и
настройки верхних этажей из стержневых структур, МАРХИ ПСПК",
"Кисловодск" ( RU 80471 "Комбинированная пространственная структура" ) с
большими перемещениями на предельное равновесие и приспособляемость ,для
модернизируемых и реконструируемых пятиэтажек ( хрущевок) с надстройкой
верхних этажей, остекленных террас , вокруг пятиэтажки (хрущевки) СООТВЕТВУЕТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ
RSFSR Protokol ispitaniy uzlov fragmentov fermi balki nadstroyki pyatietajki 535
https://disk.yandex.ru/d/Bthp5PgdxMMiVg https://mega.nz/file/gmkHhZrB#r9jQTPPdw3llvpUYCxMzN1w4NufS1K8XS5DNRctMB0 karta
[email protected]
https://mega.nz/file/g69x2JyT#yPNLLIz2iKenxxgrPoxye32FUpCAcmFUYdhUnqwe4oQ
https://ppt-online.org/1354050 https://ibb.co/GHFMnBv RUS Protokol ispitaniy uzlov
fragmentov fermi balki nadstroyki pyatietajki 535 https://ppt-online.org/1354050

423.

Президента организации "Сейсмофонд" при СПбГАСУ ИНН : 2014000780, ОГРН
1022000000824
/ Х.Н.Мажиев /
Кафедра технологии строительных материалов и метрологии СПб ГАСУ , дтн, проф
–консультант
/ Ю.М.Тихонов/
Заведующий лабораторией Политех, Гидрокорпус 2, оф 104 Инж.-Строит
факультет СПбГПУ
/Е.Л.Алексеева/
Кафедра технологии строительных материалов и метрологии СПб ГАСУ , ктн доц
/И.У.Аубакирова/
Подтверждение компетентности
Номер решения о прохождении процедуры
подтверждения компетентности 8590-гу (А-5824) СПб ГАСУ (ЛИСИ)
Подтверждение
компетентности
https://pub.fsa.gov.ru/ral/view/13060/applicant
организации
СВЕДЕНИЯ О ПРОДУКЦИИ И СОСТАВ ЭКСПЕРТНЫХ МАТЕРИАЛОВ :
Строительные элементы конструкции в виде комбинированных
пространственных трехгранных ферм-балок (перекрытия) из прямоугольных
труб ( изобретение № 154158) , комбинированных пространственных
структурных перекрытий ( патент № 80471), с предварительным напряжением
( Е.А.Мелехин «Трехгранные фермы с предварительным напряжением для

424.

плоских покрытий, Мелехин Е.А., НИУ МГСУ «Напряженно –деформируемое
состояние трехгранных ферм с неразрезными поясами пятигранного
составного профиля»), с использованием решетчатой пространственный узел
покрытия (перекрытия) из перекрестных ферм типа «Новокисловодск»
патент № 153753, соединенные «Монтажное устройство для разборного
соединения элементов стрелы башенного крана,(патент 2336220 ), c учетом
изобретений, изобретенных в СССР проф. дтн ПГУПС А.М.Уздиным
[email protected] (921) 788-33-64 SU №№ 1143895, 1168755, 1174616? 2550777,
858604, 1760020, 165076, 2010136746, 154506 ), для жилых домов первой массовой
серии, частей надстройки пятиэтажки (хрущевки) здания, при реконструкции
без выселения, без крановой сборки, со сборкой узлов на крыше
модернизированной пятиэтажки, с устройством террас, с подземным этажомбомбоубежищем, в четыре наката ( « Конструкция противоснарядной защиты»
№ 2023112836 от 17.05.2023 вх 0272981 ) и согласно заявки на изобретение,
от 16.06.2023, б/ н регистр:«Способ надстройки пятиэтажного здания без
выселения» ), с помощью монтажной лебедки.
ОРГАНИЗАЦИЯ ИЗГОТОВИТЕЛЬ: ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09
от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация
«Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10
(аттестат № RA.RU.21СТ39, выдан 27.05.2015) ИНН: 2014000780 ФГАОУ

425.

ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул.
Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ ОГРН:
1022000000824, т/ф (812) 694-78-10 (аттестат № RA.RU.21СТ39, выдан 27.05.2015)
ПЕРЧЕНЬ ДОКУМЕНТОВ, ПРЕДСТАВЛЕННЫХ НА ЭКСПЕРТИЗУ: СП
56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-032001,ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 17516.1-90, п.5, СП
14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционно-подвижного
соединения (ФФПС) согласно альбома серии 4.402-9 «Анкерные болты», альбом,
вып.5, «Ленгипронефтехим», ГОСТ 17516.1-90 (сейсмические воздействия 9 баллов
по шкале MSK-64) п.5, с применением ФПС, СП 16.13330.2011. п.14.3, ТКП 45-5.04274-2012 (02250) , п.10.7, 10.8. Протокола № 515 от 18.09.2018 , ОО «Сейсмофонд»,
ИНН 2014000780 СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС
№ SP01.01.406.045 от 27.05.2014, действ. 27.05.2019, свидетельство НП «СРО
«ЦЕНТРСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 и свид.
СРО «ИНЖГЕОТЕХ» № 281-2010-2014000780-П-29 от 22.04.2010 в ИЦ "ПКТИСтройТЕСТ" и протокола испытания на осевое статическое усилие сдвига
дугообразного зажима с анкерной шпилькой № 1516-2 от 25.11.2017 и протокола
испытаний на осевое статическое усилие сдвига фрикционно-подвижного
соединения по линии нагрузки № 1516-2/3 от 20.02.2017 г. : yadi.sk/i/ODGqnZv3EU3MA yadi.sk/i/_aIPeyJZ3EU3Zt [email protected]
[email protected] [email protected]

426.

ЗАЯВИТЕЛЬ И ЕГО АДРЕС : ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от
26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд»
при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10 (аттестат №
RA.RU.21ТЛ09, выдан 26.01.2017) «Сейсмофонд» при СПб ГАСУИНН: 2014000780
СБЕР 2202 2056 3053 9333 Счет получ. СБЕР № 40817 810 5 5503 1236845
Корр 30101810500000000635
(Основание: Постановление Правительства Российской Федерации от 27
декабря 1997г. № 1636)
«УТВЕРЖДАЮ»
Президент ОО «Сейсмофонд»
ИНН 2014000780 /Мажиев Х. Н./
ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ № 568 от 20 .06.2023
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015, аттестат №
RA.RU.21ТЛ09, выдан 26.01.2017))

427.

ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул.
Политехническая, д 29, 190005, 2-я Красноармейская ул. д 4, https://www.spbstu.ru ,
(аттестат № RA.RU.21ТЛ09, выдан 26.01.2017) , организация «Сейсмофонд» при СПб
ГАСУ. 190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, ИНН:
2014000780 (812) 694-78-10, (921) 962-67-78, (911)175-84-65, (981) 886-57-42, (981)
276-4992 [email protected] [email protected]
190005, СПб, 2-я Красноармейская ул., д. 4, СПб ГАСУ195251, СПб, ул.
Политехническая, д 29 [email protected]
О ПРИГОДНОСТИ ПРОДУКЦИИ ДЛЯ ПРИМЕНЕНИЯ
В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РФ
Регистрационный номер 2172578 Дата 20.06.2023

428.

Учитывая изложенное считаем целесообразным рекомендовать
подготовить и направить для рассмотрения и анализа в Экспертный
совет ОЦК исчерпывающие материалы по предлагаемой технологии,
техническое описание предложения с детальным техникоэкономическим обоснованием, включающим, в том числе, результаты
лабораторных исследований и натурных наблюдений за опытными
участками, анализ и преимущества по сравнению с традиционно
применяемыми техническими решениями, заключения научных,
проектных и других организаций, предложения по технологическому
применению при опытно-экспериментальном внедрении, другие
обосновывающие материалы, а также документы, подтверждающие
безопасность для жизни и здоровья людей, их имущества и
окружающей среды
МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ
(МИНТРАНС РОССИИ)

429.

Рождественка ул., д. 1, стр. 1, Москва, 109012 тел.: (499) 495-00-00,
факс: (499) 495-00-10 www.mintrans.gov.ru
____________________ № ____________________
На № _________________ от __________________
Уважаемый Владимир Игоревич!
Департамент государственной политики в области дорожного
хозяйства Министерства транспорта Российской Федерации (далее –
Департамент) рассмотрел Ваше обращение от 19.08.2024 № НО-951782
о восстановлении мостового сооружения путем внедрения технологии
усиления основания пролетного строения мостового сооружения с
использованием подвижных треугольных балочных ферм,
направленное письмом Управления Президента Российской
Федерации по работе с обращениями граждан и организаций от
19.08.2024 № А26-09-НО-95178231-СО1, и сообщает.

430.

Департаментом организовано рассмотрение Вашего обращения
Федеральным дорожным агентством. Ответ, поступивший письмом от
02.09.2024 № 01-32/36596, прилагается.
Приложение: на 3 л. в 1 экз.
Заместитель директора Департамента
государственной политики
в области дорожного хозяйства А.В. Козлов
1
МИНИСТЕРСТВО ТРАНСПОРТА
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ДОРОЖНОЕ АГЕНТСТВО
(РОСАВТОДОР)
ЗАМЕСТИТЕЛЬ РУКОВОДИТЕЛЯ
Бочкова ул., д. 4, Москва, 129085

431.

Телефон: (495) 870-99-40, факс: (495) 870-97-13
E-mail: [email protected], https://rosavtodor.gov.ru
№ На № от
Министерство транспорта Российской Федерации
Директору Департамента государственной политики в области
дорожного хозяйства
Т.В. Лубакову
(ДДХ) О рассмотрении обращения Горынина В.И.
Уважаемый Тимур Владимирович!
В соответствии с резолюциями Минтранса России от 21.08.2024 № Г16584-ВТ, от 21.08.2024 № Г-16586-ВТ, от 22.08.2024 № Г-16655-ВТ
на письма Управления Президента Российской Федерации по работе с
обращениями граждан и организаций от 19.08.2024 № А26-09-НО95178231-СО1, от 19.08.2024 № А26-09-95151131-СО1, от 20.08.2024
№ А26-09-НО-95755031-СО1 Федеральное дорожное агентство

432.

рассмотрело обращения Горынина В.И. от 19.08.2024 № НО-951782, от
19.08.2024 № 951511, от 20.08.2024 № НО-957550 по вопросу
восстановления мостового сооружения путем внедрения технологии
усиления основания пролетного строения мостового сооружения с
использованием подвижных треугольных балочных ферм, основанной
на изобретениях Уздина А.М., и сообщает.
В информационных материалах, представленных в обращении
Горынина В.И., упоминаются патенты № 1143895, 1168755, 1174616,
полученные на конструкцию «армейского моста» коллективом авторов
во главе с профессором д.т.н. Уздиным А.М, а также приводятся
сведения о нескольких заявках на изобретения, в том числе
«Конструкция участка постоянного железобетонного моста
неразрезной системы, восстановленного с применением типовых
структурных серий 1.460.3-14 ГПИ «Ленпроектстальконструкция»,
стальные конструкции покрытий производственных» от 25.05.2022 №
2022111669, «Сборно-разборный железнодорожный мост» от
27.05.2022 № 2022113052, «Сборно-разборный универсальный мост»
от 21.06.2022 № 2022113510.

433.

2
При этом в обращении отсутствуют какие-либо материалы,
подтверждающие соответствие описываемых конструктивнотехнологических решений упругопластических стальных ферм-балок с
пластическими сдвиговыми шарнирами для пролетного строения
автомобильного моста требованиям нормативно-технических
документов в области дорожного хозяйства. Также в информационных
материалах отсутствуют результаты испытаний, характеризующие
эффективность применения предлагаемых технических решений и их
преимущества в сравнении с традиционными технологиями, в связи с
чем сделать вывод об эффективности и перспективности применения
предлагаемого технического решения при осуществлении дорожной
деятельности не представляется возможным.
Обращаем внимание, что предоставление материалов патента на
изобретение (полезную модель) не является достаточным условием
для проведения оценки возможности ее применения на объектах
дорожного хозяйства.

434.

В соответствии со статьей 1354 Гражданского кодекса Российской
Федерации (часть четвертая) патент только удостоверяет приоритет,
авторство и исключительное право его автора, а прилагаемые описание
и чертежи могут использоваться для толкования формулы изобретения
(полезной модели). Предлагаемые на уровне патента (то есть на уровне
обоснованных идей) инженерные решения для возможного внедрения
в практику должны быть представлены автором как техническое
решение с детализированным обоснованием требований к
применяемым материалам, конструктивным решениям, условиям
выполнения и технологиям производства работ с соответствующим
технико-экономическим обоснованием.
Необходимо отметить, что в целях содействия внедрению новых
материалов и технологий, а также обеспечения возможности
проведения независимой общественной экспертизы решений
нормативно-правового характера, принимаемых в целях развития
дорожной отрасли, на базе подведомственного Федеральному
дорожному агентству федерального автономного учреждения
«Российский дорожный научно-исследовательский институт» (далее –

435.

ФАУ «РОСДОРНИИ») создан Экспертный совет Общеотраслевого
центра компетенций по новым материалам и технологиям для
строительства, ремонта и содержания автомобильных дорог (далее –
Экспертный совет ОЦК). Подробная информация об Экспертном
совете ОЦК приведена на официальном сайте по адресу
https://rosdornii.ru/activity/otraslevoy-tsentr-kompetentsiy/.
Учитывая изложенное, считаем целесообразным рекомендовать
подготовить и направить для рассмотрения и анализа в Экспертный
совет ОЦК исчерпывающие материалы по предлагаемой технологии,
техническое описание предложения с детальным техникоэкономическим обоснованием, включающим, в том числе, результаты
лабораторных исследований и натурных наблюдений за опытными
участками, анализ и преимущества по сравнению с традиционно
применяемыми техническими решениями, заключения научных,
проектных и других организаций, предложения по технологическому
применению при опытно-экспериментальном внедрении, другие
обосновывающие материалы, а также документы, подтверждающие

436.

безопасность для жизни и здоровья людей, их имущества и
окружающей среды.
С уважением,
И.В. Шулая
(495) 870-98-08
Благодарю Вас за активную гражданскую позицию и желание помочь
Вооруженным Силам Российской Федерации.
Врио начальника инженерных Вооруженных Сил Российской Д. Коруц
https://mega.nz/file/7fAAkQBK#0SUGdCQZd6G55Fl0lMT3LOkUMeVk9Vdmo
VMzLaP_RDM
https://mega.nz/file/ieJ2nQBL#S9TDRWh1fSPdyE6K7jl4Rr_wVgCUX22IlC66m
kcBALI
https://disk.yandex.ru/d/X6JFlwm1hZbvHw https://ppt-online.org/1215876

437.

Положительное заключение экспертиза военная на проектирование и изготовление
надвижных сборно-разборных железнодорожных мостов
УТВЕРЖДАЮ Начальник ФГБУ «НИИЦ ЖДВ» Минобороны России С.А Лагунов
ЗАКЛЮЧЕНИЕ на материалы по обращению гражданина РФ Мажиева Х.Н. от К) июня
2022 г. № 11-116755,направленные в Аппарат Правительства Российской Федерации (для
проработки и учета в проведении научных исследований }
Гражданином РФ Мажиевым Хасаном Нажоевичем (далее - автор) представлено на
рассмотрение 340 страниц неструктурированного материала, включающего текст,
фотографии, чертежи и рисунки, а также ссылки на информационные ресурсы в сети
Интернет по вопросу применения и усовершенствования сборно-разборных пролетных
строений многократного применения «Тайпан» для автодорожных мостов (далее- СРП
«Тайпан»).
СРП «Тайпан» является глубокой переработкой систем модульных мостов Bailey bridge,
разработанной в Великобритании во время Второй мировой войны для форсирования водных

438.

преград, адаптированный под российские расчетные нормы и габариты (СП 35.13330.2011,
класс автомобильной нагрузки А2-А14 и Н2-И14, габарит проезда Г-4,5; Г-6,5 и Г-8), а также
отечественные материалы (стали марки 345-09Г2С-15, 10ХСНД, 40ХН2МА и Ст.З).
Разработка СРП «Тайпан» проводилась специалистами ООО «АвтоМоетПроект» и ФГБОУ
ВО «Сибирский государственный университет путей сообщения» (СГУПС).
Первый опыт применения пролетов Bailey bridge в Российской Федерации был осуществлен
в 1997 году. Через Шкиперский канал в г. Санкт- Петербург был установлен пролет фирмы
Mabey длиной 22,5 м, предназначенный для пропуска автомобильного транспорта
грузоподъемностью до 8 тонн по одной полосе и имеющий один тротуарный проход.
В 2G16 году в Воронежской области при ремонте действующего автомобильного моста,
расположенного на трассе М-4 «Дон» ч/р Левая Богучарка на км 749+150 (обратное
направление), был смонтирован
временный автомобильный мост с применением СРП «Тайпан» для одностороннего пропуска
автомобилей, гш неразре^ снеме " п 1 + W 11 + ' 1.31 М, полной длиной 74,53 м, с габаритом
проезда 1 -4,5 и оасчетными нагрузками ЛИ и НИ. В качестве опор были использованы Гет—
ские поперечины на винтовых сваях. Тип дорожного покрытия - сплошной деревянный накат,
уложенный на металлические "Р™
В настоящее время СРП «Тайпан» эксплуатируются на 18-и мостах пределах
круглогодичного временного технологического проезда магистрального газопровода «Сила
Сибири» в ПАО «Газпром».
СРП «Тайпан» представляет собой пролетное строение с ездой посредине, открытого
типа. Главной несушей конструкцией является плоская ферма с параллельными поясами и

439.

ромбической р.шеткои Плоская ферма поделена на панели ДЛИНОЙ 3,14 м. высотой 2,0 м,
массой О «2 т Объединение панелей в плоскую ферму производится при помощи штырей,
которые вставляются в проушины в уровне нижнего и верхнего поясов С одной стороны
штырь имеет уишрение, с другой стороны - шплинт. Подобная конструкция штыря
препятствует « движению вдоль ^иоеи, что предотвращает его выскальзывание из
соединения. Штыри допускают поворот соединяемых элементов друг относительно друга в
вертикально,, плоскости и работают на срез. Элементы панелей изготавливаются из
прокатных профилей одинакового квадратного поперечного сечения.
11лоские фермы объединяют „пространственную конструкцию путем их прикрепления к
поперечным балкам, расположенным чуть выше уровня нижнего пояса. Длина поперечной
балки зависит от габарита проезжей части и может составлять до 11,73 м (при габарите
Г-8), массой до 0,98 Поперечные балки представляют собой двутавры, стенки которых
дополнительно усилены вертикальными ребрами устанавливаемыми по результатам расчета
местной устойчивости ™
Тротуарные консоли имеют ширину прохода 0,75 м и крепятся поперечным балкам при
помощи болтов. На тротуарные консоли
устанавливаются металлические перила высотой 1,1 м.
В качестве проезжей части предусмотрено несколько конструктивных решений:
ортотропные плиты со сплошным металлическим покрытием; ячеистые резинокордовые
плиты; металлические прогоны со сплошным
деревянным накатом; деревокомпозитныеплиты. ??'

440.

Основным преимуществом СРП «Тайпан» является унификация элементов главных ферм
для всех типов длин пролетных строении и простота
их м0™*ав№ш недостаткоы Срп «Тайпан» яв;1яется большое количество плоских панелей в
составе главных ферм при перекрытии значительных длин
пролетных строений или при обеспечений пропуска тяжелых нагрузок,, а следовательно увеличение массы пролетного строения. Справочно: на трассе М-4 «Дон» ч/р Левая Богучарка
на км 749 * 150 было смонтировано пролетное строение по неразрезной схеме 21,31 + ЗОЛ +
21,31 м, полной длиной 74.53 м. с габаритом проезда Г-4,5 и расчетными нагрузками АН и HI
1. состоящие из 4-х плоских панелей. по 2 панели на правую и левую фермы. Сравнение длин
пролетных строений и их общих масс металлоконструкций СРП «Тайпан» и пролетных
строений, применяемых в Железнодорожных войсках для краткосрочного и временного
восстановления мостов, дано в таблице 1.
Таблица 1 - Длины пролетных строений я их общие массы
Наименование пролетного строения
Длина пролетного строения, м. .
Общая масса металл о ко н стру кци й пролетного строения, т.
СРП «Тайпан» (габарит Г-4.5; нагрузка ЛИ и И i 1)
15,0
20,90

441.

21,0 '
37,91
27,0
48,10
33,0
74,50
Сборно-разборные пролетные строения |с непосредственным прикреплением рельсов к
верхним поясам главных балок
(СРП-18НС, СРП-23НС, СРП~33,6НС, нагрузка «В»)
18,0
22.26
23,0
29.29

442.

33,6
48,62
* ГУ:
!
1
Металлическая эстакада РЭМ-500 (нагрузка ФД + 7,2 тс/м пути)
12,51
10,74
Мост-эстакада И.МЖ-500
Гна]~рузка «ВТ») .... ...
12.51
17,46
Из таблицы 1 видно, что пролетные строения, применяемые в
Железнодорожных войсках для краткосрочного и временного восстановления искусственных
сооружений, имеют сопоставимую длину пролетов в сравнении с СРП «Тайпан». однако
общая масса металлоконструкций таких пролетов существенно ниже, чем у СРП «Тайпан».
„иий СРП <<Т— ?
пР^агается рае
нагрузки по пролетному "Р"q
добавления шпреальных

443.

вариант усиления Г^^Го.Гдобные способы усиления очень затяжек из арматурной ^^о—
Гусиливающих элементов, что налагает требовательны к качеству .^шюп^У
персонала,
выполняющего
дополнительные ^IL^SZS^ <*П «Тайпан», как пролетов, допуска более а добавить fWgg
пролетного строения дополнительные плоски, панели в
фермЧТО похожий способ
соединения панелей „,™етс* пои стыковке секций пролетных СРП,Тайпа„,вплоскиеф^мьп«^^
Однако, в отличие от строений наплавного НЖМпролетных с,поении
соединения панелей CI П
а?Т повор0та соединяемых
железнодорожной части НЖМ--0-0 и Д У ^ элементов лтт относительно друга в вертикал
m монтажа и унификации элем отличающихся простотой
^почетных
строений. При разработке и главных ферм для всех типов ^^^^гПро.^ и ФГБОУ ВО
конструировании СРП ^^^^looLu^ mmm
«Сибирский государственныйУНИврси^ЩГ , что позволяет рассчитано более 5 тыс. схем
для обеспечения
проектировать целесообразным не заниматься Я ДОНОЛ1Ш Необходимо отметить
Помимо способов усиления СРП «Тайпан» автор предлагает применить в конструкции
пролетного строения «антисейсмический сдвиговой фрикционное демпфирующий
компенсатор и фрикци-болт» (орфография
автора сохранена).
штырь,
Суть предлагаемого решения заключается в том, чтобы заменить

444.

объединяющий панели в плоскую ферму, на специальное соединение. Указанное соединение
представляет собой болт с пазом вдоль стержня, в который забивается медный
обожженный клин. Помимо этого, в соединении используются бронзовые втулки (гильзы) и
свинцовые шайбы.
Подобное соединение панелей в плоскую ферму содержит в сеое мягкие и цветные
металлы. Кроме того, данное соединение возможно собрать только один раз, без
последующей разборки, что существенно ограничивает сферу
применения СРП «Тайпан».
Материалы, представленные гражданином РФ
Мажиевым Хасаном Нажоевичем, не применимы для
нужд Железнодорожных войск и относятся, в большей
степени, для краткосрочного и временного
восстановления автомобильных мостов.
Отдельные конструктивные особенности пролетных строении, а
именно:
- конструкции пролетных строений;
- способы и узлы соединения главных ферм;
- варианты мостового полотна для проезда гусеничной и автомобильной техники

445.

могут быть использованы в дальнейшем при
разработке новых железнодорожных
пролетных строений для краткосрочного и
временного восстановления искусственных
сооружении.
Начальник 2 отдела научно-исследовательского ФГБУ «НИИЦ ЖДВ» Минобороны России
полковник М.П.Орехов (/ /7
/А. I. М.С.Калинин
Начальник 32 лаборатории научно- исследовательской ФГБУ «НИМТД ЖДВ» Минобороны
России майору /
Младший научный сотрудник 12 лаборатории научно-исследовательской М.Ю.Умалѐнов
ФГБУ «НИИЦ ЖДВ» Минобороны России
МАЖИЕВУ Х.Н. МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ
(МИНОБОРОНЫ РОССИИ)
г. Москва, 105066 2011 г. На №
Уважаемый Хасан Нажоевич!
Ваше обращение от 9 августа 2022 года зарегистрированное за № П-144269054813 в
Главном управлении начальника Железнодорожных войск рассмотрено.

446.

В письме от 13 июля 2022 г. № 160/24/4373 и от 4 августа 2022 г. № 160/24/5004 была
представлена позиция Минобороны России по результатам анализа и проработки
представленных Вами материалов (прилагается).
Для уточнения интересующих Вас вопросов и выработки единых подходов к предлагаемым
научным разработкам в интересах обороноспособности страны, полагается целесообразным
провести совещание на базе федерального государственного бюджетного учреждения
«Научно-исследовательский испытательный центр» Министерства обороны Российской
Федерации (г. Москва, ул. Енисейская, 7) или наладить более тесное взаимодействие.
В представленных материалах оценить в полном объеме возможности изобретения
«Армейский сборно-разборный надвижной быстро собираемый и быстро возводимый
железнодорожный мост» и подготовить по ним заключение не представляется возможным.
Заключение по ранее представленным Вами материалам прилагается.
С уважением, О.Косенков начальник Главного управления Железнодорожных войск
Департамент градостроительной деятельности и архитектуры Министерства
строительства и жилищно-коммунального хозяйства
Российской Федерации
Обращение Мажиева Х.Н. от 10 июня 2022 г. № П-116755 (с приложенными материалами) в
Минобороны России внимательно проработано.
127994, г. Москва, ул. СадоваяСамотечная, 10/1
В настоящее время на снабжении Вооруженных Сил Российской Федерации состоят
образцы военных автодорожных и железнодорожных мостов, отвечающие современным
требованиям и эффективно используемые при решении задач транспортного обеспечения.

447.

О.Косенков
Представленная в обращении Мажиева Х.Н. информация будет учтена при проведении
дальнейших научных исследований в области обороны и военного мостостроения. Начальник
Главного управления
Железнодорожных войск Исп. Смирнов В.В. Т. 8-495-693-07-40
160/24/&2&S Уважаемый Хасан Нажоевич!
> августа .22 &
Ваше обращение от 25 июля 2022 года зарегистрированное за № П-144263 в Минобороны
России рассмотрено.
В письме от 13 июля 2022 г. № 160/24/4373 была представлена позиция Минобороны
России по результатам анализа и проработки представленных Вами материалов
(прилагается).
Для уточнения интересующих Вас вопросов и выработки единых подходов к предлагаемым
научным разработкам в интересах обороноспособности страны, полагается целесообразным
провести совещание на базе федерального государственного бюджетного учреждения
«Научно-исследовательский испытательный центр» Министерства обороны Российской
Федерации (г. Москва, ул. Елисейская, 7) или наладить более тесное взаимодействие.
Прошу Вас проинформировать о своих намерениях.
С уважением, О.Косенков начальник Главного управления Железнодорожных войск Исп.
Смирнов В.В. Т. 8-495-693-07-40

448.

Упругопластическая стальная ферма моста пролетом: 6, 9, 12, 18, 24 и 30 метров c
большими перемещениями на предельное равновесие и приспособляемость , для
автомобильного моста, шириной 3 метра, грузоподъемностью 50 тонн , сконструированного
со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА
ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ
"Ленпроектстальконструкция", стальные конструкции покрытий производственных» №
2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от
27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения
моста» № 2022115073 от 02.06.2022 ) , на болтовых соединениях, с демпфирующей
способностью при импульсных растягивающих нагрузках при многокаскадном
демпфировании при динамических нагрузках, между диагональными натяжными элементами,
верхнего и нижнего пояса фермы, из пластинчатых балок, с применением гнутосварных
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ
«Ленпроектстальконструкция» с использованием изобретений №№ 2155259 , 2188287,
2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895,
1168755, 1174616, 2550777, 2010136746, 165076, 154506
Нет надежд и перспектив применение в коммерческой , торговой компании "РФ-Россия"
пластинчато-балочной системы , фермы-балки для армейских мостов , переправ: со
встроенным бетонным настилом , для критических и чрезвычайных ситуаций в РФ имени

449.

Максима Юрьевича Фомина с учетом приспособляемостью и большими перемещениями
Наш паровоз летит под откос , в коммуне не будет остановки .
Особенности прямого расчета из сверхпрочных и сверхлегких упругопластических
полимерных материалов неразрезных стальных ферм-балок (GFRP -МЕТАЛЛ) с большими
перемещениями на предельное равновесие и приспособляемость ( А.Хейдари,
В.В.Галишниква) железнодорожного армейского моста без крановой сборки , на взрывные
воздействия при чрезвычайных и критических ситуациях в среде SCAD 21 Президент
общественной организации «Сейсмофонд» при СПб ГАСУ ИНН 2014000780 ОГРН
1022000000824 Х.Н.Мажиев [email protected] (921) 962-67-78 , редактора газеты «Армия
Защитников Отечества» инж –механик Е.И.Коваленко [email protected]
[email protected] [email protected] [email protected] [email protected]
Все просто и быстро собирается. Для морпехов г Севастополя и Республики Крым и
Чеченской Республик. Информационное агентство "Русская Народная Дружина", просит
помочь копейкой Карта СБ 2202 2056 3053 9333 Сч. получ .№ 40817 8105 5503 1236845
Корреспондентский счет 30101 810 5 0000 0000635
тел (911) 175-84-65, ( 921) 962-67-78,
( 981) 886-57-42 [email protected]
Особенности прямого расчета из сверхпрочных и сверхлегких упругопластических
полимерных материалов неразрезных стальных ферм-балок (GFRP -МЕТАЛЛ) с большими
перемещениями на предельное равновесие и приспособляемость ( А.Хейдари,
В.В.Галишниква) железнодорожного армейского моста без крановой сборки , на взрывные
воздействия при чрезвычайных и критических ситуациях в среде SCAD 21 Президент
общественной организации «Сейсмофонд» при СПб ГАСУ ИНН 2014000780 ОГРН
1022000000824 Х.Н.Мажиев [email protected] (921) 962-67-78 , редактора газеты «Армия

450.

Защитников Отечества» инж –механик Е.И.Коваленко [email protected]
[email protected] [email protected] [email protected] [email protected]
Все просто и быстро собирается. Для морпехов г Севастополя и Республики Крым и
Чеченской Республик. Информационное агентство "Русская Народная Дружина", просит
помочь копейкой Карта СБ 2202 2056 3053 9333 Сч. получ .№ 40817810555031236845 тел
(911) 175-84-65, ( 921) 962-67-78, ( 981) 886-57-42 [email protected]
Упругопластическая стальная ферма моста пролетом: 6, 9, 12, 18, 24 и 30 метров c
большими перемещениями на предельное равновесие и приспособляемость , для
автомобильного моста, шириной 3 метра, грузоподъемностью 50 тонн , сконструированного
со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА
ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ
"Ленпроектстальконструкция", стальные конструкции покрытий производственных» №
2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от
27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения
моста» № 2022115073 от 02.06.2022 ) , на болтовых соединениях, с демпфирующей
способностью при импульсных растягивающих нагрузках при многокаскадном
демпфировании при динамических нагрузках, между диагональными натяжными элементами,
верхнего и нижнего пояса фермы, из пластинчатых балок, с применением гнутосварных
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ
«Ленпроектстальконструкция» с использованием изобретений №№ 2155259 , 2188287,

451.

2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415, 2155259, 1143895,
1168755, 1174616, 2550777, 2010136746, 165076, 154506
Нет надежд и перспектив применение в коммерческой , торговой компании "РФ-Россия"
пластинчато-балочной системы , фермы-балки для армейских мостов , переправ: со
встроенным бетонным настилом , для критических и чрезвычайных ситуаций в РФ имени
Максима Юрьевича Фомина с учетом приспособляемостью и большими перемещениями
Наш паровоз летит под откос , в коммуне не будет остановки .
Заключение : На основании прямого упругопластического расчета стальных ферм-балок с
большими перемещениями на предельное равновесие и приспособляемость (А.Хейдари,
В.В.Галишникова) н анализа результатов расчета проф дтн ПГУПС А.М.Уздина, можно
сделать следующие выводы.
1. Очевидным преимуществом квазистатического расчета пластинчатых балок с
пластинчато -балочной системой с упруго пластинчатыми сдвиговыми компенсаторами ,
является его относительная простота и высокая скорость выполнения, что полезно на ранних
этапах вариантного проектирования с целью выбора наиболее удачного технического
решения.
2. Допущения и абстракции, принимаемые при квазистатическом расчете, рекомендованном ,
приводят к значительному запасу прочности стальных ферм моста и перерасходу материалов
в строительных конструкциях.
3. Рассматривалась упругая стадия работы противоснарядной защиты , не допускающая
развития остаточных деформаций. Модальный анализ, являющийся частным случаем
динамического метода, не применим при нелинейном динамическом анализе.

452.

4. Избыточная нагрузка, действующее при чрезвычайных и критических ситуациях на
пролетное строение моста и изменяющееся по координате и по времени, в SCAD следует
задавать дискретными загружениями фермы-балки моста. Каждому загружению соответствует
свой график изменения значений и время запаздывания.
5. SCAD позволяет учесть относительное демпфирование к коэффициентам Релея, только для
первой и второй собственных частот колебаний моста, что приводит к завышению
демпфирования и занижению отклика для частот возмущения выше второй собственной.
Данное обстоятельство может привести к ошибочным результатам при расчете сложных
механических систем при высокочастотных возмущениях (например, взрыв).
6. Динамические расчеты пластинчато -балочной системы пролетного строения армейского
моста на взрывное воздействие, выполняемые в модуле «Прямое интегрирование уравнений
движения» SCAD, позволят снизить расход материалов и сметную стоимость строительства
моста.
7. Остается открытым вопрос внедрения рассмотренной инновационной методики в практику
проектирования и ее регламентирования в строительных нормах и приспособление
пролетного строения моста , пролетом 18, 24 м 30 метров , грузоподъемностью 40 тонн с
применением замкнутых гнутосварных профилей прямоугольного сечения типа
"Молодечно" , серия 1.460.3-14 "Ленпроекстальконструкция") для критических и
чрезвычайных ситуация для торговой коммерческо-рыночной компании "РФ-Россия" для
системы несущих элементов и элементов проезжей части , армейского сборно- разборного
пролетного надвижного строения железнодорожного моста с быстросъемными упруго
пластичными компенсаторами , со сдвиговой фрикционно-демпфирующей жесткостью

453.

О пригодности огнестойкого компенсатора гасителя температурных
напряжений для огнезащитного состава марки TAIKOR FP ( OОО
"ТехноНИКОЛЬ -Строительные -Системы ) согласно СТО 72746455-3.6.172022, изготовленные согласно изобретениям, патенты №№ 165076 ("Опора
сейсмостойкая"), 2010136746, 1143895, 1168755, 1174616, 2550777,согласно
СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия" пригодны
ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РФ
https://ppt-online.org/1216319 https://disk.yandex.ru/i/oZJ4zywB4H2Nhw
https://studylib.ru/doc/6356494/lisi-gasu-sertifikat-zaklychenie-ekspertizatexnonikol-in...
(Основание: Постановление Правительства Российской Федерации от 27
декабря 1997г. № 1636) согласно протокола лабораторных испытаний № 574
от 24.06.2022 (расчет выполнен численным и аналитическим методом на
воздействие демпфирующих, сейсмических, термических и взрывных
нагрузок
МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ
ГРАЖДАНСКОЙ ОБОРОНЫ. ЧРЕЗВЫЧАЙ! 1ЫМ СИТУАЦИЯМ И
ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ (МЧС
РОССИИ) Сайдулаеву К.М. [email protected] т/ф (812) 694-78-10

454.

Театральный проезд 3. Москва 109012 Тел. 8 (495)983-79-01. фахс 8(495) 62419-46 02-03.2022 N ИГ- 8-32
О рассмотрении обращения Департаментом образовательной и научнотехнической деятельности (далее - ДОН) по поручению руководства МЧС
России Ваше обращение, поступившее 03.02.2022 из Аппарата
Правительства Российской Федерации за Ne П48-18082 и
зарегистрированное в МЧС России 03.02.2022 за No ГП-1371, рассмотрено в
части, касающейся компетенции Министерства, определенной Указом
Президента Российской Федерации от 11.07.2004 Ng 868 «Вопросы
Министерства Российской Федерации по делам гражданской обороны,
чрезвычайным ситуациям и ликвидации последствий стихийных бедствий».
Информация принята к сведению. МЧС России проводит постоянную
работу по анализу и внедрению современных методов и технологий,
направленных на обеспечение безопасности населения и территории.

455.

В настоящее время в Российской Федерации содействие в реализации
инновационных проектов и технологий оказывают такие организации, как
Фонд «ВЭБ Инновации», ОАО «Банк поддержки малого и среднего
предпринимательства», ОАО «Российская Венчурная Компания», ОАО
«РОСНАНО», Фонд развития инновационного Центра «Сколково», ФГБУ
«Фонд содействия развитию малых форм предприятий в научно-технической
сфере», ФГАУ «Российский фонд технологического развития», которые на
сегодняшний день успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации предлагаемого Вами
изделия «огнестойкий компенсатор гаситель температурных напряжений на
фрикционно-подвижных болтовых соединениях» обратиться в
вышеуказанные организации.
При этом, если Вы примете решение о необходимости дальнейшего
обсуждения, определения целесообразности и выработки оптимальных
способов реализации указанного изделия, предлагаем использовать
общепринятые в научном мире формы и инструменты представления и

456.

обсуждения новых научных идей, открытий, изобретений и технологий,
такие как публикации на страницах научных изданий, либо публичные
дискуссии и доклады на различных научных мероприятиях (симпозиумы,
семинары, конференции), что позволит вовлечь в их обсуждение
максимально широкий круг специалистов.
Также предлагаем принять участие в научных мероприятиях МЧС России,
где Вы сможете поделиться своими технологиями и услышать мнение
экспертов. Информацию о мероприятиях можно получить на официальном
сайте МЧС России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из авторов
ведомственных периодических изданий МЧС России (газета «Спасатель
МЧС России», журналы «Пожарное дело», «Гражданская защита» и «Основы
безопасности жизнедеятельности»), в которых публикуется актуальная
информация о перспективных технологиях и основных тенденциях развития
в области гражданской обороны, защиты населения и территорий от
чрезвычайных ситуаций, обеспечения пожарной безопасности, а также

457.

обеспечения безопасности л кадей на водных объектах. Подробная
информация о ведомственных изданиях размещена на сайте mchsmedia.ru.
Получение печатных версий указанных изданий возможно при оформлении
соответствующей подписки.
Благодарим Вас за активную жизненную позицию и стремление оказать
содействие в области защиты населения и территории от чрезвычайных
ситуаций.
Директор Департамента образовательной - научно-технической
деятельности А.И. Бондар
Кусков Антон Валерьевич 8 (495) 400-99-04 https://ppt-online.org/1211870
https://disk.yandex.ru/i/ABSwCTN_e253fg
https://disk.yandex.ru/i/ABSwCTN_e253fg
https://disk.yandex.ru/i/bIikw2fSnvHN3w

458.

МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ
(МИНОБОРОНЫ РОССИИ»
Х.Н. МАЖИЕВУ
г. Москва. 119160 10 июня 2022 г. № 565 Н -3336 На
№УГ-4082 от 20 мм 2022 г
Уважаемый Хасан Нажоевич!
В соответствии со ст. 8 Федерального
закона от 2 мая 2006 г. 59-ФЗ «О порядке рассмотрения обращений граждан
Российской Федерации» Ваше обращение по вопросу использования сборноразборного железнодорожного моста со сдвиговыми компенсаторами в
Управлении начальника инженерных войск Вооруженных Сил Российской
Федерации рассмотрено.
Задача по преодолению водных и суходольных преград является
актуальной и У НИВ ВС активно ведется работа по разработке
механизированных мостов, танковых мостоукладчиков и мостовых
механизированных комплексов. При проведении данных работ, изложенные
в Вашем обращении технические предложения, при необходимости, будут
учтены.

459.

Благодарю Вас за активную гражданскую позицию и желание помочь
Вооруженным Силам Российской Федерации.
Врио начальника инженерных Вооруженных Сил Российской Д. Коруц
https://disk.yandex.ru/i/9qjLEsy7ylJtJA
Х Н Мажиеву МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО
КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
(МИНСТРОЙ России)
Стадовая –Саимотечная ул дом 10 строение 1 Москва 127994, т (495) 647-15-80. Факс {495) 645-73-40
От 06 06.2022 11524-ОГ 08 Уважаемый Хасан Нажосвич!
Департамент градостроительной деятельности и архитектуры
Министерства строительства и жилищно-коммунального хозяйства
Российской Федерации (далее - Департамент) в рамках компетенции
рассмотрел Ваше обращение от 11 мая 2022 г. № П-93990. направленное
письмом Аппарата Правительства Российской Федерации от 11 мая 2022 г. №

460.

П48-93990 (зарегистрировано в Минстрое России 12 мая 2022 г. № Ю845ОГ), с предложениями по проектированию и строительству сборноразборных железнодорожных мостов и сообщает следующее
В соответствии с пунктом 2 статьи 1 Федерального закона «О защите
конкуренции» от 26 июля 2006 г. № 135-ФЭ Минстрой России не вправе, как
федеральный орган исполнительной власти, устранять конкуренцию и
рекомендовать предлагаемую продукцию для продвижения на рынок.
В настоящее время практически все организации строительного
комплекса имеют статус акционерных или частных предприятии,
самостоятельно решающих стратегию развития бизнеса и принимающих
решения по наращиванию действующих или созданию новых
производственных мощностей.
Наряду с указанным Департамент полагает целесообразным отметить
следующее.
Согласно Плану разработки и утверждения сводов правил и актуализации
ранее утвержденных сводов правил на 2022 год, утвержденному приказом
Министерства строительства и жилищно-коммунального хозяйства
Российской Федерации от 8 декабря 2021 № 909/'пр, в 2022 году проводится

461.

пересмотр СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы» (далее - СП
35.13330.2011).
Полученные предложения но проектированию и строительству сборноразборных железнодорожных мостов будут рассмотрены но существу при
пересмотре СП 35.13330.2011.
Заместитель Директора Департамента градостроительной деятельности и
архитектуры А.Ю. Степанов
Исполнитель Зайцева Д Н + 7 (495) 647-15-80 добавочный . 61061
Электронный документ МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И
ЖИЛИЩНО- КОММУНАЛЬНОГО ХОЗЯЙСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ
Х.Н. Мажиеву [email protected]

462.

(МИНСТРОЙ РОССИИ) Садовая-Самотечная ул., д. 10, строение 1, Москва,
127994 тел. (495) 647-15-80, факс (495) 645-73-40 www.minstroyrf.gov.ru
04.07.2022 N 13466-ОГ/08
Уважаемый Хасан Нажоевич!
В Департаменте градостроительной деятельности и архитектуры
Министерства строительства и жилищно-коммунального хозяйства
Российской Федерации на рассмотрении находится Ваше обращение от 10
июня 2022 г. № П-116755, направленное письмом Аппарата Правительства
Российской Федерации от 10 июня 2022 г. № П48-116755 (зарегистрировано
в Минстрое России 10 июня 2022 г. № 13169-ОГ), с предложениями по
проектированию и строительству сборно-разборных железнодорожных
мостов.
В связи с направлением запроса в Минобороны России и Минтранс
России, а также необходимостью дополнительной проработки вопросов,
содержащихся в обращении, Минстрой России в целях обеспечения
объективного и всестороннего рассмотрения обращения в соответствии с
пунктами 1 и 2 части 1 статьи 10 Федерального закона от 2 мая 2006 г. № 59ФЗ «О порядке рассмотрения обращений граждан Российской Федерации» на
основании части 2 статьи 12 указанного Федерального закона уведомляет о

463.

продлении срока рассмотрения обращения на 30 дней. Заместитель
Директора Департамента градостроительной деятельности и архитектуры
А.Ю. Степанов
Подлинник электронного документа, подписанного ЭП, хранится в системе
электронного документоборота Минстроя России А.Ю. Степанов Исп.
Зайцева Д.Н. +7(495)647-15-80 доб. 61061
https://ppt-online.org/1211866 https://disk.yandex.ru/i/jno_J4Z2mBOE_A
https://disk.yandex.ru/d/X6JFlwm1hZbvHw https://ppt-online.org/1215876
https://mega.nz/file/7fAAkQBK#0SUGdCQZd6G55Fl0lMT3LOkUMeVk9Vdmo
VMzLaP_RDM
https://mega.nz/file/ieJ2nQBL#S9TDRWh1fSPdyE6K7jl4Rr_wVgCUX22IlC66m
kcBALI
https://studylib.ru/doc/6356494/lisi-gasu-sertifikat-zaklychenie-ekspertizatexnonikol-in...
МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНСТРОЙ РОССИИ
117987, ГСП-1, Москва, ул. Строителей, 8, корп. 2 24- №. 9У
На№
№ 3-3-1 //33

464.

О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства "Крестьянская усадьба"
А.И.КОВАЛЕНКО
197371, Санкт-Петербург, а/я газета "Земля РОССИИ" Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную документацию шифр 1010-2с.94 "Фундаменты сейсмостойкие с использованием
сейсмоизолирующего скользящего пояса для строительства малоэтажных зданий в районах сейсмичностью 7, 8 и 9 баллов. Выпуск 0-1. Фундаменты для существующих
зданий.
Материалы для проектирования", выполненную КФХ "Крестьянская усадьба" по договору с Минстроем России от 26 апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка
конструкторской документации сейсмостойкого фундамента с использованием сейсмоизолирующего скользящего пояса для существующих зданий").
Разработанная документация была направлена на экспертизу в Центр проектной продукции массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский
Научно-Технический Центр по сейсмостойкому строительству и инженерной защите от стихийных бедствий (КамЦентр; экспертное заключение N 10-57/94), работа
рассмотрена на заседании секции "Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на НТС Минстроя России.
Результаты экспертиз и рассмотрений показали, что без проведения разработчиком документации экспериментальной проверки предлагаемых решений и последующего
рассмотрения результатов этой проверки в установленном порядке использование работы в массовом строительстве нецелесообразно.
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с целью осуществления авторами контроля за распространением
документации, во изменение письма от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Крестьянская усадьба" кальки чертежей шифр 1010-2С.94, выпуск 02.
Главпроект обращает внимание руководства КФХ "Крестьянская усадьба" и разработчиков документации на ответственность за результаты применения в практике
проектирования и строительства сейсмоизолирующего скользящего пояса по чертежам шифр 1010-2С.94, выпуски 0-1 и 0-2,
Приложение: экспертное заключение КамЦентра на 6 л.
Зам.начальника Главпроекта Барсуков 930 54 87 А.Сергеев

465.

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
МИНСТРОЙ РОССИИ
117987, ГСП-1, Москва, ул. Строителей, 8, корп. 2
и. и. ЧУ № з-з-1 А На№
О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства "Крестьянская усадьба" А.И.КОВАЛЕНКО
197371, Санкт-Петербург, а/я газета "Земля РОССИИ" Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную документацию шифр 1010-2с. 94 "Фундаменты сейсмостойкие с использованием
сеисмоизолирующего скользящего пояса для строительства малоэтажных зданий в районах сейсмичностью 7, 8 и 9 баллов. Выпуск 0-1. Фундаменты для существующих
зданий.
Материалы для проектирования", выполненную КФЯ "Крестьянская усадьба" по договору с Минстроем России от 26 апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка
конструкторской документации сейсмостойкого фундамента с использованием сеисмоизолирующего скользящего пояса для существующих зданий").
Разработанная документация была направлена на экспертизу в Центр проектной продукции массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский
Научно-Технический Центр по сейсмостойкому строительству и инженерной защите от стихийных бедствий (КамЦентр; экспертное заключение N 10-57/94), работа
рассмотрена на заседании секции "Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на НТС Минстроя России. Результаты экспертиз и
рассмотрений показали, что без проведения разработчиком документации экспериментальной проверки предлагаемых решений и последующего рассмотрения
результатов этой проверки в установленном порядке использование работы в массовом строительстве нецелесообразно .
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с целью осуществления авторами контроля за распространением
документации, во изменение письма от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Кресть¬янская усадьба" кальки чертежей шифр 1010-2с.94, выпуск
0-2.
Главпроект обращает внимание руководства КФХ "Крестьянская усадьба" и разработчиков документации на ответственность за результаты применения в практике
проектирования и строительства сеисмоизолирующего скользящего пояса по чертежам шифр 1010-2С.94, выпуски 0-1 и 0-2.

466.

Приложение: экспертное заключение КамЦентра на 6 л.
Зам.начальника Главпроекта Барсуков 930 54 87
Выписка отзыв из НТС Госстроя РОССИИ МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ НАУЧНО ТЕХНИЧЕСКИЙ СОВЕТ ВЫПИСКА ИЗ
ПРОТОКОЛА заседания Секции научно-исследовательских и проектно изыскательских работ, стандартизации и технического нормирования Научно-технического совета
Минстроя России
г. Москва 4 • .1
N 23-13/3
15 ноября ■1994 т.
Присутствовали: от Минстроя России от ЦНИСК им. Кучеренко
от ЦНИИпромзданий
Вострокнутоз КХ Г. , Абарыкоз Е. П. , Гофман Г. Н. , Сергеев Д. А. , Гринберг И. Е. , Денисов Б. И. , Ширяев Б. А. , Бобров Ф. В. , Казарян Ю. А. Задарено к А. Б. ,
Барсуков В. П. , Родина И. В. , Головакцев Е. М. , Сорокин А. Ы. , Се кика В. С. Айзенберг Я. М / Адексеенков Д. А. , Кулыгин Ю. С. , Смирнов В. И. , Чиг-ркн С. И. ,
Ойзерман В. И. , Дорофеев В. М. , Сухов Ю. П. , Дашезский М. А. Гиндоян А. П. , Иванова В. И. , Болтухов А. А. , Нейман А. И. , Ма лин И. С.
от ПКИИИС
от КФХ"Крестьянская усадьба" Севоетьянов 3. В, Коваленко А.И.
от ШШОСП им. Герсезанова от АО. ЩИИС
от КБ по железобетону им. Якушева
от Объединенного института физики земли РАН
от ПромтрансНИИпроекта
от Научно-инженерного и координационного сейсмологического центра РАН
от ЦНИИпроектстальконструкция ИМЦ "Стройизыскания" Ассоциация "Югстройпроект"
от УКС Минобороны России (г. Санкт-Петербург) Ставницер М -Р. Шестоперов Г. С. Афанасьев П. Г. Уломов В. И. , Штейнберг В. В. Федотов Б. Г. Фролова Е И.
Бородин Л. С. Баулин Ю. И. Малик А. Н. Беляев В. С.
2. О сейсмоизоляции существующих жилых домов, как способ повышения сейсмостойкости малоэтажных жилых зданий.
Рабочие чертежи серии номер 1.010.-2с-94с. Фундаменты сейсмостойкие с использованием сейсмоизолирущего скользящего пояса для строительства малоэтажных

467.

зданий в районах сейсмичностью 7,8,9 баллов
1. Заслушав сообщение А. И. Коваленко, отметить, что по договору N 4.2-09-133/94 с Минстроем России КФК "Крестьянская усадьба" выполняет за работу
"Фундаменты сейсмостойкие с использованием сейсмоизолируюшего пояса для строительства малоэтажных зданий в районах сейсмичностью 7, з и 9 баллов".
В основу работы положен принцип создания в цокольной части здания сейсмоизолируюшего пояса, поглощающего энергию как горизонтальных, так и-вертикальных
нагрузок от сейсмических воздействий при помощи резино -щебеночных амортизаторов и ограничителей перемещений.
К настоящему времени завершен первый этап работы - подготовлены материалы для проектирования фундаментов для вновь строящихся зданий.
Второй этап работы, направленный на повышение сейсмостойкости существующих зданий, не завершен. Материалы работы по второму этапу предложены к
промежуточному рассмотрению на заседании Секции.
Представленные материалы рассмотрены НТС ЦНИИСК им. Кучеренко ( Головной научно-исследовательской организацией министерства по проблеме
сейсмостойкости зданий и сооружений) и не содержат принципиально для технических решений и методов производства работ.
Решили:
1. Принять к сведению сообщение А.И.Коваленко по указанному вопросу .
2. Рекомендовать Главпроекту при принятии законченной разработки "проектно-сметной документации сейсмостойкого Фундамента с использованием скользящего
пояса (Типовые проектные решения) учесть сообщение А. И. Коваленко и заключение НТС
ЦНИИСК, на котором были рассмотрены предложения
сейсмоустойчивости инженерных систем жизнеобеспечения ( водоснабжения, теплоснабжения, канализации и газораспределения) .
Зам. председателя Секции научно-исследовательских и проектно-изыскательских работ, стандартизации и технического нормировав ' Ю. Г. Вострокнутов
В. С. Сенина
Ученый секретарь Секции научно-исследовательских и проектно-изыскательских работ, стандартизации и технического нормирование
МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНСТРОЙ РОССИИ
117937 ГСП 1 Москва ул. Строителей 3 корп. 2 П. М ■ 7 У
На № О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства
"Крестьянская усадьба" А.И КОВАЛЕНКО
№ 3-3-1

468.

197371, Санкт-Петербург а/я газета "Земля РОССИИ"
Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную документацию шифр 1010-2с.94 "Фундаменты сейсмостойкие с использованием
сейсмоизолирующего скользящего пояса для строительства малоэтажных зданий а районах сейсмичностью 7, 8 и 9 баллов.
Выпуск 0-1. Фундаменты для существующих зданий. Материалы для проектирования", выполненную КФХ "Крестьянская усадьба" по договору с Минстроем России от 26
апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка конструкторской документации сейсмостойкого фундамента с. использованием сейсмоизолирующего скользящего пояса
для существующих зданий").
Разработанная документация была направлена на экспертизу в Центр проектной продукции массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский
Научно-технический Центр по сейсмостойкому строительству и инженерной защите от стихийных бедствий (КамЦентр; экспертное заключение N 10-57/94), работа
рассмотрена на заседании секции "Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на НТС Минстроя России.
Результаты экспертиз и рассмотрений показали, что без проведения разработчиком документации экспериментальной проверки предлагаемых решений и последующего
рассмотрения результатов этой проверки в установленном порядке использование работы в массовом строительстве нецелесообразно.
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с целью осуществления авторами контроля за распространением
документации, во изменение письма от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Крестьянская усадьба" кальки чертежей шифр 1010-2с.94, выпуск 02.
Главпроект обращает внимание' руководства КФХ "Крестьянская усадьба" и разработчиков документации на ответственность за результаты применения в практике
проектирования и строительства сейсмоизолирующего скользящего пояса по чертежам шифр 1010-2с.94, выпуски 0-1 и 0-2. Приложение: экспертное заключение
КамЦентра на 6 л. Зам.начальника Главпроекта Барсуков 930 54 87 .А.Сергеев
https://vimeo.com/123217610 http://www.youtube.com/watch?v=76EkkDHTvgM https://plus.google.com/104266333744361269970/posts/Arhzf4w96VC
http://rutube.ru/video/person/735051/ https://vimeo.com/121628048
https://vimeo.com/123037314
МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ
ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И
ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ (МЧС
РОССИИ)

469.

Театральный проезд, 3, Москва 109012 Тел. 8(495)983-79-01; факс
8(495)624-19-46
02.03.2022 № ИГ-8-32
На N°
О рассмотрении обращения
Департаментом образовательной и научно-технической
деятельности (далее - ДОН) по поручению руководства МЧС России
Ваше обращение, поступившее 03.02.2022 из Аппарата Правительства
Российской Федерации за № П48-18082 и зарегистрированное в МЧС
России 03.02.2022 за № ГП-1371, рассмотрено в части, касающейся
компетенции Министерства, определенной Указом Президента
Российской Федерации от 11.07.2004 № 868 «Вопросы Министерства
Российской Федерации по делам гражданской обороны, чрезвычайным
ситуациям и ликвидации последствий стихийных бедствий».
Информация принята к сведению. МЧС России проводит
постоянную работу по анализу и внедрению современных методов и
технологий, направленных на обеспечение безопасности населения и
территории.
В настоящее время в Российской Федерации содействие в
реализации инновационных проектов и технологий оказывают такие

470.

организации, как Фонд «ВЭБ Инновации», ОАО «Банк поддержки
малого и среднего предпринимательства», ОАО «Российская
Венчурная Компания», ОАО «РОСНАНО», Фонд развития
инновационного Центра «Сколково», ФГБУ «Фонд содействия
развитию малых форм предприятий в научно-технической сфере»,
ФГАУ «Российский фонд технологического развития», которые на
сегодняшний день успешно осуществляют свою деятельность.
Считаем целесообразным предложить для реализации
предлагаемого Вами изделия «огнестойкий компенсатор гаситель
температурных напряжений на фрикционно-подвижных болтовых
соединениях» обратиться в вышеуказанные организации.
Сайдулаеву К.М. [email protected]
При этом, если Вы примете решение о необходимости дальнейшего
обсуждения, определения целесообразности и выработки оптимальных
способов
реализации указанного изделия, предлагаем использовать
общепринятые в научном мире формы и инструменты представления и
обсуждения новых научных идей, открытий, изобретений и
технологий, такие как публикации на страницах научных изданий,
либо публичные дискуссии и доклады на различных научных

471.

мероприятиях (симпозиумы, семинары, конференции), что позволит
вовлечь в их обсуждение максимально широкий круг специалистов.
Также предлагаем принять участие в научных мероприятиях МЧС
России, где Вы сможете поделиться своими технологиями и услышать
мнение экспертов. Информацию о мероприятиях можно получить на
официальном сайте МЧС России (mchs.gov.ru).
Одновременно считаем возможным предложить Вам стать одним из
авторов ведомственных периодических изданий МЧС России (газета
«Спасатель МЧС России», журналы «Пожарное дело», «Гражданская
защита» и «Основы безопасности жизнедеятельности»), в которых
публикуется актуальная информация о перспективных технологиях и
основных тенденциях развития в области гражданской обороны,
защиты населения и территорий от чрезвычайных ситуаций,
обеспечения пожарной безопасности, а также обеспечения
безопасности людей на водных объектах. Подробная информация о
ведомственных изданиях размещена на сайте mchsmedia.ru. Получение
печатных версий указанных изданий возможно при оформлении
соответствующей подписки.

472.

Благодарим Вас за активную жизненную позицию и стремление
оказать содействие в области защиты населения и территории от
чрезвычайных ситуаций.
Директор
Департамента образовательной и
научно-технической деятельности А.И. Бондар
/
ч
ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ
Сертификат: 600В21Е267ЕСВСО1BFF5 06D7E674C9434301!
Владелец: БОНДАР АЛЕКСАНДР ИВАНОВИЧ Действителен с
17.01.2022 по 17.04.2023
V /
Кусков Антон Валерьевич 8(495)400-99-04
English     Русский Правила