Логическая равносильность формул
Нормальные формы формул алгебры высказываний
Логическое следование формул
421.20K
Категория: МатематикаМатематика

Логическая равносильность формул

1. Логическая равносильность формул

2.

Определение. Формулы , называются
логически
равносильными
(или
просто
равносильными), если | .
Для обозначения логически эквивалентных
формул используется символическая запись
, или просто .
Такие выражения называются логическими
равенствами или просто равенствами формул.

3.

Лемма. Справедливы следующие равенства
формул:
1) X (Y Z ) ( X Y ) Z , X (Y Z ) ( X Y ) Z
– свойства ассоциативности дизъюнкции и
конъюнкции;
2) X Y Y X , X Y Y X – свойства
коммутативности дизъюнкции и конъюнкции;
X X X
3) X X X ,
– свойства
идемпотентности дизъюнкции и конъюнкции;
4) X (Y Z ) ( X Y ) ( X Z ) ,
X (Y Z ) ( X Y ) ( X Z )

законы
дистрибутивности конъюнкции относительно
дизъюнкции
и
дизъюнкции
относительно
конъюнкции;

4.

( X Y ) X Y
5) ( X Y ) X Y ,

законы де Моргана;
6) ( X Y ) X X , ( X Y ) X X – законы
поглощения;
7) X X – закон двойного отрицания;
X Y ( X Y )
8) X Y X Y ,

взаимосвязь импликации с дизъюнкцией и
конъюнкцией;
9) X Y ( X Y ) (Y X ) ,
X Y ( X Y ) ( X Y )

взаимосвязь
эквивалентности
с
импликацией,
дизъюнкцией и конъюнкцией.

5.

Лемма (Правило замены). Если формулы ,
равносильны, то для любой формулы (X ) ,
содержащей
переменную
X,
выполняется
равенство: ( ) = ( ) .
Это правило означает, что при замене в любой
формуле ( ) некоторой ее подформулы
на равносильную ей формулу получается
формула ( ) , равносильная исходной
формуле .
Такие переходы называются равносильными
преобразованиями формул.

6.

Пример.
Формула ( X Y ) Z
с помощью
равенств 5),7),8) из леммы 2.4.1 равносильно
преобразовывается следующим образом:
( X Y ) Z ( X Y ) Z
( ( X Y )) Z ( X Y ) Z .

7. Нормальные формы формул алгебры высказываний

8.

Отношение равносильности является
отношением эквивалентности на множестве
всех формул FАВ, которое разбивает это
множество
на
классы
эквивалентности
[ ] { FАВ : } , определяемые формулами
FАВ .
Из лемм следует, что для каждой формулы
FАВ можно
указать
равносильные
ей
формулы специального вида, содержащие
только символы логических операций , , .

9.

Определение.
Литерой
называется
пропозициональная переменная X или ее
отрицание X . Для обозначения литеры
используется символ X , где {0,1} и по
1
X
X , X 0 X .
определению
Определение.
Конъюнктом
(соответственно, дизъюнктом) называется
литера или конъюнкция (соответственно,
дизъюнкция) литер.
Конъюнкт
(дизъюнкт)
называется
совершенным,
если
он
содержит
все
пропозициональные
переменные
рассматриваемой формулы.

10.

Определение. Конъюнктивной нормальной
формой (сокращенно КНФ)
называется
дизъюнкт или конъюнкция дизъюнктов.
Дизъюнктивной
нормальной
формой
(сокращенно ДНФ) называется конъюнкт или
дизъюнкция конъюнктов.
При этом КНФ (соответственно, ДНФ)
называется совершенной, если совершенны все
ее дизъюнкты (соответственно, конъюнкты).
Теорема 1. Любая формула равносильна
некоторой ДНФ и некоторой КНФ.

11.

Алгоритм приведения формулы
к ДНФ
(соответственно, к КНФ):
1) выражаем все входящие в формулу
импликации и эквивалентности через конъюнкцию,
дизъюнкцию и отрицание;
2) согласно законам де Моргана все отрицания,
стоящие перед скобками, вносим в эти скобки и
сокращаем все двойные отрицания;
3)
согласно
законам
дистрибутивности
преобразуем формулу так, чтобы все конъюнкции
выполнялись раньше дизъюнкций (соответственно,
чтобы все дизъюнкции выполнялись раньше
конъюнкций).

12.

Теорема
2.
( X 1 ,..., X n )
Любая выполнимая формула
равносильна формуле вида
где
дизъюнкция
берется
по
всем
1,..., n {0,1}n,
упорядоченным наборам
удовлетворяющим условию F 1,..., n 1 .
Такая формула определяется однозначно (с
точностью до порядка членов конъюнкций и
дизъюнкций) и называется совершенной
дизъюнктивной
нормальной
формой
(сокращенно СДНФ) формулы .

13.

Теорема 3. Любая опровержимая формула
( X 1 ,..., X n ) равносильна формуле вида
где конъюнкция берется по всем упорядоченным
1,..., n {0,1}n, удовлетворяющим
наборам
условию F 1 ,..., n 0 .
Такая формула определяется однозначно (с
точностью до порядка членов конъюнкций и
дизъюнкций)
и
называется
совершенной
конъюнктивной нормальной формой (сокращенно
СКНФ) формулы .

14.

Алгоритм нахождения СДНФ и СКНФ
формулы ( X 1,..., X n ) :
1. Составить истинностную таблицу
формулы и добавить два столбца
«Совершенные конъюнкты» и «Совершенные
дизъюнкты».
2. Если при значениях ( X1 ) k1,..., ( X n ) kn
значение ( ( X 1 ,..., X n )) формулы равно 1, то
в соответствующей строке таблицы в столбце
«Совершенные
конъюнкты»
записываем
X1k1 X nk n
конъюнкт
и
в
столбце
«Совершенные дизъюнкты» делаем прочерк.
При этом X i1 X i и X i0 X i .

15.

3. Если при значениях ( X 1 ) m1,..., ( X n ) mn
истинностное значение ( ( X 1 ,..., X n )) формулы
равно 0, то в соответствующей строке таблицы в
столбце «Совершенные дизъюнкты» записываем
X11 m1 X n1 mn
дизъюнкт
и
в
столбце
«Совершенные конъюнкты» делаем прочерк.
X1

Xn
...
( X 1 ,..., X n )
… … … ...
k1 … k n ...
… … … ...
m1 … mn ...

1

0




...
Совершенные Совершенные
конъюнкты
дизъюнкты



X1k1 X nk n



X11 m1 X n1 mn


16.

4. СДНФ формулы равна дизъюнкции
полученных
совершенных
конъюнктов:
( X1k1 X nk n ) … .
5. СКНФ формулы равна конъюнкции
полученных
совершенных
дизъюнктов:
( X11 m1 X n1 mn ) … .

17. Логическое следование формул

18.

Определение. Формула называется
логическим следствием формул 1,..., m , если
при любой подстановке в эти формулы вместо
X 1 ,..., X n
их
переменных
конкретных
A1 ,..., An
высказываний
из
истинности
высказываний 1 ( A1,..., An ),..., m ( A1,..., An ) следует
истинность высказывания ( A1,..., An ) .
Символическое обозначение 1,..., m | называется логическим следованием.
Формулы 1,..., m называются посылками и
формула – следствием логического
следования 1,..., m | .

19.

Определение. Множество формул
называется противоречивым, если из него
логически следует любая (в том числе и
тождественно ложная) формула.
Символически это записывается
.
В противном случае множество формул
называется выполнимым.
Лемма
(Транзитивность
логического
следования). Если 1,..., m | и для любого
значения 1 i m выполняется 1,..., k | i , то
1 ,..., k | .
English     Русский Правила