Многогранники
Геометрические понятия
Определение сечения.
Сечением поверхности геометрических тел называется
Плоскость (в том числе и секущую) можно задать следующим образом
Демонстрация сечений
Построить сечение тетраэдра плоскостью, заданной тремя точками.
Построить сечение тетраэдра плоскостью, заданной тремя точками. Метод …
Построить сечение тетраэдра плоскостью, заданной тремя точками.
Постройте сечение пирамиды плоскостью, проходящей через три точки M,N,P.
Когда метод следов не нужен
Когда метод следов не нужен
1.40M
Категория: МатематикаМатематика

Многогранники. Геометрические понятия

1.

2. Многогранники

• Тетраэдр
• Параллелепипед

3. Геометрические понятия

• Плоскость – грань
• Прямая – ребро
• Точка – вершина
вершина
грань
ребро

4. Определение сечения.

• Секущей плоскостью многогранника называется…
• Сечением многогранника называется …

5. Сечением поверхности геометрических тел называется

плоская фигура, полученная в
результате пересечения тела
плоскостью и содержащая точки,
принадлежащие как поверхности
тела, так и секущей плоскости

6.

7. Плоскость (в том числе и секущую) можно задать следующим образом

8.

А
Секущая
плоскость
N
M
α
K
D
В
С

9.

A
Секущая
плоскость
сечение
N
M
α
K
D
B
C

10.

Секущая плоскость пересекает грани
многогранника по прямым, а точнее по
отрезкам - разрезам.
Так как секущая плоскость идет
непрерывно, то разрезы образуют
замкнутую фигуру-многоугольник.
Полученный таким образом
многоугольник и будет сечением тела.

11. Демонстрация сечений

12. Построить сечение тетраэдра плоскостью, заданной тремя точками.

D
D
M
N
А
M
P
С
L
А
P
С
N
В
Построение:
1. Отрезок MP
2. Отрезок PN
3. Отрезок MN
MPN – искомое сечение
В
Построение:
1. Отрезок MN
2. Луч NP;
луч NP пересекает АС в точке L
3. Отрезок ML
MNL –искомое сечение

13.

Аксиоматический метод
Метод следов
Суть
метода
заключается
в
построении
вспомогательной прямой, являющейся изображением
линии пересечения секущей плоскости с плоскостью
какой-либо грани фигуры . Удобнее всего строить
изображение линии пересечения секущей плоскости с
плоскостью нижнего основания. Эту линию называют
следом секущей плоскости. Используя след, легко
построить изображения точек секущей плоскости,
находящихся на боковых ребрах или гранях фигуры .

14. Построить сечение тетраэдра плоскостью, заданной тремя точками. Метод …

D
Построение:
1. Отрезок NQ
P
2. Отрезок NP
Прямая NP пересекает АС в точке Е
3. Прямая EQ
EQ пересекает BC в точке R
NQRP – искомое сечение
N
С
А
E
R
Q
В

15. Построить сечение тетраэдра плоскостью, заданной тремя точками.

D
Построение:
1. MN; отрезок МК
2. MN пересекает АВ в точке Х
3. ХР; отрезок SL
MKLS – искомое сечение
M
N
А
S
K
C
P
L
B
X

16. Постройте сечение пирамиды плоскостью, проходящей через три точки M,N,P.

F
XY – след секущей плоскости
на плоскости основания
S
M
P
D
А
N
Y
B
C
X
Z

17. Когда метод следов не нужен

18. Когда метод следов не нужен

Найти площадь сечения, проведённого
Через середины рёбер при одной вершине, если ребро куба а см.

19.

Задача 3. Построить сечение плоскостью,
проходящей через точки К, L, М.
Построение:
T
К
В1
C1
F
E
А1
L
А
D1
В
P
С
G
D
М
N
1. ML
2. ML ∩ D1А1 = E
3. EK
4. EK ∩ А1B1 = F
5. LF
6. LM ∩ D1D = N
7. ЕK ∩ D1C1 = T
8. NT
9. NT ∩ DC = G
NT ∩ CC1 = P
10. MG
11. PK
МLFKPG – искомое сечение

20.

Задача 2. Построить сечение плоскостью,
проходящей через данные точки Е, F, K.
Построение:
В1
F
А1
К
C1
D1
E
EFKNM – искомое сечение
N
В
1. KF
2. FE
3. FE ∩ АB = L
4. LN ║ FK
5. LN ∩ AD = M
6. EM
7. KN
С
А
L
М
D Пояснения
Пояснения
кк построению:
кк построению:
Пояснения
построению:
Пояснения
построению:
3.
Прямые
1.
FEпрямую
и АВ,точки
лежащие
K
и E,
F,
в принадлежащие
одной
плоскости
5.
Прямая
LN
пересекает
AD в точке
M.
2. Соединяем
Соединяем
точки
Fребро
и
принадлежащие
4.
Проводим
LN параллельно
FK (если
Пояснения
к
построению:
Пояснения
к
построению:
АА1В1одной
В, пересекаются
плоскости
вА
В1ВСВ.
DL .
1точке
одной
плоскости
АА
секущая
плоскость
пересекает
1 11 1
6.
Соединяем
точки
Е
и
М,
принадлежащие
7. Соединяем точки К и N, принадлежащие
противоположные
грани,
то она пересекает их
однойплоскости
плоскости ВСС
АА
D.
1D
1
одной
В
.
1 1
по параллельным отрезкам).

21.

В1
А1
C1
D1
В
С
А
D

22.

Практическая работа. Постройте сечение многогранника плоскостью,
проходящей через указанные точки.
1 вариант
К
1)
F
E
2)
F
N
M
А
A
P
D
С
H
B
В
C
M
2 вариант
1)
F
2)
E
M
D
В
H
C
P
F
A
N
С
А
B

23.

Проверьте правильность построения сечения.
F
1 вариант
К
1)
E
F
2)
N
F
M
X
A
P
D
А
Z
С
H
B
В
M
2 вариант
1)
F
2)
E
M
В
N
D
C
P
F
А
X
A
Y
C
H
С
B
X
Y
English     Русский Правила