Похожие презентации:
Объём прямоугольного параллелепипеда, призмы
1.
Объём прямоугольного параллелепипеда,призмы
Цель урока: познакомиться с понятием объёма;
рассмотреть свойства объёмов;
теорему об объёме прямоугольного
параллелепипеда и следствие о прямой
призме, основание которой
прямоугольный треугольник.
2.
Понятие объёмаОбъем – одна из основных величин, связанных с
геометрическими телами.
Задача вычисления объемов простейших тел, идущая от
практических потребностей, была одним из стимулов развития
геометрии.
Математика Древнего Востока (Вавилония, Египет)
располагала рядом правил для вычисления объема тел, с
которыми чаще всего приходилось встречаться на практике
(призматические брусья; пирамиды полные и усеченные;
цилиндры).
Среди формул объема были и неточные, дававшие не слишком
заметную процентную ошибку лишь в пределах
употребительных линейных размеров тела.
Но в «Началах» Евклида и в сочинениях Архимеда имеются
только точные правила для вычисления объемов многогранников
и некоторых круглых тел (цилиндра, конуса, шара и их частей).
3.
Понятие объёмаЧтобы найти объем сначала выбирают единицу
измерения.
В Древнем Риме, например, одной из единиц объема служила
амфора (около 25,5 л).
Нефть во всем мире принято сейчас измерять в англоамериканских единицах – баррелях, т. е. бочках емкостью 159 л.
В России распространенная в быту мера объема – ведро.
4.
Понятие объёмаЗа единицу измерения объёмов принимается куб, ребро
которого равно единице измерения отрезков.
Куб с ребром 1см называют кубическим сантиметром,
обозначают см3.
Аналогично определяются кубический метр (м3),
кубический миллиметр (мм3).
Свойства объёмов:
1. Равные тела имеют равные объёмы.
2. Если тело составлено из нескольких тел, то его объём равен
сумме объёмов этих тел.
3. Если одно тело содержит другое, то объем первого тела не
меньше объема второго.
1
1
Следствие: Объём куба с ребром
равен
3
n
n
5.
Объём прямоугольного параллелепипедаТеорема: равен произведению трёх его измерений.
Дано: Р – прямоугольный параллелепипед,
a, b, c – измерения,
V – объем
Доказать: V = a b c.
V = abc
Доказательство:
I случай.
a, b, c – конечные десятичные дроби, у которых число знаков после запятой
не превосходит n (n 1).
a 10n, b 10n, c 10n – являются целыми.
1
.
Разобьем ребра на равные части длины
10 n
Через точки разбиения проведем плоскости, перпендикулярные к этому
ребру.
1
.
Параллелепипед разобьется на abc 103n равных кубов с ребром
n
10
3
Vкуба
1
1
1
n 3 n ; Vпараллелепипеда Р abc 10 3 n 3 n abc .
10
10
10
II случай: хотя бы одно из измерений a, b, c представляет собой
бесконечную десятичную дробь.
6.
Следствие 1:V = abc
Объём прямоугольного параллелепипеда равен произведению
площади основания на высоту.
V a
b c S h.
Следствие 2:
S
h
Объём прямой призмы, основанием которой является
прямоугольный треугольник, равен произведению
площади основания на высоту.
Дано: АВСА1В1С1– прямая треугольная призма,
A 90
Доказать: V S
ABC h
Доказательство:
Дополним прямую призму до прямоугольного
параллелепипеда.
Vпар да 2 S ABC h , где SABC – площадь АВС, h – высота призмы.
1
V 2 S ABC h S ABC h
2
Почему?
7.
647(б)647
2
VR V1 V2
3
648
649(б)
648(а, б) самостоятельно
651
а )V 11 12 15 1980 ;
б )V 3 2 5 10 10 300.
649(б)
C1
B1
С
D
V a 3 , где а - ребро куба;
А1
D1
В
a
А
АС1 3 2
3 2
АС1 а 3 ; 3 2 а 3 ; а
3
V
6
3
6 6
6;
Ответ : 6 6 .
8.
651m ρ V
V 25 12 6 ,5 1950( см 3 );
m 1,8 1950 3510( г ) 3 ,51( кг )
Ответ : 3 ,51 кг .
п. 74 – 75,
вопрос 1 на стр. 178
письменно: 649(а, в), 652
649(б)
651
653
9.
Решение задач653
B1
А1
C1
D1
В
А
С
D
10.
Объём прямой призмыТеорема:
Объём прямой призмы равен произведению площади
основания на высоту.
1. ABCDA1B1C1D1 – прямая треугольная призма с
объёмом V и высотой h.
Проведём такую высоту треугольника АВС (BD),
которая разделяет треугольник на два треугольника.
(BB1D) разделяет данную призму на две призмы,
основаниями которых являются прямоугольные
треугольники ABD и BDC.
V1 S ABD h; V2 SBDC h. V V1 V2,
V S ABD h SBDC h (S ABD SBDC ) h.
2. Произвольную призму разобьём на треугольные
призмы с высотой h.
V S1 h S 2 h ... Sn h
S1 S 2 ... Sn h S h
V S h
Т. е.
V S ABC h.
11.
Объём цилиндраПризма вписана в цилиндр, если её
основания вписаны в основания
цилиндра.
Призма описана около цилиндра,
если её основания описаны около
оснований цилиндра.
Высота любой призмы, вписанной в цилиндр или
описанной около него, равна высоте самого цилиндра
Теорема: Объём цилиндра равен произведению площади
основания на высоту.
12.
ДоказательствоЦилиндр
Pn
h
Впишем в данный цилиндр Р радиуса r и высоты h
правильную n–угольную призму Fn,
а в эту призму впишем цилиндр Рп.
Пусть V – объём цилиндра Р, Vn – объем цилиндра Рп; rп
радиус цилиндра Рп.
Так как объем призмы Fn равен Sn∙h, где Sn — площадь
основания призмы, а цилиндр Р содержит призму Fn,
которая, в свою очередь, содержит цилиндр Рп,
то Vn < S n ∙ h < V. (2)
Будем неограниченно увеличивать число n. При этом радиус
rп цилиндра Рп стремится к радиусу r цилиндра Р
180
rn r cos
r , где n
n
lim Sn r .
2
n
Поэтому объём цилиндра Рп стремится к объёму цилиндра Р:
Из неравенства (2) следует, что lim Sn h V . Но r S .
2
Т.е.
V r h.
2
n
Итак, объём цилиндра равен:
V S h
limVn V .
n