340.68K
Категория: МатематикаМатематика

Системы булевых функций

1.

Системы булевых функций

2.

Операция отрицания является одной из
четырех булевых функций от одной переменной,
которые перечисляются в следующей таблице:
x
f1 ( x)
f 2 ( x)
f 3 ( x)
f 4 ( x)
0 0
0
1
1
1 0
1
0
1

3.

Операции дизъюнкция + и конъюнкция являются
примерами двух из шестнадцати булевых функций от
двух переменных, которые перечисляются в следующей
таблице:
x y
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
0 0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0 1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1 0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
x
y
+
y
x
1
Функция f15 ( x, y ) f 2 ( x, y )
обозначается x | y .
f 9 ( x, y ) f8 ( x, y )
Функция
обозначается x y .
штрих
-
Шеффера,
стрелка
Пирса,

4.

Определение. Суперпозицией булевых функций
g ( y1 ,..., ym ) и h1 ( x1 ,..., xn ) , …, hm ( x1 ,..., xn ) называется
булева функция f ( x1,..., xn ) , значения которой
определяются по формуле:
f ( x1 ,..., xn ) g h1 ( x1 ,..., xn ),..., hm ( x1 ,..., xn ) .
Для упрощения записи суперпозиции булевых
функций скобки по возможности опускаются с
учетом следующего приоритета выполнения
булевых операций: , и затем все остальные
операции.

5.

Лемма. Булевы функции от двух переменных
взаимосвязаны следующими свойствами:
1) ( x y ) x y , ( xy ) x y – законы де Моргана;
2) x xy x , x( x y) x – законы поглощения;
3) x x 1 , xx 0
– характеристическое
свойство отрицания;
4) x 1 1, x 1 x – характеристическое свойство
элемента 1;
x 0 0 – характеристическое
5) x 0 x ,
свойство элемента 0;
xy ( x y )
6) x y ( x y ) ,
– взаимосвязь
конъюнкции и дизъюнкции;
x y ( xy )
7) x y x y ,
– взаимосвязь
импликации с дизъюнкцией, конъюнкцией и
отрицанием;

6.

8) x y ( x y)( y x) , x y ( x y)( x y ) ;
xy ( x | y ) ( x | y ) | ( x | y ) ,
x x | x ,
9) x | y ( xy ) ,
x y x | y ( x | x) | ( y | y ) – взаимосвязь штриха
Шеффера
с
дизъюнкцией,
конъюнкцией
и
отрицанием;
10) x y ( x y) , x x x , x y ( x y) ( x y) ( x y) ,
xy x y ( x x) ( y y) – взаимосвязь стрелки
Пирса с дизъюнкцией, конъюнкцией и отрицанием;
11) x y y x , ( x y) z x ( y z ) , x( y z) xy xz,
x 1 x ,
x x 0,
x 0 x,
x x 1

характеристическое свойство суммы Жегалкина;
x y x y 1 ,
x y xy x 1 ,
12) x y xy x y ,
x y ( x 1)( y 1) 1 x y xy

взаимосвязь
суммы Жегалкина с дизъюнкцией, конъюнкцией,
отрицанием, импликацией и эквивалентностью.

7.

Определение. Система булевых функций
F f1 ,..., f k называется полной, если любая булева
функция может быть представлена в виде
суперпозиции функций из этой системы F.
Теорема Жегалкина. Любая булева функция f от
n переменных представима в виде следующего
полинома Жегалкина
f ( x1 ,..., xn )
i1 ,..., ik
xi1 ...xik c
для некоторых значений c 0,1 и 1 i1 ... ik n .
Причем такое представление булевой функции f
единственно с точностью до порядка слагаемых.

8.

Определение. Суперпозицией булевых функций
g ( y1 ,..., ym ) и h1 ( x1 ,..., xn ) , …, hm ( x1 ,..., xn ) называется
булева функция f ( x1,..., xn ) , значения которой
определяются по формуле:
f ( x1 ,..., xn ) g h1 ( x1 ,..., xn ),..., hm ( x1 ,..., xn ) .
Для упрощения записи суперпозиции булевых
функций скобки по возможности опускаются с
учетом следующего приоритета выполнения
булевых операций: , и затем все остальные
операции.

9.

Лемма. Булевы функции от двух переменных
взаимосвязаны следующими свойствами:
1) ( x y ) x y , ( xy ) x y – законы де Моргана;
2) x xy x , x( x y) x – законы поглощения;
3) x x 1 , xx 0
– характеристическое
свойство отрицания;
4) x 1 1, x 1 x – характеристическое свойство
элемента 1;
x 0 0 – характеристическое
5) x 0 x ,
свойство элемента 0;
xy ( x y )
6) x y ( x y ) ,
– взаимосвязь
конъюнкции и дизъюнкции;
x y ( xy )
7) x y x y ,
– взаимосвязь
импликации с дизъюнкцией, конъюнкцией и
отрицанием;

10.

8) x y ( x y)( y x) , x y ( x y)( x y ) ;
xy ( x | y ) ( x | y ) | ( x | y ) ,
x x | x ,
9) x | y ( xy ) ,
x y x | y ( x | x) | ( y | y ) – взаимосвязь штриха
Шеффера
с
дизъюнкцией,
конъюнкцией
и
отрицанием;
10) x y ( x y) , x x x , x y ( x y) ( x y) ( x y) ,
xy x y ( x x) ( y y) – взаимосвязь стрелки
Пирса с дизъюнкцией, конъюнкцией и отрицанием;
11) x y y x , ( x y) z x ( y z ) , x( y z) xy xz,
x 1 x ,
x x 0,
x 0 x,
x x 1

характеристическое свойство суммы Жегалкина;
x y x y 1 ,
x y xy x 1 ,
12) x y xy x y ,
x y ( x 1)( y 1) 1 x y xy

взаимосвязь
суммы Жегалкина с дизъюнкцией, конъюнкцией,
отрицанием, импликацией и эквивалентностью.

11.

Определение. Система булевых функций
F f1 ,..., f k называется полной, если любая булева
функция может быть представлена в виде
суперпозиции функций из этой системы F.
Теорема Жегалкина. Любая булева функция f от
n переменных представима в виде следующего
полинома Жегалкина
f ( x1 ,..., xn )
i1 ,..., ik
xi1 ...xik c
для некоторых значений c 0,1 и 1 i1 ... ik n .
Причем такое представление булевой функции f
единственно с точностью до порядка слагаемых.

12.

Определение. Булева функция f называется линейной,
если ее представление полиномом Жегалкина не
содержит произведения переменных.
Множество всех линейных булевых функций
обозначим символом L.
Определение. Булева функция f ( x1,..., xn ) называется
f
(
x
,...,
x
)
f
(
x
,...,
x
)
самодвойственной, если
.
1
n
1
n
Множество всех самодвойственных булевых функций
обозначим символом S.
Определение. Булева функция f ( x1,..., xn ) называется
монотонной, если для любых x1 ,..., xn , y1 ,..., yn 0,1 из
x1 y1 ,..., xn yn следует f ( x1 ,..., xn ) f ( y1 ,..., yn ) .
Множество всех монотонных
обозначим символом M.
булевых
функций

13.

Пусть P0 - класс всех булевых функций f ( x1,..., xn ) ,
удовлетворяющих условию f (0,...,0) 0 .
Пусть P1 - класс всех булевых функций f ( x1,..., xn ) ,
удовлетворяющих условию f (1,...,1) 1.
Определение. Классы булевых функций L,S,M,P0,P1
называются классами Поста.
Теорема Поста. Система булевых функций в том и
только том случае является полной, если она не
содержится ни в одном из классов Поста.

14.

Алгоритм доказательства полноты системы
булевых функций F f1,..., f k :
1. Составить таблицу, столбцы которой
помечены классами Поста L,S,M,P0,P1 и строки –
функциями системы f1 ,..., f n .
2. Для каждой из функций f1 ,..., f n проверить
принадлежность ее к классам Поста и результаты
проверки зафиксировать словами «Да» или «Нет»
в соответствующей клетке таблицы.
3. По теореме Поста данная система является
полной в том и только том случае, если в каждом
столбце таблицы имеется слово «Нет».

15.

Пример.
Рассмотрим систему F | , состоящую из одной
булевой функции | – штрих Шеффера. Составляем
таблицу, столбцы которой помечены классами
Поста L,S,M,P0,P1 и одна строка – функцией |.
Функция
|
Классы Поста
L
S
M
P0
P1
Нет
Нет
Нет
Нет
Нет
English     Русский Правила