23.97M
Категория: СтроительствоСтроительство
Похожие презентации:

Термостойкие и вибростойкие фланцевое соединение растянутых элементов трубопровода со скошенными торцами F16L 23/00

1.

Газета «Земля РОССИИ» №117
Карта СБЕР : 2202 2006 4085 5233 Счет получателя: (921) 962-6778
40817810455030402987 [email protected] [email protected]
[email protected] [email protected] (996) 798-26-54
Организация «Сейсмофонд»
190005 СПб, 2-я Красноармейская ул.д 4
[email protected] (911) 175-84-65
Общественная организация - Фонд поддержки и развития сейсмостойкого
строительства "Защита и безопасность городов» - ОО «Сейсмофонд» ИНН –
2014000780 при СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015 стр 457 8.11.21
190005, СПб, 2-я Красноармейская ул. д 4
ОГРН: 1022000000824 , ИНН: 2014000780
[email protected] [email protected]
Юридический адрес: Улица им С.Ш.ЛОРСАНОВА дом 6 г. Грозный
Факт. адрес : 190005, СПб, 2-я Красноармейская ул. д 4, тел (921) 962-67-78
Спб ГАСУ (996)-798-26-54
(812) 694-78-10
стр 457
А, наши партнеры из блока НАТО внедряют отчественные изобриения в США, Канаде, Японии,
статью 281 УК РФ. Диверсия подрыва экономической безопасности и обороноспособности РФ
Термостойкие и вибростойкие фланцевое соединение растянутых
элементов трубопровода со скошенными торцами F16L 23/00
Спецвыпуск № 116 от 04 .01.2021 редакции газеты «Земля РОССИИ»
Демпфирующие косые термостойкие и вибростойкие компенсторы на
фрикционно- подвижных болтовых соедеиниях - со скошенными торцами
1

2.

Руководитель и основатель Квакетека расположенного в Монреале, Канаде Джоаквим Фразао,
внедривший отечественные изобриения дтн проф Уздина А М ПГУПС в Канаде, США
https://www.quaketek.com/products-services/ внедривший ФФПС в США
Внедрившие в США гаситель динамических колебаний DAMPERS CAPACITIES AND DIMENSIONS Рeter Spoer,
CEO Dr, Imad Mualla
Демпфирующие косые термостойкие, вибростокие компенсаторы на
фрикционно- подвижных болтовых соединениях, со скошенными торцами,
согласно изобретения №№ 2423820, 887743, для восприятия термических усилий,
за счет трения, при растягивающих нагрузках в крепежных элементах с
овальными отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755,
1174616 ,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС
2

3.

А.М.Уздиана № 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Х.Н.Мажиев -. Президент ОО «СейсмоФонд», ИНН 2014000780 [email protected] (921) 962-67-78
СПб ГАСУ проф. дтн Ю.Л.Рутман СПб ГАСУ автор статьи "Пластичность при сейсмическом
проектировании зданий и сооружений" для гашения динамических колебаний
[email protected] тел (911) 175-84-65
СПб ГАСУ доц. ктн И.У.Аубакирова [email protected] (996) 798-26-54 , (812) 694-78-10
СПб ГАСУ проф дтн Ю М Тихонов [email protected] [email protected] ( 921) 962-67-78
3

4.

Автор отечественной фрикционо- кинематической,
демпфирующей, виброгасящей и системы поглощения и
рассеивания термических растягивающих нагрузок на тепловых
сетях проф дтн ПГУПC Уздин А М, на фрикционно-подвижных
болтовых соединениях, для восприятия усилий -за счет трения, при термических
растягивающих нагрузках в трубопровода
На практике советские и отечественные изобретения утекают за границу за
бесценок, внедряются за рубежом на аляскинском нефтепроводе в США,
патентуются в Канаде, США, Израиле, Японии, Киате, Италии
Прорыв трубы с горячей водой на Космонавтов стал четвертой
аварией в Петербурге за сутки. Однако более 30 лет не применяются
косые, демпфирующие компенсаторы на фланцевых соединениях для
теплотрасс, со скошенными торцами и упругими демпферами сухого
трения для исключение аварий теплотрассах в СПб.
А, наши партнеры без отката, из блока НАТО, внедрили отечественные
изобретения USSR в США Канаде , Японии на Аляске, в Китае с
термоустойчивыми косыми демпфирующими компенсаторами, для
американских, канадских, китайских, японских теплотрасс, и у них
прорыва теплотрасс нет.
Имеется, статью 281 УК РФ. Диверсия подрыва экономической
безопасности и обороноспособности РФ или Халатность № 293 УК РФ
4

5.

https://ppt-online.org/906524
Обеспечение надежности демпфирующих косых компенсаторов для теплотрасс в
СПб на фрикционно – подвижных болтовых соединениях, для увеличения
демпфирующей способности косого
компенсатора, преимущественно при температурным и импульсных растягивающим
нагрузкам , согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№1143895,
1168755, 1174616, 165076 "Опора сейсмостойкая", 2010136746 "Способ защита
зданий и сооружений при взрыве с использованием сдвигоустойситвых и легко
сбрасываемых соединений , использующие систему демпфирования фрикционности
при температурных нагрузках Испытательного центра СПбГАСУ, аккредитован
Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выдан
27.05.2015), Организация "Сейсмофонд" ОГРН: 1022000000824 4 ИНН 2014000780
https://ppt-online.org/863664
Обеспечение теплотрасс демпфирующими термоустойчивыми косыми
компенсаторов для магистральных теплотрасс на фрикционно – подвижных
болтовых соединениях, для увеличения температруной устойчивости косого
компенсатора, преимущественно в зимнее время при температурных
растягивающих нагрузках , согласно изобретениям проф. дтн ПГУПС А.М.Уздина
№№ 1143895, 1168755, 1174616, 165076 "Опора сейсмостойкая", 2010136746 "Способ
защита зданий и сооружений при взрыве с использованием сдвигоустойситвых и
легко сбрасываемых соединений , использующие систему демпфирования
фрикционности для поглощения термических нагрузок в зимнее время в СПб
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015), Организация
"Сейсмофонд" ОГРН: 1022000000824 4 ИНН
2014000780 https://ppt-online.org/864408
Обеспечение термической надежности демпфирующих косых компенсаторов с
перемещениями на фрикционно – подвижных болтовых соединениях, для обеспечения
термической защиты теплотрасс, для увеличения демпфирующей способности
косого компенсатора , преимущественно при термических растягивающих нагрузках
зимой , согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895,
1168755, 1174616, 165076 "Опора сейсмостойкая", 2010136746 "Способ защита
зданий и сооружений при взрыве с использованием сдвигоустойситвых и легко
сбрасываемых соединений , использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии" https://pptonline.org/863358 https://ppt-online.org/852595
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация
"Сейсмофонд" ОГРН: 1022000000824 ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от
5

6.

27.05.2015, 190005, СПб, 2-я Красноармейская ул., д. 4, ИЦ «ПКТИ - Строй-ТЕСТ»,
«Сейсмофонд» ИНН: 2014000780
Численное моделирование на сдвиг теплотрассы трубопровода в программном
комплексе SCAD Office, со скошенными торцами, согласно изобретения №№ 2423820,
887743, демпфирующих компенсаторов на фрикционно-подвижных болтовых
соединениях, для восприятия термических усилий, за счет трения , при
растягивающих нагрузках в крепежных элементах с овальными отверстиями, по
линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616 ,165076, 2010136746
Или формирование прогрессирующего обрушения трубопроводов от взрыва газа,
кислорода и обеспечение надежности трубопроводов с использованием в стыковых
соединений труб в растянутых зонах, косых компенсаторов на фрикционноподвижных болтовых соединениях для обеспечения взрвостойкости трубопроводов и
для обеспечения многокаскадного демпфирования при импульсных растягивающих
нагрузках на трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина
№№ 1143895, 1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746
«Способ защиты зданий сооружений при взрыве с использованием
сдвигоустойсчивых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической
энергии»,887747 «Стыковое соединение растянутых зон», 2382151, 2208098 ,
2629514 и опыт применения программного комплекса SCAD Office для фрикционноподвижных соединениях - нелинейным методом расчета, методом оптимизации и
идентификации статических задач теории устойчивости трубопровода
Организация - Фонд поддержки и развития сейсмостойкого строительства "Защита
и безопасность городов» - «Сейсмофонд» ИНН – 2014000780 при ПГУПС
Организация Фонд поддержки и развития сейсмостойкого строительства Защита и
безопасность городов- «Сейсмофонд» ИНН – 2014000780 при ПГУПС организация
"Сейсмофонд", ИНН 2014000780 СПб ГАСУ Аттестат аккредитации
испытательной лаборатории ОО "Сейсмофонд", выдан СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-2010-2014000780-И-12, выдано
28.04.2010 г. [email protected] (996) 798-26-54,
Общественная организация - Фонд поддержки и развития сейсмостойкого
строительства «Защита и безопасность городов» - ОО «Сейсмофонд» при ПГУПС
ОГРН: 1022000000824 , ИНН: 2014000780 УДК 625.748.32 Организация
«Сейсмофонд» при СПб ГАСУ 1022000000824 4 ИНН 2014000780
Испытательного центра ПГУПС , аккредитован Федеральной службой по
аккредитации, ОО "Сейсмофонд" при СПб ГАСУ
https://ppt-online.org/904951
6

7.

Применения термически надежных ( от перепада температур ) со скошенными
торцами температурной -вибро-устойчивых косых фланцевых компенсаторов для
теплотрасс на фрикционно-подвижных болтовых соединениях, с длинными
овальными отверстиями, для теплотрасс на протяжных фланцевых соединениях с
овальными отверстиями и контролируемым натяжением, выполненных по
изобретениям проф. дтн (ПГУПС Уздина А. М. №№ 1143895, 1168755, 1174616,
165076 «Опора сейсмостойкая», 2010136746 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И
СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ »
согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895, 1168755,
1174616, 165075 «Опора сейсмостойкая», 2010136746 «Способ защиты зданий
сооружений при взрыве с использованием сдвигоустойсчивых и лего сбрасываемых
соединений , использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747
«Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт
применения программного комплекса SCAD Office для фрикционно- подвижных
соединениях - нелинейным методом расчета, методом оптимизации и
идентификации статических задач теории устойчивости трубопровода
Ключевые слова : косой компенсатор, демпфирующая сейсмоизоляция; фрикционно –
демпфирующие: демпфирование; сейсмоиспытания: динамический расчет , фрикцидемпфер, фрикци –болт , реализация , расчета , прогрессирующее, обрушение
теплотрассы , вычислительны, комплекс SCAD Office, обеспечение сейсмостойкости,
магистральные теплотрассы , трубопроводов.
Численное моделирование на сдвиг теплотрассы в программном комплексе SCAD
Office, со скошенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующих компенсаторов на фрикционно-подвижных болтовых соединениях,
для восприятия термических усилий, за счет трения , при растягивающих нагрузках в
крепежных элементах с овальными отверстиями, по линии нагрузки ( изобретения
№№ 1143895, 1168755, 1174616 ,165076, 2010136746 Организация - Фонд поддержки
и развития сейсмостойкого строительства "Защита и безопасность городов» «Сейсмофонд» ИНН – 2014000780 при СПб ГАСУ
https://ppt-online.org/906358
ПРОТОКОЛ № 564 от 26.01.2021 оценка сейсмостойкости в ПК SCAD теплотрассы,
предназначенные для теплотрасс
https://ppt-online.org/864525
7

8.

СТУ Специальные технические решение по обеспечению термической стойкости
магистральных трубопроводов с демпфирующими косыми компенсаторами,
закрепленные на фланцевых фрикционо –подвижных болтовых соединениях и их
программная реализация напряженно-деформируемого состояния высокопрочных
болтов, расположенных в длинных овальных отверстиях, фланцевых соединений в
укрупненных стыках, косого компенсатора с теплотрассой , и их взаимодействия с
геологической средой, в том числе нелинейным методом расчета в SCAD Office, с
целью, повышение надежности соединения компенсатора косого, для обеспечения
термической стойкости зимой к растягивающим температурным перепадом
нагрузок , согласно изобретениям проф дтн ПГУПС А.М.Уздина №№ 1168755,
1174616, 1143896,2010136746,165076 «Опора сейсмостойкая», 887748 «Стыковое
соединение растянутых элементов», Испытательного центра СПбГАСУ,
аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39,
выдан 27.05.2015), Организация "Сейсмофонд" ОГРН: 1022000000824 4 ИНН
2014000780 От ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул. д 4, ученый секретарь кафедры ТСМи М СПбГАСУ ктн доцент
И.У.Аубакирова, дтн проф Ю.М.Тихонов, Инж –мех ЛПИ им Калинина Е.И.Андреева ,
зам президента организации «Сейсмофонд» ОГРН : 1022000000824 При разработке
СТУ использовался альбом серии ШИФР 1.010.1-2с.94, выпуск 0-1, утвержден
Главпроектом Мистрой России, письмо от 21.09.94 ; 9-3-1/130 за подписью
Д.А.Сергеева, исп. Барсуков 930-54-87 согласно письма
Минстроя № 9-3-1/199 от 26.12.94 и письма № 9-2-1/130 от 21.09.94
Мажиев Х.Н. Президент организации «Сейсмофонд» ОГРН : 1022000000824 ИНН
2014000780 [email protected] Научные консультанты от СПб ГАСУ , ПГУПС :
Х.Н.Мажиев, ученый секретарь кафедры ТСМиМ СПб ГАСУ , заместитель
руководителя ИЦ «СПб ГАСУ» И. У. Аубакирова ИНН 2014000780.
Изобретатель СССР Андреев Борис Александрович, автор конструктивного решения
по обеспечению термической стойкости теплотрасс , с креплением косого
компенсатора к трубопроводам с помощью фланцевых фрикционноподвижных
болтовых демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях по изобретению проф. дтн ПГУП
А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое
соединение растянутых элементов» и использования фрикционно -демпфирующих
опор с зафиксированными запорными элементов в штоке, по линии температурной
нагрузки , согласно изобретения № 165076 «Опора сейсмостойкая» для обеспечения
надежности технологических трубопроводов , преимущественно при
растягивающих и динамических нагрузках и улучшения демпфирующих свойств
технологических трубопроводов , согласно изобретениям проф ПГУПС дтн проф
Уздина А М №№ 1168755, 1174616, 1143895 и внедренные в США Автор
8

9.

отечественной фрикционо- кинематической, демпфирующего косого компенсатора ,
для поглощения термической нагрузки, с креплением косого компенсатора к
трубопроводам с помощью фланцевых фрикционно-подвижных болтовых
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением,
расположенных в длинных овальных отверстиях по изобретению проф. дтн ПГУП
А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое
соединение растянутых элементов» проф дтн ПГУПC Уздин А М
https://ppt-online.org/861718
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация
"Сейсмофонд" ОГРН: 1022000000824, ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от
27.05.2015, 190005, СПб, 2-я Красноармейская ул., д. 4, ИЦ «ПКТИ Строй-ТЕСТ»,
«Сейсмофонд» ИНН: 2014000780 https://ppt-online.org/860558
https://ppt-online.org/825865
Прорыв трубы с горячей водой на Космонавтов стал четвертой аварией в
Петербурге за сутки
https://nevnov.ru/909334-trubu-s-goryachei-vodoi-prorvalo-na-prospekte-kosmonavtov-vpeterburgehttps://nevnov.ru/909334-trubu-s-goryachei-vodoi-prorvalo-na-prospektekosmonavtov-v-peterburge
В Петербурге прорвало трубу с горячей водой
https://ria.ru/20210323/fontan-1602459096.html
Три десятка авто оказались в воде после аварии на тепломагистрали на проспекте
Космонавтов
https://sanktpeterburg.bezformata.com/listnews/teplomagistrali-na-prospektekosmonavtov/99164348/
Горячая вода залила проспект Маршала Жукова после прорыва трубы
https://topspb.tv/news/2021/10/29/goryachaya-voda-zalila-prospekt-marshala-zhukovaposle-proryva-truby/
9

10.

В Петербурге десятки машин залило кипятком после прорыва трубы - Москва 24
https://www.youtube.com/watch?v=zKHD2K_u2QM
Озеро кипятка появилось в Петербурге из-за крупного прорыва теплотрассы
https://www.youtube.com/watch?v=_EukgobfJEw
Таблица № 1. Идеализированные зависимости «нагрузка-перемещение», используемые для описания поведения систем
взаимодействия промышленных трубопроводов, с упругими демпферами сухого трения с геологической
средой и обеспечение надежной сейсмостойкости промышленных трубопроводов с
использованием в стыковых соединений в растянутых зонах , косыми
компенсаторами на фрикционно- болтовых соединениях, для обеспечения
многокаскадного демпфирования при импульсных растягивающих нагрузках на
трубопровод согласно изобретениям проф. дтн ПГУПС А.М.Уздина №№ 1143895,
1168755, 1174616, 165075 «Опора сейсмостойкая», 2010136746 «Способ защиты
зданий сооружений при взрыве с использованием сдвигоустойсчивых и лего
сбрасываемых соединений , использующие систему демпфирования фрикционности
и сейсмоизоляцию для поглощения взрывной и сейсмической энергии»,887747
«Стыковое соединение растянутых зон», 2382151, 2208098 , 2629514 и опыт
применения программного комплекса SCAD Office для фрикционно- подвижных соединениях нелинейным методом расчета, методом оптимизации и идентификации статических задач теории
устойчивости трубопровода
Схемы сейсмоизолирующих и виброизолирующих опор для
сейсмоизоляции существующих зданий на основе
Типы сейсмоизолирующих
элементов
демпфирующей сейсмоизоляции с использованием
изобретения номер 165076 «Опора сейсмостойкая» с
применением фрикционно –подвижных болтовых
соединений для обеспечение сейсмостойкости сооружений
из опыта Армении дтн Микаела Мелкумяна на резинометаллической сейсмоизоляции, предназначенных для
Идеализированная зависимость
«нагрузка-перемещение» (F-D)
Телескопические на ФПС проф Уздина А
М
сейсмоопасных районов с сейсмичностью до 9 баллов
Компенсатор
демпфирующий со
скошенными
косыми фланцами
опора с высокой
способностью к
диссипации
энергии
F
D
F
D
F
С высокой
способностью к
диссипации
энергии
F
D
D
F
F
D
D
F
F
D
10
D
F
F

11.

F
F
F
FF
Фланцевые
компенсаторы для
трубопроводов, с
медным обожженным стопорным
сминаемым
клином
F
F
F
D
D
D
D
D
DD
D
D
F
FF
D
F
D
Телескопические на фрикционно-подвижны соединениях опоры маятниковые на ФПС проф. дтн А.М.Уздин
F
Фланцевые
компенсаторы
скольжения и
медным клином
(крепления для
поглощения и
качение
F
DDD
D
F
FF
F
F
D
D
D
DD
F
Одномаятниковые
со сферическими
поверхностями
скольжения
(трение)
D
FF
FF
F
D
DD
DD
F
F
D
F
Гармошка, в
которой имеется
упругопластический
шарнир по линии
нагрузки при R1=R2
и μ1≈μ2
F
F
D D
D
F
F
D
D
F
F
F
F
FF
F
F
F
Фланцы со
скошенными
торцами –
демпфирующий
компенсатор с
медным
обожженным
стопорным клином
F
D
D
D
D
D
D
DD
D
D
F
D
D
D
F
D
11

12.

12

13.

13

14.

14

15.

15

16.

16

17.

17

18.

18

19.

19

20.

20

21.

21

22.

22

23.

23

24.

24

25.

25

26.

Fp

26

27.

27

28.

28

29.

Fp

29

30.

30

31.

31

32.

32

33.

33

34.

34

35.

35

36.

36

37.

37

38.

38

39.

39

40.

40

41.

41

42.

42

43.

43

44.

44

45.

45

46.

46

47.

47

48.

48

49.

49

50.

50

51.

51

52.

52

53.

Конструктивные решения повышения надежности болтовых
соединения, по предотвращению ослабления резьбовых
соединений, за счет использования фрикционно –подвижных
болтовых соединений, установленные в длинные овальные
отверстия с контролируемым натяжением, увеличивающего
демпфирующею способность соединения , при термических,
импульсных, растягивающих и динамических нагрузках, при
многокаскадных демпфированиях для предотвращения аварий
на предприятиях нефтегазового комплекса
Косые компенсаторы со скошенными торцами с демпфирующими соединениями - надежное резьбовое
соединение для насосных систем, компрессоров, ветроэнергетики, авиастроении, что приводит к
уменьшению аварий и угрозе жизни обслуживающего персонала по обеспечение терморстойкости,
вибростойкости, взрывопожаростойкости, сейсмостойкости, магистральных
нефтегазотрубопроводов, нефтегазовой отрасли, мостов, зданий и сооружений, оборудования,
трубопроводов, железнодорожного пути, горонодобывающего оборудования, дробилок, атомных
электростанций, магистральных трубопроводов , благодаря изобретениям организации «Сейсмофонд»
ИНН 2014000780 ОГРН 1022000000824: № 2010136746, 165076, 154506,и изобретениям проф.дтн Уздина А
М № 1168755, 1174616, 1143895, с помощью фланцевых подвижных соединений (ФПС) и
энергопоглотителей пиковых ускорений (ЭПУ), с контролируемым натяжением ФПС, протяжных соединений,
расположенных в овальных отверстиях покрытых грунтовкой ПГУПС
Известно, какие финансовые потери несут предприятия нефтегазового
комплекса вследствие утечек продукта через уплотнения фланцевых
соединений трубопроводов и технологического оборудования. Также не
секрет, к каким порой катастрофическим последствиям может
привести авария на таком предприятии, в том числе авария, связанная с
повреждением уплотнения и выбросом в атмосферу
легковоспламеняющихся, взрывоопасных или токсичных веществ, а
также сколько будет стоить останов производства, связанный с
заменой простой детали. Можно только добавить, что чем тяжелее
условия, в которых работает уплотнение, тем больше будет
вероятность его повреждения и серьезнее будут последствия.
И в этом контексте особый интерес вызывают Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами с упругими демпферами сухого трения –косые
53

54.

которые обеспечивают надежную герметичность
и электрическую изоляцию фланцев при высоком давлении, высокой
температуре и агрессивной среде, сохраняя работоспособность даже в
условиях прямого воздействия пламени.
демпфирующие компенсаторы,
В основе технологии Фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения , косых демпфирующих компенсаторов
лежит изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755,
1174616 простые стандартные инженерные решения сухого трения
54

55.

55

56.

Рис. 1. Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, косые демпфирующие
компенсаторы
Более подробно об использовании для трубопроводов
Фланцевое соединение
растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого трения –
косые демпфирующие компенсаторы фрикционно-
демпфирующий косых
компенсаторов на фрикционно-подвижных соединениях , сери ФПС2015- Сейсмофонд, для трубопроводов по изобретению Андреева Борис
Александровича № 165076 «Опора сейсмостойкая» и патента №
2010136746 «Способ защиты зданий и сооружений с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие
систему демпфирования фрикционности и сейсмоизоляцию для
поглощения сейсмической энергии» , № 154506 «Панель
противовзрывная» для газо -нефтяных магистральных
трубопроводов, Японо-Американской фирмой RUBBER BEARING FRICTION
DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Наши партнеры :Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован
амортизирующий демпфер, который совмещает преимущества вращательного трения амортизируя с
вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не долговечно и
теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер
испытан фирмы RBFD Damptech , где резиновый сердечник, является пластическим шарниром, трубчатого в
вида Seismic resistance GD Damper
56

57.

https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
Р Е Ф Е Р А Т на изобретение, на полезную модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения предназначена для сейсмозащиты , виброзащиты
трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических, взрывных,
вибрационных, неравномерных воздействий за счет использования спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения и упругой гофры,
многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной
оплетке и протяжных фланцевых фрикционно- податливых соединений отличающаяся
тем, что с целью повышения сеймоизолирующих свойств спиральной демпфирующей
опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части
подвижной в вертикальном направлении с демпфирующим эффектом, соединенные
между собой с помощью фрикционно-подвижных соединений и контактирующими
поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой
(гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы
верхнего и нижнего корпуса расположены на упругой перекрестной гофры (демпфирующих
57

58.

ножках) и крепятся фрикци-болтами с многослойным из склеенных пружинистых медных
пластин клином, расположенной в коротком овальном отверстии верха и низа корпуса
опоры. https://findpatent.ru/patent/241/2413820.html
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения , содержащая трубообразный спиралевидный
корпус-опору в виде перевернутого «стакан» заполненного тощим фиробетоно и
сопряженный с ним подвижный узел из контактирующих поверхностях между которыми
проложен демпфирующий трос в пластмассой оплетке с фланцевыми фрикционноподвижными соединениями с закрепленными запорными элементами в виде протяжного
соединения.
Кроме того в трубопроводе со скошенными торцами , параллельно центральной оси,
выполнено восемь симметричных или более открытых пазов с длинными овальными
отверстиями, расстояние от торца корпуса, больше расстояния до нижней точки паза
опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов трубопровода
со скошенными торцами, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной опоры и к
увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому
листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой
со свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной фланцевом
соединение растянутых элементов трубопровода со скошенными торцами, с упругими
демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса ( массы)
оборудования, сооружения, здания, моста и расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения,
выполнено со скошенными торцами в виде , стаканчато-трубного вида на фланцевых,
фрикционно – подвижных соединениях с фрикци-болтами .
58

59.

Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
соединяется , на изготовлено из фрикци-болтах, с тросовой втулкой (гильзой) - это
вибропоглотитель пиковых ускорений (ВПУ) с помощью которого поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт
снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях и
взрывной нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность
работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП,
магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет
протяжных фрикционных соединений, работающих на растяжение. ( ТКП 45-5.04-274-2012
(02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , состоящая из
стального троса в пластмассовой оплетке или без пластмассовой оплетки, пружинит за
счет трения между тросами, поглощает при этом вибрационные, взрывной, сейсмической
нагрузки , что исключает разрушения сейсмоизолирующего основания , опор под
агрегатов, мостов , разрушении теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д . Надежность friction-bolt на виброизолирующих
опорах достигается путем обеспечения многокаскадного демпфирования при
динамических нагрузках, преимущественно при импульсных растягивающих нагрузках на
здание, сооружение, оборудование,труопровоы, которое устанавливается на спиральных
сейсмоизолирующих опорах, с упругими демпферами сухого трения, на фланцевых
фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая" №
165076 E 04 9/02 , опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт.
Андреев. Б.А. Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей
способности металлоконструкций с высокопрочными болтами"
В основе фланцевое соединение растянутых элементов трубопровода со скошенными
торцами ,с упругими демпферами сухого трения, на фрикционных фланцевых
соединениях, на фрикци-болтах (поглотители энергии) лежит принцип который
называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для Фланцевое
соединение растянутых элементов трубопровода со скошенными торцами , с упругими
демпферами сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет
пару структурных элементов, соединяющих эти структурные элементы со
скольжением, разной шероховатостью поверхностей в виде демпфирующих тросов или
упругой гофры ( обладающие значительными фрикционными характеристиками, с
многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии.
Совместное скольжение включает зажимные средства на основе friktion-bolt ( аналог
американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы.
59

60.

В результате взрыва, вибрации при землетрясении, происходит перемещение
(скольжение) фрагментов фланцевых фрикционно-подвижных соединений ( ФФПС)
фланцевого соединение растянутых элементов трубопровода со скошенными торцами, с
упругими демпферами сухого трения, скользящих и демпфирующих фрагментами
спиральной , винтовой опоры , по продольным длинным овальным отверстиям .
Происходит поглощение энергии, за счет трения частей корпуса опоры при сейсмической,
ветровой, взрывной нагрузки, что позволяет перемещаться и раскачиваться спиральнодемпфирующей и пружинистого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на расчетное допустимое перемещение, до 1-2
см ( по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых элементов
трубопровода со скошенными торцами, рассчитана на одно, два землетрясения или на
одну взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на фланцевое
соединение растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, необходимо заменить, смятые троса ,вынуть из
контактирующих поверхностей, вставить опять в новые втулки (гильзы) , забить в
паз латунной шпильки демпфирующего узла крепления, новые упругопластичный
стопорные обожженные медный многослойный клин (клинья), с помощью домкрата
поднять и выровнять фланцевое соединение растянутых элементов трубопровода со
скошенными торцами трубопровод и затянуть новые фланцевые фрикци- болтовые
соединения, с контрольным натяжением, на начальное положение конструкции с
фрикционными соединениями, восстановить протяжного соединения на фланцевое
соединение растянутых элементов трубопровода со скошенными торцами , для
дальнейшей эксплуатации после взрыва, аварии, землетрясения для надежной
сейсмозащиты, виброизоляции от многокаскадного демпфирования фланцевого
соединение растянутых элементов трубопровода со скошенными торцами
трубопровода с упругими демпферами сухого трения и усилить основания под
трубопровод, теплотрассу, агрегаты, оборудования, задний и сооружений
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами
60

61.

Фиг 1 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
61

62.

Фиг 3 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 4 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
62

63.

Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 6 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 8 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
63

64.

Фиг 9 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 12 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
64

65.

Фиг 13 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фигуры к заявке на изобретение полезная модель Фланцевое соединение растянутых
элементов трубопровода со скошенными торцами
65

66.

Фиг 1 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 2 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
66

67.

Фиг 3 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 4 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
67

68.

Фиг 5 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 6 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 7 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 8 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
68

69.

Фиг 9 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 10 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 11 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 12 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
69

70.

Фиг 13 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 14 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фиг 15 Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
70
F0416L

71.

Предлагаемое техническое решение предназначено для защиты магистральных
трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет
использования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, с упругими демпферами сухого трения установленных на
пружинистую гофру с ломающимися демпфирующими ножками при при
многокаскадном демпфировании и динамических нагрузках на протяжных
фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое
соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских
деталей".
Известны фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент Фланцевое соединение растянутых элементов замкнутого профиля №
2413820, «Стыковое соедиение рястянутых элементов» № 887748 и RU
№1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел упругого
соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L
5/24 "Способ определения коэффициента закручивания резьбового соединения "
Изобретение относится к области строительства и может быть
использовано для фланцевых соединение растянутых элементов трубопровода
со скошенными торцами для технологических , магистральных трубопроводов.
Система содержит фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с разной жесткостью, демпфирующий
элемент стального листа свитого по спирали. Использование изобретения
позволяет повысить эффективность сейсмозащиты и виброизоляции в
резонансном режиме фланцевые соединения в растянутых элементов
трубопровода со скошенными торцами
Изобретение относится к строительству и машиностроению и может
быть использовано для виброизоляции магистральных трубопроводов,
технологического оборудования, агрегатов трубопроводов и со смещенным
центром масс и др.
71

72.

Наиболее близким техническим решением к заявляемому объекту является
фланцевое соединение растянутых элементов замкнутого профиля № 2413820
, Стыковое соединение растянутых элементов № 887748 система по
патенту РФ (прототип), содержащая и описание работы фланцевого соединение
растянутых элементов трубопровода со скошенными торцами
Недостатком известного устройства является недостаточная
эффективность на резонансе из-за отсутствия демпфирования колебаний.
Технический результат - повышение эффективности демпфирующей
сейсмоизоляции в резонансном режиме и упрощение конструкции и монтажа
сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующем фланцевом соединение
растянутых элементов трубопровода со скошенными торцами , содержащей по
крайней мер, за счет демпфирующего фланцевого соединение растянутых
элементов трубопровода со скошенными торцами трубопровод и сухого трения
установлена с использованием фрикци-болта с забитым обожженным медным
упругопластичным клином, конце демпфирующий элемент, а демпфирующий
элемент выполнен в виде медного клина забитым в паз латунной шпильки с
медной втулкой, при этом нижняя часть штока соединена с основанием
спиральной опоры , жестко соединенным с демпирующей спиральной стальной
лентой на фрикционно –подвижных болтовых соединениях для обеспечения
демпфирования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами
На фиг. 1 представленk фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения с
пружинистыми демпферами сухого трения в овальных отверстиях
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, виброизолирующая система для
зданий и сооружений, содержит основание 3 и 2 –овальные отверстия , для
болтов по спирали и имеющих одинаковую жесткость и связанных с опорными
элементами верхней части пояса зданий или сооружения я.
72

73.

Система дополнительно содержит фланцевого соединение растянутых
элементов трубопровода со скошенными торцами, к которая крепится фрикциболтом с пропиленным пазов в латунной шпильки для забитого медного
обожженного стопорного клина ( не показан на фигуре 2 ) и которая опирается
на нижний пояс основания и демпфирующий элемент 1 в виде спиральновидной
сейсмоизолирующей опоры с упругими демпферами сухого трения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по
изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746
«Способ защиты зданий», 165076 «Опора сейсмостойкая» В спиралевидную
трубчатую опору , после сжатия расчетной нагрузкой , внутрь заливается
тощий по расчету фибробетон по нагрузкой , сжатой спиральной
сейсмоизолирующей опоры
Демпфирующий элемент фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, с упругими демпферами сухого трения
за счет фрикционно-подвижных соединениях (ФПС)
При колебаниях грунта сейсмоизолирующая и виброизолирующее фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, для
демпфирующей сейсмоизоляции трубопровода (на чертеже не показан) с
упругими демпферами сухого трения , для спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения , элементы 1 и 4 воспринимают
как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым
динамическое воздействие на демпфирующею сейсмоизоляцию объект, т.е.
обеспечивается пространственную сейсмозащиту, виброзащиту и защита от
ударной нагрузки воздушной волны
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения,
как виброизолирующая система работает следующим образом.
При колебаниях виброизолируемого объекта , фланцеве соединение растянутых
элементов трубопровода со скошенными торцами на основе фрикционоподвижных болтовых соединениях , расположенные в длинных овальных
отверстиях воспринимают вертикальные нагрузки, ослабляя тем самым
динамическое воздействие на здание, сооружение, трубопровод.
73

74.

Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами
1, и разрушение тощего фибробетона 4 расположенного внутри спиральной
демпфирующей опоры .
Предложенная виброизолирующая система является эффективной, а также
отличается простотой при монтаже и эксплуатации.
Упругодемпфирующая фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения
работает следующим образом.
При колебаниях объекта фланцевое соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем самым
динамическое воздействие на здание , сооружение . Горизонтальные колебания
гасятся за счет фрикци-болта расположенного в при креплении опоры к
основанию фрикци-болтом , что дает ему определенную степень свободы
колебаний в горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых
элементов трубопровода со скошенными торцами и силы трения между листами
пакета и болтами не преодолеваются. С увеличением нагрузки происходит
взаимное проскальзывание листов фланцевого соединение растянутых элементов
трубопровода со скошенными торцами или прокладок относительно накладок
контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных
отверстий для скольжения при многокаскадном демпфировании и после
разрушения при импульсных растягивающих нагрузках или при многокаскадном
демпфировании , уже не работают упруго. После того как все болты соединения
дойдут до упора края, в длинных овальных отверстий, соединение начинает
работать упруго за счет трения, а затем происходит разрушение соединения за
74

75.

счет смятия листов и среза болтов, что нельзя допускать . Сдвиг по вертикали
допускается 1 - 2 см или более
Недостатками известного решения аналога являются: не возможность
использовать фланцевого соединение растянутых элементов трубопровода со
скошенными торцами, ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности
при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования антиветровых и антисейсмических воздействий,
патент TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction
damping device, E04B1/98, F16F15/10, патент США Structural stel bulding frame
having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" , RU № 2413820
"Фланцевое соединение растянутых элементов замкнутого профиля", Украина №
40190 А "Устройство для измерения сил трения по поверхностям болтового
соединения" , Украина патент № 2148805 РФ "Способ определения коэффициента
закручивания резьбового соединения"
Таким образом получаем фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения и
виброизолирующею конструкцию кинематической или маятниковой опоры,
которая выдерживает вибрационные и сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях,
смещается от своего начального положения
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений отверстий фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, а также повышение точности расчета
при использования тросовой втулки (гильзы) на фрикци- болтовых
75

76.

демпфирующих податливых креплений и прокладки между контактирующими
поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя
пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение
растянутых элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с бронзовой
втулкой (гильзой) и свинцовой шайбой и верхней - шток сборный в виде,
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, установленный с возможностью
перемещения вдоль оси и с ограничением перемещения за счет деформации и
виброизолирующего фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, под действием запорного элемента в виде стопорного
фрикци-болта с тросовой виброизолирующей втулкой (гильзой) с пропиленным
пазом в стальной шпильке и забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов
трубопровода со скошенными торцами выполнены овальные длинные отверстия,
и поперечные отверстия (перпендикулярные к центральной оси), в которые
скрепляются фланцевыми соединениями в растянутых элементов трубопровода
со скошенными торцами с установлением запирающий элемент- стопорный
фрикци-болт с контролируемым натяжением, с медным клином, забитым в
пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой),
с тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода со
скошенными торцами, параллельно центральной оси, выполнены восемь
открытых длинных пазов, которые обеспечивают корпусу возможность
деформироваться за счет протяжных соединений с фрикци- болтовыми
демпфирующими, виброизолирующими креплениями в радиальном направлении.
76

77.

В теле фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами, вдоль центральной оси, выполнен длинный паз ширина которого
соответствует диаметру запирающего элемента (фрикци- болта), а длина
соответствует заданному перемещению трубчатой, квадратной или
крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении
опоры - корпуса, с продольными протяжными пазами с контролируемым
натяжением фрикци-болта с медным клином обмотанным тросовой
виброизолирующей втулкой (пружинистой гильзой) , забитым в пропиленный паз
стальной шпильки и обеспечивает возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под вибрационные, сейсмической нагрузкой,
взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображено фланцевого соединение растянутых элементов трубопровода
со скошенными торцами, с упругими демпферами сухого трения на фрикционных
соединениях с контрольным натяжением ;
на фиг.2 изображен вид с боку фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения
со стопорным (тормозным) фрикци –болт с забитым в пропиленный паз стальной
шпильки обожженным медным стопорным клином;
финн 3 изображен вид с верху , фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 4 изображен разрез фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения
виброизолирующею, сейсмоизлирующею опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
77

78.

фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой
(пружинистой втулкой)
фиг. 7 изображена вид с верху фланцевого соединение с овальными отверстиями
растянутых элементов трубопровода со скошенными торцами
фиг. 8 изображено фото само фланцевое соединение по замкнутому контуру
растянутых элементов трубопровода со скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 10 изображена формула расчет фланцевого соединение растянутых
элементов трубопровода со скошенными торцами
фиг. 11 изображено изготовленное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с косым демпфирующим компенсатором
фиг. 12 изображено протяжное фланцевого соединение растянутых элементов
трубопровода со скошенными торцами
фиг. 13 изображен способ определения коэффициента закручивания резьбового
соединения" по изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения
коэффициента закручивания резьбового соединения" и № 2413098 "Способ для
обеспечения несущей способности металлических конструкций с высокопрочными
болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по
подготовленным поверхностям для болтового соединения по Украинскому
изобретению № 40190 А, заявление на выдачу патента № 2000105588 от
02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера Л.М. Червинский А.Е
"Пути соевршенствоания технологии выполнения фрикционных соединений на
высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 15 изображен образец для испытания и Определение коэффициента трения в
ПК SCAD между контактными поверхностями соединяемых элементов СТП 006-97
Устройство соединений на высокопрочных болтах в стальных конструкциях
мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА
1998, РАЗРАБОТАНого Научно-исследовательским центром «Мосты»
ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман, инж.
78

79.

А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для
испытаний на вибростойкость, сейсмостойкость образца, фрагмента, узлов
крепления протяжных фрикционно подвижных соединений (ФПС) по изобретениям
проф ПГУПС А .М Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора
сейсмостойкая»
Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения, состоит из двух фланцев
(нижний целевой), (верхний составной), в которых выполнены вертикальные
длинные овальные отверстия диаметром «D», шириной «Z» и длиной . Нижний
фланец охватывает верхний корпус трубы (трубопровода) .
При монтаже демпфирующего компенсатора, поднимается до верхнего предела,
фиксируется фрикци-болтами с контрольным натяжением, со стальной шпилькой
болта, с пропиленным в ней пазом и предварительно забитым в шпильке
обожженным медным клином. и тросовой пружинистой втулкой (гильзой)
В стенке корпусов виброизолирующей, сейсмоизолирующей кинематической опоры
перпендикулярно оси корпусов опоры выполнено восемь или более длинных
овальных отверстий, в которых установлен запирающий элемент-калиброванный
фрикци –болт с тросовой демпирующей втулкой, пружинистой гильзой, с забитым
в паз стальной шпильки болта стопорным ( пружинистым ) обожженным медным
многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой и
латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов трубопровода со скошенными
торцами , с упругими демпферами сухого трения, трубно вида в виде скользящих
пластин , вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход
болта –шпильки ) соответствующий по ширине диаметру калиброванного
фрикци - болта, проходящего через этот паз. В нижней части демпфирующего
компенсатора, выполнен фланец для фланцевого подвижного соединения с
длинными овальными отверстиями для крепления на фундаменте, а в верхней
части корпуса выполнен фланец для сопряжения с защищаемым объектом,
сооружением, мостом
79

80.

Сборка фланцевого соединение растянутых элементов трубопровода со
скошенными торцами , заключается в том, что составной ( сборный) фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, в виде
основного компенсатора по подвижной посадке с фланцевыми фрикционноподвижными соединениям (ФФПС). Паз фланцевого соединение растянутых
элементов трубопровода со скошенными торцами,, совмещают с поперечными
отверстиями трубчатой спиралевидной опоры в трущихся спиралевидных стенок
опоры , скрепленных фрикци-болтом (высота опоры максимальна). После этого
гайку затягивают тарировочным ключом с контрольным натяжением до
заданного усилия в зависимости от массы трубопровода,агрегата. Увеличение
усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в демпфирующем компенсаторе , что в свою
очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в
сопряжении отверстие в крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами, зависит от величины усилия затяжки гайки (болта) с контролируемым
натяжением и для каждой конкретной конструкции и фланцевого соединение
растянутых элементов трубопровода со скошенными торцами (компоновки,
габаритов, материалов, шероховатости и пружинистости стального тонкого
троса уложенного между контактирующими поверхностями деталей
поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых
элементов трубопровода со скошенными торцами демпфирующего компенсатора
, сверху и снизу закреплена на фланцевых фрикционо-подвижных соединениях
(ФФПС). Во время вибрационных нагрузок или взрыве за счет трения между верхним
и нижним фланцевым соединением растянутых элементов трубопровода со
скошенными торцами, происходит поглощение вибрационной, взрывной и
сейсмической энергии.
80

81.

Фрикционно- подвижные соединения состоят из скрученных пружинистых
тросов- демпферов сухого трения и свинцовыми (возможен вариант использования
латунной втулки или свинцовых шайб) поглотителями вибрационной ,
сейсмической и взрывной энергии за счет демпфирующих фланцевых соединений в
растянутых элементов трубопровода со скошенными торцами с тросовой
втулки из скрученного тонкого стального троса, пружинистых многослойных
медных клиньев и сухого трения, которые обеспечивают смещение опорных
частей фрикционных соединений на расчетную величину при превышении
горизонтальных вибрационных, взрывных, сейсмических нагрузок от
вибрационных воздействий или величин, определяемых расчетом на основные
сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки при креплении
опоры к нижнему и верхнему виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов
трубопровода со скошенными торцами, представляют собой двойную
фрикционную пару, имеющую стабильный коэффициент трения по упругой
многослойной .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса
трубопровода
Сама составное фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с фланцевыми фрикционно - подвижными болтовыми
соединениями должна испытываться на сдвиг 1- 2 см
Сжимающее усилие создается высокопрочными шпильками с обожженными
медными клиньями забитыми в пропиленный паз стальной шпильки,
натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие с контрольным натяжением.
81

82.

Количество болтов определяется с учетом воздействия собственного веса
(массы) оборудования, сооружения, здания, моста, Расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила
расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для стыкового демпфирующего косого соединения , фланцевого
соединение растянутых элементов трубопровода со скошенными торцами,
является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого,
поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы трубопровода, за счет уменьшения пиковых
ускорений, за счет использования протяжных фрикционных соединений,
работающих на растяжение на фрикци- болтах, установленных в длинные
овальные отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза)
фрикци-болта при виброизоляции нагревается за счет трения между верхней
составной и нижней целевой пластинами (фрагменты опоры) до температуры
плавления и плавится, при этом поглощаются пиковые ускорения взрывной,
сейсмической энергии и исключается разрушение оборудования, ЛЭП, опор
электропередач, мостов, также исключается разрушение теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фланцевого соединение растянутых
элементов трубопровода со скошенными торцами, с упругими демпферами
сухого трения на фрикционных соединениях, на фрикци-болтах с тросовой
втулкой, лежит принцип который, на научном языке называется "рассеивание",
"поглощение" сейсмической, взрывной, вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на
одну сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После
взрывной или сейсмической нагрузки необходимо заменить смятые или сломанные
82

83.

гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
демпфирующего узла забить новые демпфирующий и пружинистый медные
клинья, с помощью домкрата поднять, выровнять опору и затянуть болты на
проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок
превышающих силы трения в сопряжении в фланцевом соединение растянутых
элементов трубопровода со скошенными торцами, с упругими демпферами
сухого трения, трубчатого вида , происходит сдвиг трущихся элементов типа
шток, корпуса опоры, в пределах длины спиралевидных паза выполненного в
составных частях нижней и верхней трубчатой опоры, без разрушения
оборудования, здания, сооружения, моста.
О характеристиках виброизолирующего демпфирующего компенсатора фланцевого соединение растянутых элементов трубопровода со скошенными
торцами, сообщалось на научной XXVI Международной конференции
«Математическое и компьютерное моделирование в механике деформируемых
сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических
моделей установленных на сейсмоизолирующих фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов трубопровода со
скошенными торцами на фланцевых фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК) (без раскрывания новизны технического
решения) можно ознакомиться: см. изобретения №№ 1143895, 1174616,1168755 SU,
№ 4,094,111 US Structural steel building frame having resilient connectors, TW201400676
Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/
Broschueren_TechnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
83

84.

С лабораторными испытаниями демпфирующего косого компенсатора на основе
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами на основе фланцевых фрикционно –подвижных соединений для
виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул Афонская дом 2
можно ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующего косого компенсатора для
трубопроводов на основе фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения,
показаны следующие существенные отличия:
1.Косое фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения выдерживает
термические нагрузки от перепада температуры при транспортировке по
трубопроводу газа, кислорода в больницах
2. Упругая податливость демпфирующего фланцевого соединение растянутых
элементов трубопровода со скошенными торцами регулируется прочностью
втулки тросовой
4. В отличие от резиновых неметаллических прокладок, свойства которой
ухудшаются со временем, из-за старения резины, свойства фланцевое косое
демпфирующее соединение растянутых элементов трубопровода со скошенными
торцами, остаются неизменными во времени, а долговечность их такая же, как у
магистрального трубопровода.
84

85.

Экономический эффект достигнут из-за повышения долговечности
демпфирующей упругого фланцевого соединение растянутых элементов
трубопровода со скошенными торцами , так как прокладки на фланцах быстро
изнашивающаяся и стареющая резина , пружинные сложны при расчет и
монтаже. Экономический эффект достигнут также из-за удобства
обслуживания узла при эксплуатации фланцевого косого компенсатора
соединение растянутых элементов трубопровода со скошенными торцами
Литература которая использовалась для составления заявки на изобретение:
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка
методов расчетной оценки долговечности подкрановых путей производственных
зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93.
Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU
№2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая транспортная
конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09
Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л
28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015
бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на
85

86.

пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное
устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция
малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр.
24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре
года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии
возведения фундаментов без заглубления – дом на грунте. Строительство на
пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность
городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по
графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр.
25 «Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные
86

87.

научные издания и
журналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого
строительства горцами Северного
Кавказа сторожевых башен» с.79 г.
Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Формула изобретения косого фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения
1. Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения,
демпфирующего косого компенсатора для магиастрального
трубопровода , содержащая: фланцевое соединение растянутых
элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения на фрикционно-подвижных болтовых
соединениях, с одинаковой жесткостью с демпфирующий элементов
при многокаскадном демпфировании, для сейсмоизоляции трубопровода
и поглощение сейсмической энергии, в горизонтальнойи вертикальной
плоскости по лини нагрузки, при этом упругие демпфирующие косые
компенсаторы , выполнено в виде фланцевого соединение растянутых
элементов трубопровода со скошенными торцами
2. Фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения ,
повышенной надежности с улучшенными демпфирующими свойствами,
содержащая , сопряженный с ним подвижный узел с фланцевыми
фрикционно-подвижными соединениями и упругой втулкой (гильзой),
закрепленные запорными элементами в виде протяжного соединения
контактирующих поверхности детали и накладок выполнены из
пружинистого троса между контактирующими поверхностями, с разных
сторон, отличающийся тем, что с целью повышения надежности
демпфирующее сейсмоизоляции, с демпфирующим эффектом с сухим
87

88.

трением, соединенные между собой с помощью фрикционно-подвижных
соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзы) , расположенных в длинных овальных
отверстиях , с помощью фрикци-болтами с медным упругоплатичном,
пружинистым многослойным, склеенным клином или тросовым
пружинистым зажимом , расположенной в коротком овальном отверстии
верха и низа косого компенсатора для трубопроводов
3. Способ фланцевого соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения, для
обеспечения несущей способности трубопровода на фрикционно подвижного соединения с высокопрочными фрикци-болтами с тросовой
втулкой (гильзой), включающий, контактирующие поверхности которых
предварительно обработанные, соединенные на высокопрочным фрикциболтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно
увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа сейсмоизолирующей
опоры, отличающийся тем, что в качестве показателя сравнения
используют проектное значение усилия натяжения высокопрочного
фрикци- болта с медным обожженным клином забитым в пропиленный
паз латунной шпильки с втулкой -гильзы из стального тонкого троса , а
определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, установленного на
валу с возможностью соединения его с неподвижной частью устройства
и имеющего отверстие под нагрузочный болт, а между выступом рычага
и тестовой накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
88

89.

4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой
и тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующего антивибрационного косого
демпфирующего компенсатора , не производят, при отношении в
диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при
отношении менее 0,50, кроме увеличения усилия натяжения,
дополнительно проводят обработку контактирующих поверхностей
фланцевого соединение растянутых элементов трубопровода со
скошенными торцами с использованием цинконаполненной грунтовокой
ЦВЭС , которая используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Государственный комитет по науке и технологиям Республики
Беларусь Национальный центр интеллектуальной собственности 220034 г
Минск ул Козлова 20 (017) 285-26-05 [email protected]
Заявление в
Ведущему специалисту центра экспертизы промышленной собственности Н.М.Бортнику 9 мая 2021
Фланцевого соединение растянутых элементов
трубопровода со скошенными торцами ветеран боевых действий
Авторы изобретения
Дата
поступления заявки на
выдачу патента на
изобретение*:
Дата подачи
заявки на выдачу
патента на
изобретение*:
09.05.2021
Регистрационный номер заявки на
выдачу патента на изобретение*:
ЗАЯВЛЕНИЕ
о выдаче патента Республики
Беларусь на изобретение
В государственное учреждение «Национальный центр
интеллектуальной собственности»
Заявитель (заявители): физическое лицо Коваленко Александр Иванович – инвалид I группы по общим заболеваниям
Прошу
выдать
патент
Фамилия, собственное
имя,(просим)
отчество (если
таковое
имеется) физического лица (физических лиц) и (или) полное наименование
юридического
лица
(юридических
лиц)
согласно
учредительному
Республики Беларусь на изобретение на имя документу: Коваленко Александр Иванович
заявителя (заявителей)
89

90.

Адрес места жительства (места пребывания) или места нахождения:
197371, г.Санкт-Петербург , а/я газета «Земля РОССИИ»
(921) 962-67-78
Фонд поддержки и развития сейсмостойкого строительства "Защита и
безопасность городов" "СЕЙСМОФОНД" Номер телефона (999) 535-47-29
Номер
факса (812) 694-78-10
Адрес электронной
[email protected]
смотреть
продолжение
напочты*
дополнительном
[email protected]
Код
страны
места
жительства
(места
пребывания)
или
места
нахождения по стандарту
Всемирной
организации
интеллектуальной
собственности (далее –
ВОИС)
SТ.3
(если
он
установлен):
СССР
листе
(листах)
Ленинград
Общегосударственный
Учетный номер плательщика (далее –
классификатор предприятий и
УНП) ***
Наименование юридического лица, которому подчиняется или в состав (систему) которого входит юридическое лицо –
***
организаций
Республики
Беларусь
заявитель
(заявители)
(при наличии)
: Общественная организация
"Фонд поддержки
и 2014000780
развития сейсмостойкого
ОО "Сейсмофонд"
ИНН
строительства
"Защита
безопасность
городов"
"СЕЙСМОФОЕНД"
КПП
201401001
ИНН
2014000780
(далее – ОКПО) ***
Название заявляемого изобретения (группы изобретений), которое должно совпадать с названием, приводимым
Фланцевое
соединение
растянутых элементов трубопровода со скошенными торцами F16L
ОГРН 1022000000824
23/00
в описании
изобретения:
Организ.
"Сейсмофонд"
изобретение создано при осуществлении научной и научно-технической деятельности в рамках:
государственной научно-технической программы;
региональной научно-технической программы;
отраслевой научно-технической программы, финансируемой за счет средств:
республиканского бюджета
полностью частично
Е04Н 9/02
местного бюджета
полностью частично
государственных целевых бюджетных фондов
полностью частично
государственных внебюджетных фондов
полностью частично
заявитель (заявители) является:
государственным заказчиком;
исполнителем;
лицом, которому право на получение патента на изобретение передано государственным заказчиком (исполнителем)
Заявка
на
Дата подачи первоначальной заявки на выдачу патента на
выдачу патента на изобретение:
изобретение подается
как выделенная
Номер первоначальной заявки на выдачу патента на
изобретение:
Прошу установить приоритет изобретения по дате****:
подачи первой заявки на выдачу патента на изобретение в государстве –
участнике Парижской конвенции по охране промышленной собственности от 20 марта
1883 года (далее – конвенционный приоритет);
поступления дополнительных материалов к ранее поданной заявке на выдачу
патента на изобретение;
подачи более ранней заявки на выдачу патента на изобретение в государственное
учреждение «Национальный центр интеллектуальной собственности».
Номер первой
заявки на выдачу патента
на изобретение или более
Код страны подачи по
ранней заявки на выдачу
стандарту ВОИС SТ.3 (при
патента на изобретение
испрашивании конвенционного
Дата
приоритета)
испрашиваемого
приоритета
________________________________________
Примечание. Бланк заявления оформляется на одном листе с двух сторон.
Адрес для переписки в соответствии с правилами адресования почтовых
отправлений с указанием фамилии, собственного имени, отчества (если таковое имеется)
или наименования адресата (заявителя (заявителей), патентного поверенного, общего
представителя): 197371, г.Санкт-Петербург, а/я газета «Земля РОССИИ» , Организация
«Сейсмофонд» при ПГУПС [email protected]
Номер тел ( 921)
Номер факc
Адр электр почты
[email protected]
962-67-78
(812) 694-78-10
[email protected]
90

91.

Представитель (фамилия, собственное имя, отчество (если таковое имеется),
регистрационный номер патентного поверенного, если представителем назначен
патентный поверенный)
является:
патентным поверенным;
К
оличество
листов в
одном
экземпляре
общим представителем
К
оличество
экземпляров
Основание (основания) для
возникновения права на получение патента на
изобретение
Перечень прилагаемых
документов:
Номер тел (996) 798-26-54 Номер факса (812) 694-78-10 Адрес электронной почты:
[email protected]
91

92.

1.
2.
описание изобретения
формула изобретения
(независимые пункты 4 )
3.
4.
чертежи
реферат
5. документ об уплате патентной
пошлины
6.
другой документ
(указывается конкретно его назначение):
описание прототипа патент RU 1832165 "
Виброизолирующая опора", RU № 184085
"Виброизолирующий компенсатор"
1
1
Заявитель (заявители) является:
4
1
1
1) автором (соавторами);
1
7
1
5
2) нанимателем автора;
1
3
О
3)
заказчиком
по
договору
на
И свобожд выполнение научно-исследовательских, опытнонвалид
ен
конструкторских
В
етеран
боевых
действий
RU 165076 "Опора сейсмостойкая"
Изобретение № 1760020
"Сейсмостойкий фундамент"
07.09.1992
или технологических работ в отношении
созданного при выполнении договора изобретения
4) физическим и (или) юридическим лицом
(лицами), которым право на получение патента
передано лицами, указанными в пунктах 1) – 3);
5) правопреемником (правопреемниками)
автора (соавторов);
.
11. Заявки на изобретение № 20181229421/20(47400)
от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от
11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от
23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H
9/02.
6) правопреемником (правопреемниками)
нанимателя автора;
7) правопреемником
(правопреемниками)
заказчика по договору на выполнение научноисследовательских, опытно-конструкторских
или технологических работ в отношении созданного
при выполнении договора изобретения;
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
8) правопреемником (правопреемниками)
физического и (или) юридического лица (лиц), которым
право на получение патента передано лицами,
указанными в пунктах 1) – 3)
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" №
2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
24.Прилагается справка об инвалидности Коваленко Александра Ивановича по общим
заболеваниям - 1 стр согласно НАЛОГОВого КОДЕКСа РЕСПУБЛИКИ БЕЛАРУСЬ
ОСОБЕННАЯ ЧАСТЬ от 29 декабря 2009 г. N 71-З
СТАТЬЯ 263 ЛЬГОТЫ ПО ПАТЕНТНЫМ ПОШЛИНАМ
1. Плательщики – физические лица, если иное не установлено частью
второй настоящего пункта, уплачивают 25 процентов от установленного
размера патентных пошлин (за исключением юридически значимых
действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 4, 15, 43 - 67, 71 - 75, 77 - 84 приложения 23 к
настоящему Кодексу).
Освобождаются от патентных пошлин (за исключением юридически
значимых действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 43 - 67, 71 - 75, 77 -84 приложения 23 к настоящему
Кодексу) плательщики – физические лица:
* инвалиды I группы.
* http://www.nalog.gov.by/ru/article263/
25. Прилагается свидетельство о рождении Коваленко
Александра Ивановича о его белорусской национальности
Фигура № __1____ чертежей (если фигур несколько), предлагаемая для публикации
с формулой изобретения в официальном бюллетене патентного органа
Автор (соавторы): Инвалид I группы по общим заболеваниям инвалид первой
92

93.

группы Коваленко Александр Иванович
Фамилия, собственное имя, отчество (если
таковое имеется): Коваленко Александр
Иванович
Адрес места жительства (места пребывания), включая код страны по
стандарту ВОИС SТ.3 (если он установлен):
Адрес для переписки для журналистов: а/я газета
"Земля РОССИИ", 197371, г. Санкт-Петербург . (RU)
[email protected] (911) 175-84-65, (996)798-26-54
смотреть продолжение на дополнительном листе (листах)
Подпись (подписи) заявителя (заявителей) инвалида первой группы или его (их) патентного поверенного с указанием фамилии и
инициалов (от имени юридического лица (юридических лиц) заявление подписывается руководителем этого юридического лица
(юридических лиц) или иным лицом (лицами), уполномоченным на это, с указанием фамилии, инициалов и должности подписывающего
лица (лиц):
(подпись)
*
Дата
подписания:
09.05.2021
I группы
по общимсобственности».
заболеваниям , ветеран
государственным
учреждениемИнвалид
«Национальный
центр интеллектуальной
боевых**Заполняется
действий
Если имеется. Коваленко Александр Иванович
***
Заполняется в случае, если заявителем (заявителями) является юридическое лицо (юридические лица) Республики Беларусь.
Заполняется только при испрашивании приоритета более раннего, чем дата поступления заявки на выдачу патента на
изобретение в государственное учреждение «Национальный центр интеллектуальной собственности». Отправлено 9 мая 2021
****
Фрикци демпфирующие косые компенсаторы на фрикциионо подвижных
соединениях типа Сальникова для магистральных теплотрасс
изобретено в РСФСР , а внедрены в Канаде и США
Фрикци –демпфирующие компенсаторы для магистральных
трубопроводов с использованием фрикционно - демпфирующих косых,
типа Сальникова и реализация расчета в среде вычислительного
комплекса SCAD Office для сейсмоопасных районов
УДК 699.841: 624.042.7
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат №
RA.RU.21СТ39, выдан 27.05.2015), ОО "Сейсмофонд" ОГРН: 1022000000824 (921) 962-67-78
Испытания на соответствие требованиям (тех. регламента , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016
Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов)
Х.Н.Мажиев, дтн проф ПГУПС А.М.Уздин, ученый секретарь кафедры ТСМиМ СПб
ГАСУ И. У. Аубакарова
93

94.

Санкт-Петербургский государственный Архитектурно -Строительный Университет , 190005, СПб, 2-я
Красноармейская ул. д 4 , организация «Сейсмофонд» ОГРН:1022000000824, ИНН 2014000780
Секция : Кибернетика и моделирование
Организация «Сейсмофонд» при СПб ГАСУ ОГРН 1022000000824
Основные месторождения природного газа в нашей стране находятся в
районах Крайнего севера за тысячи километров от основных
потребителей. Это является причиной наличия в нашей стране уникальной
газотранспортной системы, аналогов которой нет в мире. Высокая
протяженность линейных сооружений и, как следствие, пересечение
различных климатических зон вызывают необходимость учета
специфических видов нагрузок и воздействий на сооружения.
При проектировании трубопроводных систем важное место в оценке
напряженно-деформированного состояния конструкций занимают
использование фрикционно –демпфирующих компенсторов Сальникова по
изобретению № 165075 «Опора сейсмостойкая» № 2010136746 и учет
значительных температурных перепадов.
Грунтовый массив выступает в роли как основания в случае надземной
прокладки, балочных переходов, так и вмещающей среды для
трубопроводов подземной прокладки.
Температурное воздействие вызывает: температурные напряжения в
стенках трубопровода, защемление трубопровода на границе мерзлых и
талых пород, силы морозного пучения грунтов.
В местах выхода трубопровода на дневную поверхность происходит
изменение характера воздействия на газопровод. В частности, имеет
место значительный температурный перепад при переходе от мерзлого
массива пород с температурами, равными минус 2-4°С, к воздушной среде,
минимальная температура которой достигает в зимний период в районах
Крайнего севера минус 56°С, а в летний период - плюс 39°С
94

95.

95

96.

96

97.

97

98.

902-09-46.88_A-2 = Камеры и колодцы дождевой канализации.djvu
98

99.

4.900-9 вып.1 = Узлы и детали трубопроводов из пластмассовых
труб для систем водоснабжения и канализации-djvu
4.900-9 Узлы и детали трубопроводов из пластмассовых труб для
систем водоснабжения и..._Документация.djvu
4.900-9 вып.1 = Узлы и детали трубопроводов из пластмассовых
труб для систем водоснабжения и канализации.djvu
902-09-46.88_A-2 = Камеры и колодцы дождевой канализации.djvu
4.900-9 Узлы и детали трубопроводов из пластмассовых труб для
систем водоснабжения и..._Документация.djvu
99

100.

100

101.

101

102.

102

103.

Рисунок 2. Показаны узлы испытания в ПК SCAD фрикционо
демпфирующих компенсатор использующих в Канаде, Японии , США и
РФ
103

104.

Воздействие данных факторов на надземную прокладку газопровода
приводит не выводит из строя демпфирующие опора маятниковая СПб
104

105.

ГАСУ и как следствие, можно произвести увеличение пролетов, что не
может привести к возникновению ветрового резонанса (рис. 2).
Прилагаются маятниковые опоры для магистрального трубопровода :
Крестовидные , трубчатые, квадратные с упругопластическим шарниром ,
энергопоглотители, используемые организацией «Сейсмофонд» при СПб ГАСУ
для численного моделирования в ПК SCAD lkz системs энергопоглощеyия при
взрывных воздействиях или землетрясениях , представлены в таблице Б.1.
Т а б л и ц а Б.1 — Фрикционно –демпфирующие энергопоглотители для
энергопоглощения «нагрузка-перемещение», используемые для
энергопоглощения взрывной и сдвиговых энергопоглотителей энергии или
поглотителей энергии для демпфирующей сейсмоизоляции
Энергопоглотитель квадратный трубчатый
Типы фрикционнодемпфирующих
энергопоглощающих
крестовидных,
трубчатых,
Схемы энергопоглощающих
сдвиговых фрикционнодемпфирующих энергопоглотителей
в
Идеализированная
зависимость
фрикционнодемпфирующей
«нагрузки для
перемещения» (F-D)
Квадратный
телескопически
й
энергопоглотите
ль ( опора
сейсмостойкая)
F
D
F
D
F
с высокой
способностью к
поглощению
пиковых
ускорений
D
F
D
F
F
F
Трубчатая
протяжная
опора на
фрикционо –
подвижных
соединениях
ФПС
D
D
D
F
F
D
F
D
D
F
F
D
F
105
D
F
D
F

106.

F
F
Энергопоглощающие демпфирующие
Крестовидная
повышенной
способности к
энергопоглощен
ию взрывной и
сейсмической
энергии
D
D
F
F
D
D
FF
Крестовидный маятниковый за
счет фрикциболта
раскачивается
при смятии
медного
обожженного
клина забитого
в пропиленный
паз болгаркой
шпильки
F
DD
D
FF
F
DD
D
FF
F
DD
D
FF
Квадратный
пластический
шарнир –
ограничитель
перемещений ,
по линии
нагрузки
(ограничитель
перемещений
одноразовый)
F
DD
D
F
F
D
D
F
D
F
D
F
106
D

107.

F
F
D
Трубчатый
упруго
пластичный й
шарнир –
ограничитель
перемещений ,
по линии
нагрузки
(одноразовый)
D
F
F
D
D
F
F
D
D
Квадратная
(гармошка)
пластический
шарнир –
ограничитель
перемещений ,
по линии
нагрузки
(одноразовый)
Односторонний
, по линии или
направлению
нагрузки
F
D
F
D
Для рассмотрения по использованию для магистральных трубопроводов
Эпредлагается конструкция использования фрикционо-демпфирующих
энергопоглотителей с применением конструктивно технологической системы для
сдвиговых энергопоглотителей , которой реализован принцип упруга-фрикционной
системы на маятниковых телескопических сейсмоизолирующих стальных
подвижных опорах , как одного из метода сейсмозащиты и возможность
регулирования энергопоглощения в зависимости от величины расчетного
воздействия Это достигается с помощью фрикци- болтов, с пропиленным пазом и
забитым медным обожженным клином прижимающих отдельные элементы
107

108.

сооружения друг к другу с определенной силой, согласно численному расчету в ПК
SCAD.
Использование в практике проектирования мощных программных
средств конечно-элементного моделирования позволило перейти на
качественно новый уровень в формировании расчетных схем и к
отражению реальных условий работы конструкций газопроводов, в
частности, появилась возможность учитывать нелинейные свойства
материалов конструкций и грунтов основания . В данной статье
рассматривается решение задач расчета магистральных трубопроводов с
использованием программного комплекса «SCAD». Выбор программного
продукта был обусловлен тем, что он позволяет производить расчет
подземных и надземных сооружений с учетом сложных геотехнических
условий.
Объектами исследования были участок надземной прокладки
магистрального газопровода и балочный переход трассы , например
Мессояха-Норильск.
Участок надземной прокладки магистрального газопровода
108

109.

При построении модели была задана надземная прокладка газопровода
длиной 140 м с компенсационным участком . Расстояние между опорами
составляет 9-10 м. При конструировании
надземной прокладки заданы различные типы свайных опор: неподвижная
четырехсваиная опора, продольно- подвижные опоры с длиной ригеля 1,45
м и 0,65 м, соответственно.
Глубина сезонного оттаивания грунтов составляет 1,8 м, а величина
заглубления свай опор трубопровода - 8 м. Заглубление свай в мерзлую
толщу на глубину 6,2 м и наличие сравнительно небольшой вертикальной
нагрузки 1,6 кН/м на трубопровод позволяют рассматривать сваи как
сваи-стойки
Труба газопровода моделировалась стержневыми элементами .
Построение расчетной схемы надземной прокладки магистрального
газопровода производилось в графическом препроцессоре SKAD,
интегрированном в систему автоматизированного проектирования
AutoCAD. C помощью стандартных инструментов AutoCAD был создан
каркас расчетной схемы. Далее на его основе с помощью специальных
инструментов - структурных линий, структурных площадей - была задана
геометрия пространственной системы.
109

110.

Рисунок 4. Общий вид фрикци –демпфирующих компенсторов для
магистрального трубопровода , которые использовались в Канаде как
фрикци –демпфер для рамных узлов стального каркаса
110

111.

Характеристики поперечных сечений также задавались в SCAD с
использованием нормативных документов, действующих на территории
РФ. Параллельно с установлением поперечных сечений в отдельную группу
«SCAD» были выделены элементы системы, соответствующие рабочей
трубе магистрального трубопровода.
111

112.

112

113.

113

114.

Рисунок 5. Изобретения проф дтн ПГУПС А.М.Уздина для использования
для расчетных я схем надземной прокладки газопровода
114

115.

После формирования геометрии стержневой системы и установления
характеристик поперечных сечений построенная модель была
экспортирована в SCAD. При экспорте была построена конечноэлементная модель системы с заданными параметрами генерации сетки
элементов.
В месте выхода трубопровода на дневную поверхность задавалась
скользящая заделка с фиксацией трех углов поворота вокруг координатных
осей. В точках контакта трубопровода с неподвижной опорой задавались
условия жесткого защемления. В точках контакта трубопровода с
продольно-подвижными опорами учтена возможность его
проскальзывания относительно опорного ригеля.
При задании системы «трубопровод-маятниковая опора » ( смюпатент
165076 «Опора сейсмостойкая» была учтена несоосность оси
трубопровода и опорного ригеля. В точках входа опорных свай в мерзлую
толщу устанавливалось жесткое защемление. Массив талых пород
основания в расчетную схему не включался.
Были заданы два расчетных сочетания нагрузок. Первое сочетание
соответствует максимальному воздействию на трубопровод в зимний
период времени и включает в себя: собственный вес материла трубы
053Ох9 мм, вес природного газа, вес от вспомогательных технических
устройств, ветровую, ледовую, снеговую нагрузки, температурный
перепад, равный 54°С. Второе расчетное сочетание нагрузок
характеризует максимальное воздействие на газопровод в летний период
времени и включает в себя: собственный вес материла трубы 0530 *9 мм,
вес природного газа, вес от вспомогательных технических устройств,
ветровую нагрузку, температурный перепад, равный 37°С.
Для удобного формирования РСУ использовался модуль параметрического
ввода данных SCAD, позволивший задать нагрузки для ранее заданной
группы элементов «SCAD» без последовательного выделения трубы
газопровода на всем участке трассы.
Проведенные расчеты показывают, что при переходе от зимнего к
летнему периоду времени трубопровод начинает работать на
растяжение, о чем свидетельствует смена знака у вектора перемещений.
Изгибающие моменты My и Mz практически не меняются. Результаты,
приведенные в третьей строке таблицы, подтверждают, что
температурное воздействие дает решающий вклад в продольные
115

116.

перемещения трубопровода и практически не влияет на изгибающие
моменты.
Незначительные значения изгибающих моментов свидетельствуют о
том, что наибольший вклад в напряженное состояние стенок
трубопровода вносит рабочее давление продукта. При выполнении
расчетов на рабочее давление в соответствии со СНиП 2.05.06-85*
«Магистральные трубопроводы» получаются напряжения,
соответствующие изгибаемым моментам 500-600 кНм.
Балочный переход магистрального газопровода через реку
Второй объект исследования представляет собой балочный переход
трассы магистрального газопровода Мессояха-Норильск через реку .
Сложные геокриологические условия площадки строительства вызваны
расположением перехода на талике и распространением сильно
пучинистых грунтов озерно-речного происхождения.
Фундаменты на винтовых сваях из труб 0325х8, установленные в
русловой части реки, сложенной талыми несмерзающимися грунтами,
работают по принципу висячих свай. Глубина сезонного протаивания
грунтов для данного талика составляет 3,2 м. С учетом опыта
эксплуатации ранее построенных газопроводов глубина погружения свай
была принята равной 8 м.
Конструктивное решение фрикци -демпфера Сальникова для магистральных трубопроводов по изобретению « 165076 «Опора
предназначены для работы в сейсмоопасных районах с сейсмичностью более 9
баллов по шкале MSK-64
сейсмостойкая»
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и
контрольная сборка производилась в организации «Сейсмофонд». Инструкция по креплению фланцев к поясу ферм предусматривала
такую последовательность производства работ:
1.
2.
3.
4.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными фрикци-болтами с
пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
Установить в одной плоскости ,в плане и по высоте-.
Приварить фланцы на ФФПС;
Выполнить именную маркировку с ФФПС.
После производились окончательная установка и затяжка всех высокопрочных болтов
Известно стыковое соединение элементов из гнуто-сварных профилей прямоугольного или квадратного сечения, подверженных
воздействию центрального растяжения, которое выполняют со сплошными фланцами и ребрами жесткости, расположенными, как
правило, вдоль углов профиля. Ширина ребер определяется размерами фланца и профиля, длина – не менее 1,5 высоты меньшей
стороны профиля.
Изобретение "Стыковое соединение растянутых элементов", патент № 887748.
С целью повышения надежности, снижения расхода магистрального трубопровода для
работы в сейсмоопасных
районах с сейсмичностью более 9 баллов по шкале MSK-64 и упрощения стыка было разработано новое
116

117.

техническое решение монтажных стыков растянутых элементов на косых фланцах, расположенных под углом 30 градусов
относительно продольных осей стержневых элементов и снабженных смежными упорами. Указанная цель достигается тем, что
каждый упор входит в отверстие смежного фланца и взаимодействует с ним.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного фланца и своим торцом
упирается в кромку отверстия во фланце так, что смежные упоры друг с другом не взаимодействуют, а только со смежными
фланцами, при этом, на упор приходится только половина усилия, действующего на стык в плоскости фланцев, а другая половина
усилия передается непосредственно на фланец упором смежного фланца.
На фиг.1 приведен общий вид стыка сверху ,применительно к стропильной ферме-, на фиг.2 показано горизонтальное сечение стыка
по оси соединяемых элементов, на фиг.3 показаны разомкнутый стык и расчетная схема стыка, на фиг.4 приведен вид фланца в
разрезе 1-1 на фиг.3.
Стык состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси, фланцев 2, приваренных к скошенным
концам соединяемых элементов 1, упоров 3, приваренных к фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с другом. Оси
стыка 5 и 6 расположены в плоскости фланцев и нормально фланцам соответственно.
пластиковых в комплекте с фитингами т.м. «aquatherm»
предназначены для работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале
MSK-64 на косых фланцах ФПС устраивается следующим образом.
Стык растянутых элементов трубопроводов для
Отправочные марки конструкции ,стропильной фермы- изготавливаются известными приемами, характерными для решетчатых
конструкций. Фланец 2 в сборе с упором 3 изготавливается отдельно из стального листа на сварке. Из центральной части фланца
вырезается участок для образования отверстия, в котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный материал. Благодаря этому
экономится до 25% стали на стык. Контактные поверхности упора и кромки отверстия во фланце выравниваются стружкой,
фрезерованием или другими способами. Фланец изготавливается с использованием шаблонов и кондукторов. Возможно
изготовление фланца способом стального литья, что более предпочтительно. Фланцы крепятся к скошенным концам соединяемых
элементов с помощью кондукторов.
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это позволяет принять
для них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость
предлагаемого соединения позитивно влияют возможные уменьшения диаметров стяжных болтов 4, снижение их количества или
комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории упругости весьма затруднительно. Это вызвано разнообразием конструкций узлов, особенностями внешнего нагружения, а также крайне сложным взаимодействием элементов узла. В связи с этим, расчет напряженно-деформированного состояния модели узла стыка растянутых поясов
ферм на косых фланцах выполняется МКЭ.
Для исследования напряженно деформированного состояния в образце был проведен расчет в программном комплексе SCAD
Комета 2, и построена математическая модель.
Расчет в Комете 2 основан на СНиП II-23-81, результат расчета представлен на рисунке 2. Как видно из результатов при расчетной
нагрузке стенка колонны испытывает напряжения в 2,4 раза выше нормативного, также как и прочность сварки и фланца нарушена.
Как можно заметить, в СНиПе заложены слишком высокие коэффициенты запаса прочности. Если же верить SCAD Комета 2,
максимальная нагрузка на узел составляет 15 т/м, что меньше в два раза рассчитанного по британским нормам
117

118.

Как можно заметить, результаты, полученные из разных источников, отличаются. Однако решение, полученное в программном
комплексе SCAD наиболее точно описывает напряженное состояние в узле, ввиду того, что имеется возможность детально описать
контактное взаимодействие и построить более структурированную сетку. Необходимо провести серию испытаний фланцев различной
толщины, проанализировав тенденцию разрушения. Также следует доработать математическую модель на основе натурных
испытаний. После чего можно создать пособие по проектированию фланцевых соединений.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания проектного усилия
натяжения высокопрочного болта Р, кН, необходимо приложить крутящий момент, величина которого в Нм пропорциональна
диаметру болта d, мм, и определяется согласно СТП 006-97 *4+ по эмпирической формуле М = kPd.
Коэффициент k, называемый коэффициентом закручивания, отражает влияние многочисленных технологических факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Во-первых, шероховатость
резьбовых поверхностей гайки и болта, определяющая величину сил трения в резьбе при закручивании. Во-вторых, геометрические
параметры резьбы, её шаг и угол профиля. В-третьих, чистота соприкасающихся поверхностей шайбы и головки болта или гайки в
зависимости от того, какой элемент вращается при натяжении соединения.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены болты, гайки и шайбы,
наличие антикоррозионного покрытия, а также на коэффициент закручивания влияет и то, вращением какого элемента натягивается
болтоконтакт. СТП 006-97 установлено, что при закручивании соединения вращением болта значение крутящего момента должно
приниматься на 5 % больше, чем при натяжении вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной характеристикой их влияния
является устанавливаемый экспериментально коэффициент закручивания.
Для высокопрочных болтов, выпускаемых Воронежским, Улан-Удэнским и Курганским мостовыми заводами по ГОСТ Р 52643... 526462006 значения Р и М для болтов различного диаметра приведены в табл. 2 СТП 006-97. При этом коэффициент закручивания k принят
равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на разных заводах, по
разным технологиям и стандартам. Допущены к использованию высокопрочные метизы с антикоррозионным покрытием: кадмированием, цинкованием, омеднением и другим. В этих условиях фактическое значение коэффициента закручивания может существенно
отличаться от нормативных значений, и его необходимо контролировать для каждой партии комплектуемых высокопрочных метизов
при входном контроле на строительной площадке по методике, приведённой в приложении Е ГОСТ Р 52643 и в приложении А СТП
006-97.
Допустимые значения коэффициента закручивания в соответствии с требованиями п. 3.11 ГОСТ Р 52643 должны быть в пределах 0,140,2 для метизов без защитного покрытия и 0,11-0,2 - для метизов с покрытием. Погрешность оценки коэффициента закручивания не
должна превышать 0,01.
Для определения коэффициента закручивания используют испытательное оборудование, позволяющее одновременно измерять
приложенный к гайке крутящий момент и возникающее в теле болта усилие натяжения с погрешностью, не превышающей 1 %.
При этом применяются измерительные приборы, основанные на различных принципах регистрации контролируемых характеристик.
В качестве такого оборудования в настоящее время используют динамометрические установки типа ДКП-1, УТБ-40, GVK-14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические динамометрические ключи типа
КЛЦ, автоматически обеспечивающие требуемый крутящий момент с погрешностью, не превышающей 4 %, посредством цепной
передачи, приводимой в движение гидроцилиндром.
Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения высокопрочных болтов, как
правило, применяют ручные динамометрические ключи рычажного типа КТР Курганского завода ММК с индикатором часового типа
ИЧ 10. Их использование приводит к значительным трудозатратам и физическим перегрузкам рабочих в связи с необходимостью
приложения силы от 500 до 800 Н к рукоятке ключа при создании проектной величины крутящего момента в процессе сборки
фрикционных соединений на болтах диаметром 16-27 мм.
118

119.

Кроме того, процесс установки высокопрочных болтов ключами КТР значительно удлиняется из-за необходимости постоянно каждые
4 ч беспрерывной работы и не менее двух раз за смену контролировать исправность ключей их тарировкой способом подвески
контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения 1000 и 2000 болтов и
затем каждый раз после натяжения 5000 болтов либо в случае замены таких составных элементов ключа, как гидроцилиндр или
цепной барабан.
При использовании гидравлических ключей упрощается контроль величины крутящего момента, который осуществляется по
манометрам, а специальный механизм в конструкции ключа предотвращает чрезмерное натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно обеспечить, используя
ручные динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов при сборке металлоконструкций в стеснённых
условиях. Гидравлические ключи типа КЛЦ обеспечивают плавную затяжку высокопрочных болтов в ограниченном пространстве
благодаря меньшим размерам и противомоментным упорам.
В настоящее время организация в мире разработаны различные модификации гидравлических динамометрических ключей: серии
SDW (2 SDW), SDU (05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и других SDW.
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах с ограниченным доступом и
обеспечивают снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования.
Тарировку силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют на разрывной
испытательной машине с построением тарировочного графика в координатах: усилие натяжения болта в кН (тс) - показание
динамометра.
Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР-150 производят с помощью грузов, подвешиваемых на
свободном конце рукоятки горизонтально закреплённого ключа. По результатам тарировки строится тарировочный график в координатах: крутящий момент в Нм - показания регистрирующего измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с использованием тарировочного
устройства типа УТ-1, конструкция и принцип работы которого описаны в СТП 006-97, приложение К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек, особенно
обостряющаяся при применении высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании их динамометрическими ключами до расчётного усилия прокручиваются в 50 % случаев. Причина прокручивания заключается в недостаточной шероховатости контактных поверхностей головки болта и шайбы, подкладываемой под неё.
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия натяжения болтоконтакта
является новая конструкция высокопрочного болта с торцевым срезаемым элементом. Геометрическая форма таких болтов
отличается наличием полукруглой головки и торцевого элемента с зубчатой поверхностью, сопряжённого со стержнем болта
кольцевой выточкой, глубина которой калибрует площадь среза. Диаметр дна выточки составляет 70 % номинального диаметра
резьбы.
Высокопрочные болты с контролируемым напряжением Tension Control Bolts (TCB) широко применяются в мире. Их производят в
соответствии с техническими требованиями EN 14399-1, с полем допуска резьбы для болтов 6g и для гаек 6 Н по стандартам ISO 261,
ISO 965-2, с классом прочности 10.9 и механическими свойствами по стандарту EN ISO 898-1и с предельными отклонениями размеров
по стандарту EN 14399-10.
В ЦНИИПСК им. Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не производятся и не
применяются.
Конструкция болта с гарантированным моментом затяжки резьбовых соединений основана на связи механических свойств стали при
растяжении и срезе. Расчётное сопротивление стали при срезе составляет 58 % от расчётного сопротивления при растяжении,
определённого по пределу текучести.
119

120.

При вращении болта за торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки, удерживаемой муфтой
наружного захвата ключа. В момент достижения необходимого усилия натяжения болта торцевой элемент срезается по сечению,
имеющему строго определённый расчётом диаметр.
Для сборки фрикционных соединений на высокопрочных метизах с контролем натяжения по срезу торцевого элемента применяют
ключи специальной конструкции.
Заключение, выводы и рекомендации. Применение болтов с контролируемым натяжением срезом торцевого элемента увеличит
производительность работ по сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого способа
натяжения высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки динамометрических
ключей, необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего
момента в процессе натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента, соответствующего
достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений можно производить с одной стороны
конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе
изготовления болтов и устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных соединений, сделает её
технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются вследствие
сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов.
Натяжение болта должно быть максимально большим, что достигается упрочнением стали, из которой они изготовляются, путем
термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных соединений. Замена сварных монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми
соединениями повышает надежность конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими типами
болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость, чем обычные болты. Эти
два фактора накладывают ограничения на область применения фрикционных соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых наиболее полно
реализуются их положительные свойства — высокая надежность при восприятии различного рода вибрационных, циклических,
знакопеременных нагрузок. Поэтому, в настоящее время, проблема повышения эффективности использования несущей способности
высокопрочных болтов, поиска новых конструктивных и технологических решений выполнения фрикционных соединений является
очень актуальной в сейсмоопасных районах.
С техническими решениями фрикционно-подвижных соединений (ФПС) обеспечивающих многокаскадное демпфирование
(латунная шпилька, с пропиленным пазом, в который забит медный обожженный клин, свинцовые шайбы, проходили
лабораторные испытания) можно ознакомиться: см.изобретения №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW 201400676
Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU «Опора сейсмостойкая» Мкл E04H 9/02, Бюл.28, от 10.10. 2016 , СП
16.13330. 2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3 ,СН 471-75, ОСТ 36-72-82, Руководство
по проектированию, изготовлению и сборке монтажа фланцевых соединений стропильных ферм с поясом из широкополочных двутавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных
конструк-ций, ЦНИПИ Проектстальконструкция, ОСТ 37. 001.050-73 «Затяжка резьбовых соединений», Руководство по креплению
технологического оборудования фундаментными болтами, ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты», вып.5,
ЛЕНГИПРОНЕФТЕХИМ, Инструкция по применению высокопрочных болтов в эксплуатируемых мостах, ОСТ108. 275.80, ОСТ37. 001.
050-73, ВСН 144-76, СТП 006-97, Инструкция по проектированию соединений на высокопрочных болтах в стальных конст-рукциях
мостов», Рабер Л.М. (к.т.н.), Червинский А.Е. «Пути совершенствования технологии выполнения и диагностики фрикци-онных
соединений на высокопрочных болтах» НМетАУ (Национальная металлургическая академия Украины, Днепропетровск), ШИФР
2.130-6с.95 , вып. 0-1, 0-2, 0-3. (Строительный Каталог ), «Направление развития фрикционных соединений. на высокопроч-ных
болтах» (НПЦ мостов г . СПб), д.т.н. Кабанов Е.Б, к.т.н. Агеев В.С, инж. Дернов А.Н., Паушева Л.Ю, Шурыгин М .Н.
120

121.

Рис.Фрикци –демпфер -компенсатор с фрикци-болтом и насадками для соединения гофрированных труб из
полиэтилена.
121

122.

122

123.

123

124.

Надежность соединений для трубопроводов с фрикци- компенсаторами Сальникова по изобретению № 165076 «Опора
сейсмостойкая» предназначены
для работы в сейсмоопасных районах с сейсмичностью более 9 баллов
по шкале MSK-64, и работающих на растяжение (фрикционно -подвижные соединения (ФПС ) с контролируемым натяжением с
длинными овальными отверстиями) обеспечена выполнением соединений согласно СП 4.13130.2009 п.6.2.6., ТКТ 45-5.04-274-
124

125.

2012(02250), Минск, 2013, 10.3.2 , 10.8 Стальные конструкции, Технический кодекс, СП 16.13330.2011 (СНиП II -23-81*), Стальные
конструкции, Москва, 2011, п. 14.3, 14.4, 15, 15.2 и согласно изобретения (демпфирующая опора с фланцевыми, фрикционно–
подвижными соединениями) № TW201400676 Restraint anti-wind and anti-seismic friction damping device (МПК):E04B1/98; F16F15/10
(Тайвань) и согласно технических решений описанных в изобретениях №№ 1143895,1174616,1168755, 2357146, 2371627, 2247278,
2403488, 2076985, SU United States Patent 4,094,111 [45] June 13, 1978 STRUCTURAL STEEL BUILDING FRAME HAVING RESILIENT
CONNECTORS (МПК) E04B 1/98), изобретение «Опора сейсмостойкая" № 165076 от 10.10.2016
Поз.
Обозначение
Кол по ТУ
1
Болт с контролируемым натяжением ТУ
По изобретению № 1143895, 1168755, 1174616, 165076
2
Шайба гровер согласно ТУ
По изобретению № 1143895, 1168755, 1174616, 165076
3
По изобретению № 1143895, 1168755, 1174616, 165076
4
Шайба медная обожженная - плоская
С.12
Шайба свинцовая плоская С.12
5
Медная труба ( гильза, втулка) С.14-16
Толщиной 2 мм
6
Медный обожженный энергопоглощающий клин, забитый
в пропиленный паз латунной или стальной шпильки
(болта), для обеспечения многокаскадного демпфирования
при импульсных растягивающих нагрузках
Согласно изобретения ( заявка 2016119967/20(031416) от
23.05.2016 "Опора сейсмоизолирующая маятни-ковая"
Толщиной 2 мм
6.Изобретения № 165076 «Опора сейсмостойкая», используемые при испытаниях фланцевых фрикционно-подвижных
соединений для трубопроводов по ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5).
Трубопроводы закреплены на осно-вании с помощью фрикци-анкерных, протяжных соединений (ФПС) с контролируемым
натяжением, выполненных в виде болтовых соединений (латунная шпилька с пропиленным пазом, с забитым в паз шпильки
медным обожженным энерго-поглощающим клином, свинцовые шайбы), расположенных в длинных овальных отверстиях.
Испытания производились нелинейным методом расчета в ПК SCAD согласно СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4,
ТКТ 45-5.04-274-2012(02250), п.10.3.2-10.10.3, ГОСТ Р 58868-2007, ГОСТ 30546.1-98, ГОСТ 30546.3-98, СП 14.13330-2014, п.4.7,
согласно инструкции «Элементы теории трения, расчет и технология применения фрикционно-подвижных соединений», НИИ
мостов, ПГУПС (д.т.н. Уздин А.М. и др.).
При задании системы «труба в трубе» была учтена несоосность оси
трубопроводов и установлены специальные упругие связи, имеющиеся в
комплексе SCAD , для учета совместного деформирования внешней и
внутренней труб.
125

126.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии фрикци –компенсатора типа Сальникова :
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании болтов М27
)
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия
образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
126

127.

Рисунок . Фрикци –демпфкар компенсатора типа Сальникова и фрикци –
болт с пропиленным пазом в шпильке и забитым медным обожженным
клином для упругоплатических деформаций во время особого воздействия
или землетрясения
Были заданы два расчетных сочетания нагрузок. Первое сочетание
соответствует максимальному воздействию на трубопровод в зимний
период времени без учета сил морозного пучения и включает в себя:
собственный вес материла труб, вес природного газа, вес от
вспомогательных технических устройств, ветровую, ледовую, снеговую
нагрузки, температурный перепад.
Второе расчетное сочетание нагрузки включает все вышеперечисленные
позиции, а также учитывает действие сил морозного пучения на систему
«газопровод-свайные опоры-основание». Расчет сил морозного пучения
производился в соответствии с требованиями СНиП 2.02.04-88
«Основания и фундаменты на вечномерзлых грунтах».
Результаты численного моделирования представлены в таблице , где
приведены максимальные значения перемещений, изгибающих моментов и
перерезывающих сил для наружной трубы , являющейся главным несущим
элементом всей системы.
Учет сил морозного пучения при задании расчетной схемы приводит к
увеличению значения главного вектора перемещений на 10%, изгибающих
моментов на 40%, перерезывающие силы увеличиваются до 80 %.
Прилагается пример математического моделирования работы демпфирующей сесмоизоляции для
трубопроводов в ПК SCAD Например РАСЧЕТНАЯ СХЕМА УЗЛА с горизонтальными фасонками трубопроводов для
БЛОЧНО-МОДУЛЬНЫХ ЗДАНИЙ на сейсмоизолирующих энергопоглощающих опорах СПб ГАСУ
127

128.

Геометрические характеристики схемы испытания трубопроводов в ПК SCAD
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
128

129.

Вывод : Фасонки - накладки прошли проверку прочности по первой и второй группе предельных состояний.
РАСЧЕТНАЯ СХЕМА УЗЛА, с вертикальными фасонками для трубопроводов
Геометрические характеристики схемы
Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
129

130.

РАСЧЕТНАЯ СХЕМА для магистрального трубопровода
130
Геометрические характеристики схемы

131.

Нагрузки приложенные на схему
Результата расчета
Эпюры усилий
«N»
«Му»
131

132.

«Qz»
«Qy»
Деформации
132

133.

Коэффициент использования профилей
1,0
1,0
1,0
1,0
1,0
0,04
0,04
-0,03
-0,02
0,02
-0,02
-0,02
0,02
-0,06
-0,01
0,03
0,05 0
0
-5,06
5,0
1
133
1
11
0
11
0 0 0
00
0
00
-14,09
0,02
-0,02
00
-0,01 0 0
00
-0,01
-0,04
0,04
-1,0
1
1
1

134.

-14,09
0
1
1
11
5,0
-5,06
11
00
0,05 0 0
00
0,03
0 0 0
0,02
-0,02
0
-0,04
0,04
00
-0,01 0 0
00
-0,01
1
1
1
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
F 16 L 23/02 F 16 L 51/00
Андреев Борис Александрович
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и
предназначено для защиты шаровых кранов и трубопровода от возможных вибрационных ,
сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной
шпильки с забитым медным обожженным клином позволяет обеспечить надежный и быстрый
погашение сейсмической нагрузки при землетрясении, вибрационных воздействий от
железнодорожного и автомобильного транспорта и взрыве .Конструкция фрикци -болт, состоит
их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на
фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощающим
клином вставляются свинцовые шайбы с двух сторон, а латунная шпилька вставляется ФФПС
с медным обожженным клином или втулкой ( на чертеже не показана) 1-9 ил.
Описание изобретения Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др. Расчет на прочность
деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических
воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные соединения для
134

135.

защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU
№1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное
демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соединения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, которые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно
также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02
Антивибрационное фланцевое соединение трубопроводов Устройство содержит базовое основание, нескольких
сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает
демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет
трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при
использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом,
в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с
возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в
паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или
свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают
смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные сочетания
расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых
ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП
45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и
снабжен энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображен фрикционных соединениях с контрольным
натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным
клином;
на фиг.2 изображена латунная шпилька фрикци-болта с пропиленным пазом
на фиг.3 изображен фрагмент о медного обожженного клина забитого в латунную круглую или квадратную латунную шпильку
135

136.

на фиг. 4 изображен фрагмент установки медного обожженного клина в подвижный компенсатор ( на чертеже компенсатор на показан
) Цифрой 5 обозначен пропитанный антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы исключить
вытекание нефти или газа из магистрального трубопровода при многокаскадном демпфировании)
фиг. 6 изображен сам узел фрикционно -подвижного соединения на фрикци -болту на фрикционно-подвижных протяжных соединениях
фиг.7 изображен шаровой кран соединенный на фрикционно -подвижных соединениях , фрикци-болту с магистральным трубопроводом
на фланцевых соединениях
фиг. 8 изображен Сальникова компенсатор на соединениях с фрикци -болтом фрикционно-подвижных соединений
фиг 9 изображен компенсатор Сальникова на антисейсмических фрикционо-подвижных соединениях с фрикци- болтом
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленным пазом , куда забивается
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть
также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется
смянанием с энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний
вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с
трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на чертеже не показаны),
которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже
не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении , выполненные из латунной шпильки
с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт .
Одновременно с уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие свинцовые шайбы ,
повышающие надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и
сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится
стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой
жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их
жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность
фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и
надежность его работы в тяжелых условиях вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты
вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения
по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет
меньше единицы.
Формула
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
136

137.

Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные
элементы, подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного
фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой или
гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент,
фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены с
помощью энергопоглощающего фрикци -болта , с забитым с одинаковым усилием медным обожженным клином
расположенными во фланцевом фрикционно-подвижном соединении (ФФПС) , уплотнительными элемент выполнен в
виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные элементы
подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным
обожженным энергопоголощающим клином, установлены тонкие свинцовые или обожженные медные шайбы, а в
латунную шпильку устанавливается тонкая медная обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5
137

138.

Фиг 6
Фиг 7
Фиг 8
Фиг 9
138

139.

C заявками на изобретение фрикционно- демпфирующих сдвиговых энернопоглотителей по
изобретению №165076 «Опора сейсмостойкая» для обеспечения устойчивости сооружений , особых
условий ( ударной волны) и землетрясений , за счет использования сдвиговых упругопластических крестовидных,
кольцевых, упругоплатичных квадратных шарниров и струнных энергопоглотителей, от особых воздействий,
(интеллектуальная собственность передается с альбомом специальные технические условия (СТУ)
передаются заказчику бесплатно
Описание изобретения на полезную модель Сейсмостойкая фрикционно 18
стр https://yadi.sk/i/JZ0YxoW0_V6FCQ
Заявка на изобретение полезную модель Энергопоглощающие дорожное барьерное ограждение 23
стр https://yadi.sk/d/dWKraP12fvXAlA
Описание изобретения на полезную модель Взрывостойкая лестница 10
стр https://yadi.sk/i/EDoOs4AFUWKYEg
Заявка на изобретение полезная модель Опора сейсмоизолирующая гармошка 20
стр https://yadi.sk/i/JOuUB_oy2sPfog
Заявка на полезную модель Опора сейсмоизолирующая маятниковая 32 стр
flcsg
Виброизолирующая опора Е04Н 9 02
стр https://yadi.sk/i/dZRdudxwOald2w
РЕФЕРАТ
https://yadi.sk/i/Ba6U0Txx-
изобретения полезная 17
139

140.

Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15
стр https://yadi.sk/i/en6RGTLgfhrg_A
Доклад в СПб ГАСУ усиление опор Крымского моста https://yadi.sk/i/RpW2sh5lMdx35A
Скачать научную статью Сейсмофонд при СПб ГАСУ( опубликованную в США, Японии и др странах ),
можно по ссылке : Использование лего сбрасываемых конструкций для повышения сейсмостойкости
сооружений http://scienceph.ru/f/science_and_world_no_3_43_march_vol_i.pdf
Изобретения с демпфирующей сейсмоизоляций «Сейсмофонд» широк используются американской
фирмой RUBBER BEARING FRIKTION DAMPER (RBFD) в Японии, Новой Зеландии, США, Китае,
Тайване и др странах https://www.damptech.com/-rubber-bearing-friction-damperrbfd https://www.damptech.com/for-buildings-cover
http://downloads.hindawi.com/journals/sv/2018/5630746.pdf
https://www.youtube.com/watch?v=r7q5D6516qg
Теория сейсмостойкости находится в кризисе, а жизнь миллионов граждан проживающих в ЖБ гробах
не относится к государственной безопасности http://www.myshared.ru/slide/971578/
https://yadi.sk/i/JfXt8hs_aXcKRQ https://yadi.sk/i/p5IgwFurPlgp1w
Оценка возможности инициирования сейсмического геофизического и техногенного оружия с
применением существующих технических средств и технологий https://yadi.sk/i/3VmQxa78RhhBBA
ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9 баллов»
http://scaleofintensityofearthquakes.narod.ru
http://scaleofintensityofearthquakes3.narod.ru
http://scaleofintensityofearthquakes2.narod.ru
http://peasantsinformagency1.narod.ru
http://s-a-m-a-r-a-citi.narod.ru http://sergeyshoygu.narod.ru/pdf1.pdf
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15
стр https://yadi.sk/i/en6RGTLgfhrg_A
Патенты изобретения взрывозащите противовзрывная https://yadi.sk/i/-PwJxeHVvI_eoQ
Научный доклад на 67 конференции СПб ГАСУ 4 стр https://yadi.sk/i/sMuk8V-J0Ui_lw
Научная статья в журнале СПб ГАСУ
https://yadi.sk/i/Vf_86hLPmeYIsw
Доклад на конференции изобретателей Попов ЛПИ Политех 5 стр https://yadi.sk/i/c1D-6wvsIeJWnA
Антисейсмическое фланцевое фрикционн 4 стр https://yadi.sk/i/pXaZGW6GNm4YrA
Обеспечение взрывостойкости существующих лестничных маршей 8 стр https://yadi.sk/i/ZJNyX-y0gsfEyQ
Доклад сообщение научное Испытание математических моделей ФПС 60 стр + выводы
https://yadi.sk/d/6lNXCB4lw-HgpA
Научная статья доклад сообщения конференции с 5 по 7 февраля 2014 19
стрhttps://yadi.sk/i/CnFN36oKLYPpzQ
140

141.

Научное сообщение доклад на 67 конференции проходившей в начале 3 5 февраля 2010 г в СПб
ГАСУ стр 208 стр 211 2 страницы https://yadi.sk/i/MaKtKmd5GP9ecw
Доклад сообщение Маживеа Уздина Испытание математических моделей на сейсмостойкость 137
стр
https://yadi.sk/d/MDvdSPojHUpe3w
ЛИСИ Научные статьи изобретателя СПбГАСУ научной конференции 9 стр
https://yadi.sk/i/uLbA_SwO5GHO2w
Материалы научных публикаций, изобретений, альбомы, чертежи : "Опора сейсмостойкая», патент №
165076, БИ № 28 , от 10.10.2016, заявка на изобре-тение № 2016119967/20- 031416 от 23.05.2016, Опора
сейсмоизолирующая маятниковая", научные публикации: журнал «Сельское строительство» № 9/95 стр.30
«Отвести опасность»,
журнал «Жилищное строительство» № 4/95
стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий», журнал «Жилищное строительство» № 9/95 стр.13
«Сейсмоизоляция малоэтажных жилых зданий», журнал «Монтажные и специальные работы в
строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий», Российская газета от 26.07.95
стр.3 «Секреты сейсмостойкости»- находятся на кафедре металлических и деревянных конструкций СПб
ГАСУ : 190005, Санкт-Петербург, 2-я Красноармейская ул., д. 4, (д.т.н. проф ЧЕРНЫХ А. Г. строительный
факультет
[email protected] [email protected] [email protected]
тел (999) 535-47-29,
(996) 798-26-54, (953) 151-39-15
141

142.

142

143.

Реализация расчета в ПК SCAD для магистральных трубопроводов
сейсмичностью более 9 баллов по шкале MSK-64
143
для работы в сейсмоопасных районах с

144.

предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск можно использовать в местах
подключения трубопроводов к сооружениям и использовать косой стык на фланцевых подвижных соединениях ( ФПС ) с
растянутым поясом трубопроводов (болтовые соединения должны быть расположены в овальных отверстиях), которые
испытывались в ПК SCAD.
Известно стыковое соединение элементов из гнутосварных профилей прямоугольного или квадратного сечения, подверженных
воздействию центрального растяжения, которое выполняют со сплошными фланцами и ребрами жесткости, расположенными, как
правило, вдоль углов профиля. Ширина ребер определяется размерами фланца и профиля, длина – не менее 1,5 высоты меньшей
стороны профиля
Косой стык для трубопроводов на фрикционно –подвижных соединениях (ФПС), предназначен для сейсмоопасных районов с
сейсмичностью до 9 баллов (в районах с сейсмичностью 8 баллов и выше для установки трубопроводы, необходимо использование
сейсмостойких телескопических опор, а для соединения трубопроводов - фланцевых фрикционно- подвижных соединений,
работающих на сдвиг с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в
паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ
24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW201400676
Restraintanti-windandanti-seismic-friction-damping-device и согласно изобретения «Опора сейсмостойкая» Мкл E04H 9/02, патент №
165076 RU, Бюл.28, от 10.10.2016, в местах подключения трубопроводов к зданиям должны быть уложены в виде "змейки" или "зигзага " или на косом стыке с овальными протяжными отверстиями)
С целью повышения надежности и снижения расхода стали и упрощения стыка, было разработано новое техническое решение
монтажных стыков растянутых элементов на косых фланцах, расположенных под углом 30 градусов относительно продольных осей
стержневых элементов и снабженных смежными упорами. Указанная цель достигается тем, что каждый упор входит в отверстие
смежного фланца и взаимодействует с ним.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного фланца и своим торцом
упирается в кромку отверстия во фланце так, что смежные упоры друг с другом не взаимодействуют, а только со смежными
фланцами, при этом, на упор приходится только половина усилия, действующего на стык в плоскости фланцев, а другая половина
усилия передается непосредственно на фланец упором смежного фланца.
На фиг.1 приведен общий вид стыка сверху ,применительно к стропильной ферме-, на фиг.2 показано горизонтальное сечение стыка
по оси соединяемых элементов, на фиг.3 показаны разомкнутый стык и расчетная схема стыка, на фиг.4 приведен вид фланца в
разрезе 1-1 на фиг.3.
144

145.

Стык состоит из соединяемых элементов 1 со скошенными концами под углом α к своей оси, фланцев 2, приваренных к скошенным
концам соединяемых элементов 1, упоров 3, приваренных к фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с другом. Оси
стыка 5 и 6 расположены в плоскости фланцев и нормально фланцам соответственно.
Стык растянутых элементов на косых фланцах устраивается следующим образом.
Отправочные марки конструкции ,стропильной фермы- изготавливаются известными приемами, характерными для решетчатых
конструкций. Фланец 2 в сборе с упором 3 изготавливается отдельно из стального листа на сварке. Из центральной части фланца
вырезается участок для образования отверстия, в котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный материал. Благодаря этому
экономится до 25% стали на стык. Контактные поверхности упора и кромки отверстия во фланце выравниваются стружкой,
фрезерованием или другими способами. Фланец изготавливается с использованием шаблонов и кондукторов. Возможно
изготовление фланца способом стального литья, что более предпочтительно. Фланцы крепятся к скошенным концам соединяемых
элементов с помощью кондукторов.
Стык работает следующим образом. Усилие N, возникшее в соединяемых элементах 1 под воздействием внешних нагрузок на
конструкцию, раскладывается в стыке на две составляющих, направленных по осям 5 и 6 стыка ,фиг.2-, то есть в плоскости фланцев Nb
и нормально фланцам Nh ,фиг.3-, острый угол между фланцем и осью стыкуемых элементов;
Nb=Ncosα=Ncos30=0.866N
Nh=Nsinα=Nsin30=0.5N
Усилие Nb, действующая в плоскости фланцев 2, наполовину воспринимается упором 3, а другая половина – непосредственно
фланцем, которая передается на него упором смежного фланца ,фиг.4-.
Такое распределение усилия Nb между упором и фланцем обусловлено тем, что смежные упоры не взаимодействуют друг с другом, а
взаимодействуют только со смежными фланцами. Снижение усилия, действующего на упор, вдвое обеспечивает технический и
экономический эффект за счет уменьшения длины торца упора, контактирующего с кромкой отверстия во фланце, и объема сварных
швов крепления упора к фланцу. С уменьшением длины торца упора уменьшается эксцентриситет приложения усилия на упор, а
равно и крутящий момент в элементах стыка, вызванный этим эксцентриситетом. Все это способствует повышению надежности стыка.
Усилие Nh , действующее нормально фланцам, воспринимается частью силами трения на контактных торцах упоров 3 и фланцев 2, а
остальная часть – стяжными болтами 4. Расчетное усилие, воспринимаемое болтами Nb=Nh−Nμ, где Nμ=μNc, μ
– коэффициент трения на контактных поверхностях упоров, равный для необработанных поверхностей 0.25;
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это позволяет принять
для них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость
предлагаемого соединения позитивно влияют возможные уменьшения диаметров стяжных болтов 4, снижение их количества или
комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории упругости весьма
затруднительно. Это вызвано разнообразием конструкций узлов, особенностями внешнего нагружения, а также крайне сложным
145

146.

взаимодействием элементов узла. В связи с этим, расчет напряженно-деформированного состояния модели узла стыка растянутых
поясов ферм на косых фланцах выполняется МКЭ.
предназначены для работы в
сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64 и были изготовлены
Конструктивное решение болтового соединения растянутых поясов трубопроводов
фрагменты узлов в лаборатории организации «Сейсмофонд» при СПб ГАСУ.
Для изготовления опытного образца покрытия были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов
конструкции и контрольная сборка производилась в ремонтно-механических мастерских производственной базы. Инструкция по
креплению фланцев к поясу ферм предусматривала такую последовательность производства работ.
5.
6.
7.
8.
Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектными болтами;
Установить полуфермы в одной плоскости ,в плане и по высоте-. Плотно прижать полуфермы к фланцам;
Приварить фланцы к полуфермам;
Выполнить именную маркировку полуферм, разъединить полуфермы
После производились окончательная установка и затяжка всех высокопрочных болтов. На рисунках приведены фотоизображения
проектной модели фланцевого фрикционно-подвижного соединения для магистральных трубопроводов с узлами на косых фланцах
и узлов стыка после окончательной сборки, перед покраской и подготовкой к монтажу.
В данном случае, когда запроектированная конструкция применяется впервые, очевидна необходимость проведения
экспериментальных исследований как конструкции в составе покрытия в целом, так и отдельных элементов узловых сопряжений. При
этом проверяется также верность методик расчета, необходимость совершенствования которых диктуется потребностью в надежных
результатах при проектировании.
В процессе работы над ФПС был проведен обзор теоретических и экспериментальных исследований в области существующих узловых
трубопроводов , замечено, что первый стык растянутых поясов трубопроводовна косом фланце был изобретен в 1979 году,
молодыми учеными Уральского электромеханического института инженеров железнодорожного транспорта, Х. М. Ягофаровым и В. Я.
Котовым.
Продолжая исследования в 1986 году, инж. А. Будаевым под руководством к.т.н. Х. М. Ягофарова, с целью подтверждения
работоспособности стыка, а также обоснования основных расчетных предпосылок, были изготовлены три стыка с номинальным углом
наклона фланцев к осям элементов 45, 30 и 20 градусов. Каждый стык представлен двумя одинаковыми половинами, в которых
стыкуемый элемент выполнен из уголка 60х6. Испытания проводились на машине ГСМ – 50 нарастающей статической нагрузкой до
разрыва болтов и разрушения фланцев. Эксперимент подтвердил работоспособность стыка, а так же основные расчетные
предпосылки. Кроме того, результаты позволили назначить в первом приближении величины расчетных коэффициентов.
В 2010 году, в Уральском государственном университете путей сообщения были изданы методические указания для студентов
«Проектирование и изготовление стыков на косых фланцах». А так же, необходимый и достаточный запас несущей способности
болтовых стыков растянутых стержневых элементов с косыми фланцами подтвержден итогами пробной контрольной серии
исследований опытных образцов, проведенных в лаборатории Пятигорского государственного технологического университета канд.
техн. наук, доц. Марутяном А.С в 2011 году. Разрывные усилия опытных образцов, превысили уровень расчетных нагрузок в 1.7…2.5
раза, а экспериментальные и расчетные деформации имели достаточно приемлемую сходимость. Даны рекомендации о внедрении в
практику строительства. Работы по исследованию стыка растянутых поясов ферм на косом фланце ведутся и сегодня, изготовлены
опытные образцы и трубы 120х5, заглушенной с одной стороны приваренной пластиной толщиной 30мм с 45мм стержнем для захвата
в разрывной машине, с другой – фланцем с упором толщиной 25мм. Материал конструкций – малоуглеродистая сталь, электроды
типа Э50А. Болты М24 класса 10.9. Идет подготовка эксперимента, целью которого являются анализ напряженно-деформированного
состояния узла стыка и уточнения инженерной методики решения.
146

147.

Таким образом, обобщая результаты исследования работы стыка растянутых элементов на косых фланцах для трубопроводов ( ГОСТ Р
55989-2014) выявлены положительные результаты сдвига по овальным отверстиям с поглощением сейсмической энергии без
разрушения трубопровода, поэтому предлагаемый стык растянутых элементов на косых фланцах надежен, экономичен и прост в
осуществлении и может быть использован для трубопроводов.
Библиографический список
i.
ii.
iii.
iv.
v.
vi.
vii.
Х. Ягофаров, В.Я. Котов, 1979. Описание изобретения к авторскому свидетельству 887748
Х. Ягофаров, А. Будаев Стык растянутых элементов на косых фланцах. Промышленное строительство и инженерные
сооружения, 1986, №2
К. Кузнецова, М. Радунцев «Проектирование и изготовление стыков на косых фланцах» Методические указания для
студентов всех форм обучения специальности «Промышленное и гражданское строительство» и слушателей Института
дополнительного профессионального образования, УрГУПС, 2010
А.С. Марутян «Стыковые болтовые соединения стержневых элементов с косыми фланцами и их расчет» Пятигорский
государственный технологический университет, 2011
А.З. Клячин Металлические решетчатые пространственные конструкции регулярной структуры
Н.Г. Горелов Пространственные блоки покрытия со стержнями из тонкостенных гнутых стержней
с трубопроводами ( ГОСТ Р 55989-2014)
При лабораторных испытаниях фрагментов и узлов фданцевых –фрикционно подвижных соединений (ФПС) для трубопроводов (
ГОСТ Р 55989-2014) использовалось изобретение «ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО
ПРОФИЛЯ»
(19)
RU
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(11)
2 413 820
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
C1
(51) МПК
E04B 1/58 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
Приоритет(ы):
147

148.

(22) Дата подачи заявки: 26.10.2009
(73) Патентообладатель(и):
Марутян Александр
Суренович (RU)
(45) Опубликовано: 10.03.2011 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ В.В. Металлические конструкции. В
3 т. - Стальные конструкции зданий и сооружений (Справочник проектировщика). - М.: АСВ, 1998, т.2.
с.157, рис.7.6. б). SU 68853 A1, 31.07.1947. SU 1534152 A1, 07.01.1990.
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская, 90, кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых элементов замкнутого профиля.
Технический результат заключается в уменьшении массы конструкционного материала. Фланцевое соединение растянутых элементов
замкнутого профиля включает концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами. Фланцы
установлены под углом 30° относительно продольных осей стержневых элементов. Листовую прокладку составляют парные опорные
столики. Столики жестко скреплены с фланцами и в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям растянутых элементов
замкнутого профиля, и может быть использовано в монтажных стыках поясов решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы стержневых элементов с фланцами,
дополнительные ребра и стяжные болты, установленные по периметру замкнутого профиля попарно симметрично относительно
ребер (Металлические конструкции. В 3 т. Т.1. Общая часть. (Справочник проектировщика) / Под общ. ред. В.В.Кузнецова. - М.: Изд-во
АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных деталей, что увеличивает расход
материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего (растянутого) пояса ферм из
гнутосварных замкнутых профилей, включающее концы стержневых элементов с фланцами, дополнительные ребра, стяжные болты и
листовую прокладку между фланцами для прикрепления стержней решетки фермы и связей между фермами (1. Металлические
конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.295, рис.9.27; 2. Металлические
конструкции. В 3 т. Т.1. Элементы конструкций: Учебник для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462, рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов замкнутого профиля, является
уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого профиля, включающем концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами, фланцы установлены под углом 30° относительно продольных
осей стержневых элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в
собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так, его можно применить в
монтажных стыках решетчатых конструкций из труб круглых, овальных, эллиптических, прямоугольных, квадратных, пятиугольных и
других замкнутых сечений. В качестве еще одного примера использования предлагаемого соединения можно привести аналогичные
стыки на монтаже элементов конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров, Z-, Н-,U-, V-, Λ-, Х-, С-, Побразных и других незамкнутых профилей.
148

149.

Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано предлагаемое фланцевое соединение
растянутых элементов замкнутого профиля, вид сверху; на фиг.2 - то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая
прикрепления элемента решетки, вид сбоку; на фиг.4 - фланцевое соединение растянутых элементов незамкнутого профиля, вид
сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных болтов в наружных зонах незамкнутого профиля;
на фиг.7 - расчетная схема растянутого элемента замкнутого профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит прикрепленные с помощью сварных
швов цельнолистовые фланцы 2, установленные под углом 30° относительно продольных осей растянутых элементов. С фланцами 2
посредством сварных швов жестко скреплены опорные столики 3. В выступающих частях 4 фланцев 2 и опорных столиков 3
размещены соосные отверстия 5, в которых после сборки соединения на монтаже установлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные столики 3 продолжены за
пределы выступающих частей 4 фланцев 2 таким образом, что в них можно разместить дополнительные болты 8, как это сделано в
типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов незамкнутого профиля 9, соосные
отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные болты 6 могут быть расположены не только за пределами сечения
(поперечного или косого) незамкнутого (открытого) профиля, но и в его внутренних зонах. При полном отсутствии стяжных болтов 6 в
наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы примыкания раскосов к поясу должны
быть не менее 30° для обеспечения плотности участка сварного шва со стороны острого угла (Металлические конструкции: Учебник
для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом соединении
растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные столики 3 установлены под углом 30°
относительно продольных осей. В таком случае продольная сила F, вызывающая растяжение элемента замкнутого профиля 1,
раскладывается на две составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную T=0,866 F,
передающуюся на опорные столики 3. Уменьшение болтовых усилий в два раза во столько же раз снижает моменты, изгибающие
фланцы, а это позволяет применять для них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме
того, на материалоемкость предлагаемого соединения позитивно влияют возможные уменьшение диаметров стяжных болтов 6,
снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового объекта принято типовое монтажное
соединение на фланцах ферм покрытий из гнутосварных замкнутых профилей системы «Молодечно» (Стальные конструкции
покрытий производственных зданий пролетами 18, 24, 30 м с применением замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала сравниваемых вариантов приведен в таблице,
из которой видно, что в новом решении он уменьшился в 47,1/26,8=1,76 раза.
Масса, кг
Наименование Размеры, мм Кол-во, шт.
Примеч.
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
47,1
Сварные швы (1,5%)
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
5,2
26,8 Предлагаемое решение
149

150.

Сварные швы (1,5%)
0,4
*Учтена треугольная форма
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и предлагаемом фланцевых соединениях
количество стяжных болтов одинаково и составляет 8 шт. Если в первом из них использованы болты М24, то во втором - M18 того же
класса прочности. Тогда очевидно, что в новом решении расход материала снижен пропорционально уменьшению площади сечения
болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с фланцами, стяжные болты и
листовую прокладку между фланцами, отличающееся тем, что фланцы установлены под углом 30° относительно продольных осей
стержневых элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в собранном
соединении взаимно упертые друг в друга.
150

151.

При испытаниях фрагментов узлов крепления трубопроводов предназначены для работы в
сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64, с трубопроводами
использовалось изобретение «Стыковое соединение растянутых элементов»
151

152.

152

153.

153

154.

154

155.

155

156.

Заключение. Выводы и рекомендации по сейсмоизоляции трубопроводов с фрикцы –демпфирующими
компенсаторами типа Сальникова по изобретению № 165076 «Опора сейсмостойкая» , которые
предназначены для работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале
MSK-64 с трубопроводами ( ГОСТ Р 55989-2014) после проведения лабораторных испытаний фрагментов
фрикционно-демпфирующих соединений для трубопроводов и испытания математических моделей в ПК SCAD.
пластиковые в комплекте с фитингами т.м. «aquatherm» предназначены для работы в
сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64,
Трубопроводы
, серийный выпуск могут быть использованы в районах с сейсмичностью более 9 баллов (в районах с сейсмичностью более 9 баллов
для прокладки трубопроводов , необходимо использование сейсмостойких опор на фрик-ционно- подвижных соединениях согласно
изобретениям №№ 1143895, 1174616,1168755 и согласно изобретения патент № 165076 «Опора сейсмостойкая», Бюл.28, от
10.10.2016, а для соединения трубопроводов -фланцевых фрикционно- демпфирующие соединений, работающих на сдвиг, с
использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным
обожженным клином, согласно рекомендациям ЦНИИП им. Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ
37.001. -050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-frictiondamping-device Мкл E04H 9/02, в местах подключения трубопроводов к зданиям трубопроводы, должны быть уложены в виде
"змейки" или "зиг-зага "согласно ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)).
Рекомендации
предназначены для
работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64, (предназначены
Применение болтов с контролируемым натяжением и срезом торцевого элемента для трубопроводов
для сейсмоопасных районов с сейсмичностью более 9 баллов по шкале MSK-64 значительно увеличит производительность работ по
сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого
способа натяжения высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки динамометрических
ключей, необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего
момента в процессе натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента, соответствующего
достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений можно производить с одной стороны
конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе
изготовления болтов и устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных соединений, сделает
её технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются вследствие
сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов.
Натяжение болта должно быть максимально большим, что достигается упрочнением стали, из которой они изготовляются, путем
термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных соединений. Замена
сварных монтажных соединений с устройством демпфирующей сейсмоизоляции трубопроводов и других решетчатых конструкций
болтовыми соединениями повышает надежность конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
156

157.

Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими типами
болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость, чем обычные болты. Эти
два фактора накладывают ограничения на область применения фрикционных соединений.
Изобретение проф А.М.Уздина ФПС: 1143895, 1168755, 1174616.
При разработке альбома и технических решений АФФПС использовалось изобретение "Опора сейсмостойкая", Мкл. Е04H 9/02,
патент 165076 (авторы : Андреев Б.А., Коваленко А.И).
Опора сейсмостойкая на фрикци -болтовых соединениях для сейсмоизоляции трубопроводов предназначены з для
работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64 -это
прогрессивное техническое решение для энергопоглощения пиковых ускорений (ЭПУ), с помощью которого можно поглощать
взрывную, ветровую, сейсмическую, вибрационную энергию землетрясений и взрывную от ударной воздушной волны.
В основе антивибрационого фрикци-болта, поглотителя энергии лежит принцип, который называется "рассеивание",
"поглощение" сейсмической, взрывной, вибрационной энергии. Энергопоглощение происходит за счет использования фланцевых
фрикционно - подвижных соединений (АФФПС)- мини –компенсатора с фрикци-болтом и с демпфирующими узлами крепления
(АФФПС).
Структурные элементы опоры с фрикци-болтом с разными шероховатостями и узлами соединения каркаса представляют фланцевую,
фрикционную систему, обладающую значительными фрикционными характеристиками с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии.
Совместное скольжение включает зажимные средства на основе фрикци-болта (аналог американ-ского Hollo Bolt ), заставляющие
указанные поверхности, проскальзывать при применении силы, стремящейся вызвать такую силу, чтобы движение большой величины
поглотило ЭПУ, согласно ГОСТ Р 53 166-2008 "Воздействие природных внешних воздействий" по МСК -64.
Более подробно смотри изобретения проф. д.т.н. А.М.Уздина (ПГУПС): №№ 1143895, 1174616, 1168755,
предназначены для работы в
сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64, использовалось изобретение
При лабораторных испытаниях узлов и фрагментов для сейсмоизоляции трубопроводов
« СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ»
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU(11)
2010136746(13)
(51) МПК
E04C2/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
157
A

158.

(21), (22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной
площади для снижения до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях при аварийных
внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в виде одной или
нескольких полостей, ограниченных эластичным огнестойким материалом и установленных на легкосбрасываемых фрикционных
соединениях при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во
всем объеме проема, а в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий момент
полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет ослабленной подпиленной
гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью
подвижности фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек
диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности,
позволяющие перемещаться перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по
максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и
обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной
или зубчатой шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и способствует одновременному
поглощению сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес
здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и
гибких диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для малоэтажных зданий и
сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может
определить величину горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по
вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и
сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на
программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006,
FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной
площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные перемещения
строительных конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на
возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике разработанной испытательным
центром ОО «Сейсмофонд» - «Защита и безопасность городов»
ОПОРА СЕЙСМОСТОЙКАЯ165 076
РОССИЙСКАЯ
(19)
158

159.

ФЕДЕРАЦИЯ
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен
Статус:
(последнее изменение статуса: 07.06.2017)
(21)(22) Заявка: 2016102130/03,
22.01.2016
(24) Дата начала отсчета срока
действия патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(45) Опубликовано: 10.10.2016 Бюл.
№ 28
Адрес для переписки:
197371, Санкт-Петербург, пр.
Королева, 30, корп. 1, кв. 135,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076
Опора сейсмостойкая предназначена для защиты объектов от сейсмических
воздействий за счет использования фрикцион но податливых соединений. Опора
состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной
оси, выполнены отверстия в которых установлен запирающий калиброванный
болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для
сборки опоры шток сопрягают с отверстием корпуса при этом паз штока
совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего
159

160.

одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки
приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении
корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений,
объектов и оборудования от сейсмических воздействий за счет использования
фрикционно податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например Болтовое
соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от
11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через которые
пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание
листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий, соединение начинает
работать упруго, а затем происходит разрушение соединения за счет смятия листов
и среза болтов. Недостатками известного являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также
Устройство для фрикционного демпфирования антиветровых и антисейсмических
воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and antiseismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое
основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев)
и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение
демпфирования создается между пластинами и наружными поверхностями
сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы,
проходят запирающие элементы - болты, которые фиксируют сегменты и пластины
друг относительно друга. Кроме того, запирающие элементы проходят через блок
поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном
положении. Таким образом получаем конструкцию опоры, которая выдерживает
ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих
расчетные силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного сопряжения отверстие
корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая
выполнена из двух частей: нижней - корпуса, закрепленного на фундаменте и
верхней - штока, установленного с возможностью перемещения вдоль общей оси и с
160

161.

возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий
элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два
открытых паза, которые обеспечивают корпусу возможность деформироваться в
радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз
ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает
нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью перемещения
только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от
торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции
поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2
изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1);
на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное
отверстие диаметром «D», которое охватывает цилиндрическую поверхность штока
2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его
оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два
паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный
глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов
«I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней
части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса
по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса
и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором
нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток
зависит от величины усилия затяжки гайки (болта) и для каждой конкретной
конструкции (компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При воздействии
сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток,
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без
разрушения конструкции.
Формула полезной модели
161

162.

Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел,
закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено
центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью
штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через
вертикальный паз, выполненный в теле штока и закрепленный гайкой с заданным
усилием, кроме того в корпусе, параллельно центральной оси, выполнено два
открытых паза, длина которых, от торца корпуса, больше расстояния до нижней
точки паза штока.
162

163.

163

164.

164

165.

Таким образом, можно отметить следующие итоги работы.
1. Произведено моделирование и расчет совместной системы
«Магистральный трубопровод-маятниковые опоры по изобретению №
165076 «Опора сейсмостойкая» при -талом песчано-глинистое основание»
балочного перехода с учетом нелинейных свойств грунтов основания.
2. Существенно упрощен процесс создания расчетных схем участка
надземной прокладки и балочного перехода магистрального трубопровода
благодаря интеграции популярной САПР AutoCAD и ПК SCAD.
3. Рассчитан балочный переход магистрального газопровода,
смонтированный с применением технологии «труба в трубе», которая
моделировалась специальными упругими связями из библиотеки
специальных элементов ПК SCAD.
Результаты, полученные в ходе конечно-элементного анализа,
позволили на этапе расчетно- теоретических исследований дать оценку
основных принятых конструктивных решений с точки зрения
соответствия требованиям нормативных документов.
165

166.

166

167.

Прилагается литература для обеспечения надежности фрикционно -
демпфирующих энергопоглотителей с пластическим шарниром для
магистральных трубопроводов , по изобретению № 165076 «Опора
сейсмостойкая», № 2010136746, проф дтн ПГУПС Уздина А М №
167

168.

1174616, 1168755, 1143839 , исключающие прогрессирующее обрушение
при импульсных растягивающих и динамических нагрузках
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09
Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл
№ 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на
пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство
для колонн" 23.02.1983
9.
Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий»
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция
малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости».
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
168

169.

21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре
года».
21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии
возведения фундаментов без заглубления – дом на грунте. Строительство на
пучинистых и просадочных грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность
городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по
графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25
«Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные
научные издания и
журналах за 1994- 2004 гг.
25. С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта
сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен»
с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
Приложение список перечень заявок на изобретения и научных публикаций в журналах СПб ГАСУ о
демпфирующих сдвиговых энернопоглотителях, для обеспечения устойчивости существующего
лестничных маршей и сооружений от особых воздействий, можно ознакомится по ссылкам:
Описание изобретения на полезную модель Сейсмостойкая фрикционно 18 стр
https://yadi.sk/i/JZ0YxoW0_V6FCQ
Заявка на изобретение полезную модель Энергопоглощающие дорожное барьерное ограждение 23 стр
https://yadi.sk/d/dWKraP12fvXAlA
Описание изобретения на полезную модель Взрывостойкая лестница 10 стр
https://yadi.sk/i/EDoOs4AFUWKYEg
Заявка на изобретение полезная модель Опора сейсмоизолирующая гармошка 20 стр
https://yadi.sk/i/JOuUB_oy2sPfog
Заявка на полезную модель Опора сейсмоизолирующая маятниковая 32 стр
flcsg
Виброизолирующая опора Е04Н 9 02
https://yadi.sk/i/dZRdudxwOald2w
РЕФЕРАТ
https://yadi.sk/i/Ba6U0Txx-
изобретения полезная 17 стр
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр
https://yadi.sk/i/en6RGTLgfhrg_A
Доклад в СПб ГАСУ усиление опор Крымского моста https://yadi.sk/i/RpW2sh5lMdx35A
169

170.

Скачать научную статью Сейсмофонд при СПб ГАСУ( опубликованную в США, Японии и др странах ),
можно по ссылке : Использование лего сбрасываемых конструкций для повышения сейсмостойкости
сооружений http://scienceph.ru/f/science_and_world_no_3_43_march_vol_i.pdf
Изобретения с демпфирующей сейсмоизоляций «Сейсмофонд» широк используются американской
фирмой RUBBER BEARING FRIKTION DAMPER (RBFD) в Японии, Новой Зеландии, США, Китае, Тайване и
др странах https://www.damptech.com/-rubber-bearing-friction-damper-rbfd https://www.damptech.com/forbuildings-cover
http://downloads.hindawi.com/journals/sv/2018/5630746.pdf
https://www.youtube.com/watch?v=r7q5D6516qg
Теория сейсмостойкости находится в кризисе, а жизнь миллионов граждан проживающих в ЖБ гробах не
относится к государственной безопасности
http://www.myshared.ru/slide/971578/
https://yadi.sk/i/JfXt8hs_aXcKRQ https://yadi.sk/i/p5IgwFurPlgp1w
Оценка возможности инициирования сейсмического геофизического и техногенного оружия с применением
существующих технических средств и технологий https://yadi.sk/i/3VmQxa78RhhBBA
ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9 баллов»
http://scaleofintensityofearthquakes.narod.ru
http://scaleofintensityofearthquakes2.narod.ru
http://scaleofintensityofearthquakes3.narod.ru
http://peasantsinformagency1.narod.ru
http://s-a-m-a-r-a-citi.narod.ru http://sergeyshoygu.narod.ru/pdf1.pdf
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр
https://yadi.sk/i/en6RGTLgfhrg_A
Патенты изобретения взрывозащите противовзрывная https://yadi.sk/i/-PwJxeHVvI_eoQ
Научный доклад на 67 конференции СПб ГАСУ 4 стр https://yadi.sk/i/sMuk8V-J0Ui_lw
Научная статья в журнале СПб ГАСУ
https://yadi.sk/i/Vf_86hLPmeYIsw
Доклад на конференции изобретателей Попов ЛПИ Политех 5 стр https://yadi.sk/i/c1D-6wvsIeJWnA
Антисейсмическое фланцевое фрикционн 4 стр https://yadi.sk/i/pXaZGW6GNm4YrA
Обеспечение взрывостойкости существующих лестничных маршей 8 стр https://yadi.sk/i/ZJNyX-y0gsfEyQ
Доклад сообщение научное Испытание математических моделей ФПС 60 стр + выводы
https://yadi.sk/d/6lNXCB4lw-HgpA
Научная статья доклад сообщения конференции с 5 по 7 февраля 2014 19
стрhttps://yadi.sk/i/CnFN36oKLYPpzQ
Научное сообщение доклад на 67 конференции проходившей в начале 3 5 февраля 2010 г в СПб ГАСУ стр
208 стр 211 2 страницы https://yadi.sk/i/MaKtKmd5GP9ecw
Доклад сообщение Маживеа Уздина Испытание математических моделей на сейсмостойкость 137 стр
https://yadi.sk/d/MDvdSPojHUpe3w
ЛИСИ Научные статьи изобретателя СПбГАСУ научной конференции 9 стр
https://yadi.sk/i/uLbA_SwO5GHO2w
Материалы лабораторных испытаний фрикци –демпфирующего энергопоглощающего компенсатора для
магиатральных трубопроводов согласно лабораторным испытаниям фрагментов энергопоглощающих
170

171.

компенсаторов для магистральных трубопроводов и фрикционно - демпфирующей сейсмоизоляции для
магиатрльных трубопроводов хранятся на Кафедре металлических и деревянных конструкций 190005,
Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и
деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич строительный факультет
[email protected] [email protected] [email protected] [email protected]
(996) 798-26-54, (921) 962-67-78, (999) 535-47-29
Приобрести Специальные технические условия на особое воздействие (СТУ ) по обеспечению
устойчивости существующих магистральных трубопроводов на особые воздействия с использованием
фрикци-демпфирующего компенстора и энергопоглотителей с пластическим шарниром по
изобретению « 165076 «Опора сейсмостойкая» , за счет рассеивания энергии от особых воздействий при
многокаскадном демпфировании согласно альбома ШИФР 1.010.1-2с.94, выпуск 0-1, утвержден
Главпроектом Мистрой России, письмо от 21.09.94 ; 9-3-1/130 за подписью Д.А.Сергеева, исп. Барсуков
930-54-87 согласно письма Минстроя № 9-3-1/199 от 26.12.94 и письма № 9-2-1/130 от 21.09.94) на
взрывное воздействие ( 600 кг ) не приводящие последствиям лавинообразному разрушению всех
контракций магистрального трубопровода согласно компьютерного моделирования в ПК SCAD , ANSYS,
LS-DYNA , для существующих магистральных трубопроводов с использованием фрикцидемпфирующего компенстаора типа Сальникова и упругопластических шарниров ( ограничителей
перемещения трубопровода), ( патент на полезную модель № 154506 «Панель противовзрывная»), за счет
использования упругопластичных энергопоглотителей в виде «гармошка» и прорезей в шахматном
порядке согласно изобретения полезная модель № 165076 «Опора сейсмостойкая» с использованием
фракционности, демпфирования для поглощение взрывной энергии согласно изобретения № 2010136746 «
Способ защиты зданий и сооружение при взрыве с использованием сдвигоустойчивых и легко сбрасываемых
соединений , использующие систему демпфирования и сейсмоизоляцию для поглощения взрывной и
сейсмической энергии» на основе изобретений проф. дтн ПГУПС Уздина А М №№ 1174616, 1143895, 1168755
, согласно расчетам проф МГСУ О.В Мкртычева «Проблемы расчета зданий на особые воздействия»
локальные разрушения при взрыве заряда массой 600 кг при использовании эрегопоглотителей с
пластическим шарниром, закрепленных к опорам сейсмостойким, на фрикци –болтах с пропиленным
стальной шпильке пазе , куда забивается медный обожженный клин , или на протяжных фрикционно –
подвижных соединениях, не
приводит к посредствующему лавинообразному
обрушении магистрального трубопровода и всей конструкции за счет поглощения
пиковых ускорений и поглощение взрывной энергии , за счет упругоплатических узлов крепления к опорам
сейсмостойкимЮ в связи с податливостью и подвижности фрикционно- подвижных компенсаторв типа
Сальникова . Стоимость альбома (проекта ) со специальных технических решений, с использованием фрики –
демпфирующих компенсаторов - энергопоглотителей , с пластических шарниров ( ограничителем перемещений , можно
обратится к Мажиеву Хасан Нажоевичу по тел (999) 535-47-29 или по электронной почте [email protected]
Стоимость альбома с типовыми протяжными фрикционно –подвижными фрикци –демпфирующих компенсаторов для
магистральных трубопроводов на фрикционно-подвижных соединениях ФПС) и упругпастичными подвижными
уздами крепления компенсаторов .
Аванс 10 тр, после численного моделирования и испытания моделей и узлов крепления (расчета ) упругоплатических
компенсаторов типа Сальникова в ПК SCAD, еще 10 тр за окончание лабораторных испытаний фрагментов и узлов
крепления компенсаторов или усиления существующих магистральных трубопроводов Карта Сбербанка 2202 2006
4085 5233 Электронный адрес [email protected] (999) 535-47-29, ( 993) 151-39-15, (996) 798-26-54 Мажиев Хасан
Нажоевич Президент организации «Сейсмофонд» ИНН 201400078, ОГРН 1022000000824
171

172.

Заявка на изобретение Антисейсмическое фланцевое фрикционно -подвижные соединение трубопроводов
ДАТА ПОСТУПЛЕНИЯ
(дата регистрации)
(21) РЕГИСТРАЦИОННЫЙ №
ВХОДЯЩИЙ №
оригиналов документов заявки
(85) ДАТА ПЕРЕВОДА международной заявки на национальную фазу
(86)
(регистрационный номер международной заявки
АДРЕС ДЛЯ ПЕРЕПИСКИ (почтовый адрес, фамилия и инициалы
или наименование адресата)
и дата международной подачи, установленные
получающим ведомством)
(87)
197371, Санкт-Петербург, а/я газета "Земля РОССИИ"
Телефон: +7 (812) 694-7810
E-mail: [email protected]
(номер и дата международной публикации
международной заявки)
моб 8 (911) – 175-84-65? ( 996) 798-26-54? (921) 962-67-78
ЗАЯВЛЕНИЕ
о выдаче патента Российской Федерации
на полезную модель
В Федеральную службу по интеллектуальной собственности
Бережковская наб., 30, корп.1, Москва, Г-59, ГСП-3, 125993
Российская Федерация
(54) НАЗВАНИЕ ПОЛЕЗНОЙ МОДЕЛИ
Антисейсмическое фланцевое соединение трубопроводов
172

173.

(71) ЗАЯВИТЕЛЬ (фамилия, имя, отчество (последнее – при наличии) физического
лица или наименование юридического лица (согласно учредительному документу),
место жительства или место нахождения, название страны и почтовый индекс)
ИДЕНТИФИКАТОРЫ
ЗАЯВИТЕЛЯ
ООО «Яргазарматура»
Телефон: + (8 342 41) 2-87-63, 2-87-63, 2-07-29
ОГРН 1022000000824
Адрес: 617766, Пермский край,
КПП 2011401001
г.Чайковский, ул.Декабристов, д. 29 ( а/я 8 )
Эл.почта: [email protected]
[email protected]
ИНН 2014000780
Чайковский фил, 617766, Пермский край,
СНИЛС___________
. Чайковский, ул., Декабристов, 29, ИНН 7603019526. КПП 592001001, 8 912 987 19
92 [email protected]
8-34241-4-68-24, 2-87-63 т. 8 912 987 19 92, [email protected] 8 912 987 19 92
Пастухов тел 342 41 28763
Общественная организация - Фонд поддержки и развития сейсмостойкого
строительства "Защита и безопасность городов" - ОО "Сейсмофонд"
197371, Санкт-Петербург, а/я газета "Земля РОССИИ"
тел ( 952) 229-47-76 skype: kiainformburo
ДОКУМЕНТ (серия, номер)
___________________
КОД страны по стандарту
ВОИС ST. 3
т/ф (812) 694-78- 10,
полезная модель создана за счет средств федерального бюджета
Заявитель является:
государственным заказчиком
муниципальным заказчиком,
исполнитель
работ_________________________________________________________
(указать наименование)
исполнителем работ по:
контракту
государственному контракту
муниципальному
заказчик работ
____________________________________________________________
(указать наименование)
Контракт от _________________________ №
_________________________________________
(74) ПРЕДСТАВИТЕЛЬ (И) ЗАЯВИТЕЛЯ
(указываются фамилия, имя, отчество (последнее – при наличии) лица,
назначенного заявителем своим представителем для ведения дел по получению
патента от его имени в Федеральной службе по интеллектуальной
173
собственности или являющегося таковым в силу закона)
патентный поверенный
представитель по доверенности
представитель по закону

174.

Фамилия, имя, отчество (последнее – при наличии)
Телефон:
Коваленко Александр Иванович
Факс: (812) 694-78-10
E-mail:[email protected]
Адрес
197371, Санкт-Петербург, а/я газета "Земля РОССИИ"
Срок представительства
(если к заявлению приложена доверенность представителя заявителя, срок может
не указываться)
Регистрационный
номер патентного
поверенного ______
(72) Автор (фамилия, имя, отчество (последнее – при наличии)
Адрес места жительства, включающий
официальное наименование страны и ее код
по стандарту ВОИС ST. 3
Василий Александрович Дударев
Адрес:
Александр Григорий Пастухов
197371, СПб, а/я газета «Земля РОССИИ»
Василий Александрович Пастухов
Елисеева Ирина Александровна
Малафеев Олег Алексеевич
Я (мы) _______________________________________________________________________________________
(фамилия, имя, отчество (последнее – при наличии)
Прошу (просим) не упоминать меня (нас) как автора (ов) при публикации сведений о выдаче патента
Подпись (и) автора (ов)
Просьба автора (ов) не упоминать его (их) при публикации прилагается
(отмечается при подаче заявки в электронном виде)
Количество
листов
в экз.
ПЕРЕЧЕНЬ ПРИЛАГАЕМЫХ ДОКУМЕНТОВ
Количество экз.
описание полезной модели
8
2
формула полезной модели
1
2
чертеж (и) и иные материалы
9
2
174

175.

фигуры чертежей, предлагаемые для публикации с рефератом 9 фиг
(указать)
реферат
копия документа, подтверждающего уплату патентной пошлины (пошлин)
(представляется по собственной инициативе заявителя)
2
2
1
1
1
1
ходатайство о предоставлении права на уплату патентной пошлины в
уменьшенном размере Приложена справка участника Чеченской войны
копия первой заявки
(при испрашивании конвенционного приоритета)
перевод заявки на русский язык
доверенность
согласие представителя заявителя на обработку его персональных данных
просьба автора(ов) не упоминать его(их) при публикации
другой документ (указать наименование документа)
дополнительные листы к настоящему заявлению
копия документов заявки (описание, формула полезной модели, чертежи
(если имеются) и реферат) на машиночитаемом носителе
___________________________
(указать вид носителя)
ЗАЯВЛЕНИЕ НА ПРИОРИТЕТ (заполняется только при испрашивании приоритета более раннего, чем дата подачи
заявки)
Подтверждаю, что копия документов заявки на машиночитаемом носителе
является
точной копией
документов,
представленных
Прошу установить
приоритет
полезной
модели по датена бумажном
носителе.
1
подачи первой заявки в государстве-участнике Парижской конвенции по охране промышленной собственности (п.1
ст.1382 Кодекса)
2
поступления дополнительных материалов к более ранней заявке (п.2 ст. 1381 Кодекса)
3
подачи более ранней заявки (п.3 ст.1381 Кодекса)
4
подачи/приоритета первоначальной заявки (п. 4 ст. 1381 Кодекса), из которой выделена настоящая заявка
Дата испрашиваемого
№ заявки
приоритета на основании
указанной заявки
175
Код страны подачи
(при испрашивании
конвенционного приоритета)

176.

ХОДАТАЙСТВО ЗАЯВИТЕЛЯ
начать рассмотрение международной заявки ранее установленного срока (п.1 ст. 1396 Кодекса)
Уплачена пошлина
по п. ___ приложения к Положению о пошлинах.
по п. ___ приложения к Положению о пошлинах.
Сведения о плательщике (фамилия, имя, отчество (последнее – при наличии) физического лица или наименование
юридического лица)
Идентификаторы плательщика, указываемые в документе, подтверждающем уплату пошлины:
Для физического лица:
Для юридических лиц:
ИНН
ИНН 20140000780
781424258407
СНИЛС 075-499-576-04
КПП 201401001
КИО 23177385
(заполняется, если копия документа, подтверждающего уплату патентной пошлины, не прилагается к настоящему
заявлению)
Заявителю известно о том, что в соответствии с подпунктом 4 пункта 1 статьи 6 Федерального закона от 27
июля 2006 г. № 152-ФЗ «О персональных данных» Федеральная служба по интеллектуальной собственности
осуществляет обработку персональных данных субъектов персональных данных, указанных в заявлении, в целях и
объеме, необходимых для предоставления государственной услуги.
Настоящим подтверждаю, что у заявителя имеются согласия авторов и других субъектов персональных данных,
указанных в заявлении, на обработку их персональных данных, приведенных в настоящем заявлении, в Федеральной
службе по интеллектуальной собственности в связи с предоставлением государственной услуги. Согласия
оформлены в соответствии со статьей 9 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных
данных».
(Заполняется только заявителями по российским заявкам).
Заявителю известно, что с информацией о состоянии делопроизводства, в том числе о направленных заявителю
документах, можно ознакомиться на сайтах Роспатента (www.rupto.ru) и ФИПС (www.fips.ru) в сети Интернет.
Подтверждаю достоверность информации, приведенной в настоящем заявлении.
Подпись
197371, СПб, а/я газета «Земля РОССИИ»
Подпись, фамилия, имя, отчество (последнее – при наличии) заявителя или представителя заявителя, или иного
уполномоченного лица, дата подписи (при подписании от имени юридического лица подпись руководителя или иного
176

177.

уполномоченного на это лица удостоверяется печатью при ее наличии).
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое фрикционно -подвижное
соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и
предназначено для защиты шаровых кранов и трубопровода от возможных вибрационных ,
сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной
шпильки с забитым медным обожженным клином позволяет обеспечить надежный и быстрый
погашение сейсмической нагрузки при землетрясении, вибрационных воздействий от
железнодорожного и автомобильного транспорта и взрыве .Конструкция фрикци -болт, состоит
их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на
фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим
клином вставляются свинцовые шайбы с двух сторон, а латунная шпилька вставляется ФФПС
с медным обожженным клином или втулкой ( на чертеже не показана) 1-9 ил.
Описание изобретения
подвижное соедине
Антисейсмическое фланцевое фрикционно -
ние трубопроводов
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др. Расчет на прочность
деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических
воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU
№1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное
демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соединения (ФФПС), при импульсных
растягивающих нагрузках при многокаскадном демпфировании, которые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по
горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно
также устройство для фрикционного демпфирования и антисейсмических воздействий, патент SU 1145204, F 16 L 23/02
Антивибрационное фланцевое соединение трубопроводов Устройство содержит базовое основание, нескольких
сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает
демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок,
превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет
трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
177

178.

Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при
использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом,
в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с
возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в
паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или
свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают
смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные сочетания
расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки
при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы
оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых
ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП
45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и
снабжен энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображен фрикционных соединениях с контрольным
натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным
клином;
на фиг.2 изображена латунная шпилька фрикци-болта с пропиленным пазом
на фиг.3 изображен фрагмент о медного обожженного клина забитого в латунную круглую или квадратную латунную шпильку
на фиг. 4 изображен фрагмент установки медного обожженного клина в подвижный компенсатор ( на чертеже компенстор на показан )
Цифрой 5 обозначен пропитанный антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы исключить
вытекание нефти или газа из магистрального трубопровода при многокаскадном демпфировании)
фиг. 6 изображен сам узел фрикционно -подвижного соединения на фриукци -болту на фрикционно-подвижных протяжных соедиениях
фиг.7 изображен шаровой кран соединенный на фрикционно -подвижных соединениях , фрикци-болту с магистральным трубопроводом
на фланцевых соединениях
фиг. 8 изображен Сальникова компенсатор на соединениях с фрикци -болтом фрикционно-подвижных соединений
фиг 9 изображен компенсатор Сальникова на антисейсмических фрикционо-подвижных соединениях с фрикци- болтом
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленным пазом , куда забивается
стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть
также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется
смянанием с энергопоглощением забитого медного обожженного клина
178

179.

Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды колебаний
вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты шарового кран с
трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на чертеже не показаны),
которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже
не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении , выполненные из латунной шпильки
с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт .
Одновременно с уплотнением соединения оно выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также дополнительные упругие свинцовые шайбы ,
повышающие надежность виброизоляции и герметичность соединения в условиях повышенных вибронагрузок и
сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится
стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину,
обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой
жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их
жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность
фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и
надежность его работы в тяжелых условиях вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты
вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения
по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет
меньше единицы.
Формула
Антисейсмическое фланцевое фрикциооно -подвижное соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные
элементы, подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного
фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой или
гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент,
фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены с
помощью энергопоглощающего фрикци -болта , с забитым с одинаковым усилием медным обожженным клином
расположенными во фланцевом фрикционно-подвижном соединении (ФФПС) , уплотнительными элемент выполнен в
виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные элементы
подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным
обожженным энергопоголощающим клином, установлены тонкие свинцовые или обожженные медные шайбы, а в
латунную шпильку устанавливается тонкая медная обожженная гильза или втулка .
Фиг 1
179

180.

Фиг 2
Фиг 3
Фиг 4
Фиг 5
Фиг 6
180

181.

Фиг 7
Фиг 8
Фиг 9
181

182.

182

183.

183

184.

184

185.

185

186.

186

187.

187

188.

188

189.

189

190.

190

191.

Техническое задание с чертежами для разработки патента и альбома для вставки компенсатора на
ФПС с испытанием на сейсмостойкость, для шаровых кранов ООО"Яргазарматура" на основании
американских Сальниковых компенсаторов фирмы РОАК США, для магистральных трубопроводов
выпускаемые вставок на русских фрикци-болтах с пропиленным пазом и забитым медным обожженным
клином в пропиленный паз латунной шпильки со свинцовой шайбой
191

192.

192

193.

193

194.

194

195.

195

196.

196

197.

197

198.

198

199.

199

200.

200

201.

201

202.

202

203.

203

204.

204

205.

205

206.

206

207.

207

208.

208

209.

209

210.

210

211.

211

212.

212

213.

213

214.

214

215.

215

216.

216

217.

217

218.

218

219.

219

220.

220

221.

221

222.

222

223.

223

224.

224

225.

225

226.

226

227.

227

228.

228

229.

Сальникова компенсаторы для шаровых кранов и магистральных трубопроводов Compact Dismantling
Joint 7 https://youtu.be/y4leUBrFBrw https://www.youtube.com/watch?v=y4leUBrFBrw
VAG VARIplus product information EN (Teaser)
Product animation of the VAG VARIplus system. The flange adapters and dismantling joints reliably and safely
connect pipes, even of different diameters, or pipes with valves (such as the VAG EKN® Butterfly Valve). More
information on VAG VARIplus system: http://www.vag-armaturen.com/en/no_ca... Contact information:
http://www.vag-armaturen.com/en/conta...
https://www.youtube.com/watch?v=7tXyxn071YM
https://youtu.be/7tXyxn071YM
UNIÓN AUTOPORTANTE O DISMANTLING JOINT VCP
https://youtu.be/A13OCdybaJ0
Style DJ400 3"-12" Dismantling Joints
https://www.youtube.com/watch?v=r1fEvFsp5uE
229

230.

230

231.

3D DWG файлы запорно регулирующей арматуры ф-мы Tour & Andersson (ТА) Сайт - http://www.tourandersson.com/en/
Типовые изделия и детали антивибрационного сейсмостойкого фланцевого фрикционно-подвижного соединения для
магистральных трубопроводов с кранами шаровыми, с компенсаторами ( антивибрационные фланцевые фрикционно
подвижные соединения (АФФПС)в виде болтовых соединений с фрикци-болтами (латунная шпилька с медным
обожженным клином, забитым в паз, пропиленный в нижней части латунной шпильки, свинцовые шайбы), затянутыми
гайками с контролируемым натяжением для повышения демпфирующей способности можно скачать на сайте ОО
"Сейсмофонд" seismofond.ru
Tour & Andersson/document.pdf_1748168523.pdf
Tour & Andersson/сайт.txt
Tour & Andersson/51061025.dwg
Tour & Andersson/51061032.dwg
Tour & Andersson/51061040.dwg
Tour & Andersson/51061050.dwg
Tour & Andersson/52183273.dwg
Tour & Andersson/52182965.dwg
Tour & Andersson/KT_512_DN_15,20.dwg
Tour & Andersson/52151814.dwg
Tour & Andersson/52151820.dwg
Tour & Andersson/52137115.dwg
Tour & Andersson/52138120.dwg
Tour & Andersson/52151009.dwg
Tour & Andersson/52138115.dwg
Tour & Andersson/52151014.dwg
Tour & Andersson/52134015_NF.dwg
Tour & Andersson/52151832.dwg
Tour & Andersson/52151825.dwg
Tour & Andersson/52151840.dwg
Tour & Andersson/52152214.dwg
Tour & Andersson/52152220.dwg
Tour & Andersson/52134515_NF.dwg
Tour & Andersson/52134520_NF.dwg
Tour & Andersson/52144115_NF.dwg
Tour & Andersson/52144120_NF.dwg
Tour & Andersson/52144125_NF.dw ...
/ это не весь список /
231

232.

232

233.

233

234.

234

235.

235

236.

236

237.

Д.С.Нюмана ООО "ЗДТ "Реком" СПб ЗАВОД ДЕТАЛЕЙ ТРУБОПРОВОДОВ, 192019, СПб, ул. Профессора Качалова, д. 11 лит. «В», т./ф +7 (812) 777 50
10 (многоканальный) E-mail: [email protected] WWW.ZAVOD-REKOM.RU , Японской фирмы НARDLOCK Industry Co.Ltd. 6-24, 1-chrome,
Kawamata, Higashi Osaka, Osaka, Japan 577-0063 и США Holl-Bolt USA .
Обеспечение надежности резьбовых соединений -это ключевой момент промышленной безопасности,
вибростойкости, взрывопожаростойкости сейсмостойкости, магистральных нефтегазотрубопроводов,
нефтегазовой отрасли, мостов, ЛЭП, оборудования на АЭС в карманной, олегархическо -компрадорской,
коллаборац- корпорации, с мощным лобби Израиля в РФии
[email protected]
197371, Ленинград, а/я газета
"Земля РОССИИ",
т/ф (812) 694-7810
Эффективные решения по предотвращению ослабления резьбовых соединений для безопасной эксплуатации магистральных трубопроводов,
мостов , теплотрасс, безсварных фланцевых фрикционно-подвижных соединения, газотрубопроводов, обеспечит русский фрикци- болт,
энергопоглотитель пиковых ускорений (ЭПУ), лучше американского Holl-bolt (USA).
Назначение: Энергопоглотитель пиковых ускорений(ЭПУ), спасет от
разрушающие мосты и уходящий под воду разрушающийся Керченский мост
из-за просадки фарватерных опора железнодорожного мота в Крым и от
использования( фарватерные опоры просели одна на один метр, другая
железнодорожная опора на полтора метра) и климатического оружия ХААРП
(США), создающие искусственные ливни, грады, ураганы, взрывы на АЭС,
пожары в нефтегазовой отрасли, землетрясения: которых может защитить
РУС фрикци-болт, бесперебойную подачу тепла, обеспечить вибростойкость
трубопроводов с антивибрационными фланцевыми соединениям. ФПС с ЭПУ
исключит обрушения от урагана, линий электропередач (ЛЭП), рекламных
щитов, навесного вентиляционного оборудования на фасада здания. Благодаря
изобретениям "Сейсмофонд": № 2010136746, 165076, 154506, и изобретениям
проф.дтн Уздина А М № 1168755, 1174616, 1143895, с помощью ФПС с ЭПУ,
выполненное с контролируемым натяжением ФПС, на протяжных
соединений, расположенных в овальных отверстиях и за счет –фрикци-болт ЭПУ, с пропиленным пазом, в латунной шпилькой , с забитым в паз, медным
обожженным клином, ( энергопоглощающей шпильки) , со свинцовыми
шайбами, будет обеспечена безопасность мостов, трубопроводов,
энергетического оборудования на ЛАЭС, ЛЭП, КТП, ТП, зданий и сооружений
237

238.

238

239.

С научным докладом в СПб ГАСУ " Физическое и математическое моделирование взаимодействия оборудования и сооружений с геологической средой
методом оптимизации и идентификации динамических и статических задач теории устойчивости , в том числе нелинейным, численным, аналитическим
методом моделирования, решения задач строительной механике и испытание математических моделей на фрикционно-подвижных соединениях (ФПС) и их
программное обеспечение в моделировании конструкций механике сплошных сред в ПК SCAD " (инж. А.И. Коваленко) на XXVI Международной
конференции «Математическое и компьютерное моделирование в механике деформируемых сред и конструкций» (28.09-30.09.2015г.,СПб ГАСУ), можно
ознакомиться: youtube.com/watch?v=MwaYDUaFNOk http://www.youtube.com/watch?v=TKBbeFiFhHw http://www.youtube.com/watch?v=GemYe2Pt2UU /
С изобретением № 2010136746 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» по изобретению RU 2010136746 МПК E 04С 2/00, можно
ознакомится на сайте Роспатента (ФИПС) fips.ru
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2,
ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке
испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых деревянных
панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике разработанной испытательным центром
ОО"Сейсмофонд» - «Защита и безопасность городов».
Адреса американских и немецких фирм внедрили изобретения ОО Сейсмофонд
осуществляя технический шпионаж с помощью консультантов и аудиторов иностранного ,
олигархического Правительства СПб занимающихся откатами, распилами, уничтожением
заводов , фабрик , и пособничеству в изготовлением краденных изобретений ОО
"Сейсмофонд СПб" в США, Израиле, для сейсмозащиты мостов, зданий, сооружений и
магистральных трубопроводов в США ,где активно внедряются фрикционно-подвижные
соединения (ФПС) и изобретения ОО "Сейсмофонд ", проф. ПГУПС дтн А.М.Уздина и
других русских изобретателей
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free: 1-800-585-TAPS (8277)
Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel
21919 20th Avenue SE • Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021
[map] Toll Free: 800.426.9341 Local: 425.951.6200
www.romac.com
Fax: 425.951.620 Website address: www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite 1019, Wayne, PA 19087
Telephone: (610) 971-4850 Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
WILLBRANDT KG Schnackenburgallee 180
[email protected]
Wayne, PA 19087-1866 610.971.4850 (USA)
22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40 540093-47
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Subsidiary Berlin Breitenbachstra?e 7 – 9 13509 Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20
[email protected]
Gummiteknik A/S Finlandsgade 29 4690 Haslev Denmark
www.willbrandt.dk
239
WILLBRANDT
www.willbrandt.se

240.

Fluid Sealing Association
994 Old Eagle School Road #1019
Wayne, PA 19087-1866
610.971.4850 (USA)
WILLBRANDT KG
Schnackenburgallee 180
22525 Hamburg
Germany
Phone +49 40 540093-0
Fax +49 40 540093-47
[email protected]
Subsidiary Hanover
Reinhold-Schleese-Str. 22
30179 Hannover
Germany
Tel +49 511 99046-0
Fax +49 511 99046-30
[email protected]
Subsidiary Berlin
Breitenbachstraße 7 - 9
13509 Berlin
Germany
Tel +49 30 435502-25
Fax +49 30 435502-20
[email protected]
WILLBRANDT
Gummiteknik A/S
Finlandsgade 29
4690 Haslev
Denmark
www.willbrandt.dk
www.willbrandt.se
240

241.

Адреса американских и немецких фирм, организация занимающихся
проектированием, изготовлением, кражей технических идей и монтажом
сальниковых компенсаторов для магистральных трубопроводов в Израиле,
США , Германии, Китае и др старнах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M 0A9 Call Toll Free:
1-800-585-TAPS (8277) Phone: 604-888-6363 www.pacificflowcontrol.ca
INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919 20th Avenue SE
Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax: 425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map]
Local: 425.951.6200 Fax: 425.951.620 Website address: www.romac.com
Toll Free: 800.426.9341
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle School Road, Suite
1019, Wayne, PA 19087 Telephone: (610) 971-4850 Facsimile: (610) 971-4859
Fluid Sealing Association 994 Old Eagle School Road #1019
Wayne, PA 19087-1866 610.971.4850 (USA)
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0 Fax +49 40
540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22 30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Breitenbachstra?e 7 – 9 13509 Berlin
Subsidiary Berlin
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk www.willbrandt.se
241
Gummiteknik A/S

242.

242

243.

243

244.

244

245.

245

246.

246

247.

247

248.

248

249.

249

250.

250

251.

251

252.

252

253.

253

254.

254

255.

255

256.

256

257.

257

258.

258

259.

259

260.

260

261.

261

262.

262

263.

263

264.

264

265.

265

266.

266

267.

267

268.

268

269.

269

270.

270

271.

Рис 2 Приннципиальная схема упруго - фрикционо-подвижных
соедеиний для теплотрасс на фрикционно - протяжных соединений на
болтах с контролируемым натяжением, расположенные в овальных
отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета
dnl13468 Минск , Республика Беларусь
271

272.

Рис Приннципиальная схема упруго - фрикционо-подвижных
соедеиний теплотрассы на фрикционно - протяжных соединений на
болтах с контролируемым натяжением, расположенные в овальных
отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета
dnl13468 Минск , Республика Беларусь на фрикционно - протяжных
соединений с контрольным натяжением на бронзовых болтах со
сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции
dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь на основе
использования изобретений проф .дтн ПГУПС А.М.Уздина №
272

273.

154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
273

274.

274

275.

275

276.

276

277.

Рис
277

278.

Рис Приннципиальная схема упруго - фрикционо-подвижных
соедеиний теплотрассы на фрикционно - протяжных соединений на
болтах с контролируемым натяжением, расположенные в овальных
отверстиях согласно СП 16.13330.2017 Стальные конструкции dnl14257 (
п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции. Правила расчета
dnl13468 Минск , Республика Беларусь на фрикционно - протяжных
соединений с контрольным натяжением на бронзовых болтах со
сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции
dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь на основе
использования изобретений проф .дтн ПГУПС А.М.Уздина №
278

279.

154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
279

280.

280

281.

281

282.

Рис Приннципиальная схема фрикционно-подвижных болтовых соединений в виде демпфирующего
компенствора , упруго - фрикционо-подвижных соедеиний для
282

283.

демпфирующего косого компенстора фрикционно - протяжных
соединений с контрольным натяжением на бронзовых болтах со
сточенным зубьями с контролируемым натяжением, расположенные в
овальных отверстиях согласно СП 16.13330.2017 Стальные конструкции
dnl14257 ( п 14.3 ) и ТКП 45-5.04-274-2012 Стальные конструкции.
Правила расчета dnl13468 Минск , Республика Беларусь на основе
использования изобретений проф .дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная», № 165076 «Опора
сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616
283

284.

284

285.

285

286.

286

287.

287

288.

288

289.

289

290.

290

291.

Прилогается изобртение № 2010136746 для эксплуатируемых зданий - фрикционно-подвижных болтовых соединений в виде
демпфирующего шарнира , для обрушения верхнего этажа при динамических нагрузках, для обеспечения сейсмостойкости
существующих зданий, эксплуатируемых в зонах сейсмической активности
СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
2010136746
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
291

292.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU 2010136746
(11)
2010 136 746
(13)
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО
"Теплант"
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в
виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении
воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем
объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и
соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы
на высокоподатливых с высокой степенью подвижности фрикционных, скользящих
соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек
диафрагм жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением
и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в
горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и
обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на
сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
292

293.

распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчив ого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и
поглощения сейсмической энергии может определить величину горизонтального и
вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение
до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL
3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне
прямо на строительной площадке испытываются фрагменты и узлы, и проверяются
экспериментальным путем допустимые расчетные перемещения строительных конструкций
(стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий,
перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов
перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита
и безопасность городов».
Основная организация и разработчик фрикционно-демпфирующей системы внедренной в США и Японии
DAMPERS CAPACITIES AND DIMENSIONS https://www.damptech.com
GET IN TOUCH WITH US !
Home Office DAMPTECH A/S
Chief Executive Officer
Peter Spoer, CEO
Denmark Tel.: (+45) 2268 5504
e-mail: [email protected]
Chief Technical Officer
Dr. Eng. Imad Mualla, CTO
Denmark Tel.: (+45) 4525 1725 / (+45) 4059 2798
e-mail: [email protected]
293

294.

https://www.damptech.com/contact-1
294

295.

Научные консультанты по примению и испольхованию
фрикционно-подвижных болтовых
соединений в виде
демпфирующего шарнира , для обрушения верхнего этажа при динамических нагрузках, для обеспечения сейсмостойкости
существующих зданий, эксплуатируемых в зонах сейсмической активности :
Научные консультанты от организации «Сейсмофонд» ОГРН 1022000000824 САЙДУЛАЕВ КАЗБЕК
МАЙРБЕКОВИЧ, УЛУБАЕВ СОЛТ-АХМАД ХАДЖИЕВИЧ.
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры подтверждения
компетентности 8590-гу (А-5824) https://pub.fsa.gov.ru/ral/view/13060/applicant
295

296.

296

297.

297

298.

298

299.

299

300.

300

301.

301

302.

302

303.

303

304.

304

305.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
305

306.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
и
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
7
Сборка ФПС
49
Список литературы
51
306

307.

1. Используемая литература
1 СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09
Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий», А.И.Коваленко
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без
заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров
«Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре
года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» А.И.Коваленко,
Е.И.Коваленко.
24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации
электромагнитных
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и
другие зарубежные научные издания и
журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С
брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства
горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им
Ленина г. Москва и РНБ СПб пл. Островского, д.3
307

308.

308

309.

ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционно-подвижных соединений
контролируемых натяжением и растяжные соединения описаны в СП 16. 13330.2011 . Стальные
конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на болтах с контролируемым
натяжением) и ТКП 45-05. 04-274-2012 (02250). Стальные конструкции (правила расчета). Минск.
2013 г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
309

310.

нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям 5.6.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
,
(191)
где
Rbh
– расчетное сопротивление растяжению высокопрочного болта, определяемое
согласно требованиям 6.7;
Аbп
– площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
?
– коэффициент трения, принимаемый по таблице 42;
?h
– коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения, распределение
этой силы между болтами следует принимать равномерным. В этом случае количество
болтов в соединении следует определять по формуле
,
(192)
где
Qbh
– расчетное усилие, определяемое по формуле (191);
k
– количество плоскостей трения соединяемых элементов;

– коэффициент условий работы, принимаемый по таблице 1;
?b
– коэффициент условий работы фрикционного соединения, зависящий от
количества п болтов, необходимых для восприятия расчетного усилия, и
принимаемый равным:
310

311.

0,8 при п < 5;
0,9 при 5 ? п < 10;
1,0 при п ? 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям 14.2.11 и 14.2.12.
СП 16.13330.2011
Таблица 42
Способ обработки (очистки)
соединяемых поверхностей
Коэффициент
трения ?
Коэффициент ?h при контроле натяжения
болтов по моменту закручивания при разности номинальных
диаметров отверстий и болтов
?, мм, при нагрузке
динамической ? = 3 – 6;
статической ? = 5 – 6
динамической ? = 1;
статической ? = 1 – 4
1 Дробемѐтный или
дробеструйный двух
поверхностей без
консервации
0,58
1,35
311

312.

1,12
2 Газопламенный двух
поверхностей без
консервации
0,42
1,35
1,12
3 Стальными щетками
двух поверхностей без
консервации
0,35
1,35
1,17
4 Без обработки
0,25
1,70
1,30
Примечание – При контроле натяжения болтов по углу поворота гайки значения ?h
следует умножать на 0,9.
вызывающей
14.3.6 При действии на фрикционное соединение помимо силы N,
сдвиг соединяемых элементов, силы F, вызывающей растяжение в болтах, значение
коэффициента ?b , определяемое согласно требованиям 14.3.4, следует умножать на
коэффициент (1 – Nt / Рb), где Nt – растягивающее усилие, приходящееся на один болт,
Рb – усилие натяжения болта, принимаемое равным Рb = Rbh Abn .
14.3.7 Диаметр болта во фрикционном соединении следует принимать при
условии ? t ? 4 db , где ? t – суммарная толщина соединяемых элементов, сминаемых в
одном направлении, db – диаметр болта.
Во фрикционных соединениях с большим количеством болтов их диаметр следует
312

313.

назначать возможно б?льшим.
14.3.8 В проекте должны быть указаны марки стали и механические свойства
болтов, гаек и шайб и стандарты, по которым они должны поставляться, способ
обработки соединяемых поверхностей, осевое усилие Рb , принимаемое согласно
14.3.6.
14.3.9 При проектировании фрикционных соединений следует обеспечивать
возможность свободного доступа для установки болтов, плотного стягивания пакета
болтами и закручивания гаек с применением динамометрических ключей, гайковертов
и др.
14.3.10 Для высокопрочных болтов по ГОСТ Р 52644 с увеличенными размерами
головок и гаек и при разности номинальных диаметров отверстия и болта не более 3 мм, а в
конструкциях из стали с временным сопротивлением не ниже 440 Н/мм2 – не более 4 мм
допускается установка одной шайбы под гайку.
14.3.11 Расчет на прочность соединяемых элементов, ослабленных отверстиями
во фрикционном соединении, следует выполнять с учетом того, что половина усилия,
приходящегося на каждый болт, передана силами трения. При этом проверку
ослабленных сечений следует выполнять: при подвижных, вибрационных и
других динамических нагрузках – по площади сечения нетто An ; при статических
нагрузках – по площади сечения брутто А (при Ап ? 0,85A) либо по условной площади
Аef = 1,18Ап (при Ап < 0,85A).
СП 16.13330.2011
14.4. Поясные соединения в составных балках
14.4.1 Сварные и фрикционные поясные соединения составной двутавровой
313

314.

балки следует рассчитывать по формулам таблицы 43.
При отсутствии поперечных ребер жесткости для передачи неподвижных
сосредоточенных нагрузок, приложенных к верхнему поясу, а также при приложении
неподвижной сосредоточенной нагрузки к нижнему поясу независимо от наличия
ребер жесткости в местах приложения нагрузки поясные соединения следует
рассчитывать как для подвижной нагрузки.
Сварные швы, выполненные с проваром на всю толщину стенки, следует считать
равнопрочными со стенкой.
сдвигающее пояс усилие на единицу длины, вызываемое поперечной силой Q
(здесь S – статический момент брутто пояса балки относительно центральной оси);
п
– количество угловых швов: при двусторонних швах п = 2, при односторонних п = 1;
Qbh , k
– величины, определяемые согласно 14.3.3, 14.3.4;

давление от сосредоточенного груза Fn на единицу длины, определяемое с учетом требований 8.2.2
и 8.3.3 (для неподвижных грузов ту ?f1 = 1);
?f и ?f1
s
– коэффициенты надежности по нагрузке, принимаемые по СП 20.13330;
– шаг поясных болтов;
?
– коэффициент, принимаемый равным: ? = 0.4 при нагрузке по верхнему поясу балки, к
которому пристрогана стенка, и ? = 1,0 при отсутствии пристрожки стенки или при нагрузке по
нижнему поясу. 14.4.2 В балках с фрикционными поясными соединениями с многолистовыми
поясными пакетами прикрепление каждого из листов за местом своего теоретического
обрыва следует рассчитывать на половину усилия, которое может быть воспринято
сечением листа. Прикрепление каждого листа на участке между действительным
местом его обрыва и местом обрыва предыдущего листа следует рассчитывать на
полное усилие, которое может быть воспринято сечением листа.
84
СП 16.13330.2011
314

315.

15 Дополнительные требования по проектированию некоторых
видов зданий, сооружений и конструкций
15.1 Расстояния между температурными швами
Расстояния l между температурными швами стальных каркасов одноэтажных
зданий и сооружений не должны превышать наибольших значений lu , принимаемых по
таблице 44.
При превышении более чем на 5 % указанных в таблице 44 расстояний, а также
при увеличении жесткости каркаса стенами или другими конструкциями в расчете
следует учитывать климатические температурные воздействия, неупругие деформации
конструкций и податливость узлов.
Примечание – При наличии между температурными швами здания или сооружения двух
вертикальных
связей расстояние между последними в осях не должно превышать: для зданий 40 – 50 м и для
открытых эстакад
25 – 30 м, при этом для зданий и сооружений, возводимых при расчетных температурах t < -45 °С,
должны
приниматься меньшие из указанных расстояний.
15.2 Фермы и структурные плиты покрытий
15.2.1 Оси стержней ферм и структур должны быть, как правило, центрированы
во всех узлах. Центрирование стержней следует производить в сварных фермах по
центрам тяжести сечений (с округлением до 5 мм), а в болтовых – по рискам уголков,
ближайшим к обушку.
Смещение осей поясов ферм при изменении сечений допускается не учитывать,
если оно не превышает 1,5 % высоты пояса меньшего сечения.
При наличии эксцентриситетов в узлах элементы ферм и структур следует
рассчитывать с учетом соответствующих изгибающих моментов.
СП 16.13330.2011
315

316.

При приложении нагрузок вне узлов ферм пояса должны быть рассчитаны на
совместное действие продольных усилий и изгибающих моментов.
15.2.2 При расчете плоских ферм соединения элементов в узлах ферм
допускается принимать шарнирными:
при сечениях элементов из уголков или тавров;
при двутавровых, Н-образных и трубчатых сечениях элементов, когда отношение
высоты сечения h к длине элемента l между узлами не превышает: 1/15 – для
конструкций, эксплуатируемых в районах с расчетными температурами ниже минус
45 °С; 1/10 – для конструкций, эксплуатируемых в остальных районах.
При превышении указанных отношений h / l следует учитывать дополнительные
изгибающие моменты в элементах от жесткости узлов.
15.2.3 Расстояние между краями элементов решетки и пояса в узлах сварных ферм
с фасонками следует принимать не менее а = (6t – 20) мм, но не более 80 мм (здесь t –
толщина фасонки, мм).
Между торцами стыкуемых элементов поясов ферм, перекрываемых накладками,
следует оставлять зазор не менее 50 мм.
Фланговые сварные швы, прикрепляющие элементы решетки ферм к фасонкам,
следует выводить на торец элемента на длину не менее 20 мм.
15.2.4 В узлах ферм с поясами из тавров, двутавров и одиночных уголков
крепления фасонок к полкам поясов встык следует осуществлять с проваром на всю
толщину фасонки. В конструкциях группы 1, а также эксплуатируемых в районах при
расчетных температурах ниже минус 45 °С примыкание узловых фасонок к поясам
следует выполнять согласно приложению К (таблица К.1, позиция 7).
15.2.5 При расчете узлов ферм со стержнями трубчатого и двутаврового сечения
и прикреплением элементов решетки непосредственно к поясу (без фасонок) следует
проверять несущую способность:
стенки пояса при местном изгибе (продавливании) в местах примыкания
элементов решетки (для круглых и прямоугольных труб);
боковой стенки пояса в месте примыкания сжатого элемента решетки (для
316

317.

прямоугольных труб);
полок пояса на отгиб (для двутаврового сечения);
стенки пояса (для двутаврового сечения);
элементов решетки в сечении, примыкающем к поясу;
сварных швов, прикрепляющих элементы решетки к поясу.
Указанные проверки приведены в приложении Л.
Кроме того, следует соблюдать требования по Z-свойствам к материалам поясов
ферм (см. 13.5).
15.2.6 При пролетах ферм покрытий свыше 36 м следует предусматривать
строительный подъем, равный прогибу от постоянной и длительной нормативных
нагрузок. При плоских кровлях строительный подъем следует предусматривать
независимо от величины пролета, принимая его равным прогибу от суммарной
нормативной нагрузки плюс 1/200 пролета.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям Ошибка! Источник ссылки не найден..
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh
Rbh Abn
h
,
(1)
где Rbh – расчетное сопротивление растяжению высокопрочного болта, определяемое
согласно требованиям Ошибка! Источник ссылки не найден.;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
317

318.

γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения, распределение
этой силы между болтами следует принимать равномерным. В этом случае количество
болтов в соединении следует определять по формуле
n
N
,
Qbh k b c
(2)
где Qbh – расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не найден.;
k – количество плоскостей трения соединяемых элементов;
γс – коэффициент условий работы, принимаемый по таблице 1;
γb – коэффициент условий работы фрикционного соединения, зависящий от
количества п болтов, необходимых для восприятия расчетного усилия, и
принимаемый равным:
0,8 при п < 5;
0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям Ошибка! Источник ссылки не найден. и Ошибка!
Источник ссылки не найден..
СП 16.13330.2011
Т а б л и ц а 42
Способ обработки
(очистки)
соединяемых
поверхностей
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
Коэффицие номинальных
диаметров отверстий и болтов
нт
δ, мм, при нагрузке
трения μ
динамической δ = 3 – 6; динамической δ = 1;
статической δ = 5 – 6
статической δ = 1 – 4
0,58
1,35
1,12
1 Дробемѐтный или
дробеструйный
двух
поверхностей без
консервации
2 Газопламенный
0,42
1,35
1,12
двух
поверхностей без
3 консервации
Стальными
0,35
1,35
1,17
щетками
двух поверхностей
4 Без обработки
0,25
1,70
1,30
без
П р и м е ч а н и е – При контроле натяжения болтов по углу поворота гайки
консервации
значения γh
следует умножать на 0,9.
14.3.6 При действии на фрикционное соединение помимо силы N, вызывающей
сдвиг соединяемых элементов, силы F, вызывающей растяжение в болтах, значение
318

319.

коэффициента γb , определяемое согласно требованиям Ошибка! Источник ссылки не
найден.,
следует
умножать
на
коэффициент (1 – Nt / Рb), где Nt – растягивающее усилие, приходящееся на один болт,
Рb – усилие натяжения болта, принимаемое равным Рb = Rbh Abn .
14.3.7
14.3.8 Диаметр болта во фрикционном соединении следует принимать при
условии ∑ t ≤ 4 db , где ∑ t – суммарная толщина соединяемых элементов, сминаемых в
одном направлении, db – диаметр болта.
Во фрикционных соединениях с большим количеством болтов их диаметр следует
назначать возможно бόльшим.
14.3.9 В проекте должны быть указаны марки стали и механические свойства
болтов, гаек и шайб и стандарты, по которым они должны поставляться, способ
обработки соединяемых поверхностей, осевое усилие Рb , принимаемое согласно
Ошибка! Источник ссылки не найден..
14.3.10 При проектировании фрикционных соединений следует обеспечивать
возможность свободного доступа для установки болтов, плотного стягивания пакета
болтами и закручивания гаек с применением динамометрических ключей, гайковертов
и др.
14.3.11 Для высокопрочных болтов по ГОСТ Р 52644 с увеличенными размерами
головок и гаек и при разности номинальных диаметров отверстия и болта не более 3 мм,
а
в
конструкциях из стали с временным сопротивлением не ниже 440 Н/мм 2 – не более 4
мм
допускается установка одной шайбы под гайку.
14.3.12 Расчет на прочность соединяемых элементов, ослабленных отверстиями
во фрикционном соединении, следует выполнять с учетом того, что половина усилия,
приходящегося на каждый болт, передана силами трения. При этом проверку
ослабленных сечений следует выполнять: при подвижных, вибрационных и
других динамических нагрузках – по площади сечения нетто An ; при статических
нагрузках – по площади сечения брутто А (при Ап ≥ 0,85A) либо по условной площади
Аef = 1,18Ап (при Ап < 0,85A).
СП 16.13330.2011
14.4. Поясные соединения в составных балках
14.4.1 Сварные
и
фрикционные
поясные
балки следует рассчитывать по формулам таблицы 43.
соединения
составной
двутавровой
При
отсутствии
поперечных
ребер
жесткости
для
передачи
неподвижных
сосредоточенных нагрузок, приложенных к верхнему поясу, а также при приложении
неподвижной сосредоточенной нагрузки к нижнему поясу независимо от наличия
ребер
жесткости
в
местах
приложения
нагрузки
поясные
соединения
следует
рассчитывать как для подвижной нагрузки.
Сварные швы, выполненные с проваром на всю толщину стенки, следует считать
равнопрочными со стенкой.
Т а б л и ц а 43
Характер
Поясные соединения
нагрузки
Формулы для расчета поясных
соединений в составных балках
319

320.

Сварные
Неподвижная
Фрикционные
Сварные (двусторонние швы)
Подвижная
Фрикционные
Е
1
n f k f Rwf c
(3)
Е
1
n z k f Rwz c
(4)
Ts
1
Qbh k c
(5)
T 2 V 2
1
2 f k f Rwf c
(6)
T 2 V 2
1
2 z k f Rwz c
(7)
s T 2 2V 2
1
Qbh k c
(8)
Обозначения, принятые в таблице 43:
T
Qs
l
сдвигающее пояс усилие на единицу длины, вызываемое поперечной силой Q
– (здесь S – статический момент брутто пояса балки относительно центральной оси);
п – количество угловых швов: при двусторонних швах п = 2, при односторонних п = 1;
Qbh , k – величины, определяемые согласно Ошибка! Источник ссылки не найден., Ошибка!
Источник ссылки не найден.;
V
f f 1 Fn
lef
давление от сосредоточенного груза Fn на единицу длины, определяемое с учетом
требований
Ошибка! Источник ссылки не найден. и Ошибка! Источник ссылки не

найден. (для неподвижных грузов ту γf1 = 1);
γf и γf1 – коэффициенты надежности по нагрузке, принимаемые по СП 20.13330;
s – шаг поясных болтов;
α – коэффициент, принимаемый равным: α = 0.4 при нагрузке по верхнему поясу балки, к
которому пристрогана стенка, и α = 1,0 при отсутствии пристрожки стенки или при
нагрузке по нижнему поясу.
14.4.2 В балках с фрикционными поясными соединениями с многолистовыми
поясными пакетами прикрепление каждого из листов за местом своего теоретического
обрыва следует рассчитывать на половину усилия, которое может быть воспринято
сечением листа. Прикрепление каждого листа на участке между действительным
местом его обрыва и местом обрыва предыдущего листа следует рассчитывать на
полное усилие, которое может быть воспринято сечением листа.
СП 16.13330.2011
15
Дополнительные требования по проектированию некоторых
видов зданий, сооружений и конструкций
15.1
Расстояния между температурными швами
Расстояния l между температурными швами стальных каркасов одноэтажных
зданий и сооружений не должны превышать наибольших значений lu , принимаемых по
таблице 44.
При превышении более чем на 5 % указанных в таблице 44 расстояний, а также
при увеличении жесткости каркаса стенами или другими конструкциями в расчете
320

321.

следует учитывать климатические температурные воздействия, неупругие деформации
конструкций и податливость узлов.
Т а б л и ц а 44
Наибольшее расстояние lu , м,
при расчетной температуре
воздуха, °С, (см. 4.2.3)
Характеристика
здания и
сооружения
направления
t ≥ -45
t < -45
между
вдоль блока (по
230
160
температурны длине
ми
здания)
по ширине блока
150
110
Отапливаемое
швами
здание
от температурного шва или торца
здания до
90
60
оси ближайшей вертикальной связи
между
вдоль блока (по
200
140
температурны длине
здания)
Неотапливаемое ми
по ширине блока
120
90
здание и горячий швами
цех
от температурного шва или торца
здания до
75
50
оси ближайшей вертикальной связи
между температурными швами
130
100
вдоль блока
Открытая
от температурного шва или торца
эстакада
здания до
50
40
оси ближайшей вертикальной связи
П р и м е ч а н и е – При наличии между температурными швами здания или сооружения двух
вертикальных
связей расстояние между последними в осях не должно превышать: для зданий 40 – 50 м и для
открытых эстакад
25 – 30 м, при этом для зданий и сооружений, возводимых при расчетных температурах t < -45 °С,
должны
10.8
Фрикционные
соединения
на болтах
классов прочности 8.8 и 10.9 10.8.1 Расчетная несущая
приниматься
меньшие
из указанных
расстояний.
способность на сдвиг поверхностей трения
10.8.1.1 Расчетную несущую способность на сдвиг поверхностей трения, стянутых одним болтом
класса прочности 8.8 или 10.9 с предварительным натяжением, следует определять по формуле
(10.5) Ум 3
где ks —принимают по таблице 10.9;
п — количество поверхностей трения соединяемых элементов;
(х — коэффициент трения, принимаемый по результатам испытаний поверхностей, приве- денных в
ТКП EN 1993-1-8 (1.2.7), или по таблице 10.10.
Таблица 10.9 — Значения ks
321

322.

Описание соединения
ks
Болты, установленные в стандартные отверстия 1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при
передаче усилия перпендикулярно продольной оси отверстия 0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендику¬лярно
продольной оси отверстия 0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно
продольной оси отверстия 0,76
Болты, установленные в длинные овальные отверстия при передаче нагрузки параллельно
продольной оси отверстия 0,63
Протяжные болты установленные в длинные овальные
отверстия с большим зазором или в
короткие овальные отверстия при передаче усилия перпендикулярно продольной оси отверстия
Расчетную несущую способность фланцевого фрикционно -подвижного соединения (ФФПС) или
фланцевого демпфирующего узла крепления (ФДУК) двух или четырех бандажных стальных колец
на сдвиг поверхностей трения, стянутых одним болтом с предварительным натяжением классов
прочности 8.8 и 10.9, следует определять по формуле
322

323.

, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в
ссылочных стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см.
1.2.4) с контролируемым натяжением, в соответствии со ссылочными стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным
(3.7)
Таблица 3.6 — Значения ks
Описание
ks
Болты, установленные в нормальные отверстия
1,0
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при
передаче усилия перпендикулярно продольной оси отверстия
0,85
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно
продольной оси отверстия
0,7
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно
продольной оси отверстия
0,76
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно
продольной оси отверстия
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
Коэффициент
трения m
A
0,5
323

324.

B
0,4
C
0,3
D
0,2
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных
стандартах группы 7 (см. 1.2.7). Примечание 2 — Классификация поверхностей
трения при любом другом способе обработки должна быть основана на результатах
испытаний образцов поверхностей по процедуре, изложенной в ссылочных
стандартах группы 7 (см. 1.2.7). Примечание 3 — Определения классов
поверхностей трения приведены в ссылочных стандартах группы 7 (см. 1.2.7).
Примечание 4 — При наличии окрашенной поверхности с течением времени может
произойти потеря предварительного натяжения.
Вместо упруго пластичного материала для внутренней трубы виброизолирующих материал
гофрированные бы или Виброфлекс а болт обматываетсмя медной мягкой лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое соединение Епишев А П ,
Клепцов И.П
Можно использовать в демпфирующем болтовом соединении используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой проволоки
В заключение необходимо сказать о соединении работающим на растяжение при контролируемом
натяжении может обеспечить не разрушаемость сухого или сварного стыка при импульсных
растягивающих нагрузках и многокаскадном демпфировании магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу за бесценок , внедряются
за рубежом на аляскинском нефтепроводе в США, патентуются в Канаде, США
Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895
324

325.

РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных
строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября
1988 г.
325

326.

Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75
и СНиП 3.03.01-87. С изданием настоящих рекомендаций отменяется "Руководство по
проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя
базы данных.
Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид
болтовых монтажных соединений, их применение в конструкциях одно- и многоэтажных зданий и
сооружений позволяет существенно повысить производительность труда и сократить сроки монтажа
конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных
болтов, основные положения по конструированию и расчету фланцевых соединений, особенности
технологии изготовления и монтажа конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических
исследований, выполненных во ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкции им.
Мельникова, а также другие отечественные и зарубежные материалы по исследованиям фланцевых
соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук
В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук, А.Г.Соскин; ЦНИИПроектстальконструкцией
им. Мельникова (канд. техн. наук И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук
Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).
1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в
части изготовления и СНиП 3.03.01-87 в части монтажа конструкций, а также в дополнение к ОСТ
36-72-82 "Конструкции строительные стальные. Монтажные соединения на высокопрочных болтах.
Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке
фланцевых соединений (ФС) несущих стальных строительных конструкций производственных
зданий и сооружений, возводимых в районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:
эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие
подвижные, вибрационные или другого вида нагрузки с количеством циклов 10 и более при
коэффициенте асимметрии напряжений в соединяемых элементах
.
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует выполнять только с предварительно напряженными
высокопрочными болтами. Такие соединения могут воспринимать местные поперечные усилия за
326

327.

счет сопротивления сил трения между контактирующими поверхностями
предварительного натяжения болтов и наличия "рычажных усилий".
фланцев
от
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию
сжатия с изгибом при однозначной эпюре сжимающих напряжений в соединяемых элементах (в
дальнейшем ФС сжатых элементов), следует выполнять на высокопрочных болтах без
предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения
могут воспринимать сдвигающие усилия за счет сопротивления сил трения между контактирующими
поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля широкополочные двутавры и тавры, парные уголки, замкнутого профиля - круглые трубы,
изгибаемых элементов из широкополочных двутавров, которые следует, как правило, применять при
проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в
соответствии с требованиями, изложенными в разделе 6 настоящих рекомендаций, а также с учетом
положительного опыта освоенной технологии изготовления ФС Белгородским, Кулебакским,
Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским
заводом металлоконструкций (г.Назарово) Минэнерго СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических
исследований,
выполненных
в
1981-1987
гг.
во
ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкции им. Мельникова и ВНИИКТИСтальконструкции. В рекомендациях
отражен опыт внедрения ФС, выполненных в соответствии с "Руководством по проектированию,
изготовлению и сборке монтажных фланцевых соединений стропильных ферм с поясами из
широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с
требованиями главы СНиП II-23-81*, постановления Государственного строительного комитета
СССР от 21 ноября 1986 г. N 28 о сокращенном сортаменте металлопроката в строительных
стальных конструкциях и приказа Министерства монтажных и специальных строительных работ
СССР от 28 января 1987 г. N 34 "О мерах, связанных с утверждением сокращенного сортамента
металлопроката для применения в строительных стальных конструкциях".
Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ
8509-72, балки двутавровые по ГОСТ 8239-72* , балки с параллельными гранями полок по ГОСТ
26020-83, швеллер горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили
гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные
прямошовные трубы по ГОСТ 10704-76 и горячедеформированные трубы по ГОСТ 8732-78* (для
сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ
10704-91, соответственно. - Примечание изготовителя базы данных.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или
их совместному действию, следует применять листовую сталь по ГОСТ 19903-74* марок 09Г2С-15
по ГОСТ 19282-73
и 14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими
свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
327

328.

На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей,
предназначенных для строительных стальных конструкций по ГОСТ 19282-73, при этом сталь
должна удовлетворять следующим требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
категория качества стали - 12;
относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали
по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.)
должно удовлетворять требованиям, указанным в табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Площадь дефекта, см
минимального
учитываемого
Допустимая
частота
дефекта
Максимальная
допустимая
длина дефекта
Минимальное
допустимое
расстояние между
дефектами
максимального
допустимого
см
Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0

4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности
минимального из них, оцениваются как один дефект.
2. По
усмотрению
завода
строительных
стальных
конструкций
разрешается
дефектоскопический контроль материала фланцев производить только после приварки их к
328

329.

элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных стальных конструкций.
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект"
климатического исполнения ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а
также высокопрочные гайки и шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по
тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок.
Геометрические и механические характеристики таких болтов должны отвечать требованиям ГОСТ
22353-77, ГОСТ 22356-77 - для болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 2235677. Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с
проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание
изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по
ГОСТ 2246-70 или порошковую проволоку ПП-АН8 по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же
марок, что и основные соединяемые профили.
3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и
коэффициенты условий работы следует принимать в соответствии с указаниями главы СНиП II-2381*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:
,
где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
329

330.

4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков,
подверженных воздействию растяжения или сжатия. Растянутые участки фланцев передают внешние
усилия через предварительно натянутые пакеты "фланец-болт", сжатые - через плотное касание
фланцев.
4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без
разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты
диаметром 24 мм (М24); использование болтов М20 и М27 следует допускать в тех случаях, когда
постановка болтов М24 невозможна или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра
болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных
стенками (полками профиля, ребрами жесткости) с двух и более сторон, и болты наружных зон,
ограниченных с одной стороны (рис.1); характер работы и расчет ФС в этих зонах различны.
330

331.

Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по
контуру и как можно ближе к элементам присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
- ширина фланца, приходящаяся на
-ый болт наружной зоны;
- катет углового шва.
Если по конструктивным особенностям ФС
(раздел 5) величину
принимают равной
, то в расчетах на прочность ФС
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального
растяжения, болты следует располагать безмоментно относительно центра тяжести присоединяемого
профиля с учетом неравномерности распределения внешних усилий между болтами наружной и
внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с
331

332.

учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.)
должна обеспечивать возможность свободной установки и натяжения болтов, в том числе
выполнения контроля усилий натяжения болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна
для передачи внешних силовых воздействий или необходимо повысить несущую способность
растянутых участков ФС без увеличения числа болтов или толщины фланцев, последние следует
усиливать ребрами жесткости (рис.1 и 2).
Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля,
длина должна быть не менее 200 мм. Ребра жесткости следует располагать так, чтобы концентрация
напряжений в сечении основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта
и т.п.
4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность
ФС должна удовлетворять суммарному усилию в узле, а не усилию в смежной панели пояса.
4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует
строго соблюдать требования точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
на сжатых участках устанавливать дополнительное количество болтов с предварительным их
натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не
предусмотрены, расчетные рамные моменты следует снижать до 15%.
332

333.

4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального
растяжения, следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости.
Рекомендуемый сортамент ФС этого типа (приложение 1) с фланцами толщиной 25-40 мм включает
в себя профили от 20Ш1 до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН
(163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные
сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального
растяжения, следует выполнять с фасонками для обеспечения необходимой несущей способности
сварных швов. Рекомендуемый сортамент ФС этого типа (приложение 2) с фланцами толщиной 2040 мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного
типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения,
следует выполнять, кроме случаев, отмеченных в п.4.9, без ребер жесткости. Рекомендуемый
сортамент ФС этого типа (приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3,
расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров
данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения,
следует выполнять, как правило, со сплошными фланцами и ребрами жесткости в количестве не
менее 3 шт. Ширина ребер определяется разностью радиусов фланцев и труб, длина - не менее 1,5
диаметра трубы (см. рис.2).
Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные
прямошовные и горячедеформированные трубы размерами от 114х2,5 до 377х10, расчетные
продольные усилия 630-3532 кН (64-360 тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными
сопротивлениями
МПа, болты высокопрочные М20, М24 и М27.
Для ФС элементов из круглых труб, выполненных из малоуглеродистой стали, допустимо
применение сплошных фланцев без ребер жесткости при условии выполнения сварных швов
равнопрочными этим элементам и экспериментальной проверки натурных ФС данного типа.
4.16. ФС элементов из гнутосварных профилей прямоугольного или квадратного сечений,
подверженных воздействию центрального растяжения, следует выполнять со сплошными фланцами
и ребрами жесткости, расположенными, как правило, вдоль углов профиля (см. рис.2). Ширина ребер
определяется размерами фланца и профиля, длина - не менее 1,5 высоты меньшей стороны профиля.
Если между ребрами жесткости будет размещено более двух болтов или ребра жесткости будут
установлены не только вдоль углов профиля, то ФС элементов из гнутосварных профилей данного
333

334.

типа могут быть применены только после экспериментальной проверки натурных соединений
данного типа.
4.17. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, следует выполнять, как правило, со сплошными фланцами с постановкой ребра
жесткости на растянутом поясе в плоскости стенки двутавра. При необходимости увеличения
количества болтов и ширины фланцев соответствующее уширение поясов двутавров следует
осуществлять за счет приварки дополнительных фасонок (рис.3, а).
Рис.3. Схемы фланцевых соединений изгибаемых элементов из прокатных или сварных
двутавров
Рекомендуемый сортамент ФС этого типа (приложение 5) включает в себя профили от 26Б1 до
100Б2 и от 23Ш1 до 70Ш2 с несущей способностью 127-2538 кН·м (13-259 тс·м). Несущая
способность ФС на изгиб для данного типа соединения и данного типоразмера двутавра определена
из условия прочности фланца, болтов и сварных швов соединения, воспринимающих данный
изгибающий момент.
Для этого типа соединений предусмотрено применение высокопрочных болтов М24 и М27.
4.18. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных
воздействию изгиба, возможно выполнять со сплошными фланцами, высота которых не превышает
высоты двутавра (см. рис.3, б). Такие соединения следует применять, если расчетный момент в
рамных соединениях ниже несущей способности двутавров на изгиб.
При необходимости уменьшения количества болтов или увеличения жесткости растянутых
участков ФС допустимо применять составные фланцы, увеличивая их толщину на растянутом
участке до 36-40 мм (см. рис.3, в).
334

335.

Если изгибающий момент в рамных соединениях превышает несущую способность двутавра на
изгиб, следует предусматривать устройство вутов (см. рис.3, г).
ФС указанных типов следует проектировать в соответствии с указаниями настоящих
рекомендаций.
4.19. Для ФС элементов, подверженных воздействию сжатия, когда непредусмотренные
проектом (КМ) эксцентриситеты передачи продольных усилий недопустимы, необходимо строго
выполнять требования по точности изготовления и монтажа ФС, изложенные в разделах 6 и 7
настоящих рекомендаций. В таких соединениях следует предусматривать также установку болтов с
суммарным предварительным натяжением, равным расчетному усилию сжатия в соединяемых
элементах.
4.20. ФС элементов, подверженных центральному растяжению, следует, как правило,
применять для передачи усилий (кН), не превышающих для элементов из:
парных уголков - 3000;
одиночных уголков - 1900;
широкополочных двутавров и круглых труб - 3500;
широкополочных тавров и прямоугольных труб - 2500.
ФС сварных или прокатных двутавров, подверженных изгибу или совместному действию
изгиба и растяжения, следует, как правило, применять, если суммарное растягивающее усилие,
воспринимаемое ФС от растянутой зоны присоединяемого элемента, не превышает 3000 кН.
5. РАСЧЕТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
5.1. ФС элементов стальных конструкций следует проверять расчетами на:
прочность болтов;
прочность фланцев на изгиб;
прочность соединений на сдвиг;
прочность сварных швов соединения фланца с элементом конструкции.
5.2. Методы расчета следует применять только для ФС, конструктивная форма которых
отвечает требованиям раздела 4.
5.3. Предельное состояние ФС определяют следующие yсловия:
усилие в наиболее нагруженном болте, определенное с учетом совместной работы болтов
соединения, не должно превышать расчетного усилия растяжения болта;
изгибные напряжения во фланце не должны превышать расчетных сопротивлений стали
фланца по пределу текучести.
5.4. Расчет прочности ФС элементов открытого профиля, подверженных центральному
растяжению.
335

336.

Количество болтов внутренней зоны
определяет конструктивная форма соединения.
Количество болтов наружной зоны предварительно назначают из условия:
,
где
(1)
- внешняя нагрузка на соединение;
- предельное внешнее усилие на один болт внутренней зоны, равное 0,9
;
- предельное внешнее усилие на один болт наружной зоны, равное
;
- коэффициент, учитывающий неравномерное распределение внешней нагрузки между
болтами внутренней и наружной зон, определяемый по табл.2.
Таблица 2
Диаметр болта
Толщина фланца, мм
Соотношение внешних усилий на один болт внутренней и
наружной зон
М20
М24
М27
16
2,5
20
1,7
25
1,4
30
1,2
20
2,6
25
1,8
30
1,5
40
1,1
25
2,1
30
1,7
40
1,2
336

337.

Прочность фланца и болтов, относящихся к внутренней зоне, следует считать
обеспеченной, если: болты расположены в соответствии с указаниями п.4.6, толщина
фланца составляет 20 мм и выше, а усилие на болт от действия внешней нагрузки не
превышает величины
.
5.5. При расчете на прочность болтов и фланца, относящихся к наружной зоне,
выделяют отдельные участки фланцев, которые рассматривают как Т-образные (см. рис.1)
шириной .
Прочность ФС следует считать обеспеченной, если
,
где
- расчетное усилие растяжения, воспринимаемое ФС, определяемое по формулам
если
если
где
(2)
,
(3)
,
(4)
;
;
,
,
- расчетное усилие на болт, определяемое из условия прочности соединения по болтам;
- расчетное усилие на болт, определяемое из условия прочности фланца на изгиб.
,
(5)
где
- коэффициент, зависящий от безразмерного параметра жесткости болта
определяемый по табл.3 или по формуле:
;
;
,
где
,
,
- параметр, определяемый по табл.4 или из уравнения
337
,
(6)
(7)
(8)

338.

,
где - толщина фланца;
- ширина фланца, приходящаяся на один болт наружной зоны
участка фланца;
- расстояние от оси болта до края сварного шва
(9)
-го Т-образного
-го Т-образного участка фланца.
Таблица 3
0,02
0,04
0,06 0,08
0,1
0,2
0,4
0,6
0,8
1,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
8,0
10
15
0,907 0,836 0,79 0,767 0,744 0,67 0,602 0,561 0,53 0,509 0,467 0,438 0,41 0,396 0,367 0,34 0,325 0,296 0,27 0,232
6
3
2
5
4
3
Таблица 4
Параметр
при
1,4
1,6
1,8
2,0
2,2
2,4
2,7
3,0
4,0
5,0
0,02
3,252
2,593
2,221
1,986
1,826
1,710
1,586
1,499
1,333
1,250
0,06
2,960
2,481
2,171
1,962
1,812
1,702
1,582
1,497
1,333
1,250
0,1
2,782
2,398
2,130
1,939
1,799
1,694
1,578
1,494
1,332
1,249
0,5
2,186
2,036
1,908
1,776
1,711
1,636
1,545
1,475
1,327
1,248
1,0
1,949
1,860
1,780
1,707
1,643
1,586
1,514
1,454
1,321
1,246
2,0
1,757
1,704
1,653
1,607
1,564
1,524
1,470
1,424
1,312
1,242
3,0
1,660
1,621
1,584
1,548
1,515
1,483
1,440
1,402
1,303
1,238
4,0
1,599
1,568
1,537
1,508
1,480
1,454
1,417
1,384
1,296
1,235
5,0
1,555
1,529
1,503
1,478
1,454
1,431
1,399
1,370
1,289
1,232
6,0
1,522
1,498
1,476
1,454
1,433
1,413
1,384
1,357
1,283
1,230
338

339.

8,0
1,473
1,454
1,436
1,418
1,401
1,384
1,360
1,337
1,273
1,224
10
1,438
1,422
1,406
1,391
1,377
1,362
1,341
1,322
1,264
1,219
15
1,381
1,369
1,358
1,346
1,335
1,324
1,308
1,293
1,247
1,210
Примеры расчета и проектирования соединений элементов, подверженных растяжению,
приведены в приложении 6.
5.6. Расчет ФС элементов открытого профиля, подверженных изгибу и совместному действию
изгиба и растяжения.
Максимальные и минимальные значения нормальных напряжений в присоединяемом
профиле
от действия изгиба и продольных сил определяют в плоскости его соединения с
фланцем по формуле*:
,
где
и
(10)
- изгибающий момент и продольное усилие, воспринимаемые ФС;
- момент сопротивления сечения присоединяемого профиля;
- площадь поперечного сечения присоединяемого профиля.
_______________
* При расчете
с целью упрощения наличием ребер, ужесточающих фланец,
можно пренебречь.
Усилия в поясах присоединяемого профиля
определяют по формуле
,
где
- площадь поперечного сечения пояса
или
(11)
(рис.4);
- площадь поперечного сечения участка стенки в зоне болтов растянутого пояса;
;
;
- толщина стенки, полок и высота присоединяемого профиля; остальные обозначения
приведены на рис.4.
339

340.

Рис.4. Схема к расчету фланцевых соединений изгибаемых элементов из двутавров
Усилия в растянутой части стенки присоединяемого профиля определяют по формуле
при
340
,
;
(12)

341.

при
где
,
,
,
.
Прочность ФС считается обеспеченной, если:
при
,
(13)
;
при
,
(14)
,
где
- расчетное усилие, воспринимаемое болтами растянутого пояса
при наличии ребра жесткости (см. рис.4)
, равное:
;
(15)
при симметричном расположении болтов относительно пояса
;
(16)
;
(17)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
341
(18)

342.

- расчетное усилие, воспринимаемое болтами растянутой части стенки, равное:
;
(19)
- расчетное усилие, воспринимаемое болтами растянутого пояса
, равное:
при наличии ребра жесткости
;
(20)
;
(21)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
(22)
- расчетное усилие на болт наружной зоны
-го Т-образного участка фланца
растянутого пояса или стенки, определяемое по формулам (2)-(9) в соответствии с указаниями п.5.5;
- число болтов наружной зоны растянутого пояса
- число болтов наружной зоны растянутого пояса
;
;
- число рядов болтов растянутой части стенки;
;
;
;
;
;
- коэффициент, равный 0,8 для
400 мм, 0,9 для
мм, в остальных случаях
1,0.
Пример расчета фланцевого соединения изгибаемых элементов приведен в приложении 7.
5.7. Расчет прочности ФС элементов замкнутого профиля, подверженных центральному
растяжению.
Прочность соединения, конструктивная форма которого отвечает требованиям раздела 4,
следует считать обеспеченной, если
,
342
мм,
(23)

343.

где
- количество болтов в соединении;
- коэффициент, значение которого следует принимать по табл.5.
Таблица 5
Диаметр болта, мм
Толщина фланца, мм
М20
0,85
М24
0,8
0,85
М27
0,8
0,85
5.8. Прочность ФС растянутых элементов открытого и замкнутого профилей на
действие местной поперечной силы
следует проверять по формуле
,
(24)
где - количество болтов наружной зоны для ФС элементов открытого профиля и количество
болтов для ФС элементов замкнутого профиля;
- контактные усилия, принимаемые равными 0,1
для ФС элементов замкнутого
профиля, а для элементов открытого профиля определяемые по формуле
;
(25)
- расчетное усилие на болт, определяемое по формуле (5) в соответствии с указаниями
п.5.5;
- коэффициент трения соединяемых поверхностей фланцев, принимаемый в соответствии с
указаниями п.11.13* главы СНиП II-23-81*.
При отсутствии местной поперечной силы в расчет вводится условное значение
.
5.9. Прочность ФС сжатых элементов открытого и замкнутого профилей, а также ФС
343

344.

изгибаемых элементов открытого профиля на действие сдвигающих сил
по формуле
следует проверять
,
(26)
где
- усилие сжатия в ФС от действия внешней нагрузки, для ФС изгибаемых элементов
определяемое по формуле
,
(27)
где
- усилие растяжения или сжатия в присоединяемом элементе от действия внешней
нагрузки.
5.10. Расчет прочности сварных швов соединения фланца с элементом конструкции следует
выполнять в соответствии с требованиями главы СНиП II-23-81* с учетом глубины проплавления
корня шва на 2 мм по трем сечениям (рис.5):
Рис.5. Схемы расчетных сечений сварного соединения (сварка механизированная):
1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления с профилем; 3 сечение по металлу границы сплавления с фланцем
по металлу шва (сечение 1)
;
(28)
по металлу границы сплавления с профилем (сечение 2)
;
(29)
по металлу границы сплавления с фланцем в направлении толщины проката (сечение 3)
,
344
(30)

345.

где
- расчетная длина шва, принимаемая меньше его полной длины на 10 мм;
- коэффициенты:
=0,7;
принимается по табл.34* главы СНиП II-23-81*;
- коэффициенты условий работы шва;
- коэффициент условий работы сварного соединения,
=1,0;
- расчетные сопротивления угловых швов срезу (условному) по металлу шва и
металлу границы сплавления с профилем соответственно, принимаются по табл.3 главы СНиП II-2381*;
- расчетное сопротивление растяжению стали в направлении толщины фланца, принимается
по табл.1* главы СНиП II-23-81*.
6. ИЗГОТОВЛЕНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
Материал и обработка деталей ФС
6.1. Качество проката, применяемого для изготовления фланцев в соответствии с требованиями
п.2.2, должно быть гарантировано сертификатом завода - поставщика проката.
Завод строительных стальных конструкций (в дальнейшем завод-изготовитель) обязан
маркировать каждый фланец с указанием марки стали, номера сертификата завода - поставщика
проката, номера плавки, номера приемного акта завода - изготовителя конструкций.
Маркировку следует выполнять металлическими клеймами на поверхности фланца в месте,
доступном для осмотра после монтажа конструкций. Глубина клеймения не должна превышать 0,5
мм. Место для клейма должно быть указано в чертежах КМ.
6.2. При входном контроле проката, применяемого для изготовления фланцев, следует
проверить соответствие данных сертификата требованиям, предъявляемым к качеству этого проката.
При отсутствии сертификата завод-изготовитель должен проводить испытания проката с целью
определения требуемых механических свойств и химического состава, определяющих качество
проката. При этом проверку механических свойств стали в направлении толщины проката следует
проводить по методике, приведенной в приложении 8. Контроль качества стали фланцев методами
ультразвуковой дефектоскопии следует выполнять в соответствии с указаниями п.2.4.
6.3. Заготовку фланцев следует выполнять машинной термической резкой.
6.4. Заготовку элементов, присоединяемых к фланцам, следует выполнять машинной
термической резкой или механическим способом (пилы, отрезные станки). При применении ручной
термической резки торцы элементов должны быть затем обработаны механическим способом
(например, фрезеровкой).
6.5. Отклонения размеров фланцев, отверстий под болты и элементов, соединяемых с фланцем,
должны удовлетворять требованиям, изложенным в табл.6.
Таблица 6
345

346.

Контролируемый параметр
Предельное отклонение
1. Отклонения торца присоединяемого к
фланцу элемента
0,002 , где - высота и ширина сечения элемента. Максимальный зазор между
фланцем и торцом присоединяемого элемента не должен превышать 2 мм
2. Шероховатость торцевой поверхности
элемента, присоединяемой к фланцу
320, допускаются отдельные "выхваты" глубиной не более 1 мм в количестве 1
шт. на длине 100 мм
3. Отклонение габаритных размеров фланца
±2,0 мм
4. Разность диагоналей фланца
±3,0 мм
5. Отклонение центров отверстий в пределах
группы
±1,5 мм
6. Отклонение диаметра отверстия
+0,5 мм
6.6. Отверстия во фланцах следует выполнять сверлением. Заусенцы после сверления должны
быть удалены.
Сборка и сварка ФС
6.7. Сборку элементов конструкций с фланцевыми соединениями следует производить только
в кондукторах.
6.8. В кондукторе фланец следует фиксировать и крепить к базовой поверхности не менее чем
двумя пробками и двумя сборочными болтами.
6.9. Базовые поверхности кондукторов должны быть фрезерованы. Отклонение тангенса угла
их наклона не должно превышать 0,0007 в каждой из двух плоскостей.
6.10. ФС следует сваривать только после проверки правильности их сборки. Сварные швы
следует выполнять механизированным способом с применением материалов, указанных в п.2.7, и
проплавлением корня шва не менее 2 мм.
6.11. Технология сварки должна обеспечивать минимальные сварочные деформации фланцев.
6.12. После выполнения сварных швов ФС сварщик должен поставить свое клеймо, место
расположения которого должно быть указано в чертежах КМ.
6.13. После выполнения сварки внешние поверхности фланцев должны быть отфрезерованы.
Толщина фланцев после фрезеровки должна быть не менее указанной в чертежах КМД.
Запрещается осуществлять наклон соединяемых элементов за счет изменения толщины фланца
(клиновидности).
6.14. Точность
изготовления
отправочных
346
элементов
конструкций
с
ФС
должна

347.

соответствовать требованиям, изложенным в табл.7.
Таблица 7
Контролируемый параметр
Предельное отклонение
1. Тангенс угла отклонения фрезерованной поверхности фланцев
2. Зазор между внешней плоскостью фланца и ребром стальной
линейки
Не более 0,0007
0,3 мм
3. Отклонение толщины фланца (при механической обработке
торцевых поверхностей)
±0,02
4. Смещение фланца от проектного положения относительно осей
сечения присоединяемого элемента
±1,5 мм
5. Отклонение длины элемента с ФС
0; -5,0 мм
6. Совпадение отверстий в соединяемых фланцах при контрольной
сборке
Калибр диаметром, равным номинальному диаметру болта,
должен пройти в 100% отверстий
Грунтование и окраска
6.15. При отсутствии специальных указаний в чертежах КМ фланцы должны быть
огрунтованы и окрашены теми же материалами и способами, что и конструкция в целом.
Контроль качества ФС
6.16. Контрольную сборку элементов конструкций с ФС следует проводить в объеме не менее
10% общего количества, но не менее 4 шт. взаимно соединяемых элементов.
Обязательной контрольной сборке подлежат первые и последние номера элементов в
соответствии с порядковым номером изготовления.
6.17. В процессе выполнения работ по сварке ФС следует контролировать:
квалификацию сварщиков в соответствии с правилами предприятия, изготавливающего
конструкции;
качество сварочных материалов в соответствии с действующими стандартами и паспортами
изделий;
качество подготовки и сборки деталей под сварку в соответствии с главой СНиП III-18-75,
раздел 1 и настоящими рекомендациями;
качество сварных швов в соответствии со СНиП III-18-75: в соединениях сжатых элементов по
поз.1.2 табл.3 раздела 1, в соединениях растянутых и изгибаемых элементов категории швов сварных
347

348.

соединений 1 по поз.3 табл.41 и поз.1, 2, 3 табл.42 разд.9; а также в соответствии с ГОСТ 14771-76 и
требованиями пп.6.10 и 6.11 настоящих рекомендаций.
6.18. 100-процентному контролю следует подвергать параметры, указанные в пп.1, 2 табл.6 и
пп.1-6 табл.7 настоящих рекомендаций, а также наличие и правильность маркировки и клейма
сварщиков на фланце.
6.19. Фланцы после их приварки к соединяемым элементам следует подвергать 100процентному контролю ультразвуковой дефектоскопией. Результаты контроля должны
удовлетворять требованиям п.2.5 настоящих рекомендаций.
6.20. При отправке конструкций с ФС завод-изготовитель кроме документации,
предусмотренной п.1.22 главы СНиП 3.03.01-87, должен представить копию сертификата,
удостоверяющего качество стали фланцев, а также документы о контроле качества сварных
соединений. Если фланцы изготовлены из марок стали, отличных от указанных в п.2.2, заводизготовитель должен представить документы о качестве проката, применяемого для фланцев в
соответствии с указаниями пп.2.3 и 2.4 настоящих рекомендаций.
7. МОНТАЖНАЯ СБОРКА ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
7.1. Проекты производства работ (ППР) по монтажу конструкций должны содержать
технологические карты, предусматривающие выполнение ФС в конкретных условиях монтируемого
объекта в соответствии с указаниями "Рекомендаций по сборке фланцевых монтажных соединений
стальных
строительных
конструкций"
(ВНИПИ
Промстальконструкция,
ЦНИИПроектстальконструкция. - М.: ЦБНТИ Минмонтажспецстроя СССР, 1986).
7.2. Подготовку и сборку ФС следует проводить под руководством лица (мастера, прораба),
назначенного приказом по монтажной организации ответственным за выполнение этого вида
соединений на объекте.
7.3. Технологический процесс выполнения ФС включает:
подготовительные работы;
сборку соединений;
контроль натяжения высокопрочных болтов;
огрунтование и окраску соединений.
7.4. Высокопрочные болты, гайки и шайбы к ним должны быть подготовлены в соответствии с
п.4.25 главы СНиП 3.03.01-87, пп.3.1.2-3.1.8 ОСТ 36-72-82.
7.5. Подготовку контактных поверхностей фланцев следует осуществлять в соответствии с
указаниями чертежей КМ и КМД по ОСТ 36-72-82. При отсутствии таких указаний контактные
поверхности очищают стальными или механическими щетками от грязи, наплывов грунтовки и
краски, рыхлой ржавчины, снега и льда.
7.6. Применение временных болтов в качестве сборочных запрещается.
7.7. Под головки и гайки высокопрочных болтов необходимо ставить только по одной шайбе.
Выступающая за пределы гайки часть стержня болта должна иметь не менее одной нитки
резьбы.
348

349.

7.8. Натяжение высокопрочных болтов ФС необходимо выполнять от наиболее жесткой зоны
(жестких зон) к его краям.
7.9. Натяжение высокопрочных болтов ФС следует осуществлять только по моменту
закручивания.
7.10. Натяжение высокопрочных болтов на заданное усилие следует производить
закручиванием гаек до величины момента закручивания
, который определяют по формуле
,
(31)
где - коэффициент, принимаемый равным: 1,06 - при натяжении высокопрочных болтов; 1,0 при контроле усилия натяжения болтов;
- среднее значение коэффициента закручивания для каждой партии болтов по сертификату
или принимаемое равным 0,18 при отсутствии таких значений в сертификате;
- усилие натяжения болта, Н;
- номинальный диаметр резьбы болта, м.
Отклонение фактического момента закручивания от момента, определяемого по формуле (31),
не должно превышать 0; +10%.
7.11. После натяжения болтов гайки ничем дополнительно не закрепляются.
7.12. После выполнения ФС монтажник обязан поставить на соединение личное клеймо (набор
цифр) в месте, предусмотренном в чертежах конструкций КМ или КМД, и предъявить собранное
соединение ответственному лицу.
7.13. Качество выполнения ФС на высокопрочных болтах ответственное лицо проверяет путем
пооперационного контроля. Контролю подлежат: качество обработки (расконсервации) болтов;
качество подготовки контактных поверхностей фланцев; соответствие устанавливаемых болтов, гаек
и шайб требованиям ГОСТ 22353-77 - ГОСТ 22356-77, а также требованиям, указанным в чертежах
КМ и КМД; наличие шайб под головками болтов и гайками; длина части болта, выступающей над
гайкой; наличие клейма монтажника, осуществляющего сборку соединения; выполнение требований
табл.8.
Таблица 8
Наименование отклонения
Допускаемое
отклонение, мм
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
линии стенок и полок профиля
0,2
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
краям фланцев:
349

350.

для фланцев толщиной не более 25 мм
0,6
для фланцев толщиной более 32 мм
1,0
Примечание. Щуп толщиной 0,1 мм не должен проникать в зону радиусом 40 мм от оси болта
7.14. Контроль усилия натяжения следует осуществлять во всех установленных высокопрочных
болтах тарированными динамометрическими ключами. Контроль усилия натяжения следует
производить не ранее чем через 8 ч после выполнения натяжения всех болтов в соединении, при этом
усилия в болтах соединения должны соответствовать значениям, указанным в п.3.3 или табл.9.
Таблица 9
Усилие натяжения болтов (контролируемое), кН (тс)
М20
М24
М27
167(17)
239(24,4)
312(31,8)
7.15. Отклонение фактического момента закручивания от расчетного не должно превышать 0;
+10%. Если при контроле обнаружатся болты, не отвечающие этому условию, то усилие натяжения
этих болтов должно быть доведено до требуемого значения.
7.16. Документация, предъявляемая при приемке готового объекта, кроме предусмотренной
п.1.22 главы СНиП 3.03.01-87, должна содержать сертификаты или документы завода-изготовителя,
удостоверяющие качество стали фланцев, болтов, гаек и шайб, документы завода-изготовителя о
контроле качества сварных соединений фланцев с присоединяемыми элементами, журнал контроля
за выполнением монтажных фланцевых соединений на высокопрочных болтах.
Приложение 1
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ДВУТАВРОВ
N
Схема фланцевого соединения
Марка профиля
350
,
кН
, мм
, мм
, мм

351.

п
/
п
1
(тс)
3
4
5
6
7
20Ш1
1593
(163)
25
8
6
20К1
1626
(166)
25
9
6
20К2
1879
(192)
40
10
6
2
23Ш1
1608
(164)
25
9
6
3
23К1
2237
(228)
30
9
6
1
2
351

352.

4
5
6
23K2
2274
(232)
30
10
6
26Ш1
1913
(195)
30
10
7
26Ш2
1937
(197)
30
11
6
26К1
2815
(287)
30
10
6
26K2
2933
(299)
30
12
8
30К1
3306
(337)
30
12
8
30К2
4032
(411)
40
12
8
352

353.

7
30Ш1
2197
(224)
30
10
7
30Ш2
2668
(272)
40
12
7
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Болты М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77.
Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4 тс).
4. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
5. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
сечения двутавра;
пределу текучести);
, где
- площадь
- максимальное расчетное сопротивление стали двутавра растяжению по
- толщина фланцев;
- катеты угловых сварных швов стенки и полки двутавра соответственно.
Приложение 2
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ПАРНЫХ
РАВНОПОЛОЧНЫХ УГОЛКОВ
N
Схема фланцевого соединения
Сечение элемента,
мм мм
п
/
п
353
, кН (тс)
, мм

354.

1
2
3
4
5
1
100 7
957
(97,6)
20
2
100 8
1224 (124,8)
25
1579*
(161,0)
30
1928** (196,5)
40
110 8
3
125 8
125 9
4
140 9
140 10
354

355.

5
160 10
2156 (219,8)
30
2613 (266,4)
30
160 11
6
180 11
180 12
_______________
* Марка сварочной проволоки - Св-10HMA; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Св-08ХН2ГМЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали равнополочных уголков по ГОСТ 8509-72
соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных
конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты (за исключением болтов по схеме 6) М24 высокопрочные из стали 40Х "Селект"
по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27. Усилие предварительного натяжения 239
кН (24,4 тс).
5. Болты по схеме 6 - М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН (31,8 тс).
6. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
7. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где - площадь
сечения уголка с максимальными типоразмерами из указанных в графе 3 для каждого фланцевого
355

356.

соединения;
текучести);
- максимальное расчетное сопротивление стали уголка растяжению по пределу
- толщина фланцев;
- катет угловых сварных швов.
Приложение 3
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ
ШИРОКОПОЛОЧНЫХ ТАВРОВ
Таблица 1
N п/п
Схема фланцевого соединения
Марка профиля
1
2
3
4
5
10Шт1
800**
(81,5)
30
881**
(89,8)
25
1
, кН (тс)
, мм
11,5Шт1
13Шт1
2
13Шт2 (см. п.6 примечаний)
356

357.

15Шт1
3
1439* (146,7)
30
1919**
(195,6)
30
2537*
(258,6)
40
15Шт2
15Шт3
17,5Шт1
4
17,5Шт2
17,5Шт3
20Шт1
5
20Шт2
20Шт3
Таблица 2
N п/п
Схема фланцевого сечения
Марка профиля
1
2
3
357
, кН (тс)
4
, мм
5

358.

10Шт1
1
958
(97,6)
20
1227*
(125,1)
25
1494**
(152,3)
25
1919**
(195,6)
30
11,5Шт1
13Шт1
2
13Шт2
15Шт1
3
15Шт2
17,5Шт1
4
17,5Шт2
17,5Шт3
358

359.

20Шт1
5
2681**
(273,3)
40
20Шт2
20Шт3
_______________
* Марка сварочной проволоки - Св-10НМА; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Cв-08XH2ГMЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали тавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г20-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Длина фасонок определяется конструктивными особенностями соединений, но не
менее 200 мм.
4. Все болты, за исключением болтов по схеме 5 (табл.1 и табл.2), М24 высокопрочные из стали
40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие
предварительного натяжения 239 кН (24,4 тс).
5. Болты по схеме 5 (табл.1 и табл.2) М27 высокопрочные из стали 40Х "Селект" по ГОСТ
22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие предварительного натяжения 312 кН
(31,8 тс).
6. На схеме (табл.1) представлено фланцевое соединение тавров с расчетным сопротивлением
не выше 315 и 270 МПа для 13Шт1 и 13Шт2 соответственно.
7. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
8. Обозначения, принятые в таблицах:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения тавра с максимальными типоразмерами из указанных в графе 3 для каждой схемы
фланцевых соединений;
- максимальное расчетное сопротивление стали тавра растяжению по
пределу текучести);
- толщина фланцев;
- катеты угловых сварных швов стенки и полки тавра соответственно.
359

360.

Приложение 4
COPTAМEHT ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ КРУГЛЫХ ТРУБ
N
п/п
Схема фланцевого соединения
1
2
1
Сечение трубы, мм мм
, кН (тс)
, мм
, мм
,
, мм
мм
3
4
5
6
7
8
114 2,5 5,0
(64,2)
630
20
245
175
20
121 5,0; 6,0*
255
185
127 3,0 4,0
255
185
140 3,5; 4,5
275
205
20
140 4,0 8,0*
(92,2)
903
25
310
220
24
159 3,5; 5,5
630
20
300
220
20
168 4,0 6,0
903
25
350
250
24
(138,2) 1356
25
350
250
24
400
300
168 6,0*
2
168 8,0 10,0*
219 6,0; 8,0*
360

361.

3
219 10,0*
(184,3) 1808
25
400
300
430
330
400
300
245 10,0 12,0*
430
330
273 4,5.....**6,0
460
360
325 5,0; 5,5
535
425
377 5,0 8,0
560
460
460
360
273 12,0*
460
360
377 9,0; 10,0
560
460
520
410
24
219 4,0 6,0
245 8,0*
4
219 7,0; 8,0
(230,4) 2260
25
24
273 8,0; 10,0*
5
273 7,0; 8,0
(276,5) 2712
325 6,0 8,0
(360)
3532
_______________
* Горячедеформированные трубы по ГОСТ 8732-78*
361
25
30
24
27

362.

** Брак оригинала. - Примечание изготовителя базы данных.
Примечания: 1. Типоразмеры и марки стали электросварных прямошовных труб по ГОСТ
10704-76 и горячедеформированных труб по ГОСТ 8732-78* соответствуют сокращенному
сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали ребер жесткости назначают в соответствии с указаниями п.2.8 настоящих
рекомендаций. Толщина ребер принимается равной толщине стенки трубы с округлением в большую
сторону. Длина ребер определяется конструктивными особенностями соединения, но не менее 1,5
диаметра трубы для четных и 1,7 диаметра трубы для нечетных ребер.
4. Болты М20, М24 и М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ
22356-77. Диаметр отверстий 23, 28 и 31 мм. Усилие предварительного натяжения 167, 239 и 312 кН
соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
6. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
, где
- площадь
сечения трубы с типоразмерами из указанных в графе 3 для каждого фланцевого соединения;
расчетное сопротивление стали трубы растяжению по пределу текучести);
-
- толщина фланцев;
- диаметр фланцев;
- диаметр болтовой риски;
- диаметр болтов.
Приложение 5
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
362

363.

Геометрические параметры соединений
Диаметр
болта
Параметры,
мм
Номер профиля ригеля
26Б1
30Б1
35Б1
35Б2
40Б1
М24
М27
45Б1
50Б1
55Б1
60Б1
45Б2
50Б2
55Б2
60Б2
70Б1
70Б2
80Б1
90Б1
100Б1
100Б2
23Ш1
26Ш1
26Ш2
30Ш1
35Ш1
40Ш1
50Ш1
30Ш2
35Ш2
40Ш2
60Ш1
70Ш1
70Ш2
90
90
100
100
90
90
100
100
60
60
60
60
60
60
60
60
40
45
45
50
40
45
45
50
100
100
110
110
100
100
110
110
70
70
70
70
70
70
70
70
363

364.

45
50
50
55
45
50
50
55
Примечание. Параметр
может быть изменен в зависимости от типа колонны при
выполнении условий, изложенных в разделе 4 (п.4) настоящих рекомендаций.
НЕСУЩАЯ СПОСОБНОСТЬ СОЕДИНЕНИЯ (тс·м)
Тип
фла
н- ца
1
2
3
4
Диаметр
болт
а
Номер профиля ригеля
26
Б1
30Б1
35
Б1
35
Б2
40Б1
40Б2
45
Б1
45
Б2
50Б1
50Б2
55
Б1
55
Б2
60Б1 70Б1 80Б1
60Б2 70Б2
90
Б1
100Б
1
23Ш
1
26Ш
1
26Ш
2
30
1
30
2
М24
15,
5
18,5
22,
2
25,9
31,
7
35,6
41,
9
46,7
-
-
-
-
13,0
15,2
17
М27
-
-
-
36,3
40,
7
-
-
-
-
-
-
-
-
19,4
22
М24
-
-
-
28,8
35,
3
40,2
48,
1
53,5
63,9
74,4
-
-
-
-
-
М27
-
-
-
-
-
50,5
58,
6
-
-
-
-
-
-
-
-
М24
-
-
-
-
-
63,5
73,
8
81,9
97,4
112,
9
12
9,5
145,
4
-
-
31
М27
-
-
-
-
-
-
-
100,
7
119,
8
139,
0
-
-
-
-
-
М24
-
-
-
-
-
-
-
-
136,
7
159,
4
18
3,7
206,
8
-
-
-
М27
-
-
-
-
-
-
-
-
-
-
22
258,
-
-
-
364

365.

2,0
6
СВАРНЫЕ ШВЫ
Номер
профиля
ригеля
26
Б
30Б
35Б
40Б
45
Б
50
Б
55
Б
60
Б
70
Б
8
0
Б
90
Б
100Б
23
Ш
26
Ш
30
Ш
40
Ш
50
Ш
60
Ш
70Ш
35
Ш
8
8
8
8
8
10
12
12
*
14
*
1
4
*
14
*
14*
8
10
10
12
*
12*
10
10
10
10
14
14
16
16
*
16
*
1
6
*
16
*
20*
10
14
16
16
*
18*
_______________
* Марка сварочной проволоки Св-10 НМА, Св-10Г2 по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют
сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ГОСТ
19282-73, 09Г2С-15 по ГОСТ 19282-73.
3. Болты высокопрочные М24 и М27 из стали 40Х ’’Селект" климатического исполнения
ХЛ с временным сопротивлением не менее 1100 МПа (110 кгс/мм ), а также гайки
высокопрочные и шайбы к ним по ГОСТ 22353-77 - ГОСТ 22356-77.
Усилие предварительного натяжения болтов: М24 - 239 кН; М27 - 312 кН.
4. Диаметр отверстий 28 и 31 мм под высокопрочные болты М24 и М27 соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
Приложение 6
ПРИМЕРЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ПРОЧНОСТИ ФЛАНЦЕВЫХ
СОЕДИНЕНИЙ ЭЛЕМЕНТОВ, ПОДВЕРЖЕННЫХ РАСТЯЖЕНИЮ
1. Фланцевое соединение растянутых элементов из парных равнополочных уголков
365

366.

Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - парные равнополочные уголки
по
ГОСТ 8509-72 из стали марки 09Г2С-6 по ГОСТ 19282-73 с расчетным сопротивлением стали
растяжению по пределу текучести
=360 МПа (3650 кгс/см ) и временным сопротивлением стали
разрыву с
=520 МПа (5300 кгс/см ), площадь сечения профиля
усилие растяжения, действующее на соединение,
=2х22=44 см ;
=1557 кН (159 тс);
материал фланца - сталь марки 09Г2С-15 по
сопротивлением растяжению по пределу текучести
ГОСТ 19282-73 с расчетным
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
МПа (1480 кгс/см ).
Толщина фланца =30 мм;
болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов
=266 кН (27,1 тс), расчетное
=239 кН (24,4 тс);
катеты сварных швов принять равными
=10 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2390 кгс/см );
материал фасонки - сталь марки 09Г2С-12-2 по ТУ 14-1-3023-80, толщина фасонки
=14 мм.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.1):
см, а также необходимые для расчета
параметры в соответствии с требованиями главы СНиП II-23-81*:
=0,7,
=1,0,
=1,0,
=1,0, =1,0. Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем
по трем сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
366

367.

;
МПа (2390 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Рис.1. Схема к примеру расчета фланцевого соединения парных равнополочных уголков 125х9
Таким образом, прочность сварных швов обеспечена.
Для предотвращения внецентренного приложения внешнего усилия на соединение
центр тяжести сварных швов должен совпадать с центром тяжести соединяемого профиля.
Поэтому необходимо выполнение условия:
=0, где
- статический момент сварных швов
относительно оси
, или
оси
соответственно.
Разница между
и
=
, где
и
- статические моменты сварных швов выше и ниже
составляет
.
Конструирование и расчет прочности ФС
367

368.

Конструктивная форма соединения принята, как показано на рис.1. В таком соединении
количество болтов внутренней зоны =4. Количество болтов наружной зоны
предварительно
назначаем из условия (1) [см. раздел 5]:
,
где
- предельное внешнее усилие на болт внутренней зоны от действия внешней
нагрузки;
- предельное внешнее усилие на один болт наружной зоны, определяемое по табл.2
(раздел 5). По конструктивным особенностям соединения предварительно назначаем количество
болтов наружной зоны
=4.
Расстановку болтов производим в соответствии с указаниями п.4.6. В соответствии с
указаниями п.4.7 болты должны быть расположены безмоментно относительно оси
(см.
рис.1), поэтому
. С учетом, что
=1,5 имеем:
,
таким образом это условие выполнено.
Прочность ФС следует считать обеспеченной, если выполняется условие (2):
,
где - расчетное усилие растяжения, воспринимаемое ФС и определяемое по формулам (3)
или (4). Для определения необходимо найти величину
- расчетное усилие на болт наружной
зоны -го участка фланца, представляемого условно как элементарное Т-образное ФС. Заметим, что
в силу конструктивных особенностей в этом соединении можно выделить два участка наружной
зоны I и II (на рис.1 эти участки заштрихованы). Поэтому для нахождения величины необходимо
определить значения
и
и выбрать наименьшее из них.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к участку I
наружной зоны, определяем из условия:
.
Значение
определяем по формуле (5)
, где
находим по формуле (6)
,a
- по формуле (7)
,
368

369.

здесь
=24 мм - номинальный диаметр резьбы болта,
- ширина фланца, приходящаяся на один болт
участка I наружной зоны,
мм - усредненное расстояние между осью болта и
краями сварных швов полки уголка и фасонки.
Тогда:
кН (17,7 тс).
Значение
определяем по формуле (8)
,
для чего находим значения
и
:
,
а значение
Тогда:
определяем по табл.4 (
).
кН (28,4 тс).
Поскольку
, принимаем
кН (17,7 тс).
Определение
Значение
находим так же, как и
, с той лишь разницей, что для участка II
мм, а
С учетом этого
тогда
кН (17,6 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
369

370.

значение
тогда:
определяем по табл.4 (
=1,5),
кН (20,7 тс).
Поскольку
, принимаем
кН.
Так как
, принимаем
.
Поскольку
,
расчетное
усилие
растяжения,
воспринимаемое ФС, определяем по формуле (3)
(162 тс).
Проверяем выполнение условия (2):
.
Условие (2) выполнено, таким образом, прочность ФС следует считать обеспеченной.
2. Фланцевое соединение растянутых элементов из круглых труб
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - электросварная прямошовная труба 273х8 мм
по ГОСТ 10704-76 из стали марки 09Г2С по ТУ 14-3-500-76 с расчетным сопротивлением
стали растяжению по пределу текучести
=250 МПа (2550 кгс/см ) и временным
сопротивлением стали разрыву
=470 МПа (4800 кгс/см ), площадь сечения трубы
усилие растяжения, действующее на соединение,
материал фланца - сталь марки 09Г2С-15 по
сопротивлением растяжению по пределу текучести
=66,62 см ;
=1666 кН (170 тс);
ГОСТ 19282-73 с расчетным
=290 МПа (2950 кгс/см ) и
нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное
сопротивление стали фланца растяжению в направлении толщины проката (в соответствии с
указаниями главы СНиП II-23-81*)
МПа (1480 кгс/см ).
Толщина фланца =25 мм;
370

371.

болты высокопрочные М24, расчетное усилие болта
усилие предварительного натяжения болтов
=266 кН (27,1 тс), расчетное
=239 кН (24,4 тс);
катеты сварных швов принять равными
=8 мм, сварка механизированная проволокой
марки Св-08Г2С по ГОСТ 2246-70* с обеспечением проплавления корня шва не менее 2 мм,
расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления
соответственно
=215 МПа (2200 кгс/см ),
МПа (2160 кгс/см );
материал ребер жесткости - сталь марки 09Г2С по ТУ 14-1-3023-80, толщина ребер
жесткости =10 мм.
Расчет прочности и проектирование ФС
В соответствии с указаниями п.5.7 прочность ФС элементов замкнутого профиля считается
обеспеченной, если:
при
мм.
Из этого условия определим необходимое количество болтов
в соединении:
шт.
Количество болтов в соединении принимаем
=8 шт.
Конструирование ФС осуществляем в соответствии с указаниями раздела 4.
При принятом количестве болтов в соединении минимальное количество ребер
жесткости
=4. Длина нечетных ребер:
мм,
длина четных ребер:
мм, принимаем
где
=470 мм.
- диаметр трубы.
В соответствии с указаниями п.4.6 болты располагаем как можно ближе к элементам
присоединяемого профиля, при этом:
мм,*
_________________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.
мм, с округлением принимаем =50 мм.
Определяем диаметр риски болтов:
мм, принимаем
371
=355 мм, а диаметр фланца:

372.

мм.
Угол между радиальными осями ребра и болтов, расположенными у ребра:
, с округлением принимаем
=20°.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.2):
мм, а также необходимые для
расчета параметры в соответствии с требованиями главы СНиП II-23-81*:
=1,0,
=0,7,
=1,0,
=1,0,
=1,0.
Рис.2. Схема к примеру расчета фланцевого соединения элементов из круглых труб 273х8
Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем
сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2160 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
372

373.

;
МПа (1480 кгс/см ).
Таким образом, прочность сварных швов обеспечена.
Приложение 7
ПРИМЕР РАСЧЕТА ФЛАНЦЕВОГО СОЕДИНЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Провести проверочный расчет фланцевого соединения (см. рисунок).
Схема к примеру расчета фланцевого соединения широкополочного двутавра 160Б1,
подверженного
воздействию изгиба и растяжения
Данные, необходимые для расчета:
профиль присоединяемого элемента - 160Б1 по ГОСТ 26020-83 из стали марки 09Г2С,
площадь сечения профиля
=131 см , площадь сечения пояса
=35,4 см , момент
сопротивления профиля =2610 см ;
изгибающий момент и продольное усилие, действующие
соответственно
=686 кН·м (70 тс·м) и =490,5 кH (50 тс);
на
соединение,
материал фланца - сталь марки 14Г2АФ-15 по ТУ 14-105-465-82 с расчетным
сопротивлением изгибу по пределу текучести
=368 МПа (3750 кгс/см ), толщина фланца
принята равной =25 мм;
373

374.

болты высокопрочные М24, расчетное усилие растяжения болта
расчетное усилие предварительного натяжения болтов
катеты сварных швов по поясам профиля
=266 кН (27,1 тс),
=239 кН (24,4 тс);
=12 мм, по стенке
=8 мм.
Максимальное и минимальное значения нормальных напряжений в присоединяемом профиле
от действия изгиба и продольных усилий определяем по формуле (10) [см. раздел 5]:
;
.
Усилие в растянутом поясе присоединяемого элемента определяем по формуле (11):
,
где
- площадь сечения участка стенки в зоне болтов растянутого пояса (см. рис.4 и
рисунок в настоящем приложении);
;
=10 мм - толщина стенки профиля;
=70 мм - ширина фланца, приходящаяся на один болт, расположенный вдоль стенки
профиля;
=15,5 мм - толщина пояса профиля.
мм,
=80·10=800 мм, тогда
=(3540+800)·300=1302 кН (132,5 тс).
Усилие в растянутой части стенки определяем по формуле (12):
,
где
,
;
мм,
тогда
кН (30,5 тс).
374

375.

Прочность ФС считаем обеспеченной, если при
условие (13):
и
выполняется
;
.
При принятом конструктивном решении ФС (наличие ребра жесткости растянутого
пояса и симметричное расположение болтов относительно пояса
, см.
рисунок) расчетное усилие растяжения, воспринимаемое болтом и фланцем, относящимися к
растянутому поясу,
определяем по формуле (16):
,
то же, к растянутой части стенки,
- по формуле (19):
.
Определение
Поскольку
мм, то
,
,
,
мм - расстояние от оси болтов ряда
до пояса профиля.
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к наружной
зоне пояса, определяем из условия:
.
Значение
определяем по формуле (5):
, где
находим по формуле (6):
,a
- по формуле (7):
,
здесь =24 мм - номинальный диаметр резьбы болта,
=70 мм - ширина фланца, приходящаяся на один болт наружной зоны растянутого пояса
профиля;
375

376.

=33 мм - расстояние от оси болтов ряда
профиля (
до края сварного шва растянутого пояса
мм).
Тогда:
,
и
кН (15,7 тс).
Значение
определяем по формуле (8):
,
для чего находим значения
и
:
Н·см;
.
Значение
определяем по табл.4 (
=1,48).
Тогда:
кН (20,1 тс).
Поскольку
, принимаем
кН (15,7 тс) и
.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к растянутой
части стенки профиля, определяем из условия:
.
Значения
и
определяем по формулам (5) и (8). Расчет всех параметров,
376

377.

необходимых для определения
и
, выполняем так же, как и при определении
лишь разницей, что для болтов и фланца, относящихся к стенке профиля, параметр
(
мм). Тогда:
, с той
=37 мм
;
,
кН (14,7 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
Н·см;
;
значение
определяем по табл.4 (
=1,42);
кН (18,2 тс).
Поскольку
, то принимаем
кН (14,7 тс).
Находим значение
:
кН (31,8 тс).
Определив значения
кН (132,5 тс)
кН (30,5 тс)
и
, проверяем условие (13):
кН (138,4 тс);
кН (31,8 тс).
Условие (13) выполнено. Проверка прочности сварных швов выполнена в соответствии с п.5.10
настоящих рекомендаций. Прочность сварных швов обеспечена.
Таким образом, прочность фланцевого соединения обеспечена.
Приложение 8
377

378.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ТОЛСТОЛИСТОВОГО
ПРОКАТА ДЛЯ ФЛАНЦЕВ
1. Общие положения
1.1. Настоящие указания распространяются на толстолистовой прокат строительных
сталей толщиной от 12 до 50 мм включительно, предназначенный для изготовления
фланцев соединений растянутых и изгибаемых элементов, и устанавливают методику
испытаний на статическое растяжение с целью определения следующих характеристик
механических свойств металлопроката в направлении толщины при температуре
°С:
предела текучести (физического или условного); временного сопротивления разрыву;
относительного удлинения после разрыва; относительного сужения после разрыва.
1.2. Определяемые в соответствии с настоящими методическими указаниями механические
свойства могут быть использованы для контроля качества проката для металлоконструкций; анализа
причин разрушения конструкций; сопоставления материалов при обосновании их выбора для
конструкций; расчета прочности несущих элементов с учетом их работы по толщине листов;
сравнения сталей в зависимости от химического состава, способа выплавки и раскисления, сварки,
вида термообработки, толщины и т.д.
1.3. При испытании на статическое растяжение принимаются следующие обозначения и
определения:
рабочая длина *, мм - часть образца с постоянной площадью поперечного сечения между его
головками или участками для захвата;
_______________
* Буквенные обозначения приняты по ГОСТ 1497-73**.
** На территории Российской Федерации действует ГОСТ 1497-84. Здесь и далее. Примечание изготовителя базы данных.
начальная расчетная длина образца
которой определяется удлинение;
, мм - участок рабочей длины образца до разрыва, на
конечная расчетная длина образца после его разрыва
, мм;
начальный диаметр paбочей части цилиндрического образца до разрыва
минимальный диаметр цилиндрического образца после его разрыва
, мм;
, мм;
начальная площадь поперечного сечения рабочей части образца до разрыва
площадь поперечного сечения образца после его разрыва
осевая растягивающая нагрузка
испытания;
,
, мм ;
, мм ;
- нагрузка, действующая на образец в данный момент
предел текучести (физический)
, МПа - наименьшее напряжение, при котором образец
деформируется без заметного увеличения нагрузки;
предел текучести условный
, МПа - напряжение, при котором остаточное удлинение
378

379.

достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении
указанной характеристики;
временное сопротивление
, МПа - напряжение, соответствующее наибольшей нагрузке
, предшествующей разрушению образца;
относительное удлинение после разрыва
- отношение приращения расчетной длины
образца (
) после разрыва к ее первоначальной длине ;
относительное сужение после разрыва
площади поперечного сечения после разрыва
образца
, % - отношение разности начальной площади и
к начальной площади поперечного сечения
.
2. Форма, размеры образцов и их изготовление
2.1. Для испытания на растяжение в направлении толщины проката применяют укороченные
цилиндрические образцы (см. рисунок, а) диаметром 5 мм, начальной расчетной длиной
мм по п.2.1 ГОСТ 1497-73. При этом металл, испытываемый в направлении
толщины, условно рассматривается как хрупкий. Рабочая длина образца в соответствии с п.2.3 ГОСТ
1497-73 составляет
мм.
Образцы для испытаний на растяжение в направлении толщины проката
2.2. Образец вырезают из испытываемого листа так, чтобы ось образца была перпендикулярна
к поверхности листа.
2.3. На торцах образцов, выполненных из металлопроката толщиной 30 мм, сохраняется
прокатная корка. При толщине испытываемого проката более 30 мм такая корка сохраняется на
одном торце образца.
2.4. Для испытания металлопроката толщиной 12-29 мм применяются сварные образцы. С этой
целью к листовой заготовке испытываемого металла приваривают в тавр две пластины из стали той
же прочности, чтобы получить крестовое соединение со сплошным проваром. Цилиндрические
образцы вырезают из сварного соединения так, чтобы испытываемый металл попадал в рабочую
часть образца. При этом продольная ось образца должна совпадать с направлением толщины
испытываемого листа. Этапы изготовления сварных образцов указаны на рисунке, б.
2.5. Для испытания металлопроката толщиной 24-29 мм допускается применять несварные
образцы с укороченной рабочей длиной по сравнению с указанной в п.2.1 и на рисунке, а. При этом
высота головок образцов не изменяется.
379

380.

2.6. Образцы рекомендуется обрабатывать на металлорежущих станках. Глубина резания при
последнем проходе не должна превышать 0,3 мм. Чистота обработки поверхности образцов и
точность изготовления должны соответствовать требованиям ГОСТ 1497-73.
2.7. При определении относительного удлинения нужно обходиться без нанесения кернов на
рабочей части образца; за начальную расчетную длину следует принимать общую длину образца
вместе с головками.
2.8. Начальную и конечную длину образца измеряют штангенциркулем с точностью до
0,1 мм, и полученные значения округляют в большую сторону. Диаметр рабочей части
образца до испытания измеряют микрометром в трех местах (посередине и с двух краев) с
точностью до 0,01 мм; в каждом сечении диаметр измеряют дважды (второе измерение
производят при повороте образца на 90°), и за начальный диаметр принимают среднее
значение из двух измерений; причем фиксируют все три значения начальных диаметров (в
середине и с двух краев рабочей части образца). После испытания определяют, вблизи
какого измеренного сечения произошел разрыв образца, и в дальнейшем при определении
относительного сужения после разрыва
диаметр этого сечения принимают за начальный
диаметр. Диаметр образцов после испытания следует измерять штангенциркулем с точностью до 0,1
мм.
2.9. Для испытания изготавливают по три образца от каждого листа, пробы отбирают из
средней трети листа (по ширине).
3. Испытание образцов
3.1. Для определения механических свойств в направлении толщины проката при статическом
растяжении используют универсальные испытательные машины с механическим, гидравлическим
или электрогидравлическим приводом с усилием не выше 100 кН (10 тс) при условии соответствия
их требованиям ГОСТ 1497-73 и ГОСТ 7855-74.
3.2. При проведении испытаний должны соблюдаться следующие основные условия:
надежное центрирование образца в захватах испытательной машины;
плавность нагружения;
скорость перемещения подвижного захвата при испытании до предела текучести - не более 0,1,
за пределом текучести - не более 0,4 длины расчетной части образца, выраженная в мм/мин.
3.3. Рекомендуется оснащать машины регистрирующей аппаратурой для записи диаграмм
"усилие-перемещение" в масштабе не менее 25:1.
3.4. Испытания на растяжение образцов для определения механических свойств в направлении
толщины проката и подсчет результатов испытаний проводят в полном соответствии с § 3 и 4 ГОСТ
1497-73.
3.5. При разрушении сварных образцов вне основного металла испытываемого листа из-за
возможных дефектов соединения (поры непроваров, шлаковые включения, трещины и др.)
результаты их испытания не принимают во внимание и испытание повторяют на новых образцах.
3.6. Результаты испытаний каждого образца в виде значений
вносят в
журнал испытаний и фиксируют в протоколе, прикладываемом к сертификату на
металлоконструкции. Величины
и
нормируются и служат критериями при выборе и
назначении толстолистового проката для изготовления фланцев. Значения других характеристик
380

381.

и
факультативны и используются для накопления данных.
В журнал испытаний вносят также данные из сертификата металлургического заводаизготовителя металлоизделий: марку стали, номер партии, номер плавки, номер листа, химический
состав и механические свойства при обычных испытаниях.
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ
"РЕКОМЕНДАЦИЙ ПО РАСЧЕТУ, ПРОЕКТИРОВАНИЮ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ
ФЛАНЦЕВЫХ СОЕДИНЕНИЙ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ"
Содержание пункта 2.2 раздела ’’Материалы’’ заменяется на следующее.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их
совместному действию, следует принять листовую сталь по ГОСТ 19903-74* с гарантированными
механическими свойствами в направлении толщины проката по ТУ 14-1-4431-88 классов 3-5 марок
09Г2С-15 и 14Г2АФ-15 (по ГОСТ 19282-73) или по ТУ 14-105-465-89 марки 14Г2АФ-15.
Допускается применение листовой стали электрошлакового переплава марки 16Г2АФШ по ТУ 14-11779-76 и 10 ГНБШ по ТУ 14-1-4603-89.
______________
Механические характеристики листовой стали марки 10ГНБШ толщиной 10-40 мм:
временное сопротивление
=52-70 кгс/мм , предел текучести
=40 кгс/мм ,
относительное удлинение
%, относительное сужение в направлении толщины ударная вязкость при температуре - 60 °С KCV не менее 8,0 кгс/см .
%,
Содержание пункта 2.3 раздела ’’Материалы’’ заменяется на следующее.
2.3. Фланцы могут быть выполнены из листовой низколегированной стали марок С345, С375 по
ГОСТ 27772-88, при этом сталь должна удовлетворять следующим требованиям:
- категория качества стали (только для С345 и С375) - 3 или 4 в зависимости от требований к
материалу конструкции по СНиП II-23-81*;
- относительное сужение стали в направлении толщины проката
для одного из трех образцов
%.
%, минимальное
Проверку механических свойств стали в направлении толщины проката осуществляет завод
строительных стальных конструкций по методике, изложенной в приложении 8.
Содержание пункта 2.5 раздела "Материалы" заменяется на следующее.
2.5. Качество стали для фланцев по характеристикам сплошности в зонах шириной 80 мм
симметрично вдоль оси симметрии каждого из элементов профиля, присоединяемого к фланцу,
должно удовлетворять требованиям в таблице 1.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод
строительных конструкций. На рисунке в качестве примера показаны зоны контроля стали фланцев
для соединений элементов открытого и замкнутого профилей.
381

382.

Таблица 1
Зона
дефектоскопии
Характеристика сплошности
Допустимая
частота
несплошностей
Площадь несплошности,
см
Контролируема
я зона фланцев
Минимальная
учитываемая
Максимальна
я
учитываемая
0,5
1,0
10 м
Максимальная
допустимая
протяженность
несплошности
Минимальное
допустимое
расстояние
несплошностями*
4 см
10 см
_________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.
Оценку качества стали фланцев марки 10ГНБШ по характеристикам сплошности можно
осуществлять по дефектограммам, прилагаемым заводом-поставщиком стали к каждому листу. При
удовлетворении требований, указанных в таблице 1, ультразвуковую дефектоскопию завод
строительных конструкций не выполняет.
Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
/ Министерство монтажных и специальных
382

383.

строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989
383

384.

384

385.

385

386.

386

387.

387

388.

388

389.

389

390.

390

391.

391

392.

392

393.

393

394.

394

395.

395

396.

396

397.

397

398.

398

399.

399

400.

400

401.

401

402.

402

403.

403

404.

404

405.

405

406.

406

407.

СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИН ЕНИЯМИ И МЕЖФЛАНЦЕВЫЙ
КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2381407
407

408.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
RU
(11)
(13)
C1
(51) МПК
(12)
F16L 23/00 (2006.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: действует (последнее изменение статуса: 27.07.2020)
Пошлина: учтена за 13 год с 02.07.2020 по 01.07.2021
(21)(22) Заявка: 2008126791/06, 01.07.2008
(72) Автор(ы):
Белоногов Алексей Владимирович (R
(24) Дата начала отсчета срока действия патента:
01.07.2008
(73) Патентообладатель(и):
Общество с ограниченной ответствен
(45) Опубликовано: 10.02.2010 Бюл. № 4
(56) Список документов, цитированных в отчете о поиске: SU 813073 А, 15.03.1981.
US 5244237 А, 14.09.1993. US 4662660 А, 05.05.1987. US 4550743 А, 05.11.1985.
Адрес для переписки:
614990, г.Пермь, ул. Ленина, 62, ООО "ЛУКОЙЛ-ПЕРМЬ", отдел управления
проектами, Г.И. Селезневой
(54) СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ И МЕЖФЛАНЦЕВЫЙ
КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
408

409.

(57) Реферат:
Изобретение относится к области машиностроения. Из общей системы трубопроводов выделяют
участки трубопроводов с подключенными к ним аппаратами и фланцевой арматурой, подлежащей по
правилам эксплуатации периодической замене. В пределах выделенных участков фиксируют
фланцевые соединения, которые обеспечивают отключение участков трубопроводов с аппаратами и
заменяемой арматурой, ввод и вывод их из технологического процесса при профилактических
ремонтно-технологических работах. При монтаже трубопроводов и профилактических ремонтно технологических работах в каждом зафиксированном фланцевом соединении используют для
установки между фланцами межфланцевый компенсатор, который выполнен в виде кольца с
уплотнительными прокладками с обеих его сторон. Общая толщина межфланцевого компенсатора
выполнена не менее толщины комплекта регламентированной к установке правилами эксплуатации
традиционной заглушки с прокладками. Расстояние от фланцевого соединения с межфланцевым
компенсатором до первой опоры под трубой выдерживают в пределах от половины до двух наружных
диаметров указанных фланцев, а на вертикальных участках трубопроводов устанавливают устройства,
разгружающие трубопровод от собственного веса. Изобретение упрощает ремонтно -технологические
работы по обслуживанию трубопроводов. 2 н. и 3 з.п. ф-лы, 1 ил.
Изобретение относится к области эксплуатации трубопроводов, имеющих фланцевые
соединения, и предназначается к использованию в первую очередь в нефтегазодобывающей и
нефтегазоперерабатывающей промышленности, конкретно - в нефтепромысловых трубопроводных
системах добычи, сбора и внутрипромыслового транспорта нефти, газа и попутно добываемой
пластовой воды.
Известно, например, изобретение со съемными фланцами по авторскому свидетельству СС СР
№813073, М.Кл. (3) F16L 23/02 (заявлено 04.06.79; опубликовано 15.03.81) под названием
«Разъемное соединение трубопроводов», согласно которому при монтаже фланцевого соединения
вначале свинчивают и отодвигают в сторону один фланец и в образованный зазор между концами
труб вводят линзу. При этом поверхности линзы и концы труб выполняют концентричными между
собой. После введения линзы производят стягивание фланцев.
Однако способ монтажа и конструктивное выполнение элементов разъемного соединения по
указанному изобретению требует значительного осевого сдвига одного из съемных фланцев и
соединяемых труб, что в условиях ограниченного пространства трудновыполнимо.
Среди имеющихся технических решений, характеризуемых совокупностью признаков, сходных с
совокупностью существенных признаков заявляемого изобретения, аналогичных объектов техники
нами не обнаружено.
Из практики работы, например, нефтегазодобывающих предприятий известен лишь
традиционный способ монтажа и ремонта трубопроводов в трубопроводных системах д обычи,
сбора и внутрипромыслового транспорта нефти, газа и попутно добываемой пластовой воды,
согласно которому вначале производят сборку фланцевых соединений. При этом между фланцами
перед их стягиванием устанавливают прокладки, например, из паронита. Зат ем при собранном
фланцевом соединении концы труб вваривают в обвязку трубопроводов.
Смонтированная указанным способом обвязка трубопроводов имеет высокую жесткость и очень
малую податливость в осевом направлении, которая необходима при установке заглушек п ри
409

410.

проведении профилактических ремонтно-технологических работ в процессе эксплуатации таких
трубопроводов.
Это увеличивает время подготовки оборудования к ремонту, увеличивает трудоемкость и время
проведения работ, увеличивает опасность травмирования персо нала, требует применять
дополнительное оборудование, затрудняет выполнение требуемой технологии выполнения
ремонтных работ и правил безопасности.
Единым техническим результатом, достигаемым при осуществлении предлагаемой группы
изобретений, являются:
- упрощение и облегчение работ по установке и снятию заглушек и замене прокладок во
фланцевых соединениях при проведении ремонтно -профилактических работ в процессе
эксплуатации трубопровода;
- исключение необходимости использовать дополнительное оборудование и приспособления
(специальные раздвижные приспособления, разъемные клинья, разгонщики фланцев, кувалды,
ломы и т.п.);
- сокращение времени на проведение ремонтно-профилактических работ при замене и установке
прокладок и заглушек во фланцевых соединениях и замене арматуры и аппаратов;
- снижение физической трудоемкости работ обслуживающего персонала и снижение опасности
травмирования;
- облегчение выполнения требований правил техники безопасности и условий технологии
ремонта;
- снижение нагрузок на элементы трубопроводов и оборудования при проведении ремонтно профилактических работ за счет исключения необходимости принудительно раздвигать в осевом
направлении фланцы с трубами при замене и установке прокладок и заглушек между фланцами.
Указанный технический результат достигается тем, что в заявляемом способе эксплуатации
трубопроводов с фланцевыми соединениями вначале из общей системы трубопроводов выделяют
участки трубопроводов с подключенными к ним аппаратами и фланцевой арматурой, подлежащей
по правилам эксплуатации периодической замене, затем в пределах выделенных участков
фиксируют фланцевые соединения, которые обеспечивают отключение участков трубопроводов с
аппаратами и заменяемой арматурой, ввод и вывод их из технологического процесса при
профилактических ремонтно-технологических работах путем установки и снятия заглушек в
зафиксированных фланцевых соединениях, а при монтаже трубопроводов и профилактических
ремонтно-технологических работах в каждом зафиксированном фланцевом соединении используют
для установки между фланцами межфланцевый компенсатор, который выполнен в виде кольца с
уплотнительными прокладками с обеих его сторон, причем общая толщина межфланцевого
компенсатора выполнена не менее толщины комплекта регламентированной к установке
правилами эксплуатации традиционной заглушки с прокладками, при этом расстояние от
фланцевого соединения с межфланцевым компенсатором до первой опоры под трубой
выдерживают в пределах от половины до двух наружных диаметров указанных фланцев, а на
вертикальных участках трубопроводов устанавливают устройства, разгружающие трубопровод от
собственного веса.
410

411.

Указанные выше признаки заявляемого способа эксплуатации трубопроводов с фланцевыми
соединениями являются существенными и новыми.
Указанный технический результат совокупно достигается еще и тем, что нами предложен вновь
межфланцевый компенсатор для осуществления заявляемого способа эксплуатации трубопроводов
с фланцевыми соединениями, включающий кольцо, по обе боковые поверхности которого
установлены уплотнительные элементы, выполненные в виде кольцевых прокладок, при этом
общая толщина межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с прокладками.
А также тем, что:
- кольцо компенсатора выполнено, например, металлическим;
- кольцо компенсатора снабжено хвостовиком, свободный конец которого выведен за пределы
наружного диаметра соединяемых фланцев;
- профиль боковых поверхностей кольца компенсатора выполнен адекватно профилю
сопрягаемых поверхностей фланцев.
Указанные выше конструктивные признаки предлагаемого межфланцевого компенсатора для
осуществления заявляемого способа эксплуатации трубопроводов с фланцевыми соединениями
являются существенными и новыми.
Приведенные выше новые существенные признаки способа и межфланцевого компенсатора
обеспечивают заявляемой группе изобретений при осуществлении достижение указанного выше
нового технического результата.
На чертеже представлен продольный разрез узла фланцевого соединения концов труб с
предлагаемым межфланцевым компенсатором. Межфланцевый компенсатор включает в себя
кольцо 1, с обеих боковых поверхностей которого установлены уплотнительные элементы 2,
выполненные в виде кольцевых прокладок. Общая толщина - S-межфланцевого компенсатора
выполнена не менее толщины комплекта традиционной заглушки с прокладками, которая
выбирается для установки исходя из требований правил эксплуатации. Кольцо 1 может быть
выполнено металлическим или из иного прочного материала. Кольцо 1 компенсатора снабжено
хвостовиком 3, свободный конец которого выведен за пределы наружных диаметров фланцев 4,
стягиваемых между собой шпильками 5. Если сопрягаемые поверхности фланцев выполнены не
плоскими, а фигурными, например, типа «шип-паз», то профиль боковых поверхностей кольца 1
компенсатора выполняют адекватным профилю сопрягаемых поверхностей фланцев (на чертеже не
показано).
Осуществляют предлагаемый способ следующим образом.
Вначале в общей системе трубопроводов выделяют те участки трубопроводов, в которые
подключены аппараты технологического назначения и фланцевая арматура, подлежащая по
правилам эксплуатации периодической замене. Выделение таких участков можно провести на
стадиях проектирования и монтажа, а также при эксплуатации уже пущенных в работу систем
трубопроводов при проведении профилактических ремонтно-технологических работ.
Затем в пределах выделенных участков трубопроводов фиксируют (обозначают, ставят метки)
фланцевые соединения, которые обеспечивают отключение участков трубопроводов с аппаратами и
заменяемой фланцевой арматурой и обеспечивают их ввод и вывод из технологического процесса
411

412.

во время проведения профилактических ремонтно -технологических работ путем установки и снятия
заглушек в таких фланцевых соединениях.
При монтаже трубопроводов (при строительстве вновь, при их замене) и профилактических
ремонтно-технологических работах на участках трубопроводов в каждое зафиксированное
фланцевое соединение между фланцами (до их стягивания) устанавливают предлагаемый
межфланцевый компенсатор.
При этом расстояние от фланцевого соединения с межфланцевым компенсатором до первой
опоры под трубой обеспечивают в пределах от половины до двух наружных диаметров
соединяемых фланцев. На вертикальных участках трубопроводов устанавливают устройства,
разгружающие трубопровод от собственного веса.
Благодаря установке между фланцами труб межфланцевых компенсаторов предлагаемых
параметров (его толщина не менее толщины традиционной заглушки) исключается необходимость
принудительно раздвигать в осевом направлении фланцы с трубам и при замене и установке
прокладок и заглушек, что облегчает и упрощает такие работы, сокращает время и их трудоемкость,
не требует дополнительного оборудования.
А благодаря тому, что в предлагаемом способе предложено из общей системы трубопроводов
выделять те участки, которые подлежат периодической замене, и в пределах выделенных участков
фиксировать фланцевые соединения, обеспечивающие отключение, ввод и вывод из
технологического процесса таких участков путем установки и снятия заглушек во фланцевые
соединения, то совместно с установкой межфланцевых компенсаторов в зафиксированные
фланцевые соединения, при том, что расстояние от фланцевого соединения с межфланцевым
компенсатором до первой опоры под трубой выдерживают в пределах от половины до двух
наружных диаметров таких фланцев, а на вертикальных участках трубопроводов устанавливают
устройства разгрузки от их собственного веса, то в совокупности это позволяет на протяжении всего
времени эксплуатации трубопроводов (от монтажа до его замены) наиболее полно обеспечить
выполнение требований правил техники безопасности и условий технологии ремонта, снизить
опасность травмирования и в целом продляет срок безопасной эксплуатации трубопроводов при
снижении материальных средств и трудовых затрат на проведение профи лактических ремонтнотехнологических работ.
Формула изобретения
1. Способ эксплуатации трубопроводов с фланцевыми соединениями, характеризующийся тем,
что из общей системы трубопроводов выделяют участки трубопроводов с подключенными к ним
аппаратами и фланцевой арматурой, подлежащей по правилам эксплуатации периодической
замене, в пределах выделенных участков фиксируют фланцевые соединения, которые
обеспечивают отключение участков трубопроводов с аппаратами и заменяемой арматурой, ввод и
вывод их из технологического процесса при профилактических ремонтно -технологических работах
путем установки и снятия заглушек в зафиксированных фланцевых соединениях, при монтаже
трубопроводов и профилактических ремонтно-технологических работах в каждом зафиксированном
фланцевом соединении используют для установки между фланцами межфланцевый компенсатор,
который выполнен в виде кольца с уплотнительными прокладками с обеих его сторон, причем
общая толщина межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с прокладками,
при этом расстояние от фланцевого соединения с межфланцевым компенсатором до первой опоры
под трубой выдерживают в пределах от половины до двух наружных диаметров указанных фланцев,
412

413.

а на вертикальных участках трубопроводов устанавливают устройства, разгружающие трубопровод
от собственного веса.
2. Межфланцевый компенсатор для эксплуатации трубопроводов с фланцевыми соединениями,
включающий кольцо, по обе боковые поверхности которого установлены уплотнительные
элементы, выполненные в виде кольцевых прокладок, при этом общая толщина межфланцевого
компенсатора выполнена не менее толщины комплекта регламентированной к установке
правилами эксплуатации традиционной заглушки с прокла дками.
3. Межфланцевый компенсатор по п.2, отличающийся тем, что кольцо компенсатора выполнено,
например, металлическим.
4. Межфланцевый компенсатор по п.2, отличающийся тем, что кольцо компенсатора снабжено
хвостовиком, свободный конец которого выведен за пределы наружного диаметра соединяемых
фланцев.
5. Межфланцевый компенсатор по п.2, отличающийся тем, что профиль боковых поверхностей
кольца компенсатора выполнен адекватно профилю сопрягаемых поверхностей фланцев.
413

414.

414

415.

415

416.

416

417.

ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ изобретение патент
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
417

418.

ФЕДЕРАЛЬНАЯ СЛУЖБА
(11)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
2 413 820
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E04B 1/58 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
Приоритет(ы):
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ В.В.
Металлические конструкции. В 3 т. - Стальные конструкции зданий и сооружений (73)
Патентообладатель(и):
(Справочник проектировщика). - М.: АСВ, 1998, т.2. с.157, рис.7.6. б). SU 68853 A1,
Марутян Александр
31.07.1947. SU 1534152 A1, 07.01.1990.
Суренович (RU)
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул. Советская, 90, кв.4, Ю.И.
Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению растянутых
элементов замкнутого профиля. Технический результат заключается в уменьшении массы конструкционного
материала. Фланцевое соединение растянутых элементов замкнутого профиля включает концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами. Фланцы установлены под углом 30°
относительно продольных осей стержневых элементов. Листовую прокладку составляют парные опорные
столики. Столики жестко скреплены с фланцами и в собранном соединении взаимно уперты друг в друга. 7
ил., 1 табл.
418

419.

Предлагаемое изобретение относится к области строительства, а именно к фланцевым соединениям
растянутых элементов замкнутого профиля, и может быть использовано в монтажных стыках поясов
решетчатых конструкций.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концы стержневых
элементов с фланцами, дополнительные ребра и стяжные болты, установленные по периметру замкнутого
профиля попарно симметрично относительно ребер (Металлические конструкции. В 3 т. Т.1. Общая часть.
(Справочник проектировщика) / Под общ. ред. В.В.Кузнецова. - М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе соединительных деталей,
что увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение нижнего
(растянутого) пояса ферм из гнутосварных замкнутых профилей, включающее концы стержневых элементов с
фланцами, дополнительные ребра, стяжные болты и листовую прокладку между фланцами для прикрепления
стержней решетки фермы и связей между фермами (1. Металлические конструкции: Учебник для вузов / Под
ред. Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.295, рис.9.27; 2. Металлические конструкции. В 3 т.
Т.1. Элементы конструкций: Учебник для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462,
рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости
монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов
замкнутого профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого профиля,
включающем концы стержней с фланцами, стяжные болты и листовую прокладку между фланцами, фланцы
установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку
составляют парные опорные столики, жестко скрепленные с фланцами и в собранном соединении взаимно
упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так, его можно
применить в монтажных стыках решетчатых конструкций из труб круглых, овальных, эллиптических,
прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В качестве еще одного примера
использования предлагаемого соединения можно привести аналогичные стыки на монтаже элементов
конструкций из парных и одиночных уголков, швеллеров, двутавров, тавров, Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано предлагаемое
фланцевое соединение растянутых элементов замкнутого профиля, вид сверху; на фиг.2 - то же, вид сбоку; на
фиг.3 - предлагаемое соединение для случая прикрепления элемента решетки, вид сбоку; на фиг.4 фланцевое соединение растянутых элементов незамкнутого профиля, вид сверху; на фиг.5 - то же, вид сбоку;
на фиг.6 - то же, при полном отсутствии стяжных болтов в наружных зонах незамкнутого профиля; на фиг.7 расчетная схема растянутого элемента замкнутого профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит прикрепленные
с помощью сварных швов цельнолистовые фланцы 2, установленные под углом 30° относительно продольных
419

420.

осей растянутых элементов. С фланцами 2 посредством сварных швов жестко скреплены опорные столики 3. В
выступающих частях 4 фланцев 2 и опорных столиков 3 размещены соосные отверстия 5, в которых после
сборки соединения на монтаже установлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении опорные
столики 3 продолжены за пределы выступающих частей 4 фланцев 2 таким образом, что в них можно
разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов незамкнутого
профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также стяжные болты 6 могут быть
расположены не только за пределами сечения (поперечного или косого) незамкнутого (открытого) профиля,
но и в его внутренних зонах. При полном отсутствии стяжных болтов 6 в наружных (внешних) зонах открытого
профиля 9 предлагаемое фланцевое соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы примыкания
раскосов к поясу должны быть не менее 30° для обеспечения плотности участка сварного шва со стороны
острого угла (Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр
«Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом соединении растянутых элементов
замкнутого профиля 1 фланцы 2 и скрепленные с ними опорные столики 3 установлены под углом 30°
относительно продольных осей. В таком случае продольная сила F, вызывающая растяжение элемента
замкнутого профиля 1, раскладывается на две составляющие: нормальную N=0,5 F, воспринимаемую
стяжными болтами 6, и касательную T=0,866 F, передающуюся на опорные столики 3. Уменьшение болтовых
усилий в два раза во столько же раз снижает моменты, изгибающие фланцы, а это позволяет применять для
них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на
материалоемкость предлагаемого соединения позитивно влияют возможные уменьшение диаметров
стяжных болтов 6, снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового объекта
принято типовое монтажное соединение на фланцах ферм покрытий из гнутосварных замкнутых профилей
системы «Молодечно» (Стальные конструкции покрытий производственных зданий пролетами 18, 24, 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно». Серия 1.460.314. Чертежи КМ. Лист 44). Расход материала сравниваемых вариантов приведен в таблице, из которой видно,
что в новом решении он уменьшился в 47,1/26,8=1,76 раза.
Масса, кг
Наименование Размеры, мм Кол-во, шт.
Примеч.
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
47,1
Сварные швы (1,5%)
Фланец
300×250×18
Известное решение
0,7
2
10,6 21,2 26,8 Предлагаемое решение
420

421.

Столик
27×150×8
Сварные швы (1,5%)
2
2,6
5,2
0,4
*Учтена треугольная форма
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном и предлагаемом
фланцевых соединениях количество стяжных болтов одинаково и составляет 8 шт. Если в первом из них
использованы болты М24, то во втором - M18 того же класса прочности. Тогда очевидно, что в новом
решении расход материала снижен пропорционально уменьшению площади сечения болта нетто, то есть в
3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней с
фланцами, стяжные болты и листовую прокладку между фланцами, отличающееся тем, что фланцы
установлены под углом 30° относительно продольных осей стержневых элементов, а листовую прокладку
составляют парные опорные столики, жестко скрепленные с фланцами и в собранном соединении взаимно
упертые друг в друга.
421

422.

422

423.

423

424.

424

425.

425

426.

426

427.

427

428.

428

429.

429

430.

430

431.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
Выполненные исследованияи и испыатния в ПК SCAD показывают, что
принципы адаптации можно использовать, как понижая, так и повышая
жесткость системы в процессе колебаний с целью ее отстройки от
резонанса при использовании фрикционно-подвижных болтовых соединений
в виде демпфирующего шарнира для обрушения верхнего этажа при
динамических нагрузках, обеспечения сейсмостойкости существующих зданий,
эксплуатируемых в зонах сейсмической активности с расчет пластического
шарнира ПК SCAD для хрущевок : Нефтегорск, Грозный, Сочи, Севастополь,
выполненных по изобретению проф дтн ПГУПС А.М.Уздиана № 2010136746
"СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
и расчет пластического шарнира ПК SCAD для хрущевок
431

432.

Материалы: Гасители динамических колебаний для обрушения
верхнего этажа при импульсных растягивающих нагрузках, для
зданий и сооружений, эксплуатируемых в зонах
сейцйсмической активности: Нефтегорск, Грозный, Сочи,
Севастополь, выполненных по изобртению проф дтн ПГУПС
А.М.Уздиана № 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ
ЭНЕРГИИ", №№ 1143895, 1168755,1174616 , для применения гасителя динамических колебаний с
использованием фрикционно-подвижные болтовые соединения с длинными овальными
отверстиями на пятом обрушающимся этаже и легко сбрасываемыми панелями и кровли
пятого этажа хрущевки ( согласно патента №154506 «Панель противовзрывная»), с
демонтажем сварочных креплений на пятом этаже, для повышения сейсмостойкости
существующих панельных оставшихся двух пятиэтажек не разрушенных землетрясением 27
мая 1995 у памятника Ленина в г. Нефтегорске, и их программная реализация расчета
существующих двух пятиэтажек на прогрессирующее лавинообразное обрушение,
взаимодействие здания с геологической средой, в среде вычислительного комплекса SCAD
Office, согласно изобретения № 2010136746, хранятся в СПб ГАСУ на кафедре
строительных конструкций [email protected] (921) 962-67-78
направлены в МО 68 "Зеро Долгое" для рассмотрения на Научном
техническом Совете МО 68
Гасители динамических колебаний для обрушения верхнего
этажа при импульсных растягивающих нагрузках, для зданий
и сооружений, эксплуатируемых в зонах сейцйсмической
активности: Нефтегорск, Грозный, Сочи, Севастополь,
выполненных по изобртению проф дтн ПГУПС А.М.Уздиана №
2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ ", №№
1143895, 1168755,1174616 , направлены для рассмотрения на НТС МО 68 "Озеро Долгоке" для депутатов МО -68,
Направлены редакцией газеты "Земля РОССИИ" для
заместителя Главы Муниципального образования, Муниципальный
округ "Озеро Долгое" Бенеманского Дмитрия Вадимовича,
Председателя Жилищного комитата Борщова Виктор
432

433.

Алексеевича, заместителей Ходькова Сергей Николаевича,
Канивцева Роман Алексеевича, Синей Натальи Владимировны.
Руководствуясь принципом гуманизма в целях укрепления гражданского
мира и согласия, в соответствии с пунктом "ж" части 1 статьи 103
Конституции Российской Федерации редакция газеты "Земля РОССИИ"
просит Муниципальное образование 68 "Озеро Долгое" лично заместителя
Главы муниципального образования Озеро Долгое Бениманского Дмитрий
Владимировича и Ходыреву Светлану Николаевну https://www.ozerodolgoe.net и Жилищный Комитет СПб, рассмотреть на техническом
Совете, открыто и гласно применение Демпфирующие косые термостойкие
компенсаторы на фрикционно- подвижных болтовых соединениях, со
скошенными торцами, согласно изобретения №№ 2423820, 887743, для
восприятия термических усилий, за счет трения, при растягивающих нагрузках в
крепежных элементах с овальными отверстиями, по линии нагрузки (
изобретения №№ 1143895, 1168755, 1174616 ,165076, 2010136746, выполненных по
изобретению проф дтн ПГУПС А.М.Уздиана № 2010136746 "СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
433

434.

по возможности рассмотреть изобретения в МО 68 и Жилищном
Комитет СПб Просьба рассмотреть на научно техническом Совете,
разработанные организацией «Сейсмофонд» при СПб ГАСУ
и
Демпфирующие косые термостойкие компенсаторы на фрикционноподвижных болтовых соединениях, со скошенными торцами, согласно
изобретения №№ 2423820, 887743, для восприятия термических усилий, за счет
трения, при растягивающих нагрузках в крепежных элементах с овальными
отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616
,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана
№ 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Владимир Путин в обращении к делегатам шестого съезда
посвящѐнном 85 летию Всероссийского общества изобретателей
и рационализаторов ВОИР в июле 2017, пожелал плодотворной
работы, неиссякаемого вдохновения и энергии для новых ярких
достижений и открытий, однако Министр строительства и
ЖКХ Файзулин Ирек Энварович, умышленно отказывается
рассмотреть на Научном техничеком Совет Минтроя ЖКХ РФ
для внедрения, применение фрикционно-подвижных болтовых соединений в
виде демпфирующего компенсатора теплотрассы в программном комплексе
SCAD Office, со скошенными торцами, согласно изобретения №№ 2423820,
887743, демпфирующими косыми компенсаторами на фрикционно-подвижных
болтовых соединениях, для восприятия термических усилий, за счет трения,
при растягивающих нагрузках в крепежных элементах с овальными
отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616
,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана
№ 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Редакция газеты "Земля РОССИИ" прости на НТС
расмотреть использование применение фрикционно-подвижных
болтовых соединений в виде компенсатора для теплотрассы в программном
434

435.

комплексе SCAD Office, со скошенными торцами, согласно изобретения №№
2423820, 887743, демпфирующими косыми компенсаторами на фрикционноподвижных болтовых соединениях, для восприятия термических усилий, за счет
трения, при растягивающих нагрузках в крепежных элементах с овальными
отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616
,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана
№ 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Прилагает декларацию имущество, доходы , владения,
транспорт, недвижимость, размещенное в социальной
сети депутатов МО 68 "Озеро Долгое" на территории
РФ и ответ депутатов МО 68 "Озеро Долгое"
Электронная почта Муниципального Образования «Озеро долгое»: [email protected]
Депутаты Муниципального совета МО 68 "Озеро долгое"
435

436.

Редакция газеты "Земля РОССИИ" и ИА "Крестьянское информационное агентство
Заместителю Главы
Муниципального образования Муниципальный округ Озеро
Долгое Бенеманскому Дмитрий Вадимовичу, 3 Петрову Юрий
обращается письменно к депутатам МО 68
Геннадьевичу, Заместителю Главы Муниципального образования Муниципальный
округ Озеро Долгое, членам комиссии по социальной политике , всему коллективу :
4 Абызову Илья Тимуровичу: Членам комиссии по социальной политике
5 Аникину Андрей Андреевичу и др
Членам комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью, ревизионной комиссии
6 Безбородая Ирина Николаевна
Член комиссии по социальной политике
7 Викторова Галина Николаевна
Член комиссии по социальной политике
8 Иванов Константин Анатольевич
Член комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью
9 Канева Наталья Львовна
Член комиссии по социальной политике
10 Карпинский Александр Станиславович
Член комиссии по социальной политике
436

437.

11 Катенев Александр Владимирович
12 Овчинников Алексей Геннадьевич
Член комиссии комиссии по благоустройству и вопросам жилищно-коммунального
хозяйства (ЖКХ), комиссии по содействию охране общественного порядка и
предотвращению чрезвычайных ситуаций
13 Поздняков Александр Андреевич
Член комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью
14 Потемкин Геннадий Владимирович
15 Полтапова Нина Алексеевна
Член комиссии по социальной политике
16 Соболева Ирина Георгиевна
Член комиссии по благоустройству и вопросам жилищно-коммунального хозяйства
(ЖКХ)
17 Тарунтаев Евгений Александрович
Член комиссии по благоустройству и вопросам жилищно-коммунального хозяйства
(ЖКХ), комиссии по содействию охране общественного порядка и предотвращению
чрезвычайных ситуаций
18 Трегубов Андрей Анатольевич
19 Тураев Семен Константинович
Член комиссии по социальной политике
20 Юплов Иван Валентинович
+7 (812)301-05-01
197349, С-Петербург, пр. Испытателей 31/1 Часы приѐма: с 9:00 до 13:00 и с 15:00 до 17:00
О расмотрении на НТС , применение фрикционно-подвижных болтовых
соединений в виде со скошенными торцами, согласно изобретения №№ 2423820,
887743, демпфирующими косыми компенсаторами на фрикционно-подвижных
болтовых соединениях, для восприятия термических усилий, за счет трения,
при растягивающих нагрузках в крепежных элементах с овальными
отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616
,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана
437

438.

№ 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Телефон редакции газеты "Земля РОССИИ" : (921) 962--67-78 , (911) 175-84-65, (921)
962-67-78 [email protected] [email protected]
Редакция газеты "Земля РОССИИ" просит Минтсра МЧС РФ , организацию по
Правам человека просит Муниципальное образование "Озеро Долгое" МО 68
Заместителя Главы Муниципального образования Муниципальный округ Озеро Долгое
Бенеманского Дмитрий Вадимовича (партия "Едина Россия" ) рассмотреть на
техническом совет МО 68 изобретение Демпфирующие косые термостойкие
компенсаторы на фрикционно- подвижных болтовых соединениях, со
скошенными торцами, согласно изобретения №№ 2423820, 887743, для
восприятия термических усилий, за счет трения, при растягивающих нагрузках в
крепежных элементах с овальными отверстиями, по линии нагрузки (
изобретения №№ 1143895, 1168755, 1174616 ,165076, 2010136746, выполненных по
изобретению проф дтн ПГУПС А.М.Уздиана № 2010136746 "СПОСОБ ЗАЩИТЫ
ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
438

439.

439

440.

440

441.

441

442.

442

443.

443

444.

444

445.

445

446.

446

447.

Редакция газеты "Земля РОССИИ" прилагает
декларацию имущество доходов, заместителя
Главы Муниципального образования Муниципальный округ
Озеро Бенеманского Дмитрий Вадимовича
1. Последняя известная декларация (2018 год)
Муниципальное образование муниципальный округ Озеро Долгое (Приморский район)
(Депутат муниципального совета МО Озеро Долгое)
Недвижимость
Транспорт Доход
Тип
Площадь
Владение
Бенеманский Дмитрий
В
Volvo
4 960 008
Квартира
55 кв.м.
Вадимович
собственности XC90
рублeй
Земельный
1900
В
участок
кв.м.
собственности
В
Жилой дом
47 кв.м.
133 353
собственности
супруг(а)
рубля
В
Квартира
43 кв.м.
собственности
Квартира
55 кв.м. В пользовании
ФИО
2. Исторические сведения о доходах чиновника за 2017, 2018 годы
Год
Недвижимость
Транспорт
Доход
2017 год
2159 кв.м.
0
3 268 218
рублeй
2018 год
55 кв.м.
1
4 960 008
рублeй
Недвижимость
супруги/а
2045 кв.м.
Доход
супруги/а
133 353
рубля
3. Сравнение роста номинальных доходов чиновника со средним ростом зарплат по
всей стране
Мин. год Макс. год Рост доходов этого чиновника Рост доходов населения России
2018
2018
51%
4%
Информация об этом ведомстве (остальные декларации)
https://disclosures.ru/person/1395011/
447

448.

Декларация доходов Ходыревой Светланы Николаевны
Доходы Площадь недвижимости Транспортные средства
Декларация, статус, учреждение
Доход, руб.
Антикоррупционная декларация 2018
Недвижимость, м2
Транспорт, шт.
962 340 руб.
37 м2.
0 шт.
1 050 076 руб.
37 м2.
0 шт.
1 343 857 руб.
37 м2.
0 шт.
Глава местной администрации МО Озеро Долгое
Муниципальное образование муниципальный округ Озеро Долгое (Приморский район)
Показать подробности
Антикоррупционная декларация 2017
Глава местной администрации МО Озеро Долгое
Муниципальное образование муниципальный округ Озеро Долгое (Приморский район)
Показать подробности
Антикоррупционная декларация 2016
Муниципальное образование муниципальный округ Озеро Долгое (Приморский район)
Показать подробности
Скачать все данные в таблице
Ссылка Сахалин ФПС https://disk.yandex.ru/d/Ug_YXQCxU1MEpg
https://ppt-online.org/987359
448

449.

Информируем МЧС РФ, что применение фрикционно-подвижных болтовых
соединений в виде демпфирующего компенсатора теплотрассы в программном
комплексе SCAD Office, со скошенными торцами, согласно изобретения №№
2423820, 887743, демпфирующими косыми компенсаторами на фрикционноподвижных болтовых соединениях, для восприятия термических усилий, за счет
трения, при растягивающих нагрузках в крепежных элементах с овальными
отверстиями, по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616
,165076, 2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана
№ 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
https://disk.yandex.ru/d/o5KPDP579RQGew https://ppt-online.org/986529
Нашими партнерами в США и Японии широко используется и
примененяются, фрикционно-подвижных болтовых соединений в виде
демпфирующего шарнира для обрушения верхнего этажа при динамических
нагрузках, обеспечения сейсмостойкости существующих зданий,
эксплуатируемых в зонах сейсмической активности с расчет пластического
шарнира ПК SCADв Канаде , Японии США, выполненных точно по
изобретению проф дтн ПГУПС А.М.Уздиана № 2010136746 "СПОСОБ
ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616 с расчет и
пластического шарниром в США
Сдвиговые компенсаторыв для теплотрассы в программном комплексе SCAD
Office, со скошенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующими косыми компенсаторами на фрикционно-подвижных болтовых
соединениях, для восприятия термических усилий, за счет трения, при
растягивающих нагрузках в крепежных элементах с овальными отверстиями,
по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616 ,165076,
2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана №
2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
449

450.

Однако, широко примененяются фрикционно-подвижных болтовых
соединений и широко используется дял обеспечения сейсмостойкости
рамных сдигоустойчивых эксплуатируемых теплотрасс в США ,
Калифорнии на Аляске, с использованием узлов металлических или
железобетонных конструкций, по изобретениям зарегистрированные в
СССР проф дтн ПГУПС А.М Уздина ФФПС, руководителями компании
DAMPERS CAPACITIES AND DIMENSIONS Рeter Spoer, CEO Dr, Imad Mualla
USA https://ppt-online.org/986530
https://disk.yandex.ru/d/fKwMH6tQFhchFA
450

451.

451

452.

Открытое обращение информационного агенство "Крестьянское
информационное агенство" и редакции газеты "Земля РОССИИ" :
Уважаемый Председатель Правительства России Мишустин Михаил
Владимирович и Председатель Государственной Думы господин
Володин Вячеслав Викторович , Временно исполняющему обязанности
Министру Российской Федерации по делам гражданской обороны,
чрезвычайным ситуациям и ликвидации последствий
стихийных бедствий (МЧС) , генерал-полковник внутренней службы
Чуприянов Александр Петровичу, Уполномоченный по правам человека в
Российской Федерации.МОСКАЛЬКОВой ТАТЬЯНе НИКОЛАЕВНе,
Министерство строительства и жилищно-коммунального хозяйства
Российской Федерации (Минстрой России) Ирек Энваровичу Файзулину
Миниср строителства и ЖКХ РФ : руководствуясь принципом
гуманизма в целях укрепления гражданского мира и согласия, в
соответствии с пунктом "ж" части 1 статьи 103 Конституции
Российской Федерации редакция газеты «Земля РОССИИ» и ИА
«Крестьянское информационное агентство» простит Вас
простить или обязать Жилищные комитета Ленинградской
области и СПб, в ноябре -декабре 2021 г, рассмотреть на
научно –техническом совете с участием Тимкова Александра
Михайловича - председателя жилищно-коммунального комитета
452

453.

Администрации Ленинградской области и Борщова Александр
Михайловича -Председателя жилищного комитат
Правительства Санкт-Петербурга расмотрерть использоание
фрикционно-подвижных болтовых соединений в виде демпфирующего сдвигового
компенсатора теплотрассы в программном комплексе SCAD Office, со
скошенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующими косыми компенсаторами на фрикционно-подвижных болтовых
соединениях, для восприятия термических усилий, за счет трения, при
растягивающих нагрузках в крепежных элементах с овальными отверстиями,
по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616 ,165076,
2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана №
2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Редакция газеты "Земля РОССИИ" вторично , просит депутатов
Муниципального совета МО 68 "Озеро долгое" -членов научного
технического совета рассмотреть изобртение и использование сдвигового
компенсатора теплотрассы в программном комплексе SCAD Office, со
скошенными торцами, согласно изобретения №№ 2423820, 887743,
демпфирующими косыми компенсаторами на фрикционно-подвижных болтовых
соединениях, для восприятия термических усилий, за счет трения, при
растягивающих нагрузках в крепежных элементах с овальными отверстиями,
по линии нагрузки ( изобретения №№ 1143895, 1168755, 1174616 ,165076,
2010136746, выполненных по изобретению проф дтн ПГУПС А.М.Уздиана №
2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ", №№ 1143895, 1168755,1174616
Редакция газеты «Земля РОССИИ» просит руководство ЖКХ СПб и лен области , МО 68 «Озеро Долгое
рассмотреть изобретение на НТС в ноябре –декабре 2021 г и дать положительное или отрицательное решение
по использованию сдвигового косого компенсатора рганизации «Сейсмофонд» при СПб ГАСУ
453

454.

Редакция газеты "Земля РОССИИ" и ИА "Крестьянское информационное агентство
"обращается письменно к депутатам МО 68 Ответа от МО 68 нет с 21.09.21
Заместителю Главы Муниципального образования
Муниципальный округ Озеро Долгое Бенеманскому Дмитрий
Вадимовичу, 3 Петрову Юрий Геннадьевичу, Заместителю Главы
Муниципального образования Муниципальный округ Озеро Долгое, членам комиссии
по социальной политике , всему коллективу : 4 Абызову Илья Тимуровичу: Членам
комиссии по социальной политике
5
Аникину Андрей Андреевичу и др
Членам комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью, ревизионной комиссии
6 Безбородая Ирина Николаевна
Член комиссии по социальной политике
7 Викторова Галина Николаевна
Член комиссии по социальной политике
8 Иванов Константин Анатольевич
Член комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью
454

455.

9 Канева Наталья Львовна
Член комиссии по социальной политике
10 Карпинский Александр Станиславович
Член комиссии по социальной политике
11 Катенев Александр Владимирович
12 Овчинников Алексей Геннадьевич
Член комиссии комиссии по благоустройству и вопросам жилищно-коммунального
хозяйства (ЖКХ), комиссии по содействию охране общественного порядка и
предотвращению чрезвычайных ситуаций
13 Поздняков Александр Андреевич
Член комиссии по социальной политике, комиссии по средствам массовой
информации и взаимодействию с общественностью
14 Потемкин Геннадий Владимирович
15 Полтапова Нина Алексеевна
Член комиссии по социальной политике
16 Соболева Ирина Георгиевна
Член комиссии по благоустройству и вопросам жилищно-коммунального хозяйства
(ЖКХ)
17 Тарунтаев Евгений Александрович
Член комиссии по благоустройству и вопросам жилищно-коммунального хозяйства
(ЖКХ), комиссии по содействию охране общественного порядка и предотвращению
чрезвычайных ситуаций
18 Трегубов Андрей Анатольевич
19 Тураев Семен Константинович
Член комиссии по социальной политике
20 Юплов Иван Валентинович
+7 (812)301-05-01
197349, С-Петербург, пр. Испытателей 31/1 Часы приѐма: с 9:00 до 13:00 и с 15:00 до 17:00
455

456.

Однако, арестован замминистра ЖКх Владимир
Нормайкин в Новосибирске | Задержан Владимир
Нормайкин https://www.youtube.com/watch?v=lVuF7mkDoVc
Чиновник замутил Чистую воду Замминистра ЖКХ Новосибирской
области подозревается в получении особо крупной взятки
В Новосибирске в понедельник был задержан заместитель
министра ЖКХ и энергетики региона 55-летний Владимир
Нормайкин. По версии следствия, замминистра получил от
учредителя коммерческой фирмы взятку в 2 млн руб. за помощь
в прохождении конкурса на строительство водозаборных
скважин и заключении контракта. Во вторник суд рассмотрит
ходатайство правоохранителей об аресте чиновника, которому
грозит до 15 лет лишения свободы.
https://www.kommersant.ru/doc/5039567 https://vk.com/wall32258596_7672020 https://pasmi.ru/archive/327094/
Кадры задержания замминистра ЖКХ Новосибирской области за взятку
https://www.youtube.com/watch?v=A0968irCDhM
Замминистра ЖКХ отправился в СИЗО https://www.youtube.com/watch?v=WXxOocsAsCc
Задержание замминистра ЖКХ Новосибирской области https://www.youtube.com/watch?v=rX5sD1B2pXA
Редактор газеты «Земля РОССИИ» Быченок Владимир Сергеевич, позывной «ВДВ»,
спецподразделение «ГРОМ», бригада "Оплот" г. Дебальцево, ДНР, Донецкая область.
1992 г.р, участвовал в обороне города Иловайск http://www.gazetazemlyarossii6.narod.ru
456

457.

Зам редактора газеты "Земля РОССИИ" Данилику Павлу
Викторовичу, позывной "Ден" , 2 батальон 5 бригады "Оплот" ДНР.(участнику боя
при обороне Логвиново, запирая Дебальцевский котел, д.р 6.02.1983), сотруднику
отдела Государственного института «ГРОЗГИПРОНЕФТЕХИМ», мл. сержанту
в/ч 21209 г.Грозный, специалисту по СПОСОБу УПРАВЛЕНИЯ РЕЖИМОМ СМЕЩЕНИЙ ВО ФРАГМЕНТАХ
СЕЙСМОАКТИВНЫХ ТЕКТОНИЧЕСКИХ РАЗЛОМОВ № 2273035, направленным взрывом в разломах, в среде
вычислительного комплекса SCAD Offiсe [email protected]
С оригиналом свидетельством газеты «Земля РОССИИ» № П 0931 от 16
мая 1994 можно ознакомится по ссылке https://disk.yandex.ru/i/xzY6tRNktTq0SQ
https://ppt-online.org/962861
С оригиналом свидетельство о регистрации «Крестьянского
информационного агентство» № П 4014 от 14 октября 1999 г можно
ознакомится по ссылке https://disk.yandex.ru/i/8ZF2bZg0sAs-Iw https://ppt-online.org/962861
Соглано Закона РФ от 27.12.1991 N 2124-1 (ред. от 01.07.2021) "О средствах массовой
информации" (с изм. и доп., вступ. в силу с 01.08.2021)
Статья 12. СМИ Освобождение от регистрации и не требуется регистрация: периодических
печатных изданий,
тиражом менее одной тысячи экземпляров;
Ознакомится с регистрацией в Управлении Роскомнадзора по Северо -западному
федеральному округу от 19 октября 2017 входящий № 20975/78-сми, основной
документ 6 стр , приложение пакет документов ИА "Крестьянское
информационное агентство" в Роскомнадзоре СПб ул Галерная дом 27, 190000 тел
678-95-29 678-95-57 [email protected] зам рук И.М.Парнас, исп Мельник Д.Ю
570-44-76 нач отдела С.Ю.Макаров, исп Толмачева Е.Н 315-36-83 см. ссылки
https://disk.yandex.ru/i/UHk7529c3Uk6LA https://ppt-online.org/988149
457
English     Русский Правила