Похожие презентации:
Касательная к окружности. 8 класс
1.
8 классКасательная
к
окружности
2. Сначала вспомним как задаётся окружность
BD
Окружность (О, r)
О
A
r
r – радиус
С
АВ – хорда
CD - диаметр
3. Касательная к окружности
Определение: Прямая,имеющая с
окружностью только
одну общую точку,
называется
касательной к
окружности, а их
общая точка
называется точкой
касания прямой и
окружности.
M
m
s=r
O
4. Свойство касательной: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
m – касательная кокружности с
центром О
М – точка касания
OM - радиус
m OM
M
m
O
5. Свойство касательных, проходящих через одну точку:
▼ По свойству касательнойОтрезки касательных к
1 90o , 2 90o.
окружности, проведенные
из одной точки, равны и
∆АВО, ∆АСО–прямоугольные
составляют равные углы
∆АВО=∆АСО–по гипотенузе
с прямой, проходящей через
эту точку и центр окружности.
и катету:
В
1
О
3
4
2
С
А
ОА – общая,
ОВ=ОС – радиусы
АВ=АС и
3 4
▲
6. Признак касательной: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна радиусу, то она
являетсякасательной.
M
окружность с центром О
радиуса OM
m – прямая, которая проходит
через точку М
и
m OM
m – касательная
m
O
7.
Решение задач8.
№ 1.Дано: Окр. О, r , АВ касательная
ОА 2см, r 1,5см
Найти: АВ
B
?
1,5
О
2
А
9.
1. Рассмотрим АОВ- прямоугольный(?)2.
AB 2 OA 2 OB 2
AB 4 2,25 1,75
B
?
1,5
О
2
А
10.
№ 2.Дано:
Найти:
Окр. О, r АB, АС- касательные
ВАС
B
4,5
?
О
К
С
А
11.
-ки АОВ и АОС - равны(?) →1. Рассмотрим
2. BАО= САО
3. BАО и BАО - прямоугольные (?)
4. ОВ =4,5 ОА=9 → (?)
5. BАС= 60
B
4,5
?
О
К
С
А
12.
№ 3.Дано:
Найти:
АВ
Окружность
АВ касательная
B
?
12
600
О
А
13.
АВ 2 ОА 2 ОВ 2АВ
24 2 12 2 12 3
tg A
OB
AB
1
12
AB
3
AB 12 3
B
?
12
600
О
А
14.
Домашнее задание15.
Дано:Найти:
Окружность
АВ касательная, АО 4см
ОВ
А
B
С
О
16.
Дано:Найти:
Окружность
АВ касательная
радиус
B
А
О
17.
Окружность, R 6АВ касательная, ОА ОВ
ОА
Дано:
Найти:
А
16
О
B