Похожие презентации:
Отношение площадей подобных треугольников
1. ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ
2.
ТеоремаЕсли угол одного треугольника
равен углу другого треугольника,
то площади этих треугольников
относятся как произведение
сторон, заключающих равные
углы
3. Теорема: «Об отношении площадей подобных треугольников» Отношение площадей двух подобных треугольников равно квадрату
коэффициента подобия.Дано: ∆ABC ∾ ∆A1B1C1
Доказать:
C
Доказательство:
A
B
C1
A1
1.Так как по условию ∆ABC ∾ ∆A1B1C1, то
∠A=∠A1, значит
B1
2. Так как
ч.т.д.
4.
Дано: ∆ABC ∾ ∆A1B1C1,Найти: AC
Решение:
B
A
1.Так как по условию
то по т. «Об отношении площадей подобных
треугольников»:
C
2.Так как : ∆ABC ∾ ∆A1B1C1, а также
B1
A1
C1
AC и A1C1 – сходственные стороны, k=2, то
Ответ: AC=4,5 (м)