86.80K
Категория: МатематикаМатематика

Треугольники и окружности (задачи)

1.

Геометрия

2.

В треугольнике ABC биссектрисы AD и BF
пересекаются в точке O Известно, что точки
F, O, D, и C лежат на одной
окружности и что DF= 3 Найти площадь
треугольника ODF.

3.

а) Две окружности одинакового радиуса 5
пересекаются в точках A и B. На первой
окружности выбрана точка C, а на второй –
точка D. Оказалось, что точка B лежит на
отрезке CD, а ∠CAD = 90◦ . На перпендикуляре к
CD, проходящем через точку B, выбрана точка F
так, что BF = BD (точки A и F расположены по
разные стороны от прямой CD). Найдите длину
отрезка CF.
б) Пусть дополнительно известно, что BC = 6.
Найдите площадь треугольника ACF.

4.

В прямоугольном треугольнике ABC на катете
AC как на диаметре построена окружность,
которая пересекает гипотенузу AB в точке E.
Через точку E проведена касательная к
окружности, которая пересекает катет CB в
точке D. Найдите длину DB, если AE = 6, а BE = 2

5.

Окружность, построенная на
медиане BM равнобедренного
треугольника ABC как на диаметре, второй раз
пересекает основание BC в точке K.
а) Докажите, что отрезок BK втрое больше
отрезка CK.
б) Пусть указанная окружность пересекает
сторону AB в точке N. Найдите AB, если BK = 18
и BN = 17.
English     Русский Правила