44.01K
Категория: Математика
Похожие презентации:

# Master’s Theorem

Master’s Theorem

## 2.

The Master Theorem applies to recurrences of the
following form:
T (n) = a T (n/b) +f(n)
T (n) = a T (n-b) +f(n)
[f(n)=ϴ( nklogpn)]
[f(n)=0( nk)]
• a ≥ 1, b > 1,k>=0 are constants and p is real number

## 3.

For Decreasing Recursive Functions
T (n) = a T (n-b) +f(n)
[f(n)=0( nk)]
a ≥ 1, b > 1,k>=0 are constants and p is real number
Defined on value of a
Case 1 : a=1
T(n) = 0(f(n)*n) = 0(nk+1)
Case 2:
a>1
T(n) = 0(f(n)*an/b) = 0(nk an/b)

## 4.

For Decreasing Recursive Functions
T (n) = a T (n-b) +f(n)
[f(n)=0( nk)]
a ≥ 1, b > 1,k>=0 are constants and p is real number
Defined on value of a
Case 1 : a=1
T(n) = 0(f(n)*n) = 0(nk+1)
T(n)
= c + T(n-1)
= 1 + T(n-1)
= n + T(n-1)
= n2 + T(n-1)
= logn + T(n-1)
=> 0(n)
=> 0(n)
=> 0(n2)
=> 0(n3)
=> 0(nlogn)
T(n)
= 2T(n-1) + c
= 3T(n-1) + 1
= 2T(n-1) + n
= 2T(n-1) + log n
=> 0(2n)
=> 0(3n)
=> 0(n2n)
=> 0(log n.2n)
Case 2:
a>1
T(n) = 0(f(n)*an/b) = 0(nk an/b)

## 5.

The Master Theorem applies to recurrences of the following form:
T (n) = a T (n/b) +ϴ( nklogpn)
a ≥ 1, b > 1,k>=0 are constants and p is real number
log a and k]
There are 3 cases: [compare
b
1. If a>bk
then T (n) = Θ(n logba ).
2. If a=bk
a) If p> -1 then T(n)= Θ(n logba logp+1 n)
b) If p= -1 then T(n)= Θ(n logba log log n)
c) If p< -1 then T(n)= Θ(n logba)
3. If a<bk
a) If p>= 0 then T(n)= Θ(nk logp n)
b) a) If p< 0 then T(n)= Θ(nk )

## 6.

log a and k]
T (n) = a T (n/b) +ϴ( nklogpn) [compare
b
k
1.
If a>b
then
T (n) = Θ(n logb a ).
2. If a=bk
a)
If p> -1
then
T(n)= Θ(n logb a logp+1 n)
b)
If p= -1
then
T(n)= Θ(n logb a log log n)
c)
If p< -1
then
T(n)= Θ(n logb a)
3. If a<bk
a)
If p>= 0 then T(n)= Θ(nk logp n)
b)
a) If p< 0 then T(n)= Θ(nk )
1) T(n)= 4 T (n/2) + n2
2) T(n)= T (n/2) + n2
3) T(n)= 2n T (n/2) + nn
4) T(n)= 14 T (n/4) + n
5) T(n)= 2 T (n/2) + n log n
6) T(n)= 2 T (n/2) + n / log n
7) T(n)= 2 T (n/4) + n0.51
8) T(n)= 0.5 T (n/2) + 1/n
9) T(n)= 6 T (n/3) + n2 log n
10) T(n)= 64 T (n/8) - n2 log n
11) T(n)= 7 T (n/3) + n2
12) T(n)= 4 T (n/2) + log n
13) T(n)= 21/2 T (n/2) + n2 log n
14) T(n)= 2 T (n/2) + n1/2
[a=4, b=2, k=2, p=0]
[a=1, b=2, k=2, p=0]
[Not applicable]
[a=14, b=4, k=1, p=0]
[a=2, b=2, k=1, p=1]
[a=2, b=2, k=1, p=-1]
[a=2, b=4, k=0.51, p=0]
[a=0.5, b=2, k=-1, p=0]
[a=6, b=3, k=2, p=1]
[a=64, b=8, k=2, p=1]
[a=7, b=3, k=2, p=0]
[a=4, b=2, k=0, p=1]
[a=21/2, b=2, k=2, p=1]
[a=2, b=2, k=1/2, p=0]