Где используются комплексные числа в реальной жизни?
Вопросы для самоконтроля
709.50K
Категория: МатематикаМатематика

Комплексные числа и действия над ними

1.

«Комплексные числа и действия
над ними»

2.

Основные понятия
Комплексным числом z называется выражение вида z=a+ib, где a и
b – действительные числа, i – мнимая единица, которая определяется
соотношением:
i 2 1;
i 1.
При этом число a называется действительной частью числа z
(a = Re z), а b - мнимой частью (b = Im z).
Если a=Re z=0, то число z будет чисто мнимым, если b=Im z=0, то
число z будет действительным.
Числа z=a+ib и z a ib называются комплексно – сопряженными.
Два комплексных числа z1=a1+ib1 и z2=a2+ib2 называются равными, если
соответственно равны их действительные и мнимые части:
a1=a2;
b1=b2
Комплексное число равно нулю, если соответственно равны нулю
действительная и мнимая части
a=b=0.
Также комплексные числа можно записывать, например, в виде z=x+iy,
z=u+iv.

3.

Действия над комплексными числами
1) Действия над
алгебраической форме
комплексными
числами,
заданными
в
а) Сложение комплексных чисел
Суммой двух комплексных чисел z1=x1+y1i и z2=x2+y2i называется
комплексное число, определяемое равенством
z1+z2=(x1+x2)+i(y1+y2).
Свойства операции сложения:
1. z1+z2= z2+z1, закон коммутативности
2. (z1+z2)+z3=z1+(z2+z3), закон ассоциативности
3. z+0=z.
б) Вычитание комплексных чисел
Вычитание определяется как действие, обратное сложению.
Разностью двух комплексных чисел z1=x1+y1i и z2=x2+y2i называется
такое комплексное число z, которое, будучи сложенным с z2, дает число z1 и
определяется равенством
z=z1 – z2=(x1 – x2)+i(y1 – y2).

4.

в) Умножение комплексных чисел
Произведением комплексных чисел z1=x1+y1i и z2=x2+y2i называется
комплексное число, определяемое равенством
z=z1 z2=(x1 x2 –y1 y2 )+i(x1 y2 –x2 y1 ).
Отсюда, в частности, следует важнейшее соотношение
i2= – 1.
Свойства операции умножения:
1. z1z2= z2z1,-переместительное свойство
2. (z1z2)z3=z1(z2z3),-сочетательное свойство
3. z1(z2+z3 ) =z1z2+z1z3,-распределительное свойство
4. z∙1=z.

5.

г) Деление комплексных чисел
Деление определяется как действие, обратное умножению.
Частным двух комплексных чисел
z1 и z2≠0 называется
комплексное число z, которое будучи умноженным на z2, дает число z1,
z1
z , если z2 z = z1.
z2
Если положить z1=x1+y1i,
(x+yi)(x2+iy2)= x1+y1i, следует
т.е.
z2=x2+y2i≠0, z=x+yi, то из равенства
xx2 yy2 x1 ,
xy2 yx2 y1.
Решая систему, найдем значения x и y:
x1 x2 y1 y2
y1 x2 x1 y2
x
, y
.
2
2
2
2
x2 y 2
x2 y 2
Таким образом,
z
z1 x1 x2 y1 y2
y1 x2 x1 y2
i
.
2
2
2
2
z2
x2 y 2
x2 y 2

6.

На практике вместо полученной формулы используют следующий прием:
умножают числитель и знаменатель дроби
z1
на число, сопряженное
z2
знаменателю («избавляются от мнимости в знаменателе»).
Пример 2. Даны комплексные числа 10+8i, 1+i. Найдем их сумму,
разность, произведение и частное.
Решение.
а) (10+8i)+(1+i)=(10+1)+(8+1)i=11+9i;
б) (10+8i)–(1+i) =(10–1)+(8–1)i=9+7i;
в) (10+8i)(1+i) =10+10i+8i+8i2=2+18i;
10 8i (10 8i)(1 i) 10 10i 8i 8i 2 18 2i
г)
9 i.
2
1 i
(1 i)(1 i)
1 i
2

7.

д) Возведение комплексного числа, заданного в алгебраической
форме в n-ю степень
Выпишем целые степени мнимой единицы:
i 3 i 2 i ( 1)i i,
i 4 i 3 i ( i)i i 2 ( 1) 1,
i 5 i 4 i 1 i i,
i 6 i 5 i i 2 1 и т.д.
В общем виде полученный результат можно записать так:
i 4 n 1;
i 4 n 1 i;
i 4 n 2 1;
i 4 n 3 i (n 0, 1, 2, ...).
Пример 3. Вычислить i2092 .
Решение.
1) Представим показатель степени в виде n=4k+l
и воспользуемся
свойством степени с рациональным показателем z4k+1=(z4)k ∙ zl .
Имеем: 2092=4∙523 .
Таким образом, i2092 = i4∙523 =(i4)523, но так как i4=1, то окончательно
получим i2092 =1.
Ответ: i2092 =1.

8.

При возведении комплексного числа a+bi во вторую и третью степень
пользуются формулой для квадрата и куба суммы двух чисел, а при
возведении в степень n (n – натуральное число, n≥4) – формулой бинома
Ньютона:
a bi n a n n a n 1bi n(n 1) a n 2 (bi) 2 n(n 1)(n 2) a n 3 (bi)3 ...
1
1 2
1 2 3
n(n 1)...( n (k 1)) n k
a (bi ) k ... (bi ) n .
1 2 3 ... k
Для нахождения коэффициентов в этой формуле удобно пользоваться
треугольником Паскаля.

9.

е) Извлечение квадратного корня из комплексного числа
Квадратным корнем из комплексного числа
комплексное число, квадрат которого равен данному.
называется
такое
Обозначим квадратный корень из комплексного числа x+yi через u+vi,
тогда по определению
x yi u vi.
Формулы для нахождения u и v имеют вид
1
x x2 y2 ,
2
1
v
x x2 y2 .
2
u
(1)
Знаки u и v выбирают так, чтобы полученные u и v удовлетворяли
равенству 2uv=y .

10.

Пример 4. Извлечем квадратный корень из комплексного числа z=5+12i.
Решение.
Обозначим квадратный корень из числа z
(u+vi)2=5+12i.
через u+vi, тогда
Поскольку в данном случае x=5, y=12, то по формулам (1) получаем:
1
v 5 5 12 4;
2
u2
1
1
5 5 2 12 2 (5 13) 9;
2
2
2
2
2
u2=9; u1=3; u2= – 3; v2=4; v1=2; v2= – 2.
Таким образом, найдено два значения квадратного корня: u1+v1i=3+2i,
u2+v2i= –3 –2i, . (Знаки выбрали согласно равенству 2uv=y, т.е. поскольку
y=12>0, то u и v одного комплексного числа одинаковых знаков.)
Ответ:
5 12i 3 2i .

11.

Геометрическое изображение комплексных чисел
Всякое комплексное число z=x+iy можно изобразить точкой M(x;y)
плоскости xOy такой, что х = Re z, у = Im z. И, наоборот, каждую точку
M(x;y) координатной плоскости можно рассматривать как образ
комплексного числа z=x+iy (рисунок 1).
y
y
M(x; y)
0
x
x
Рисунок 1
Плоскость, на которой изображаются комплексные числа, называется
комплексной плоскостью.
Ось абсцисс называется действительной осью, так как на ней лежат
действительные числа z=x+0i=x .
Ось ординат называется мнимой осью, на ней лежат мнимые
комплексные числа z=0+yi=yi.

12.

r
OM ,
Часто вместо точек на плоскости берут их радиус-векторы
т.е. векторы, началом которых служит точка O(0;0), концом M(x;y) .
Длина вектора r , изображающего комплексное число z, называется
модулем этого числа и обозначается | z| или r.
Величина
угла между положительным направлением действительной оси
и вектором r , изображающим комплексное число, называется аргументом
этого комплексного числа, обозначается Arg z или φ.
Аргумент комплексного числа z=0 не определен.
Аргумент комплексного числа z≠0 - величина многозначная
определяется с точностью до слагаемого 2πk (k=0,-1,1,-2,2,..) :
и
Arg z=arg z+2 πk,
где arg z - главное значение аргумента, заключенное в промежутке
(- π, π].

13.

Формы записи комплексных чисел
Запись числа в виде z=x+iy называют
комплексного числа.
алгебраической формой
Из рисунка 1 видно, что x=rcosφ, y=rsinφ, следовательно, комплексное
z=x+iy число можно записать в виде:
z x iy r cos ir sin r (cos i sin ).
Такая форма записи называется тригонометрической
записи комплексного числа.
Модуль r=|z| однозначно определяется по формуле
r x2 y2 .
Аргумент φ определяется из формул
x
y
y
cos ; sin ; tg .
r
r
x
формой

14.

При переходе от алгебраической формы комплексного числа к
тригонометрической
достаточно определить лишь главное значение
аргумента комплексного числа, т.е. считать φ=arg z.
y
Так как arg z , то из формулы tg
получаем, что
x
y
- для внутренних точек I, IV четвертей;
arg z arctg
x
y
arg z arctg - для внутренних точек II четверти;
x
y
arg z arctg - для внутренних точек III четверти.
x
1
3
Пример 1. Представить комплексные числа z1 1 i и z 2 i
2
2
тригонометрической форме.
в

15.

Решение.
Комплексное число z=x+iy в тригонометрической форме
y
x y , arctg .
x
1) z1=1+i (число z1 принадлежит I четверти), x=1, y=1.
1
2
2
arctg
arctg
1
.
r 1 1 2,
1
4
Таким образом, z1 2 cos i sin .
4
4
1
3
1
3
2) z 2
i (число z2 принадлежит II четверти) x , y
.
2
2
2
2
имеет вид z=r(cosφ +isinφ), где r
2
1 3
r
1,
2 2
2
2
2
arctg 3 .
Так как z2 II ч., то Arg z 2
3
3
2
.
3
2
2
i sin
Следовательно, z 2 cos
.
3
3
2
2
i sin
.
Ответ: z1 2 cos i sin , z 2 cos
4
4
3
3

16.

Рассмотрим показательную функцию w=ez, где z=x+iy - комплексное число.
Можно показать, что функция w может быть записана в виде:
w e x iy e x (cos y i sin y)
Данное равенство называется уравнением Эйлера.
Для комплексных чисел будут справедливы следующие свойства:
1)
e z1 z2 e z1 e z2 ;
z1 z 2
e z1
z2 ;
e
2)
e
3)
(e z ) m e mz ; где m – целое число.
Если в уравнении Эйлера показатель степени принять за чисто мнимое
число (х=0), то получаем:
iy
e cos y i sin y.
Для комплексно – сопряженного числа получаем:
e iy cos y i sin y

17.

Из этих двух уравнений получаем:
eiy e iy
,
cos y
2
iy
iy
e
e
sin y
.
2i
Этими формулами пользуются для нахождения значений степеней
тригонометрических функций через функции кратных углов.
Если представить комплексное число в тригонометрической форме
z=r(cosφ +isinφ)
и воспользоваться формулой Эйлера eiφ=cosφ+isinφ, то комплексное
число можно записать в виде
z=r eiφ
Полученное равенство
комплексного числа.
называется
показательной
формой

18.

Действия
над
комплексными
числами,
заданными в тригонометрической форме
Рассмотрим два комплексных числа
тригонометрической форме
z1
и z2 , заданных в
z1 r (cos i sin ), z 2 (cos i sin ).
а) Произведение комплексных чисел
Выполняя умножение чисел z1 и z2 , получаем
z1 z 2 r cos i sin cos i sin
r cos cos i cos sin i sin cos sin sin
r cos cos sin sin i cos sin sin cos ,
z1 z 2 r cos i sin

19.

б) Частное двух комплексных чисел
Пусть заданы комплексные числа
z1 и z2 ≠ 0.
z1
, имеем
Рассмотрим частное
z2
z1 r (cos i sin )
r (cos i sin ) cos i sin
z 2 (cos i sin ) cos i sin cos i sin
r cos cos sin sin i sin cos cos sin
,
2
2
cos sin
z1 r
cos i sin
z2

20.

Пример 5. Даны два комплексных числа z1
2 cos i sin ,
4
4
z2
2
2
Найдите
z1 z 2 ,
.
z 2 2 cos
i sin
.
3
3
z1
Решение.
1) Используя формулу
получаем
z1 z2 r1r2 cos 1 2 i sin 1 2 ,
2
2
z1 z2 2 2 cos
i sin
.
4 3
4 3
11
11
z
z
2
2
cos
i
sin
.
Следовательно,
1
2
12
12
z1 r1
2) Используя формулу
cos 1 2 i sin 1 2 ,
z 2 r2
получаем
z2
2 2
2
cos
i
sin
.
z1
2 3 4
3 4
z1
5
5
2 cos
i sin
Следовательно,
.
z2
12
12
4
4 z1
5
5
z
2
cos
i
sin
,
2
cos
i
sin
Ответ:
.
3
3 z2
12
12
.
.

21.

в)
Возведение
комплексного
числа,
тригонометрической форме в n-ю степень
заданного
в
Из операции умножения комплексных чисел следует, что
z 2 zz r 2 (cos 2 i sin 2 ).
В общем случае получим:
r (cos i sin ) n r n (cosn i sin n )
(2)
где n– целое положительное число.
Следовательно, при возведении комплексного числа в степень модуль
возводится в ту же степень, а аргумент умножается на показатель
степени.
Выражение (2) называется формулой Муавра.

22.

Пример 6. Найти формулы sin2 и cos2 .
Решение.
Рассмотрим некоторое комплексное число z r (cos i sin ).
Тогда с одной стороны z 2 r 2 (cos 2 2i cos sin sin 2 ).
По формуле Муавра: z 2 r 2 (cos 2 i sin 2 ).
Приравнивая, получим cos 2 i sin 2 cos 2 sin 2 2i cos sin .
Т.к. два комплексных числа равны, если равны их действительные и
мнимые части, то
cos2 cos2 sin 2 ,
sin 2 2 sin cos .
Получили известные формулы двойного угла.

23.

г) Извлечение корня п-ой степени из комплексного числа
Корнем п-ой степени из комплексного числа z называется
n
комплексное число w, удовлетворяющее равенству wn=z, т.е. z w, если
wn=z.
Если положить z r (cos i sin ), а w (cos i sin ),
определению корня и формуле Муавра, получаем
z wn (cos i sin ) r cos i sin .
n
Отсюда имеем
n 2 k , k Z .
2 k
n
.
То есть r ,
n
n
r,
Поэтому равенство
n
z w принимает вид
n z n r cos 2 k i sin 2 k
n
где k 0, n 1 (т.е. от 0 до n-1).
n
то, по

24.

Таким образом, извлечение корня n-ой степени из комплексного числа
z всегда возможно и дает n различных значений. Все значения корня n-ой
степени расположены на окружности радиуса
n z с центром в нуле и
делят эту окружность на n равных частей.
Пример 7. Найти все значения 3 1 i
3.
Решение.
Вначале представим число
z 1 i 3 в тригонометрической форме.
x=1, y 3, таким образом, r 1 3 4 2,
3
arctg
arctg 3 .
1
3
Следовательно, z 2 cos i sin .
3
3
2 k
2 k
n r cos i sin n r cos
i
sin
,
Используя формулу
n
n
где k=0,1,2,…,(n-1), имеем:
В данном случае

25.

2
k
2
k
3
3
3
3
, k 0, 1, 2.
z 2 cos
i sin
3
3
Запишем все значения
3
z:
3
k
0
,
z
2
cos
i
sin
при
;
0
9
9
7
7
при k 1, z1 2 cos
i sin
;
9
9
3
при k 2, z 2 3 2 cos
13
13
i sin
.
9
9
7
7
3
i sin
Ответ: z 0 2 cos i sin ; z1 2 cos
;
9
9
9
9
13
13
3
z 2 2 cos
i sin
.
9
9
3

26. Где используются комплексные числа в реальной жизни?


Электротехника и электроника:
– Расчеты в переменных тока, анализ электрических цепей, моделирование электронных схем.
Теория управления и автоматика:
– Анализ и проектирование систем управления, применение комплексных частот при анализе
систем.
Инженерия:
– Решение задач в механике и акустике, анализ колебаний и волн.
Физика:
– Квантовая механика и описание квантовых состояний, моделирование физических процессов.
Информатика и обработка сигналов:
– Применение комплексных чисел в алгоритмах обработки сигналов, например, в анализе
изображений и аудиосигналов.
Аэродинамика и механика жидкостей:
– Моделирование потоков жидкости и воздуха, анализ волновых процессов.
Телекоммуникации:
– Модуляция и демодуляция сигналов, расчеты в телекоммуникационных системах.
Финансы и экономика:
– Моделирование финансовых временных рядов и анализ рисков.
Медицина:
– Обработка медицинских данных, анализ биологических сигналов, например, в ЭКГ и ЭЭГ.
Квантовая физика:
– Описание состояний квантовых систем и эффектов, таких как квантовая интерференция.

27. Вопросы для самоконтроля

1. Сформулируйте определение комплексного числа.
2. Какое комплексное число называется чисто мнимым?
3. Какие два комплексных числа называются сопряженными?
4. Объясните, что значит сложить комплексные числа, заданные в
алгебраической форме; умножить комплексное число на действительное.
5.
Объясните
принцип
деления
комплексных
чисел,
заданных
в
алгебраической форме.
6.
Запишите в общем виде целые степени мнимой единицы.
7. Что означает возведение комплексного числа, заданного алгебраической
формой в степень ( n- натуральное число)?
8.
Расскажите как изображаются комплексные числа на плоскости.

28.

9.
Какая форма записи называется тригонометрической формой
комплексных чисел?
10. Сформулируйте определение модуля и аргумента комплексного
числа.
11. Сформулируйте правило умножения комплексных чисел, записанных
в тригонометрической форме.
12. Сформулируйте правило нахождения частного двух комплексных
чисел, заданных в тригонометрической форме.
13. Сформулируйте правило возведения в степени комплексных чисел,
заданных в тригонометрической форме.
14. Сформулируйте правило извлечения корня n-ой степени из
комплексного числа, заданного в тригонометрической форме.
15.
Расскажите о значении корня n-ой степени из единицы и о сфере
его применения.
English     Русский Правила