26.69M
Категория: СтроительствоСтроительство
Похожие презентации:

Восстановление разрушенного моста через реку Сейсм в Курской области Глушковском районе

1.

Уздин А.М.1, Егорова О.А.2, Коваленко А.И.31 ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА
[email protected]ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I, [email protected]
3
Организация Сейсмофонд СПБ ГАСУ [email protected]
Восстановление разрушенного моста через реку Сейсм в Курской области Глушковском районе
пролетного строения автомобильного мостового сооружения шпренгельным способом с использованием
устройство для гашения ударных и вибрационных воздействий (RU 167977) RU 1143895, 1168755, 1174616,
2010136746, 165076, 1760020, 858604, 2550777) на основании расчета и технологии применения теории трения
, фрикционно- подвижных соедеинеий, с ипользованием гнутосварных замкнутых профилей
прямоугольного сечения типа "Молодечно"(серия 1.460.3.14) для сейсмоопасных районов МПК E
01 D 22 /00 RU 2024106532 (Способ Уздина) RU 2024106154 (имени В В Путина) RU 2023135557
(Антисейсммическое фланцевое) RU 2023121476 (Пластический шарнир повышение сейсмостойкости
) RU 2024100839 (Новокисловодск)

2.

СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных
Доклад для V Международной научно-практической конференции по сейсмостойкому строительству 9-14 сентября 2024 г., г. Бишкек и ИссыкКуль, Кыргызская Республика Место проведения разделено
на две части: первая часть в г. Бишкек «Sofia International Hotel» - торжественное открытие, заказные и пленарные доклады; выставка;
награждения; круглые столы; техническая экскурсия; вторая часть на
Иссык-Куле - секционные заседания; культурная программа; заключительное пленарное заседание с принятием резолюции [email protected]
[email protected]
СПб ГАСУ "Сейсмофонд" https:/t.me/resistance_test [email protected] [email protected] [email protected]
[email protected] [email protected] т/ф (812) 694-78-10 (921) 962-67-78 (911) 175-84-65 (981) 739-44- 97 Зам президента ОО "Сейсмофонд"
СПб ГАСУ Коваленко Елена Ивановна Для конференции ICSBE 2024
"Устойчивое развитие при проектировании мостов" Лондон 09 -10 декабря 2024 ICSBE 2024: 18. International Conference on Sustainability in Bridge Engineering [email protected]
26‒27 сентября 2024 года в Санкт-Петербурге в отеле Азимут Сити (Лермонтовский просп., 43/1) состоится 3-я международная
конференция и выставка «Дорожное строительство в России: мосты и искусственные сооружения».
.
ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Уздин А.М.1, Егорова О.А.2, Коваленко А.И.31
ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I
[email protected]ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
ИМПЕРАТОРА АЛЕКСАНДРА I, [email protected] 3Организация Сейсмофонд СПБ ГАСУ [email protected]
Восстановление разрушенного моста через реку Сейсм в Курской области Глушковском районе пролетного строения
автомобильного мостового сооружения шпренгельным способом с использованием устройство для гашения ударных и
вибрационных воздействий (RU 167977) RU 1143895, 1168755, 1174616, 2010136746, 165076, 1760020, 858604, 2550777) на
основании расчета и технологии применения теории трения , фрикционно- подвижных соедеинеий, с ипользованием
гнутосварных замкнутых профилей прямоугольного сечения типа "Молодечно"(серия 1.460.3 .14) для
сейсмоопасных районов МПК E 01 D 22 /00 RU 2024106532 (Способ Уздина) RU 2024106154 (имени В В Путина)
RU 2023135557 (Антисейсммическое фланцевое) RU 2023121476 (Пластический шарнир повышение
сейсмостойкости ) RU 2024100839 (Новокисловодск)
Именно через эти мосты осуществляется снабжение нашей группировки (а также через них осуществляется
эвакуация гражданских лиц). Потеря этих мостов может привести к захвату противником всего района, который
представляет для него интерес (южнее реки Сейм). Более 30 населѐнных пунктов оказались отрезаны, эвакуация
мирного населения теперь возможна лишь по воде. Кроме того, ВСУ наносят удары по мосту в селе Званное.
Тезисы доклада организации "Сейсмоофнд" СПб ГАСУ: "Способ шпренгельного
усиления пролетного строения мостового сооружения с использованием

3.

трехгранных балочных ферм, для сейсмоопасных районов" Для дистнционного
доклада на VII Международной конференции для заводов металлоконструкций,
проектировщиков и подрядчиков, которая пройдет 25-26 марта 2024 года,
[email protected] [email protected] (996) 785-62-76, (921)944-6710, (911) 175-84-65, т/ф (812) 694-78-10 https://t.me/resistance_test СПб ГАСУ
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных
А.М. Уздин , О.А. Егорова, И.А.Богданова, А.И.Коваленко, В.К.Елисеева,
Я.К.Елисеева, Е.И.Коваленко, Политехнический Университет , ПГУПС,
СПб ГАСУ, организация «Сейсмофонд»
Аннотация: В статье способ шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов, рассматривается проблема реконструкции
мостовых сооружений, а именно восстановление грузоподъемности,
снизившейся в процессе многолетней эксплуатации. Отмечена актуальность
исследования, его цели и задачи. Предложена классификация конструкций
усиления по различным признакам. Разобраны часто используемые на
практике ввиду усилений мостов их достоинства и недостатки. Изложенный
материал иллюстрирован фотографиями объектов. Представлен
современный способ усиления на основе использования углеродного

4.

композита. Отмечены значительные недостатки этого способа для усиления
мостов и его модификация, использующая натяжное устройство для
закрепления и натяжения углеродных ламелей.
Представлены основные выводы.
Ключевые слова: мост, усиление, реконструкция, шпренгель, углеродный
композит, ламель, грузоподъѐмность, несущая способность, натяжение.
Введение
Развитие автомобильного транспорта в Российской Федерации остается
приоритетной задачей и сейчас и в будущем. Железнодорожный транспорт
может конкурировать с автомобильным только при перевозках на очень
большие расстояния. В других случаях выигрыш остается за
автотранспортом и по времени, и в стоимости. Для успешного
функционирования автомобильного транспорта необходимо поддерживать в
хорошем состоянии существующие дороги и развивать современную сеть
автомобильных дорог. Есть устойчивое экспертное мнение, и с ним
согласны экономисты, что нет ни одного случая успешного экономического
развития региона без опережающего развития национальной сети
автомобильных дорог высшей технической категории.

5.

Это мнение основано на детальных экономических исследованиях,
проводимых по итогам реализации проекта Highway Interstate System в
США. Еще более мощные позитивные эффекты обеспечит реализация
аналогичного китайского проекта National Trunk Road System of China. Этот
проект позволил создать суммарную протяженность сети межрегиональных
дорог высших технических категорий к концу 2015 года 120 тыс. км [1].
Строительство автодорог высшей технической категории требует
огромных капиталовложений, поэтому экономное расходование средств на
обслуживание существующей инфраструктуры дорог является актуальной
проблемой. Мостовые сооружения на дорогах, построенные десятки лет
назад, не исчерпали свой ресурс, но перестали удовлетворять
предъявляемым к ним требованиям частично из-за физического износа,
частично из-за изменившихся требований. Вернуть мостовым сооружениям
их функциональные качества при незначительных финансовых затратах задача эксплуатирующих организаций, и, в целом, дорожного комплекса.
Цели и задачи исследования способа шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных
ферм для сейсмоопасных районов

6.

Мосты и в прежние времена ремонтировали и реконструировали.
Сложнейшей задачей реконструкции является восстановление или
увеличение его грузоподъемности. В современных условиях выбрать
подходящий способ увеличения грузоподъемности - сложная задача
проектирования. Требуется провести обзор имеющихся способов
увеличения грузоподъемности мостов, выявить их достоинства и
недостатки. Здесь следует учитывать не только особенности усиливаемого
сооружения, многообразие известных способов усиления, но и
квалификацию и имеющееся оборудование подрядной организации,
выполняющей комплекс необходимых работ.
Работы по усилению пролетных строений мостов выполняются наряду с
ремонтными работами, исправляя накопившиеся дефекты. Для выявления и
фиксации дефектов проводится обследование мостового сооружения и его
диагностика [2,3].
В задачи обследования входят также изучение условий работы мостового
сооружения, выявление причин, вызывающих появления неисправностей и
их влияние на долговечность, безопасность и грузоподъемность. Целью все
этих мероприятий является восстановление эксплуатационных качеств
мостовых сооружений в сложившихся условиях [4].

7.

Материалы и методы исследования Конструкции усиливающие пролетные
строения мостов можно рассматривать в соответствии с предлагаемой
классификацией, представленной в таблице 1.
Эта классификация позволяет провести анализ конструкций усиления с
разных точек зрения.
таблица 1 Классификация конструкций усиления мостов
таблица 1 Классификация конструкций усиления мостов
1
По материалу
металлическое
По толщине
конструкции
до 2 см
По способу
работы усиления
не напрягаемые
По расчетной
схеме
с изменением расчетной схемы
неметаллическое
2
до 10 см
до 20 см
более 20 см
3
напрягаемые
4

8.

конструкции
усиления
без изменения расчетной схемы
5
По способности
воспринимать
постоянные
нагрузки
сооружения
только временные нагрузки
постоянные и временные нагрузки
1 По материалу металлическое неметаллическое
2 По толщине конструкции до 2 см
до 10 см до 20 см более 20 см
3 По способу работы усиления
не напрягаемые напрягаемые
4 По расчетной схеме конструкции усиления
с изменением расчетной схемы без изменения расчетной схемы
5 По способности воспринимать постоянные нагрузки сооружения
только временные нагрузки постоянные и временные нагрузки

9.

Усиление пролетных строений с увеличением площади поперечного сечения
несущих конструкций. Эти способы увеличивают несущую способность
конструкций, незначительно снижают подмостовой габарит. Вместе с тем
ликвидируют все дефекты сечения, такие, как сколы, трещины, отслоение и
разрушение защитного слоя бетона. Нет необходимости и выполнять
ремонтные работы.
К недостаткам относятся увеличение собственного веса, «мокрые»
процессы, необходимость опалубки, сложности укладки бетонной смеси и
ее вибрирование. А также сама конструкция усиления не воспринимает
усилия от постоянного веса сооружения, что в железобетонных мостах
является большей частью полной нагрузки.
Этот способ применен для усиления крайних (наиболее напряженных) арок
Астраханского моста в Волгограде (Рис.1) при его реконструкции.
Применить другие способы усиления здесь не представлялось возможным
из-за кривизны профиля.
Рис. 1. Усиление крайних арок моста в Волгограде

10.

Усиление балочных пролетных строений шпренгелями способно, в
зависимости от конструктивной схемы, воспринимать не только
изгибающие моменты, но и поперечные силы в приопорных зонах.
Здесь нет «мокрых» процессов, поэтому работы можно проводить в любое
время года. Конструкция усиления представлена на рисунке 2:
многоэлементная,
Рис. 2. Шпренгельное усиление мостовой балки [5]. крепится к балке (1)
анкерами (3) и состоит из стального стержня или троса (4), соединяемого
муфтой (2).

11.

Стержню придают заданную форму стойки (5) и раскосы (6). Муфта имеет
резьбу и при закручивании создает усилие в стержне - выбирает люфты.
Усилие в тросе определяется расчетом статически неопределимой системы
методом сил.
Такую конструкцию необходимо защищать от коррозии. К недостаткам
относится значительная высота усиления, что уменьшает подмостовой
габарит. Не следует использовать на путепроводах. Существует несколько
модификаций шпренгельных затяжек: треугольные, линейные,
укороченные.
Все они расчитываются, устраиваются и работают одинаково. Возможно
устройство прямых шпренгелей, которые не уменьшают подмостовой
габарит. Однако такое усиление воспринимает меньший изгибающий
момент за счѐт малого плеча используемых усилений является усиление
наклеиванием швеллера на

12.

Рис. 3. Усиление балок путепровода в Волгограде. ребро мостовой балки
(Рис. 3).
Этот вид усиления наиболее прост в исполнении, не уменьшает габарит.

13.

Может применяться только на балках из обычного железобетона и
воспринимать небольшие изгибающие моменты из-за малого плеча
внутренней пары и использования швеллера из обычной стали.
Одним из лучших усилений следует считать усиление напрягаемыми
пучками высокопрочной проволоки, представленной на рисунке
4. Это усиление воспринимает как временную нагрузку, так и постоянную.
При соответствующем креплении и усилии натяжения оно способно
значительно повысить несущую способность пролетного строения. Так
можно усиливать любые балки мостов. Однако натяжение - сложный
процесс, требует грамотного инженерного решения и исполнения.
Сложности связаны с креплением троса и установкой домкратов, а также с
равномерностью передачи усилия натяжения. Поэтому этот способ не всегда
применяется или часто реализуется не в полном объеме с недогрузкой
пролетных строений [6].

14.

Рис. 4. Усиление напрягаемым пучком [7].
В последнее десятилетие активно развиваются способы усиления
строительных конструкций, основанные на использовании композиционных
материалов [8, 9]. Композиционные материалы в виде лент из углеродных
волокон применяются при реконструкции мостовых сооружений, чему
посвящено целый ряд исследований [10-13].

15.

Преимуществами способ шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов, по сравнению с традиционными материалами и
методами усиления являются малый собственный вес элементов усиления,
малые габаритные размеры, высокая коррозионная стойкость, простота
исполнения, проведение работ по усилению без перерыва движения по
мостам.
Мостостроительные организации, для того, чтобы легализовать применение
углеродных лент и ламелей, провели испытания усиленных конструкций и
создали свои ведомственные нормативные документы (Стандарт
организации. СТО - 01 - 2011).
Однако до сих пор нет государственного стандарта на прочностные качества
углеволокна, есть только рекомендации производителя, а это не одно и то
же. Усиление углеволоконными лентами не может воспринимать
постоянные нагрузки от сооружения и обычные временные, так как работы
ведутся без остановки движения по мосту. Таким образом усиление не
разгружает перенапряженные несущие конструкции, а только предохраняет
от возможно большего нагружения. Перед применением такого усиления
необходимо выполнить ремонт пролетных строений, так как ленты
наклеиваются на ровную поверхность. Ленты закрепляются приклеиванием

16.

к усиливаемой конструкции, и если в процессе эксплуатации произойдет
отклеивание, то возможно разрушение пролетного строения.
Можно устранить ряд недостатков традиционного использования
углеволоконных ламелей и нового способ шпренгельного усиления
пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов если
использовать устройство их натяжения, предложенного в исследовании [14].
Способ шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов с использованием, натяжение ламели устранит
угрозу отклеивания, позволит воспринять частично усилия от временной и
постоянной нагрузки и повысит надежность конструкции усиления, и в
целом мостового сооружения.
Выводы
1. Многообразие способов увеличения грузоподъемности мостов с
использованием способа А.М.Уздина (ПГУПС) шпренгельного усиления
пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов позволяет
избрать наиболее эффективный , это способ шпренгельного усиления

17.

пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов.
2. При выборе способа усиления следует рассматривать все подходящие
способы с учетом особенностей сооружения условий эксплуатации и
квалификацию исполнителя.
3. Неверный выбор способа усиления и напряжения в тросах не
способствует разгружению несущих конструкций пролетного строения,
которые продолжают испытывать завышенные напряжения и, накапливая
дефекты, постепенно разрушаются.
4. При устройстве усиления выбранным способом, всегда следует
предусматривать мероприятия по разгрузке пролетного строения, с тем,
чтобы конструкция усиления в своей работе могла воспринимать как
временную нагрузку, так и часть постоянной.

18.

19.

Саботаж без прикрас Рецидивы тоталитарного либеразма в ФИПСе
Способ усиления основания пролетного строения мостового сооружения с
иcпользованием подвижных треугольных балочных ферм для
сейсмоопасных районов имени В В Путина RU 2024106154 МПК Е 01 D
21/06
A method for strengthening the base of the superstructure of a bridge structure using movable triangular girder trusses for earthquake-prone areas named after V. V.
Putin
Наш номер ФИПС Роспатент 2024106154 20 013574 При переписке
просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Федеральная служба по интеллектуальной собственности Федеральное
государственное бюджетное
> учреждение
ff «Федеральный институт ' промышленной собственности» (ФИПС)
Бережковская наб., 30, корп. 1, Москва, Г -59, ГСП-3, 125993 Телефон (8499) 240- 60- 15. Факс (8-495) 531-63- 18
На № - от Наш № 2024106154/20(013574)
При переписке просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Г,
Коваленко А.И.

20.

пр. Королева, 30, корп. 1, кв. 135
Санкт-Петербург
197371
В результате рассмотрения дополнительных материалов, поступивших в
ФИПС 04.06.2024, сообщаем следующее.
Уведомляем заявителя, переписка, а также подача документов заявки в
Роспатент посредством использования электронной формы подачи
обращений в Роспатент, а также с использованием электронной почты
действующими нормативными документами не предусмотрена.
200103
05
ДОТ 04.06.2024
Обращаю Ваше внимание, что электронная почта Роспатента и ФИПС, а
также сервис по направлению электронных обращений не относятся к
сервисам электронной подачи документов заявки.
Кроме того ведение переписки по уже поданной заявке через сайт ЕПГУ
не предусмотрено.
Представленные через электронную почту ходатайства и документы не
могут быть признаны оформленными надлежащим образом, поскольку не
содержат усиленной квалифицированной электронной подписи, то есть не

21.

обладают дополнительными признаками защищѐнности: ключом проверки и
подтверждѐнными средствами электронной подписи.
Таким образом, заявителю необходимо представить ответ на запрос
формальной экспертизы от 16.04.2024 оформленный надлежащим образом и
подписанный в установленном порядке.
Также уведомляем заявителя, что в соответствии с п.З ст. 1384 Кодекса
срок ответа на запрос от 16.04.2024 истекает 16.07.2024.
* Правила составления, подачи и рассмотрения документов,
являющихся основанием для совершения юридически значимых действий
но государственной регнстрании полезных моделей, и их формы
утверждены приказом Минэкономразвития России от 30.09.201S N 701,
зарегистрированы 25.12.2015, регистрационный N 40244.
Главный специалист отдела формальной экспертизы заявок на изобретения
ФИПС
Документ подписан электронной подписью
•>ртификлте
Сертификат
049563В1003ЕВ1728043ВВВ5130CA2C6DO Владелец Горбунов
Тимофей Александрович Срок действия с 25.03.2024 по 25.03.2025
Т. А. Горбунов 8(499) 240-55-63

22.

ФИПС
Бсрсжковскаи наб.
дом 30, корп. 1 г. Москва, 125993
РОССИЯ • RUSSIA ПОЧТА
0002900
240624
Москва 125993
коп РВ 570630
Г,
Коваленко А.И.
пр. Королева, 30, корп. 1, кв. 135
Санкт-Петербург
И
197371
В соответствии с п. 12 Правил* заявка, заявления и материалы,
касающиеся предоставления государственных услуг, Вы можете подать в
Роспатент:

23.

при личном обращении в окно приема документов непосредственно в
Роспатент;
2) отправлением через организацию связи;
3) по факсу с последующим представлением оригиналов документов,
переданных по lib
факсу, в соответствии с пунктом 15 Правил*;
• 4) с использованием специальных сервисов для электронной подачи
заявок на сайтах Роспатента и ФИПС;
5)с использованием федеральной государственной информационной
системы «Единый портал государственных услуг и муниципальных услуг
(функций)» (ЕПГУ).
001

24.

25.

26.

27.

Наш номер ФИПС Роспатент 2024106154 20 013574 При переписке просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Федеральная служба по интеллектуальной собственности Федеральное государственное бюджетное
>
учреждение
ff «Федеральный институт ' промышленной собственности» (ФИПС)
Бережковская наб., 30, корп. 1, Москва, Г -59, ГСП-3, 125993 Телефон (8-499) 240- 60- 15. Факс (8-495) 531-63- 18
На № - от Наш № 2024106154/20(013574)
При переписке просим ссылаться на номер заявки
Исходящая корреспонденция от 20.06.2024
Г,
Коваленко А.И.
пр. Королева, 30, корп. 1, кв. 135
Санкт-Петербург
197371
В результате рассмотрения дополнительных материалов, поступивших в ФИПС 04.06.2024, сообщаем
следующее.
Уведомляем заявителя, переписка, а также подача документов заявки в Роспатент посредством
использования электронной формы подачи обращений в Роспатент, а также с использованием электронной почты
действующими нормативными документами не предусмотрена.
200103
05
ДОТ 04.06.2024
Обращаю Ваше внимание, что электронная почта Роспатента и ФИПС, а также сервис по направлению
электронных обращений не относятся к сервисам электронной подачи документов заявки.
Кроме того ведение переписки по уже поданной заявке через сайт ЕПГУ не предусмотрено.
Представленные через электронную почту ходатайства и документы не могут быть признаны оформленными
надлежащим образом, поскольку не содержат усиленной квалифицированной электронной подписи, то есть не
обладают дополнительными признаками защищѐнности: ключом проверки и подтверждѐнными средствами
электронной подписи.
Таким образом, заявителю необходимо представить ответ на запрос формальной экспертизы от 16.04.2024
оформленный надлежащим образом и подписанный в установленном порядке.
Также уведомляем заявителя, что в соответствии с п.З ст. 1384 Кодекса срок ответа на запрос от 16.04.2024
истекает 16.07.2024.
* Правила составления, подачи и рассмотрения документов, являющихся основанием для совершения
юридически значимых действий но государственной регнстрании полезных моделей, и их формы утверждены
приказом Минэкономразвития России от 30.09.201S N 701, зарегистрированы 25.12.2015, регистрационный N
40244.
Главный специалист отдела формальной экспертизы заявок на изобретения ФИПС
Документ подписан электронной подписью
•>ртификлте
Сертификат
049563В1003ЕВ1728043ВВВ5130CA2C6DO Владелец Горбунов
Тимофей Александрович Срок действия с 25.03.2024 по 25.03.2025

28.

Усиления пролетного строения мостового сооружения с использованием треугольных балочных ферм
https://ppt-online.org/1534224
Усиления пролетного строения мостового сооружения с использованием треугольных балочных ферм для сейсмоопасных районов
https://ppt-online.org/1511456
Благодарим Вас за обращение в КПРФ! Re: Для конференции ICSBE 2024 Устойчивое развитие при проектировании мостов Лондон 09- 10 декабря 2024
ICSBE 2024 18 International Conference on Sustainability in Bridge Engineering December 09 10 2024 in London United Kingdom и для конференция в США по
проектированию мостов в 2024 году (BEI-2024) 22 - 25 июля 2024 г. 3801 Las Vegas Blvd S Лас-Вегас , Невада, США Доклад научное сообщение , сборник
тезисов, организации Сейсмофонд СПб ГАСУ для конференции Bridge Engineering Institute (BAY), которая пройдѐт с 22 по 25 июля 2024 года в Лас-Вегасе,
США. Это официальное мероприятие Института мостостроительной инженерии
Входящие
Отдел писем ЦК КПРФ Эл. адрес
пн, 20 мая, 13:29 (7 дней назад)
кому: мне
Здравствуйте!
Благодарим Вас за обращение в КПРФ!
Подтверждаем его получение и принятие в работу.
По всем вопросам, связанным с Вашим обращением, просим писать на данный электронный адрес.
Отдел по работе с обращениями граждан
Аппарата фракции КПРФ в Государственной Думе ФС РФ
https://mail.google.com/mail/u/3/?pli=1#inbox/FMfcgzGxTPBXlrXrKKNfGkqdLjHrDlzm
https://dzen.ru/a/ZksZSyTMUw_RSZlP
Для конференции ICSBE 2024 Устойчивое развитие при проектировании мостов Лондон 09- 10 декабря 2024 ICSBE 2024 18 International Conference on Sustainability in
Bridge Engineering December 09 10 2024 in London United Kingdom и для конференция в США по проектированию мостов в 2024 году (BEI-2024) 22 - 25 июля 2024 г. 3801
Las Vegas Blvd S Лас-Вегас , Невада, США

29.

Доклад научное сообщение , сборник тезисов, организации Сейсмофонд СПб ГАСУ для конференции Bridge Engineering Institute (BAY), которая пройдѐт с 22 по
25 июля 2024 года в Лас-Вегасе, США. Это официальное мероприятие Института мостостроительной инженерии (Bridge Engineering Institute). Оно станет форумом для
международных исследователей и практиков со всего мира» (812) 694-78-10
Краткие тезисы докладов Авторы научной публикации изобретатели ПГУПС проф дтн Уздин А М доц кэн Егорова О А инженер строитель Богданова И А
аспирант ПГУПС Коваленко А И
Шпренгельное усиление с демпфирующими амортизаторами из автопокрышек для повышение грузоподъемности пролетного строения металлических
железнодорожных мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110 метров (Пролетное строение пролетами 33 -55
метра) ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ "Сейсмофонд" ОГРН: 1022000000824 ИНН 2014000780 (911) 175-84-65,
(921) 962-67-78
"СПОСОБ усиления основания пролетного строения мостовго сооружения с использованием подвижных треугольных балочных ферм для сейсмоопасных
района имени В.В.Путина" RU 2024106154 МПК E 01 D 21 /06 https://t.me/resistance_test Фонд поддержки и развития сейсмостойкого строительства «Защита и
безопасность городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780 ОГРН : 1022000000824 [email protected]
Счет получателя СБЕР № 40817 810 5 5503 1236845 СБЕР 2202 2056 3053 9333 тел привязан (911) 175-84-65 (812) 694-78-10, с использованием демпфирующих
амортизаторов из автопокрышек заполненных окатанной галькой и с болтовым креплением к металлической ферме для поглощения пиковых напряжений (нагрузки)
для рассеивания напряжений за счет проскальзывания во фланцевых фрикционно –подвижных соединений с овальными отверстиями на высокопрочных ботовых
соединениях . с контролируемым натяжением для сейсмоопасных районов
Авторы изобретения скрипучего моста, повышенной грузоподьемностью за счет шпренгельного усиленияс, с повышением грузоподъемности в двар раза,
пролетного железнодорожного строение существующего мостовых сооружений, с использованием демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме для поглощения пиковых напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных соединений с овальными отверстиями на высокопрочных ботовых соединениях . с контролируемым
натяжением для сейсмоопасных районов
Расчеты и проект выполнен, учеными Сейсмофонд СПбГАСУ (ИНН 2014000780 ОГРН 1022000000824 ) для реконструкции старых мостов с использованием
шпренгельного усиления, пролетного железнодорожного реконструируемого существующего мостового строения, с повышением в два раза грузоподьемности
моста, без остновки дижения поездов и автотранспорта, благодаря большим перемещениеи, за счет использования фланцевызх фрикциооно-подвижных
соединений проф дтн А.М.Уздина,Богданова И.А , Коваленко А.И. Егорова О А, Е.И.Коваленко:выполненную по изобретению" «Антисейсмическое фланцевое
фрикционно -подвижное соединение с овальными отверстиями, для мостовых сооружений ( RU № 2018105803/20 (008844) 15.02.2018 ) для сейсмоопасных
районов" : ДНР, ЛНР, Херсона, Мариуполя, Бахмута, Донецской, Луганской, Херсонской обл Приобрести альбом " ШИФР 2948358 для обектов инфпростуктуры
железнодорожного транспортс для проельных строений металлических железнодорожных мостов с ездой по низу на безбалстнызъ\х плитах мостовго полотна
пролетами 33-110 для пролетного строения пролеитом 33-55метров шпренгельным способо м ипользванием АМ-2а выполенных изобретателями: Коваленко А.
И, Егоровой О.А,Уздиным, А. М, Богдановой И.А, тел/факс (812)694-78-10, (921) 962-67-78, (911) 175-84-65 [email protected] МИР социальная СБЕР 2202 2056 3053
9333 тел привязан (911) -175-84-65 https;//t.me/resistance_test Карта СБЕР: 2202 2006 4085 5233

30.

Счет получателя 40817 810 5 5503 1236845 [email protected] [email protected] [email protected] [email protected] (981) 276-49-92 (
981) 886-5742 https://t.me/resistance_test СПб ГАСУ (921) 44223-36
(812) 694-7810 [email protected] [email protected] https://t.me/resistance_test (921) 944-67-10, (911) 175-8465 [email protected]
Шпренгельное усиление пролетного строения металлических железнодорожных мостов с ездой по низу на безбалластных плитах мостового полотна
пролетами 33 -110 метров (Пролетное строение пролетами 33 -55 метра), с использованием демпфирующих амортизаторов из автопокрышек заполненных
окатанной галькой и с болтовым креплением к металлической ферме для поглощения пиковых напряжений (нагрузки) для рассеивания напряжений за счет
проскальзывания во фланцевых фрикционно –подвижных соединений с овальными отверстиями на высокопрочных ботовых соединениях . с контролируемым
натяжением для сейсмоопасных районов
ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПбГАСУ "Сейсмофонд" ОГРН: 1022000000824 ИНН 2014000780
Повышение грузоподъемности мостового сооружения и учебное пособие для студентов строительных вузов разработано организацией «Сейсмофонд» СПбГАСУ
по усиление и реконструкция пролетного строения мостового сооружения с использованием комбинированных пространственных структур для сейсмоопасных районов
Прилагаются тезисы доклада организации "Сейсмофонд" СПб ГАСУ: "Способ шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм, для сейсмоопасных районов" Для дистанционного доклада [email protected] (921)944-67-10, (911) 175-84-65, т/ф (812) 694-78-10
https://t.me/resistance_test СПб ГАСУ
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием треугольных балочных ферм для
сейсмоопасных
А.М. Уздин , О.А. Егорова, И.А.Богданова, А.И.Коваленко, В.К.Елисеева, Я.К.Елисеева, Е.И.Коваленко, Политехнический Университет , ПГУПС, СПб ГАСУ, организация
«Сейсмофонд»
Аннотация: В статье способ шпренгельного усиления пролетного строения мостового сооружения с использованием демпфирующих амортизаторов из автопокрышек
заполненных окатанной галькой и с болтовым креплением к металлической ферме для поглощения пиковых напряжений (нагрузки) для рассеивания напряжений за
счет проскальзывания во фланцевых фрикционно –подвижных соединений с овальными отверстиями на высокопрочных ботовых соединениях . с контролируемым
натяжением для сейсмоопасных районов https://dzen.ru/a/ZksZSyTMUw_RSZlP
Для конференции ICSBE 2024 Устойчивое развитие в строительстве мостов Лондон 09-10 декабря 2024 г
Военно-политическая газета"Армия Защитник.Отечества"№13
Редакция газета «Армия Защитников Отечества» InfoArmZO и информ. агентство«Русская Народная Дружина» RUSnarodINFO от 08.05.2024 Адрес редакции:197371,
СПб, а/я газета «Земля РОССИИ» пр.Королева 30 к 1 кв 135 694-78-10 [email protected] [email protected] [email protected]
Согласно закона № 519 -101 от 17 октября 2023 за подписью губернатора СПб Беглова А. Г. необходимо стимулировать развитие и внедрения системы искусственного

31.

интеллекта и робототехники и системы на их основе БВС, БАС организация Сейсмофонд СПб ГАСУ направляет проектную документацию, рабочие чертежи для
внедрения и для повышения грузоподъемности мостового сооружения СПб, для рассмотрения на научном совете Законодательного Собрания СПб или в
Администрации Правительства в Строительном комитет СПб изобретение "О поглотителях пиковых нагрузок"
Прилагаются каталожные листы, специальные технические условия , протокол испытания фланцевых фрикционно- подвижных соединений для пролетного строения
существующего мостового сооружения с большими перемещениями и повышением грузоподъемности моста в два раза без остановки поездов с использованием
японских изобретений, внедеенных в Японии 20 лет назад, изобретенных в СССР проф дтн ПГУПС А.М.Уздиным №№ 1143895, 1168755, 1174616 , изобретений зам
Президентом "Сейсмофонд" СПб ГАСУ А.И.Коваленко №№ 165076, 154506, 2010136746 Чертежи , альбомы спецификация расчеты в ПК SCAD выполнены на
общественных началах для инженерных и железнодорожных войск бесплатно, как интеллектуальная инженерная помощь для Фронта , для Победы
spb6947810@gvail,com (812) 694-78-10 главный инженер проекта Елена Ивановна Коваленко
Ученые СПб ГАСУ изобрели поглотитель пиковых нагрузок для повышения грузоподъемности мостовых сооружений внедренный японскими инженерами 20 лет назад
Поглотители пиковых напряжений нагрузок рассеивание за счет проскальзывания
https://ppt-online.org/1505580
Организация Сейсмофонд СПб ГАСУ выполнит проектные работы обследование, экспертиза заключение по повышению грузоподъемности скрипучего с большими
перемещениями металлических аварийных, существующих железнодорожных мостов в СПб и Ленинградской области со шпренгельным усилением мостового
сооружения имени проф Уздина А М , с ездой понизу на безбаластных плитах мостового полотна, пролетом 33-110 м. ШИФР 2948358
Шпренгельное усиление пролетного строения металлических железнодорожных мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 110 метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780 (911) 175-84-65, (921) 962-67-78
(812) 694-7810 [email protected] [email protected] https://t.me/resistance_test (921) 944-67-10, (996)785-6276 (911) 175-8465 [email protected]
Шпренгельное усиление пролетного строения металлических железнодорожных мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 110 метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПбГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
Шпренгельное усиление пролетного строения металлических железнодорожных мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 110 метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
В результате выполненных исследований и по данным расчетов вырабатывается замысел и принимается оптимальное решение на повышение грузоподъемности
мостового сооружения с использованием изобретения "Способ имени А М Уздина шпренгельного усиления пролетного строения мостового сооружения с треугольных
балочных ферм для сейсмоопасных районов " МПК 01 02 D 22/00 Регистрационный 2024106532 входящий 014405 Дата поступления 07 .03.2024
и "Способ усиления основания пролетного строения мостового сооружения с использованием подвижных балочных ферм для сейсмоопасных районов имени
В.В.Путина " МПК E 01 D 21 /06 Регистрационный 2024106154 Входящий 013574 Дата поступления 05.03.2024
Коваленко Александр Иванович : аспирант ПГУПС, заместитель Президента организации "Сейсмофонд" СПб ГАСУ https://t.me/resistance_test (911) 175-84-65
Егорова Ольга Александровна заместитель Президента организации "Сейсмофонд" СПб ГАСУ (965) 753-22-02 [email protected] [email protected]

32.

Уздин Александр Михайлович ПГУПС проф. дтн: заместитель президента организации Сейсмофонд СПб ГАСУ [email protected] [email protected] 99810 276-49-92
Богданова Ирина Александровна: заместитель Президента организации "Сейсмофод" при СПб ГАСУ [email protected] (996)785-62-76
Андреева Елена Ивановна Заместитель президента организации "Сейсмофонд" при СПб ГАСУ (812) 694-78-10 [email protected]
Начальники строительной лаборатории организации "Сейсмофонд" СПБГАСУ Елисеева Яна Кирилловна [email protected] (921) 962-67-78
Главные инженер проекта организации "Сейсмофод" СПб ГАСУ Елисеева Владислав Кириллович [email protected] (921) 962-67-78
Предложение организации Сейсмофонд СПб ГАСУ, изобретения ученых ПГУПС А.М.Уздина , доц О.А.Егоровой , аспиранта ПГУПС связанное с поглощением пиковых
нагрузок для повышения грузоподъемности мостовых сооружений , внедренных в Японии США, Канаде, Израиле, Турции, Италии, Новой Зеландии US 6,892,410 B2
Для конференции ICSBE 2024: Устойчивое развитие в строительстве мостов, Лондон (09-10 декабря 2024 г)
ICSBE 2024: Sustainability in Bridge Engineering Conference, London (Dec 09-10, 2024) https://dzen.ru/a/Zgke-51HyTFUof2A
(Заявка заполняется в электронном виде) Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ
https://vk.com/wall792365847_3771
Для конференция по проектированию мостов в 2024 году
https://ppt-online.org/1508154
Конференция по проектированию мостов в 2024 году
https://ppt-online.org/1497715
Разборный металлический мост из стальных конструкций пролетами 18,24 и 30 метров с
применением замкнутых гнутосварных профилей
https://ppt-online.org/1330692
International Conference on Sustainability in Bridge Engineering ICSBE on December 09-10, 2024
in London, United Kingdom
https://conferenceindex.org/event/international-conference-on-sustainability-in-bridge-engineering-icsbe-2024-december-london-gb
2025 - Solutions to bridge engineering challenges
Coventry Building Society (CBS) Arena 12 - 13 March 2025
https://bridges.tn-events.co.uk

33.

Bridge Engineering Conference in 2024 (BEI-2024)
July 22 - July 25, 2024
3801 Las Vegas Blvd S Las Vegas , NV United States
BEI-2024, an official conference of the Bridge Engineering Institute (BEI), is a forum for international researchers and practitioners around the world. State-of-the-art knowledge in
bridge engineering and related fields will be discussed with distinguished speakers in plenary and parallel sessions. BEI-2024 will be held in Las Vegas, NV, USA, with which
world-class cultures and fun activities are associated. Abstract submissions are due by Feb. 15, 2024: if one submits an abstract by Nov. 15, a free ticket for High Roller ($34.75)
will be provided upon registration.
https://www.canadianconsultingengineer.com/events/bridge-engineering-conference-in-2024-bei-2024/
https://dzen.ru/a/ZlP1ast0QTA1nYYo
Povishenie gruziopodemnosti zheleznodorozhnogo mostovogo soorezheniya ispolzovaniem perekrestnix ste
https://rutube.ru/video/b842b12faea2ea40393c46134172d8f5/
Новогодний интеллектуальный подарок Родине и солдатам изобретение Способ усиления пролетного строения мостового сооружения с использованием пространственных трехгранных структур для сейсмоопасных районов смотри аналог номер 80417 и 266595
от СПб ГАСУ Сейсмофонд и редакции газеты "Вестник геноцида русского народа" от ветерана боевых действий позывной "Терек", проектная документация для инженерных войск и новые инженерные решения по повышению грузоподъемности аварийных
железнодорожных и автомобильных пролетных строений моста в Новороссии ДНР ЛНР , согласно изобретениям номер 80417 и номер 266595 Все для Фронта Все для Победы https://ppt-online.org/1460065 https://disk.yandex.ru/i/kD9WRk_vykTBbg
https://i.ibb.co/drCbSZR/SPb-GASU-Protokol-ispitaniy-.. SPbGASU Protokol ispitaniy SCAD kompensatora kombinirovannikh ferm-balok shprengelnogo tipa povishenie gruzopodemnosti mosta 516 str.docx https://disk.yandex.ru/i/kD9WRk_vykTBbg
https://disk.yandex.ru/i/D2W2uV4XsffvgQ https://mega.nz/file/gzcTRaQa#nLIkaHQ_FDq0wZNzOGUclY-.. https://mega.nz/file/0isQkbBI#2uczTNYwLkbZTCIU8K30poy.. SPbGASU Protokol ispitaniy SCAD kompensatora kombinirovannikh ferm-balok shprengelnogo
tipa povishenie gruzopodemnosti mosta 516 str.docx SPbGASU Protokol ispitaniy SCAD kompensatora kombinirovannikh ferm-balok shprengelnogo tipa povishenie gruzopodemnosti mosta 516 str.pdf SPb GASU Sposob usileniy proletnogo stroeniya mostovogo sooruzheniya
ispolzovaniem prostranstvennix.docx SPb GASU Sposob usileniy proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem prostranstvennix.pdf LPI Kalinina Povishenie gruzopodemosti proletnogo stroeniya mostovogo sooruzheniya zheleznodorozhnogo mosta 30 str.pdf LPI
Kalinina Povishenie gruzopodemosti proletnogo stroeniya mostovogo sooruzheniya zheleznodorozhnogo mosta 30 str.docx GASU Povisheiya gruzopodemnosti proletnogo stroeniya mostovogo sooruzheniya primeneniy kombinirovannikh prostranstvennikh struktyr 442 str.docx
GASU Povisheiya gruzopodemnosti proletnogo stroeniya mostovogo sooruzheniya primeneniy kombinirovannikh prostranstvennikh struktyr 442 str.pdf Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem prostranstv iennix prekhgrannikh struktur 264
str.docx Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem prostranstv iennix prekhgrannikh struktur 263 str.pdf https://wdfiles.ru/ipsearch.html ТР_06_2023-4-1 (1).pdf ТР_13_2023_А3.pdf Gazeta Trudovaya possii organ PKRP rotfront RIK Sezd
Sovetov http rkpr su [email protected] 8122742618 TР_13_2023_А3.pdf +USSRxochu Net nadezhd kalchuzhnaya setka DRONI nam ne strashni izobretenie Mnogosloynaya zashitnaya panel sposob predoxranenniya udarnogo 2 str.docx +USSRxochu Net nadezhd
kalchuzhnaya setka DRONI nam ne strashni izobretenie Mnogosloynaya zashitnaya panel sposob predoxranenniya udarnogo 2 str.pdf Obrashenie armii tilu Starshie oficheri Obedinennoy gruppirovki voysk 2 sth.doc Obrashenie armii tilu Starshie oficheri Obedinennoy gruppirovki
voysk 2 sth.pdf LISTOVKA Pyataya gazeta Obrashenie armii k tilu Soldati i matrosi oficheri 2 str .pdf LISTOVKA Pyataya gazeta Obrashenie armii k tilu Soldati i matrosi oficheri 2 str .rtf LISTOVKA Pyataya gazeta Obrashenie armii k tilu Soldati i matrosi oficheri 2 str .doc
https://wdfiles.ru/ipsearch.html?page=2 https://ibb.co/s2x5h7Z
https://rutube.ru/video/b842b12faea2ea40393c46134172d8f5/
Способ усиления основания пролетного строения мостовго сооружения с
использованием подвижных треугольных балочных ферм
https://ppt-online.org/1529069
Саботаж без прикрас Рецидивы тоталитарного либеразма в ФИПСе

34.

Описание СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО
УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с
использованием треугольных бало
4 июня
Описание СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием
треугольных балочных ферм для сейсмоопасных районов МПК E 01 D 22 /00 ( аналог №№ 2804485, 153753,2669595, 80471, 2640855, США 6.892.410 В2
( RU 2024106532 RU 2024106154 МПK E01D 21/06 )
Способ шпренгельного усиления пролетного строения моста А М Уздина , включающий прикрепление к верхней части конца балки усиливающей
затяжки, отличающийся тем, что в качестве усиливающей затяжки используют пучки прядей с по методике изобретателя проф А.М.Уздина №№
1143895, 1168755, 1174616 , инженера А.И.Коваленко №№ 165076, 2010136746
Способ шпренгельного усиления пролетного строения моста А М Уздина включающий прикрепление к верхней части конца балки усиливающей
затяжки, отличающийся тем, что в качестве усиливающей затяжки используют пучки прядей стального троса с по методике изобретателя проф
А.М.Уздина №№ 1143895, 1168755, 1174616 , инженера А.И.Коваленко №№ 165076, 2010136746 с использованием устройство для гашения ударных и
вибрационных воздействий № 167977 автор Уздина А М и др C пособ усиления основания пролетного строения мостового сооружения с
использованием устройство для гашения ударных и вибрационных воздействий № 167977 автор Уздина А М и др для повышения грузоподъемности
пролетного строения металлического железнодорожного мост с ездой по низу на безбаластных плитах мостового полотна пролетами 33-110 метров ,
пролетных строений пролетами 33-55 метра (ШИФР 2948357 ), с укреплением опор мостового сооружения, конструкций основания , как надземные
автомобильные, железнодорожные мосты усиление , укрепление основания мост, и мостовые конструкции, выполняются двух ярусными надвижными
сдвоенными , двух ярусными перевернутой буквой М из решетчато –пространственных узлов покрытия (перекрытия из перекрестных ферм типа
«Новокисловодск» ( патент RU № 153753 автор : Марутян Александр Суренович, U.S № 3.371.835, RU49859 «Покрытие из трехгранных ферм»,
RU2627794 «Покрытие из трехгранных ферм» автор: Мелехин Евгений Анатольевич ) изготовленных из гнутых профилей для пролета моста 9 и 18
метров из двух ярусных трехгранных комбинированных структур RU 8471 «Комбинированные пространственное структурное покртыие « г Брест , (
Бретский государственный технический университет» ) выполненных по типовой документации , серия 1.460.3-14 , для пролетов железнодорожного
моста 18, 24 и 30 метров ( чертежи КМ , ГПИ «Ленпроектстальконсрукция» ),а грузоподъемность увеличивается в два раза , а поперечное сечение фермы
металлической не меняется ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием
демпфирующего амортизатора состоящего из утилизированной автомобильной автопокрышки ГОСТ 53-15-86 обвязанных проволокой
диаметром 3 мм в два ряда окатанной высокопрочной пропитанной маслом сухой гальки диаметром 20-60 мм ГОСТ 10260-82, ( изобретение №
1395500, второй вариант для гашенияи удпрных нагрузок и вибрационного воздействия для шпренгельногоь усиления пролетного строения
металлических железнодорожных мотов с ездой по понизу на безбалатсных плитах мостового полотна пролетом 33 -110 метров ШИФП 2948358) ,
которые могут взаимодействовать с фермами типа «Новокисловодск» на болтовых соединениях с овальными отверстиями с использованием болтовых
соединений с гильзовой втулкой из обожженной медной или тросовой с двумя обмотками , для демпфирования болтового фрикционно-подвижного
соединения с овальными отверстиями по изобретениям проф дтн А.М.Уздина №№ 1143895, 1168755, 1174616, инж А.И.Коваленко №№ 2010136746
154506, 165076, 1760020, 1038457, 1011847, 998300. 1395500, 1728414. .
Пролетное строения моста изготовлено по изобретению № 80417 и собрано по изобретению № 153753 как комбинированное металлические фермы
с опорами, как вариант второй из демпфирующих амортизаторов АМ-2 из утилизированных автопокрышек заполненных на 90 процентов окатанной
галькой

35.

https://dzen.ru/a/Zl8vyDRB73akfA3S
A method for strengthening the base of the superstructure of a bridge structure using movable triangular girder trusses for earthquake-prone areas named after V. V.
Putin
Strengthening structure of truss bridge or arch bridge
https://patentimages.storage.googleapis.com/68/7b/4a/23278927624de5/CN100402754C.pdf
Остается открытым вопрос внедрения изобретения Способ усиления пролетного строения мостового сооружения с использованием комбинированных
Фигуры Способ усиления основания пролетного строения мостового сооружения с использованием надвижных трехгранных ферм-балок имени В.В.Путина МПК E 01 D 21/06 ( аналоги №№ 2514312, 2390601,
2421565, 2385982, 245010, 80471)
A method for strengthening the base of the superstructure of a bridge structure using movable triangular girder trusses
Sposob usileniy osnovaniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem trexgrannix ferm Putina155
https://disk.yandex.ru/i/PNc-eZb1rfEWmQ
https://disk.yandex.ru/i/5Uj0F76PQtorlg
Sposob usileniy osnovaniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem trexgrannix ferm Putina155
https://ppt-online.org/1486326
https://mega.nz/file/crUyBbgR#Hp3SD13BRymTSg0tKjRSZe4..
Для удобного управление файлами воспользуйтесь личным кабинетом, регистрация или вход в личный кабинет.
Sposob usileniy osnovaniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem trexgrannix ferm Putina155.docx
Sposob usileniy osnovaniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem trexgrannix ferm Putina155.pdf
GASU pochta Xodataystvo FIPS Oplata Rospatent Sposob usileniya mosta imeni Putina RU 20241000839 219 str.docx
GASU pochta Xodataystvo FIPS Oplata Rospatent Sposob usileniya mosta imeni Putina RU 20241000839 219 str.pdf
Moct imeni Putina Otpravka pisma schastya ssilkami Xodotaystvo zayavlenie FIPS Rospatent veterana boevox deystviy Kovalenko 703 str.docx
Moct imeni Putina Otpravka pisma schastya ssilkami Xodotaystvo zayavlenie FIPS Rospatent veterana boevox deystviy Kovalenko 703 str.pdf
MOST imeni PUTINA zayavlenie hkodotaystvo fips rospatent neretinu oleg petrovbichu veterana boevix deystviy kovalenko 71 str.docx
MOST imeni PUTINA zayavlenie hkodotaystvo fips rospatent neretinu oleg petrovbichu veterana boevix deystviy kovalenko 71 str.pdf
Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie povishenie gruzododemnosti zheleznodorozhnix mostov 688 str.docx
Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie povishenie gruzododemnosti zheleznodorozhnix mostov 688 str.pdf
https://wdfiles.ru/ipsearch.html
Для удобного управление файлами воспользуйтесь личным кабинетом, регистрация или вход в личный кабинет.
SPBGASU PGUPS Novokislovodsk SCAD Rascet usileniya proletnogo stroeniya mostovogo sooruzheniya trexgrannix ferm-balok 501 str.docx
SPBGASU PGUPS Novokislovodsk SCAD Rascet usileniya proletnogo stroeniya mostovogo sooruzheniya trexgrannix ferm-balok 501 str.pdf
Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem kombinirovannix prostranstvennix struktur 462 str.pdf
Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem kombinirovannix prostranstvennix struktur 462 str.docx
$ovesti net Teoriya seysmostoykosti naxoditsya krizise zhizn gragdan prozhivayushix seysmoopasnix ne otnositsya gosudarstvennoy bezopasnosti — копия.docx
$ovesti net Teoriya seysmostoykosti naxoditsya krizise zhizn gragdan prozhivayushix seysmoopasnix ne otnositsya gosudarstvennoy bezopasnosti.pdf
LSK Ispolzovanie legko sbrasivaemix konstruktsiy povishenie seysmostoykosty stalnogo karkasa 594 str.docx
LSK Ispolzovanie legko sbrasivaemix konstruktsiy povishenie seysmostoykosty stalnogo karkasa 594 str.pdf
Otvet otpiska Mitranspotra Dorstroya usilenie sychestvuyuchix avtomobilnix zheleznodorozhix mostov otkazat 3 str.pdf
Beglov Belskiy Iskovoe kollektivnaya zayavlenie zhalobi GAZPROM delo 3a224 2023 sydya Vityshkina administrativniy distantsionniy prisoedinenie kollektivnomu isku gorodskoy sud istets 402 str.docx
1 https://wdfiles.ru/ipsearch.html?page=2
https://ibb.co/tqgq5Dp
https://i.ibb.co/VgRg8TY/Sposob-usileniy-osnovaniya-p..
[email protected] [email protected] [email protected]
[email protected] https//t.me/resistance_test (812) 694-78-10
Приобрести чертежи по усилению существующих автомобильных мостов можно по тел (996) 785-62-76 (921) 921-944-67-10
Главный инжерен проекта Елена Ивановна Коваленко Аванс 5 тыс руб
Стоимость проектной документации 10 тыс руб Карат СБЕР 2202 2006 4085 5233 тел привязан (921) 962-67-78
Организация Сейсмофонд СПб ГАСУ ОГРН 1022000000824 ИНН 2014000780 Адрес СПб ГАСУ 2-я Красноармейская дом 4 (911) 175-84-65
Конструктивные решения повышения грузоподъемности железнодорожного пролетного строения
https://ppt-online.org/1464107
Остается открытым вопрос внедрения изобретения Способ усиления пролетного строения мостового сооружения с использованием комбинированных... | Вступай в группу Общероссийское офицерское
собрание России
Povishenie gruziopodemnosti zheleznodorozhnogo mostovogo soorezheniya ispolzovaniem perekrestnix ste
https://rutube.ru/video/b842b12faea2ea40393c46134172d..
A method for strengthening the base of the superstructure of a bridge structure using movable triangular girder trusses
The methods for strengthening bridge superstructure
In general, there are several ways in the superstructure strengthening of bridge 1. CFRP reinforcement method 2. Bonded steel plate (tendons) reinforcement method 3. Prestressing FRP reinforcement method 4. Enlarging
member section and reinforcing reinforcement method 5. Reinforcement method of rebars planting
https://www.horseen.com/solution/methods-strengthenin..
C Днем Рождения Советский Союз Изобретение Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных

36.

районов имени Владимира Путина» RU2024100839 вх. 001551 Дата 10.01.2024 https://dzen.ru/a/ZcmqTao98R0sSdNA
The Stability of a Movable High-Strength Inverted-Triangular Steel Bridge
Lei Gao,1Linyue Bai,1Kebin Jiang,1Qiang Wang,1and Xiaohui He1
Show more
Academic Editor: Ricardo Branco
Received15 Jun 2018
Revised20 Aug 2018
Accepted27 Aug 2018
Published19 Sept 2018
Abstract
The overall stability of a movable high-strength inverted-triangular steel bridge is worth studying because of its new truss structure. In this study, an approach was proposed based on the stiffness equivalence principle in
which the inverted-triangle truss structure was modeled as a thin-walled triangular beam. On this basis, the calculation of the critical load of elastic stability of a movable high-strength inverted-triangular steel bridge with
variable rigidity at both ends and locally uniformly distributed load was carried out based on the energy theory, which was in good agreement with existing theories. A material performance test at BS700 was carried out to
establish the material properties, and then a finite element model of the bridge was established, the results of which were compared with those of the experimental load test, in order to verify the accuracy of the finite element
model. Considering material nonlinearity and geometric nonlinearity, nonlinear buckling analysis of the bridge was conducted and the factors influencing the bridge’s ultimate bearing capacity were analyzed.
1. Introduction
https://www.hindawi.com/journals/mpe/2018/1568629/
Method for erecting a bridge superstructure of prestressed concrete and launching girder for performing the same
https://patents.google.com/patent/US4692955A/en
Experimental and simulation studies on the mechanical performance of concrete T-Girder bridge strengthened with K-Brace composite trusses
https://www.researchgate.net/publication/362016978_Ex..
http://freeit.free.fr/Bridge Engineering HandBook/ch6..
https://disk.yandex.ru/i/5Uj0F76PQtorlg
disk.yandex.ru
Sposob usileniy osnovaniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem trexgrannix fer
https://vk.com/wall792365847_1861
https://disk.yandex.ru/i/PNc-eZb1rfEWmQ
Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур
https://ppt-online.org/1485829
https://t.me/resistance_test/5246
Experimental and simulation studies on the mechanical performance of concrete T-Girder bridge strengthened with K-Brace composite trusses
Peng Hou a, Jing Yang b, Yong Pan c, Changjun Ma a, Wenping Du a, Caiqian Yang a,*,

37.

https://www.researchgate.net/publication/362016978_Experimental_and_simulation_studies_on_the_mechanical_performance_of_concrete_TGirder_bridge_strengthened_with_K-Brace_composite_trusses

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Железнодорожный мост имени Владимира Путина Редакция газеты Народная
Солидарность направляет доклад отчет для дистанционного вебинара 14
февраля 2024 в 11:00 проф СПб ГАСУ Белый Григорий Иванович от коллектива
изобретателей ПГУПС проф дтн А.М.Уздина, доц ктн Егоровой О.А , инж
А.И.Коваленко и др "Расчет стальных ферм-балок с большими перемещениями
на предельное равновесие и приспособляемость для восстановления , усиления и
повышения грузоподъемности железнодорожного, автомобильного мост с
использованием комбинированных пространстеннвых структур
"Новокисловодск", по изобретению "Способ усиления пролетного строения
мостового сооружения с использованием комбинированных пространственных
трехгранных структур для сейсмоопасных районов имени Владимира Путина "
Регистрационный ФИПС RU 2024100839 Входящий № 001551 Дата
поступления Роспатент 10.01.2024 Редакция Народная Солидарность и
Творческий Союз Изобретателей СПб просит обязать Минтранс РЖД РЖД СПб
Дорстрой ДОРСТРОЙ СПб принять проектную документацию, альбомы ,
чертежи , патентно-лицензионные исследования, каталожные листы
пояснительную записку без оплаты [email protected] тел (812) 694-78-10
Заместитель президента организации "Сейсмофонд" СПб ГАСУ Главный
конструктор Елена Ивановна Коваленко ОГРН 1022000000824 ИНН 2014000780
(921) 962-67-78
Президенту Российской Федерации
:
Фамилия, имя, отчество: Захарова -Терещенко Татьяна Никандровна

48.

Организация: Творческий Союз Изобретателей СПб ОО ТСИ ОГРН
1037858027547 ИНН 7809023460
Адрес электронной почты: [email protected]
Телефон: 8126947810
Тип: обращение
Текст
Железнодорожный мост имени Владимира Путина Редакция газеты Народная
Солидарность направляет доклад отчет для дистанционного вебинара 14
февраля 2024 в 11:00 проф СПб ГАСУ Белый Григорий Иванович от коллектива
изобретателей ПГУПС проф дтн А.М.Уздина, доц ктн Егоровой О.А , инж
А.И.Коваленко и др "Расчет стальных ферм-балок с большими перемещениями
на предельное равновесие и приспособляемость для восстановления , усиления и
повышения грузоподъемности железнодорожного, автомобильного мост с
использованием комбинированных пространстеннвых структур
"Новокисловодск", по изобретению "Способ усиления пролетного строения
мостового сооружения с использованием комбинированных пространственных
трехгранных структур для сейсмоопасных районов имени Владимира Путина "
Регистрационный ФИПС RU 2024100839 Входящий № 001551 Дата
поступления Роспатент 10.01.2024 Редакция Народная Солидарность и
Творческий Союз Изобретателей СПб просит обязать Минтранс РЖД РЖД СПб
Дорстрой ДОРСТРОЙ СПб принять проектную документацию, альбомы ,
чертежи , патентно-лицензионные исследования, каталожные листы
пояснительную записку без оплаты [email protected] тел (812) 694-78-10

49.

Заместитель президента организации "Сейсмофонд" СПб ГАСУ Главный
конструктор Елена Ивановна Коваленко ОГРН 1022000000824 ИНН 2014000780
(921) 962-67-78
Отправлено: 11 февраля 2024 года, 09:45
Пожалуйста проверьте правильность заполнения анкеты
Если всѐ верно, нажмите «Отправить письмо» ещѐ раз, в противном случае
нажмите «Вернуться» для редактирования формы.
Адресат
Президенту Российской Федерации
Фамилия, имя, отчество
Захарова -Терещенко Татьяна Никандровна
Адрес электронной почты
[email protected]
Телефон
8126947810
Прикреплѐнный файл
Most imeni Putina doklad vebseminara 14 fefralya 11 00 SPbGASU Beliy Grigoriy
Ivanovicu dlya Mintransa RZHD DORSTROYA 19 str.doc
Текст
Железнодорожный мост имени Владимира Путина Редакция газеты Народная
Солидарность направляет доклад отчет для дистанционного вебинара 14 февраля

50.

2024 в 11:00 проф СПб ГАСУ Белый Григорий Иванович от коллектива
изобретателей ПГУПС проф дтн А.М.Уздина, доц ктн Егоровой О.А , инж
А.И.Коваленко и др "Расчет стальных ферм-балок с большими перемещениями на
предельное равновесие и приспособляемость для восстановления , усиления и
повышения грузоподъемности железнодорожного, автомобильного мост с
использованием комбинированных пространстеннвых структур "Новокисловодск",
по изобретению "Способ усиления пролетного строения мостового сооружения с
использованием комбинированных пространственных трехгранных структур для
сейсмоопасных районов имени Владимира Путина " Регистрационный ФИПС RU
2024100839 Входящий № 001551 Дата поступления Роспатент 10.01.2024 Редакция
Народная Солидарность и Творческий Союз Изобретателей СПб просит обязать
Минтранс РЖД РЖД СПб Дорстрой ДОРСТРОЙ СПб принять проектную
документацию, альбомы , чертежи , патентно-лицензионные исследования,
каталожные листы пояснительную записку без оплаты [email protected] тел
(812) 694-78-10 Заместитель президента организации "Сейсмофонд" СПб ГАСУ
Главный конструктор Елена Ивановна Коваленко ОГРН 1022000000824 ИНН
2014000780 (921) 962-67-78
Вернуться
Большое спасибо!
Отправленное 11.02.2024 Вами письмо в электронной форме за номером
ID=10818015 будет доставлено и с момента поступления в Администрацию
Президента Российской Федерации зарегистрировано в течение трех дней.

51.

Железнодорожный мост имени Владимира Путина Редакция газеты Народная
Солидарность направляет доклад отчет для дистанционного вебинара 14
февраля 2024 в 11:00 проф СПб ГАСУ Белый Григорий Иванович от коллектива
изобретателей ПГУПС проф дтн А.М.Уздина, доц ктн Егоровой О.А , инж
А.И.Коваленко и др "Расчет стальных ферм-балок с большими перемещениями
на предельное равновесие и приспособляемость для восстановления , усиления и
повышения грузоподъемности железнодорожного, автомобильного мост с
использованием комбинированных пространстеннвых структур
"Новокисловодск", по изобретению "Способ усиления пролетного строения
мостового сооружения с использованием комбинированных пространственных
трехгранных структур для сейсмоопасных районов имени Владимира Путина "
Регистрационный ФИПС RU 2024100839 Входящий № 001551 Дата
поступления Роспатент 10.01.2024 Редакция Народная Солидарность и
Творческий Союз Изобретателей СПб просит обязать Минтранс РЖД РЖД СПб
Дорстрой ДОРСТРОЙ СПб принять проектную документацию, альбомы ,
чертежи , патентно-лицензионные исследования, каталожные листы
пояснительную записку без оплаты [email protected] тел (812) 694-78-10
Заместитель президента организации "Сейсмофонд" СПб ГАСУ Главный
конструктор Елена Ивановна Коваленко ОГРН 1022000000824 ИНН 2014000780
(921) 962-67-78
Авторы Заявка на изобретение "Антисейсмическое фланцевое соединение
фрикционно- подвижных соединений для пролетного строения моста" E04 H
9/02 для востановоления железнодорожных и автомобильных мостов в г.
Херсон, Мариуполь, Бахмут, в ДНР, ЛНР с использем сверхпрочных и

52.

сверхлегких комбинированных пространственных структурных трехгранных
ферм, с предварительным напряжением, для плоских покрытий, с
неразрезыми поясами пятигранного составного профиля. Изобретатели :
Елисев В.К, Темнов В. Г, Коваленко А. И, Егорова О.А,Уздина А. М, Богданова
И.А, Елисеева Я.К. Коваленко Е.И.(812) 694-78-10 (981) 276-49-92, (981) 886-57-42
[email protected]
Упругопластическая стальная ферма моста пролетом: 6, 9, 12, 18, 24 и 30
метров c большими перемещениями на предельное равновесие и
приспособляемость , для автомобильного моста, шириной 3 метра,
грузоподъемностью 90 тонн , сконструированного со встроенным бетонным
настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,
ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.314 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий
производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный
универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой
компенсатор для гашения колебаний пролетного строения моста» № 2022115073
от 02.06.2022 ) , на болтовых соединениях, с демпфирующей способностью при
импульсных растягивающих нагрузках при многокаскадном демпфировании при
динамических нагрузках, между диагональными натяжными элементами, верхнего
и нижнего пояса фермы, из пластинчатых балок, с применением гнутосварных
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ
«Ленпроектстальконструкция» с использованием изобретений №№ 2155259 ,

53.

2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372, 2228415,
2155259, 1143895, 1168755, 1174616, 2550777, 2010136746, 165076, 154506
Нет надежд и перспектив применение в коммерческой , торговой компании
"РФ-Россия" пластинчато-балочной системы , фермы-балки для армейских
мостов , переправ: со встроенным бетонным настилом , для критических и
чрезвычайных ситуаций имени тов Сталина , с учетом приспособляемостью
и большими перемещениями Наш паровоз летит под откос , в коммуне не
будет остановки
Русские люли поддержите , кто может помогите копейкой изобретателям, для
Фронта, для Победы, для пролетных строений моста : Выполнен прямой расчета
SCAD из сверхпрочных и сверхлегких упругопластических полимерных
материалов, неразрезных стальных ферм-балок (GFRP -МЕТАЛЛ) с большими
перемещениями на предельное равновесие и приспособляемость ( А.Хейдари,
В.В.Галишниква) для восстановления разрушенных мостов в г.Бахмуте, Херсоне,
Мариуполе и др городах Донецкой и Луганской областях , без крановой сборки,
при критических ситуациях , в среде SCAD 21. Президент общественной
организации «Сейсмофонд» при СПб ГАСУ ИНН 2014000780 ОГРН
1022000000824 Х.Н.Мажиев. СБЕР карта 2202 2056 3053 9333. Счет получателя
40817 810 5 5503 1236845 Корреспондентки счет 30101 810 5 0000 0000635 тел
(921) 962-67-78, тел (911) 175-84-65 [email protected] Редактор газеты «Армия
Защитников Отечества» инж –механик Е.И.Андреева
(812) 694-78-10
[email protected] [email protected]
Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie povishenie
gruzododemnosti zheleznodorozhnix mostov 688 str

54.

https://disk.yandex.ru/i/usK5WH5h2nvKTw
https://disk.yandex.ru/i/scaQOCZ_uyQg7Q
https://mega.nz/file/07tFFYpJ#loo4lIS_9I1WgRobQzFZN7Pd9hZLCHUgI2abcdZdLYM
https://mega.nz/file/tiUhQDoa#momdd5Bz2nw8KGyouCJ6zB7QoFMxFsHhsQPjkeO49
bA
Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie povishenie
gruzododemnosti zheleznodorozhnix mostov 688 str.docx
Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie povishenie
gruzododemnosti zheleznodorozhnix mostov 688 str.pdf
SPBGASU PGUPS Novokislovodsk SCAD Rascet usileniya proletnogo stroeniya
mostovogo sooruzheniya trexgrannix ferm-balok 501 str.docx
SPBGASU PGUPS Novokislovodsk SCAD Rascet usileniya proletnogo stroeniya
mostovogo sooruzheniya trexgrannix ferm-balok 501 str.pdf
Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem
kombinirovannix prostranstvennix struktur 462 str.pdf
Sposob usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem
kombinirovannix prostranstvennix struktur 462 str.docx
$ovesti net Teoriya seysmostoykosti naxoditsya krizise zhizn gragdan
prozhivayushix seysmoopasnix ne otnositsya gosudarstvennoy bezopasnosti —
копия.docx
$ovesti net Teoriya seysmostoykosti naxoditsya krizise zhizn gragdan
prozhivayushix seysmoopasnix ne otnositsya gosudarstvennoy bezopasnosti.pdf
LSK Ispolzovanie legko sbrasivaemix konstruktsiy povishenie seysmostoykosty
stalnogo karkasa 594 str.docx

55.

LSK Ispolzovanie legko sbrasivaemix konstruktsiy povishenie seysmostoykosty
stalnogo karkasa 594 str.pdf
https://wdfiles.ru/ipsearch.html
Otvet otpiska Mitranspotra Dorstroya usilenie sychestvuyuchix avtomobilnix
zheleznodorozhix mostov otkazat 3 str.pdf
Beglov Belskiy Iskovoe kollektivnaya zayavlenie zhalobi GAZPROM delo 3a224
2023 sydya Vityshkina administrativniy distantsionniy prisoedinenie kollektivnomu
isku gorodskoy sud istets 402 str.docx
Beglov Belskiy Iskovoe kollektivnaya zayavlenie zhalobi GAZPROM delo 3a224
2023 sydya Vityshkina administrativniy distantsionniy prisoedinenie kollektivnomu
isku gorodskoy sud istets 402 str.pdf
analiz-prichin-povrezhdeniya-truboprovodov-teplovyh-setey (1).pdf
Minstroy Gazprom Ispolzovanie podatlivogo antiseismicheskogo kompensatora
Temnova prichini 400 str.docx
Minstroy Gazprom Ispolzovanie podatlivogo antiseismicheskogo kompensatora
Temnova prichini 400 str.pdf
Gazeta Nevidimaya Xazaariya Reshenie problemi nadezhnosti vzaimodeystviya
antiseysmicheskogo kompensatora geologicheskoy sredoy 263 str.docx
Gazeta Nevidimaya Xazaariya Reshenie problemi nadezhnosti vzaimodeystviya
antiseysmicheskogo kompensatora geologicheskoy sredoy 263 str.txt
Gazeta Nevidimaya Xazaariya Reshenie problemi nadezhnosti vzaimodeystviya
antiseysmicheskogo kompensatora geologicheskoy sredoy 263 str.pdf
zhalobi delo 3a-224 2023 sydya Vityshkina administrativniy distantsionniy
prisoedinenie kollektivnomu isku gorodskoy sud Basseynaya istets 460 str.docx

56.

https://wdfiles.ru/ipsearch.html?page=2
PGUPS Raschet SKAD nerazreznix stakmnix ferm-balok predelnoe ravnovesie
povishenie gruzododemnosti zheleznodorozhnix mostov 427 str
https://ppt-online.org/1485194
Расчет упругоппластического структурного сбороно разбороного моста на основе
трехгранной блок-фермы
https://ppt-online.org/1299327
Специальный военный вестник "Армия Защитников Отечества" №15
https://ppt-online.org/1323327
Конструктивные решения повышения грузоподъемности железнодорожного
пролетного строения
https://ppt-online.org/1464107
Испытательный центр СПбГАСУ
https://ppt-online.org/1460065
Повышению грузоподъемности пролетного строения мостового сооружения
https://ppt-online.org/1461348
Техническое свидетельство на повышение грузоподъемности пролетного строения
мостового сооружения применения трехгранных структур
https://ppt-online.org/1458984
Повышение грузоподъемности пролетного строения ж/д моста
https://ppt-online.org/1465552
Добровольная сертификация продукции. Сертификат соответствия
https://ppt-online.org/1378790
Добровольная сертификация продукции

57.

https://ppt-online.org/1353811
Способ усиления пролетного строения мостового сооружения с использованием
комбинированных пространственных трехгранных структур
https://ppt-online.org/1465978
Антисейсмическое фланцевое соединение фрикционно-подвижных соединений для
пролетного строения моста
https://ppt-online.org/1454657
https://ibb.co/NsPX4bX
https://i.ibb.co/s2GhBzh/PGUPS-Raschet-SKAD-nerazreznix-stakmnix-ferm-balokpredelnoe-ravnovesie-povishenie-gruzododemnosti-z.jpg
<img src="https://i.ibb.co/s2GhBzh/PGUPS-Raschet-SKAD-nerazreznix-stakmnix-fermbalok-predelnoe-ravnovesie-povishenie-gruzododemnosti-z.jpg" alt="PGUPS-RaschetSKAD-nerazreznix-stakmnix-ferm-balok-predelnoe-ravnovesie-povisheniegruzododemnosti-z" border="0" />
<a href="https://ibb.co/NsPX4bX"><img src="https://i.ibb.co/NsPX4bX/PGUPSRaschet-SKAD-nerazreznix-stakmnix-ferm-balok-predelnoe-ravnovesie-povisheniegruzododemnosti-z.jpg" alt="PGUPS-Raschet-SKAD-nerazreznix-stakmnix-ferm-balokpredelnoe-ravnovesie-povishenie-gruzododemnosti-z" border="0" /></a>
[url=https://ibb.co/NsPX4bX][img]https://i.ibb.co/VtZdK5d/PGUPS-Raschet-SKADnerazreznix-stakmnix-ferm-balok-predelnoe-ravnovesie-povishenie-gruzododemnostiz.jpg[/img][/url]

58.

Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в
начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину изобрел пластический шарнир в
СССР для стальных ферм-балок с большими перемещениями при предельном
равновесии неразрезных балок и высокой приспособляемостью, но нас
обворовали в 1983, американскими инженерами с помощью переоформления
бесхозного и не защищенного патента СССР , торговой коммерческой компанией "РФ-РОССИЯ" на территории USA -патентное ворье, и внедрившего
Министерством транспорта США, в штате Монтана, при переправе через реку
Суон в 2017 г, пролетное строение 205 футов ( 64 метра), грузоподъемность
армейского моста для чрезвычайных и критических ситуаций - 60 тонн, время
сборки 24 часа, как в КНР
Ленинградцы Товарищи Братья и Сестры Солдаты и Офицеры Однополчане 4
июня 2023 в 18 00 в воскресенье в актовом зале горкома КПРФ состоится
конференция Все для Фронта Все для Победы и перспективы освобождения
нашей Родины от паразитов, приспособленцев и эффективных менеджеров по
маме, по адресу Лиговский пр 207- Б (Метро "Обводный канал" тел (950) 664-2792, (904) 603-82-14 [email protected] www npeterburg ru Метелица Иван
горкома 347-72-22
С докладом на конференции выступит Президент организации «Сейсмофонд» при
СПб ГАСУ , ветеран боевых действий в Чеченской Республике 1994-1995

59.

гг ОГРН:1022000000824, ИНН: 2014000780 Мажиев Хасан Нажоевич и инженер строитель, выпускник ЛИСИ Коваленко Александр Иванович
по теме: ПРЯМОЙ УПРУГОПЛАТИЧЕСКИЙ РАСЧЕТ ПРОЛЕТНЫХ СТРОЕНИЙ ЖЕЛЕЗНОДОРОЖНОГО МОСТА С
БОЛЬШИМИ ПЕРЕМЕЩЕНИЯМИ НА ПРЕДЕЛЬНОЕ РАВНОВЕСИЕ И ПРИСПОСОБЛЯЕМОСТЬ, НА ПРИМЕРЕ БЫСТРО
СОБИРАЕМОГО АМЕРИКАНСКОГО МОСТА, ДЛЯ ПЕРЕПРАВЫ ЧЕРЕЗ РЕКУ СУОН В ШТАТЕ МОНТАНА США,
СКОНСТРУИРОВАННОГО СО ВСТРОЕННЫМ БЕТОННЫМ НАСТИЛОМ, С ИСПОЛЬЗОВАНИЕМ УПРУГОПЛАСТИЧЕСКИХ
ПРОЛЕТНЫХ СТРОЕНИЙ фермы МОСТА, СКРЕПЛЕННЫХ БОЛТОВМИ СОЕДЕИНЯИМИ, С ДИАГОНАЛЬНЫМИ НАТЯЖНЫМИ
РАСКОСАМИ, ВЕРХНЕГО И НИЖНЕГО ПОЯСА
УДК 69.059.22
Уздин Александр Михайлович ПГУПС проф. дтн: [email protected] ( 921) 788-33-64 Мажиев Хасан Нажоевич Президент организации «Сейсмофонд»
при CПб ГАСУ ИНН: 2014000780 E-Mail: [email protected] т/ф (812) 694-78-10, ( 921) 962-67-78, Коваленко Елена Ивановна - заместитель Президента
организации "Сейсмофонд" при СПб ГАСУ [email protected] (911) 175-84-65. Коваленко Александр Ивановича - зам .Президент организации
"Сейсмофонд" при СПб ГАСУ. ОГРН: 1022000000824. (981) 886-57-42? (981) 276-49-92 [email protected] [email protected]
Доклад для Тринадцатого Всероссийского съезда по фундаментальным проблемам
теоретической и прикладной механике , который состоится в Политехническом Университете СПб
21-25 августа 2023 по теме:
" Прямой расчет в SCAD статически неопределимой упруго пластического шарнира для стальной
фермы балки железнодорожного моста с большими перемещениями на предельное равновесие и
приспособляемость"
т/ф (812) 6947810 (911) 175-84-65, OO "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН
201400780 [email protected]
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС №
SP01.01.406.045 от 27.05.2014, 190031, Организация «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected]
[email protected] (911) 175-84-65, УТВЕРЖДАЮ протокол испытаний узлов и фрагентов упругоплатических шарниров для армейского
моста и специальные технические условия изготовления пластинчатых ферм-балок из сверхпрочных и сверхлегких полимерных материалов
Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824

60.

Направляется расчет в ПК SCA 3D расчет для Bailey bridge и USA изобретения по
изготовлению пластинчатых ферм-балок по запросу Минстроя ЖКХ
Минпромторга Минтраса Минобороны, для включения в план НИОКР и
описание изобретения по способу производства и изготовления временных
опор для переправ
Просим администрацию Президента и Правительство РФ проинформировать и
включить в план НИОКР НИР на 2023 год или на 2024 г
Расчет упругоплатических стальных ферм -балок с учетом пластических деформаций при больщих перемещениях на предельное равновесие
и сприспособдяемость и специальные технические условия надвижки пролетного строения из стержневых пространственных структур с
использованием рамных сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного сечения, типа
"Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная
пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных
мостов в Киевской Руси
Основной докладчик на Всероссйском съезже по фундаменталдьным прроблемам теоретической и прикладной механике полковник Шендаков
Михпаил https://ppt-online.org/1148335 https://dis
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в
начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который получил патент № 1143895,
1168755, 1174616, 2550777 на сдвиговых болтовых соединениях, а инженер -механик Андреев Борис
Иванович получил патент № 165076 "Опора сейсмостойкая" и № 2010136746 "Способ защита
здания и сооружений " который спроектировал необычный сборно-разборный универсальный
железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов
для сборно-разборного моста" , названный в честь его имени в честь русского ученого, изобретателя
"Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн
ПГУПС Уздина , пока на бумаге. Sborno-razborniy bistrosobiraemiy universalniy most UZDINA PGUPS
453 str https://ppt-online.org/1162626 https://disk.yandex.ru/d/iCyG5b6MR568RA

61.

Зато, западные партнеры из блока НАТО , уже внедрили изобретения проф дтн ПГУПС Уздина А М.
по использованию сдвигового компенсатора под названием Bailey bridge
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области
при форсировании реки Северский Донец российская армия потеряла много военнослужащих
семьдесят четвѐртой мотострелковой бригады. Об этом сообщил американский Институт
изучения войны. «11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные
мосты и плотно сконцентрированные вокруг них российские войска и технику, в результате чего,
как сообщается, погибло очень много человек и было повреждено более 80 единиц техники», —
отмечается в публикации.
По оценке института, войска РФ допустили значительные тактические ошибки при попытке
форсирования реки в районе Кременной, что привело к таким потерям. Ранее в Институте изучения
войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк, отказавшись
от плана крупномасштабного окружения ВСУ и выхода на административные границы Донецкой
области
Более подробно новом сборно-разборном мосте "ТАЙПАН" смотри поданную заявку на изобретение (
отправлено в ФИПС 27.04.2022, регистрационный 2022111669 , входящий 024521 Роспатент , Л.Б
Добренкова ) под названием : "КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО
МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых
структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции
покрытий производственных зданий пролетами 18, 24 и 30 метров с применением замкнутых,
гнутых профилей прямоугольного сечения типа "Молодечно" E01D 12/00 , аналог изобретения № №
69086, 68528
Просьба направить изобретения проф проф ПГУПС Уздина А М сборно-разборный мост "ТАЙПАН"
многократного применения Соболеву Виктор Ивановичу КПРФ ОБЩЕРОССИЙСКОЕ

62.

ОБЩЕСТВЕННОЕ ДВИЖЕНИЕ «В ПОДДЕРЖКУ АРМИИ, ОБОРОННОЙ ПРОМЫШЛЕННОСТИ И
ВОЕННОЙ НАУКИ» 127051, г. Москва, ул. Трубная, д. 19/12 стр.2 Тел. +7(905) 782-8266 [email protected],ru
Direct calculation in SCAD of a statically indeterminate elastic plastic hinge for a
steel girder beam of a railway bridge with large displacements for ultimate
equilibrium and adaptability
Расчет ПК SCAD стальных конструкции покрытия производственных зданий
пролетом 30 метров с применением замкнутых гнутосварных профилей
прямоугольного сечения типа "Молодечно" (серия 1.460.3-14 ГПИ
"Ленпроектстальконструкция") расчетная нагрузка 5 тонны
Максимальная нагрузка на снег для стальных ферм балок пролетом 30
метров для России для расчет в ПК SCAD
Расчет упругоплатических стальных ферм -балок с учетом пластических деформаций при больщих перемещениях на предельное равновесие
и сприспособдяемость и специальные технические условия надвижки пролетного строения из стержневых пространственных структур с
использованием рамных сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного сечения, типа
"Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная
пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого строительства железнодорожных
мостов в Киевской Руси Основной докладчик на Всероссйском съезже по фундаменталдьным прроблемам теоретической и прикладной
механике полковник Шендаков Михпаил https://ppt-online.org/1148335 https://dis
Стажер СПб ГАСУ инжеер -патентовед, Кононенко Роман Игоревич [email protected]
факс: (812) 694-78-10 (981) 886-57-42

63.

Стажер СПб ГАСУ инжеер -патентовед, Бороденчик
49-92
Вяеслав Иванович [email protected] [email protected]
Стажер СПб ГАСУ инжеер -патентовед, Щендаков Михаил Антольевич
факс: (812) 694-78-10 (911) 175-84-65
Стажер СПб ГАСУ проф Матвеев Владимир Владимирович
[email protected]
факс: (812) 694-78-10 (981) 276-
[email protected] [email protected]
[email protected] 79111940880 [email protected] [email protected]
Конструктивные системы в природе и строительной технике Темнов В. Г. 1987 г. https://dwg.ru/lib/1147 [email protected]
[email protected]
В книге освещены вопросы организации конструктивных систем организмов живой природы в процессе эволюции. Рассмотрены бионические принципы оптимизации конструктивных систем. Впервые предложены алгоритмы
синтеза оптимальных конструктивных систем на основе бионических принципов. Представлены строительные конструкции, созданные на основе бионических принципов, и освещен опыт их применения в практике строительства.
Книга предназначена для научных и инженерно-технических работников.
ПРИНЯТИЕ РЕШЕНИЙ ПРИ ПРОЕКТИРОВАНИИ ИСКУССТВЕННОЙ СРЕДЫ ОБИТАНИЯ С
ИСПОЛЬЗОВАНИЕМ БИОНИЧЕСКИХ ПРИНЦИПОВ КОНСТРУИРОВАНИЯ
1
ТЕМНОВ ВЛАДИМИР ГРИГОРЬЕВИЧ 1
Петербургский государственный университет путей сообщения
https://www.elibrary.ru/item.asp?id=17303643
https://cyberleninka.ru/article/n/ekologiya-i-arhitekturnaya-tektonika-stroitelnyh-obektov-gorodskoy-sredy-obitaniya
Книга Темновва В Г СПб ГАСУ зам президента "Сейсмофонд" при СПб ГАСУ ОГРН:

64.

Темнов В Г дтн, проф ПГУПС аттестата испытательной лаборатории СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015 (999) 535-47-29 Темнов В Н
Подтверждение компетентности Номер решения о прохождении процедуры подтверждения компетентности 8590-гу (А-5824) Сведения об
аккредитации проф СПб ГАСУ В. Г.Темнова https://pub.fsa.gov.ru/ral/view/26088/applicant
Егорова Ольга Александровна Преподаватель ПГГУПС Теоретическая механика (МТ) [email protected] 911-175-84-64
факс (812)
694-78-10
Президент организации «СейсмоФонд» при СПб ГАСУ Х.Н.Мажиев , ИНН 2014000780
[email protected] (921) 962-67-78 факс 812 694-78-10
СПб ГАСУ проф. дтн Ю.Л.Рутман СПб ГАСУ автор статьи "Пластичность при сейсмическом проектировании зданий и сооружений" для гашения
динамических колебаний
тел (911) 175-84-65
СПб ГАСУ доц. ктн И.У.Аубакирова , (812) 694-78-10 89219626778 [email protected] ( 911) 175-84-65
[email protected]
СПб ГАСУ проф дтн Ю М Тихонов [email protected] [email protected] ( 951) 644-16-48
СПб ГАСУ инжеер -патентовед Андреева Е И [email protected]
факс: (812) 694-78-10 [email protected]
Морозов В И научный консультант , доктор технических наук, профессор, заведующий кафедрой железобетонных и каменных конструкций, советник
РААСН, лауреат премии Правительства РФ, почетный работник высшей школы РФ [email protected]
(961) 886-57-42

65.

Суворова Т В , руководитель ИЦ "ПКТИ-СтройТЕСТ" [email protected] [email protected]
[email protected]
( 981) 276-49-92
Черный А.Г , научный консультант, заведующий кафедрой металлических и деревянных конструкций, доктор технических наук, профессор СПб ГАСУ
[email protected] (921) 962-67-78 [email protected]
Стажер СПб ГАСУ инжеер -патентовед, Коваленко Александр Иванович [email protected]
факс: (812) 694-78-10 (981) 886-57-42
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в
начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который получил патент № 1143895,
1168755, 1174616, 2550777 на сдвиговых болтовых соединениях, а инженер -механик Андреев Борис
Иванович получил патент № 165076 "Опора сейсмостойкая" и № 2010136746 "Способ защита
здания и сооружений " который спроектировал необычный сборно-разборный универсальный
железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов
для сборно-разборного моста" , названный в честь его имени в честь русского ученого, изобретателя
"Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн
ПГУПС Уздина , пока на бумаге. Sborno-razborniy bistrosobiraemiy universalniy most UZDINA PGUPS
453 str https://ppt-online.org/1162626 https://disk.yandex.ru/d/iCyG5b6MR568RA
SCAD Pryamoy uprugoplasticheskiy raschet proletnix stroeniy zheleznodorozhnogo
mosta bolshimi peremesheniyami 438 str https://disk.yandex.ru/i/tLzRLFxSkdExLQ
SCAD Pryamoy uprugoplasticheskiy raschet proletnix stroeniy zheleznodorozhnogo mosta bolshimi peremesheniyami 438 str
https://ppt-online.org/1344150
скоренный способ надвижки автомобильного быстро-собираемого американского моста

66.

https://ppt-online.org/1275631
Прямой упругоплаcтический расчет пролетных строений железнодорожного моста
https://ppt-online.org/1278181
Проектирование "Армейского сборно - разборного надвижного быстро возводимого автомобильного однопутного моста"
https://ppt-online.org/1262298
Способ бескрановой установки надстроек опор при строительстве быстровозводимых временных железнодорожных мостов
https://ppt-online.org/1273872
Метод предельного равновесия для упругопластического расчета в ПК SCAD
https://ppt-online.org/1322416
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок - ферме
https://ppt-online.org/1282931
Внедрившие в США ФФПС dampers capacities and dimensions рeter spoer, ceo dr, imad mualla
https://ppt-online.org/1274390
Газета «Армия Защитников Отечества» №4
https://ppt-online.org/1291243
Специальный военный вестник "Армия Защитников Отечества" №16
https://ppt-online.org/1323682
Быстро собираемый для критических и чрезвычайных ситуаций сборно-разборный временный армейский железнодорожный мост
https://ppt-online.org/1329535
Военный Вестник "КрестьянИнформАгентство" № 43
https://ppt-online.org/1169931
Военный Вестник "КрестьянИнформСПб"
https://ppt-online.org/1279184
https://mega.nz/file/rYw2kD4B#39A_gt5juqkzK0sIBLXWxVmI0o1Ocv_8YYxLqG7Pr_
Y
https://mega.nz/file/HRwkRSBZ#2Ig_gTg8YDB21rblQvNrvh3UJdtnmNOYAqIrNpmTd4
https://ibb.co/album/sdnqgs
https://ibb.co/BBQ8gZd

67.

Антоновский мост Технология выбора вариантов ускоренного,
скоростного восстановления автомобильного однопутного
временного сборно-разборного армейского моста через реку Днепр на
примере восстановления разрушенного Антоновского моста ( рухнули
два пролета длиной примерно 50-60 метров), а рекомендовано
восстановить из упруго пластических стальных напряженных ферм, со
встроенным бетонным настилом из сборно-разборных ферм на болтовых
соединениях, между аналогичными натяжными элементами верхнем и
нижним поясом скрепленных сдвиговыми демпфирующими болтовыми
соединениями стальных пролетных упруго пластичных ферм с
использованием аналогичных упруго пластичных ферм при
строительстве в 2017 г переправы через реку Суон в штате Монтана,
США , а при восстановлении Антоновского моста предлагается
использовать конструкции покрытий производственных здании
пролетами 18, 24 и 30 м с применением замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14
ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и
элементов проезжей части армейского сборно-разборного пролетного
надвижного строения железнодорожного и автомобильного однопутного
моста, с быстро собираемыми упруго пластичными компенсаторами
проф дтн ПГУПС А.М.Уздина , со сдвиговой фрикционно-демпфирующей
жесткостью по аналогу строительства ускоренным способом моста в

68.

Монтане, США при строительстве переправы через реку Суон, в
штате Монтане ( мост длинной 205 футов, приблизительного 63
метра ) с пластично-балочной системой, диагональными натяжными
элементами на болтовых соединениях , грузоподъемностью 70 т ,
скоростным способом, с экономией материла до 30 %,стальные фермы
спроектированы со встроенным бетонным армированным настилом
(патенты: №№ 1143895, 1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с
использованием сдвигового демпфирующего гасителя сдвиговых напряжений)
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЫСТРОВОЗВОДИМЫХ МОСТОВ И ПЕРЕПРАВ через реку Днепр
Вооруженные силы Украины (ВСУ) в ночь на среду, 27 июля, обстреляли Антоновский мост через
Днепр в Херсоне. Мост получил повреждения, но он не разрушен. Об этом сообщил ТАСС
заместитель главы военно-гражданской администрации (ВГА) Херсонской области Кирилл
Стремоусов. Власти Херсонской области перекрыли движение по Антоновскому мосту, его будут
ремонтировать. ... Антоновский мост был построен и введен в эксплуатацию в 1985 году. ...
Протяженность Антоновского моста — 1366 метров, ширина — 25 метров, ширина проезжей
части — 20,5 метра. Мост стоит на 31 опоре, имеет 30 пролетов. По краям проезжей части есть
пешеходные дорожки шириной по 1,5 метра. Длинна пролетного строения 50 - 60 метров ( по
фотографиям)
Рассмотрены перспективы применения быстровозводимых мостов и переправ. Предложено
создать научно-исследовательскую лабораторию при организации "Сейсмофонд" при СПб ГАСУ
по изучению и проектированию быстровозводимых мостов и переправ на базе учреждения
образования ПГУПС, СПб ГАСУ . Определены основные направления деятельности предлагаемой
лаборатории. Представлены решенные научно-практические задачи по совершенствованию и
модернизации сборно-разборных мостов

69.

Beiley bridge opit bloka NATO USA Antonovskiy most Texnologiya uskorennogo vosstanovleniya mosta chreez reku Dnepr 654 str
https://disk.yandex.ru/d/pjU8TqYYrMXHmQ
https://disk.yandex.ru/i/Bf0cwVB54JWxfQ
Beiley bridge opit bloka NATO USA Antonovskiy most Texnologiya
uskorennogo vosstanovleniya mosta chreez reku Dnepr 654 str
https://studylib.ru/doc/6373934/beiley-bridge-opit-bloka-nato-usa-antonovskiy-most-texnol...
https://mega.nz/file/aZpFTYjK#iCKYFrUw24PO_80LwAUbHlRElKF6QcaguM1wz5J0Jn4
https://mega.nz/file/DVBxFRgR#ShA87DK_vRxipbm9eogMIDlRivXHWEHNFyXX5Hc0J1Y
https://mega.nz/file/bFI1kaAa#B3FDgKZ0EeJ0L_aR0BMtVzqnZTOc__eiAcvIF9y0TEg
https://mega.nz/file/3MpkRLxJ#u11ybUFCWLPznLKaQLDp6z8pFvDm5x_ctwzYgkpyBHs
https://mega.nz/file/OJJyXLJC#n2MRiajim279Eylhnyge3U9UmFLWSq9ggMGi6n96R7E
https://mega.nz/file/WRIwEJBD#fo9q6agJW6YDh0yc0KwVpk7PgqzQs0wteu5EeuxPfHg
Seismofond [email protected] opit bloka NATO USA Antonovskiy most Texnologiya uskorennogo
vosstanovleniya mosta chreez reku Dnepr 457 str
https://ppt-online.org/1266985
Появилось видео разрушенного
Антоновского моста через Днепр
https://ria.ru/20221111/most-1830910643.html
Вероятно, он был подорван». Что произошло
с Антоновским мостом
Российские военкоры сообщили о подрыве Антоновского моста в Херсоне
https://www.gazeta.ru/army/2022/11/11/15766321.shtml
USA chertezhi Bailey bridge [email protected] O predposilkax cozdaniya novix konsruktiy
vremennikh 410 str
https://ppt-online.org/1264806
Сборно-разборные быстро собираемые армейские переправы многократного применения
https://ppt-online.org/1224871

70.

STU Spets tex usloviya Opit Universiteta Montakha USA bistro vozvodimikh zheleznodorozhnikh
mostov Bloka NATO 405 str
https://ppt-online.org/1258617
USA+KNR Minisota Montana reka Suon Protokol ispitaniya plasticheskix uprugix soedineniy
zheleznodorozhnogo mosta SCAD 466 str
https://ppt-online.org/1261643
[email protected] Opit Universiteta Montakha USA bistro vozvodimikh
zheleznodorozhnikh mostov Bloka NATO 589 str
https://studylib.ru/doc/6368836/s.tyktyk81%40mail.ru-opit-universiteta-montakha-usa-bistro-...
Прямой упругопластический расчет стальных ...
https://miit.ru/content/Диссертация.pdf?id_wm=722242
https://cyberleninka.ru/article/n/raschet-predvaritelno-napryazhennyh-zhelezobetonnyh-ferm-metodom-konechnyh-elementov-s-uchetom-fizicheskoy-nelineynosti
https://elib.sfu-kras.ru/bitstream/handle/2311/147987/pz_buganov.pdf?sequence=1
Затяжка высокопрочных болтов во фланцевых
соединениях нижних поясов ферм
https://forum.dwg.ru/showthread.php?t=143391
https://stroim-domik.ru/article/167-mostostroenie-metalliceskie-mosty/mosty-so-skvoznymi-fermami
Стыковое болтовое соединение
растянутых поясов ферм на
косых фланцах

71.

https://3dstroyproekt.ru/useful-inventions/stykovoe-soedinenie-poiasov-ferm
https://ibb.co/ZXf00MN https://ibb.co/ZXf00MN
https://ibb.co/album/VWmy3S
Пожалуйста, проверьте правильность заполнения
анкеты
Если всѐ верно, нажмите «Отправить письмо» ещѐ раз, в противном случае нажмите «Вернуться» для
редактирования формы.
Адресат
Президенту Российской Федерации
Фамилия, имя, отчество
Мажиев Хасан Нажоевич
Адрес электронной почты
[email protected]
Телефон 89516441648
Прикреплѐнный файл
spb gasu ANTONOVSKIY MOST OPIT BLOKA nato usa 6 str.doc
Текст
Технология выбора вариантов ускоренного восстановления Антоновского автомобильного моста чрез реку Днепр с
использованием опыта блока НАТО США при восстановлении переправы в 2017 году через реку Суон штата Монтана с
использованием упруго пластинчатых стальных балов -пролетом моста ферм со встроенным бетонным настилом на болтовых
соединениях между диагональными натяжными элементами верхнего и нижнего пояса со снижением материалоемкости на 30
процентов , и сжатых сроком строительство сборно-разборного, быстро собираемого армейского американского моста , длиной 205
футов ( 64 метра )
Отправить письмо

72.

73.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ

74.

ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

75.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
и
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49

76.

поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51

77.

1.

78.

ОПОРА СЕЙСМОСТОЙКАЯ165 076
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
(19)

79.

RU
(11)
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен
Статус:
(последнее изменение статуса: 07.06.2017)
)(22) Заявка: 2016102130/03, 22.01.2016
) Дата начала отсчета срока действия патента:
22.01.2016
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU
иоритет(ы):
) Дата подачи заявки: 22.01.2016
) Опубликовано: 10.10.2016 Бюл. № 28
рес для переписки:
190005, Санкт-Петербург, 2-я Красноармейская ул. д 4 СПб ГАСУ, Коваленко
Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет
использования фрикцион но податливых соединений. Опора состоит из корпуса в котором выполнено
вертикальное отверстие охватывающее цилиндрическую поверхность щтока. В корпусе, перпендикулярно
вертикальной оси, выполнены отверстия в которых установлен запирающий калиброванный болт. Вдоль оси
корпуса выполнены два паза шириной <Z> и длиной <I> которая превышает длину <Н> от торца корпуса до
нижней точки паза, выполненного в штоке. Ширина паза в штоке соответствует диаметру калиброванного

80.

болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока совмещают с
поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до
заданного усилия. Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил
трения в сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от
сейсмических воздействий за счет использования фрикционно податливых соединений. Известны фрикционные
соединения для защиты объектов от динамических воздействий. Известно, например Болтовое соединение
плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит
металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены овальные отверстия
через которые пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением
нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок контакта
листов с меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края овальных
отверстий после чего соединения работают упруго. После того как все болты соединения дойдут до упора в
края овальных отверстий, соединение начинает работать упруго, а затем происходит разрушение соедине ния
за счет смятия листов и среза болтов. Недостатками известного являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при
расчетах из-за разброса по трению. Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind
and anti-seismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое основание,
поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних пластин. В
сегментах выполнены продольные пазы. Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят
запирающие элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме
того, запирающие элементы проходят через блок поддержки, две пластины, через паз сегмента и фиксируют
конструкцию в заданном положении. Таким образом получаем конструкцию опоры, которая выдерживает
ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из -за
наличия большого количества сопрягаемых трущихся поверхностей.

81.

Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых
трущихся поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение
точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей:
нижней - корпуса, закрепленного на фундаменте и верхней - штока, установленного с возможностью
перемещения вдоль общей оси и с возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие, сопрягаемое с цилин дрической
поверхностью штока, и поперечные отверстия (перпендикулярные к центральной оси) в которые
устанавливают запирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены
два открытых паза, которые обеспечивают корпусу возможность деформироваться в радиальном
направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого соответствует диаметру
запирающего элемента (болта), а длина соответствует заданному перемещению штока. Запирающий элемент
создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают возможность
деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние «запирания»
с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает
расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции
поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез ББ (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в
увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D»,
которое охватывает цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке
корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной
«I». В теле штока вдоль оси выполнен продольный глухой паз длиной «h» (допустмый ход штока)
соответствующий по ширине диаметру калиброванного болта, проходящего через этот паз. При этом длина
пазов «I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней части корпуса 1
выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для
сопряжения с защищаемым объектом. Сборка опоры заключается в том, что шток 2 сопрягается с
отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса
и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку
5, скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с
поверхностью болта (высота опоры максимальна). После этого гайку 5 затягивают тарировочным ключом до

82.

заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и уменьшению
зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига
(усилия трения) в сопряжении отверстие корпуса - цилиндр штока. Величина усилия трения в сопряжении
корпус-шток зависит от величины усилия затяжки гайки (болта) и для каждой конкретной конструкции
(компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.) определяетс я
экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении корпус шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения
конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным
элементом, отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное
с цилиндрической поверхностью штока, при этом шток зафиксирован запорным элементо м, выполненным в
виде калиброванного болта, проходящего через поперечные отверстия корпуса и через вертикальный паз,
выполненный в теле штока и закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно
центральной оси, выполнено два открытых паза, длина которых, от торца корпуса, больше расстояния до
нижней точки паза штока.

83.

84.

85.

86.

87.

88.

(19)
SU (11) 1760020 (13) A1
(51) 5 E02D27/34
ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО
ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР
Статус: по данным на 20.11.2007 - прекратил действие
В связи с автоматической обработкой патентных документов в цифровой формат в представленной библиографической информации возможны ошибки
(21)
(22)
(45)
(72)
Заявка: 4824694
Автор(ы): КОВАЛЕНКО АЛЕКСАНДР ИВАНОВИЧ; АЛЕКСЕЕВ ВИКТОР НИКОЛАЕВИЧ; АКИМОВ ЕВГЕНИЙ
АЛЕКСЕЕВИЧ
Дата подачи заявки: 1990.05.14
Опубликовано: 1992.09.07
(71)
Заявитель(и): ТБИЛИССКИЙ ЗОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И
ПРОЕКТНЫЙ ИНСТИТУТ ТИПОВОГО И ЭКСПЕРИМЕНТАЛЬНОГО
ПРОЕКТИРОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ
(54) Сейсмостойкий фундамент
1760020

89.

90.

91.

92.

93.

Выписка отзыв из НТС Госстроя РОССИИ МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ
ФЕДЕРАЦИИ НАУЧНО ТЕХНИЧЕСКИЙ СОВЕТ ВЫПИСКА ИЗ ПРОТОКОЛА заседания Секции
научно-исследовательских и проектно изыскательских работ, стандартизации и технического
нормирования Научно-технического совета Минстроя России
г. Москва 4 • .1 N 23-13/3 15 ноября ■1994 т. Присутствовали: от Минстроя России от
ЦНИСК им. Кучеренко от ЦНИИпромзданий
Вострокнутоз КХ Г. , Абарыкоз Е. П. , Гофман Г. Н. , Сергеев Д. А. , Гринберг И. Е. , Денисов Б. И. ,
Ширя-ез Б. А. , Бобров Ф. В. , Казарян Ю. А. Задарено к А. Б. , Барсуков В. П. , Родина И. В. ,
Головакцев Е. М. , Сорокин А. Ы. , Се кика В. С. Айзенберг Я. М / Адексеенков Д. А. , Кулыгин Ю. С. ,
Смирнов В. И. , Чиг-ркн С. И. , Ойзерман В. И. , Дорофеев В. М. , Сухов Ю. П. , Дашезский М. А.
Гиндоян А. П. , Иванова В. И. , Болтухов А. А. , Нейман А. И. , Ма лин И. С.
от ПКИИИС
от КФХ"Крестьянская усадьба" Севоетьянов 3. В, Коваленко А.И.
от ШШОСП им. Герсезанова от АО. ЩИИС
от КБ по железобетону им. Якушева
от Объединенного института физики земли РАН

94.

от ПромтрансНИИпроекта
от Научно-инженерного и координационного сейсмо¬логического центра РАН
от ЦНИИпроектстальконструкция ИМЦ "Стройизыскания" Ассоциация "Югстройпроект"
от УКС Минобороны России (г. Санкт-Петербург) Ставницер М -Р. Шестоперов Г. С. Афанасьев
П. Г. Уломов В. И. , Штейнберг В. В. Федотов Б. Г. Фролова Е И. Бородин Л. С. Баулин Ю. И.
Малик А. Н. Беляев В. С.
2. О сейсмоизоляции существующих жилых домов, как способ повышения сейсмостойкости
малоэтажных жилых зданий. Рабочие чертежи серии • 1.010.-2с-94с. Фундаменты
сейсмостойкие с использованием сейсмоизолирущего скользящего пояса для строительства
малоэтажных зданий в районах сейсмичностью 7,8,9 баллов
1. Заслушав сообщение А. И. Коваленко, отметить, что по договору N 4.2-09-133/94 с
Минстроем России КФК "Крестьянская усадьба" выполняет за работу "Фундаменты
сейсмостойкие с использованием сейсмоизолируюшего пояса для строительства малоэтажных
зданий в районах сейсмичностью 7, з и 9 баллов". В основу работы положен принцип создания в
цокольной части здания сейсмоизолируюшего пояса, поглощающего энергию как горизонтальных,
так и-вертикальных нагрузок от сейсмических воздействий при помощи резино -щебеночных
амортизаторов и ограничителей перемещений.
К настоящему времени завершен первый этап работы - подготовлены материалы для
проектирования фундаментов для вновь строящихся зданий. Второй этап работы, направленный
на повышение сейсмостойкости существующих зданий, не завершен. Материалы работы по
второму этапу предложены к промежуточному рассмотрению на заседании Секции.
Представленные материалы рассмотрены НТС ЦНИИСК им. Кучеренко ( Головной научноисследовательской организацией министерства по проблеме сейсмостойкости зданий и
сооружений) и не содержат принципиально Д технических решений и методов производства
работ.

95.

Решили:
1. Принять к сведению сообщение А.И.Коваленко по указанному вопросу .
2. Рекомендовать Главпроекту при принятии законченной разработки "проектно-сметной
документации сейсмостойкого Фундамента с использованием скользящего пояса (Типовые
проектные решения) учесть сообщение А. И. Коваленко и заключение НТС ЦНИИСК,
котором были рассмотрены предложения сейсмоустойчивости инженерных систем
жизнеобеспечения ( водоснабжения, теплоснабжения, канализации и газораспределения) .
на
Зам. председателя Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормировав ' Ю. Г. Вострокнутов
В. С. Сенина
Ученый секретарь Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормирование
МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНСТРОЙ РОССИИ
117937 ГСП 1 Москва ул. Строителей 3 корп. 2 П. М ■ 7 У № 3-3-1
На № О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства "Крестьянская усадьба" А.И КОВАЛЕНКО
197371, Санкт-Петербург пр.Королева, 30-1-135 Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную
документацию шифр 1010-2с.94 "Фундаменты сейсмостойкие с использованием
сейсмоизолирующего скользящего пояса для строительства малоэтажных зданий а районах
сейсмичностью 7, 8 и 9 баллов. Выпуск 0-1. Фундаменты для существующих зданий. Материалы для
проектирования", выполненную КФХ "Крестьянская усадьба" по договору с Минстроем России от
26 апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка конструкторской документации
сейсмостойкого фундамента с. использованием сейсмоизолирующего скользящего пояса для
существующих зданий").

96.

Разработанная документация была направлена на экспертизу в Центр проектной продукции
массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский Научнотехнический Центр по сейсмостойкому строительству и инженерной защите от стихийных
бедствий (КамЦентр; экспертное заключение N 10-57/94), работа рассмотрена на заседании секции
"Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на НТС
Минстроя России. Результаты экспертиз и рассмотрений показали, что без проведения
разработчиком документации экспериментальной проверки предлагаемых решений и последующего
рассмотрения результатов этой проверки в установленном порядке использование работы в
массовом строительстве нецелесообразно.
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с
целью осуществления авторами контроля за распространением документации, во изменение письма
от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Крестьянская усадьба" кальки
чертежей шифр 1010-2с.94, выпуск 0-2. Главпроект обращает внимание' руководства КФХ
"Крестьянская усадьба" и разработчиков документации на ответственность за результаты
применения в практике проектирования и строительства сейсмоизолирующего скользящего пояса
по чертежам шифр 1010-2с.94, выпуски 0-1 и 0-2. Приложение: экспертное заключение
КамЦентра на 6 л.
Зам.начальника Главпроекта Барсуков 930 54 87 .А.Сергеев

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Ссылки для скачивания испытаний математическим моделированием оборудованием с трубопроводами
для очистки промышленного масла с геологической
средой, в том числе нелинейным методом в ПК
SCAD

115.

116.

Научные консультанты , которые поддержали и одобрили на Седьмых Савиновских чтениях организацию «Сейсмофонд» при СПб ГАСУ о технических решениях в
области использования для специальных технических условий для обеспечения сейсмостойкости, сейсмоустойчивости косого коменсатора для
оборудования для очисики промвышленного масла , изготавливаемых в соответствии с техническими условиями ЛШТИ.491614.001 ТУ,
предназначенными для сейсмоопасных районов с сейсмичностью более 9 баллов, с помощью фланцевых фрикционно-подвижных болтовых
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях по изобретению проф. дтн
ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076, 2010136746, 887748 «Стыковое соединение растянутых элементов» с энергопоглощающими
элементами проходившей в ПГУПС (ЛИИЖТ) с 1-4 июля 2014
Научный консультант д.т.н., проф. СПб ГАСУ
Тихнов Ю. М
Научный консультант ктн, доцент кафедры ТСМиМ
Аубакирова И.У
Научный консультант дтн, проф.
Мажиев Х Н
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК

117.

G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С.,
Хусид Р.Г.(RU),
Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах.
Миролюбов Ю.П.(RU)
- М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A,
30.01.83. EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Адрес для переписки:
Кондратов Валерий Владимирович (RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания
резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на
его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.

118.

Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может
быть использовано в мостостроении и других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР),
так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М.,
Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 6064):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие
натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты
закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ,
поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в
результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные
усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты
измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений
(Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в
случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание
предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой
пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в
резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не
могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие
таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента
закручивания для подтяжки болтов. Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.

119.

Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с
учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же
источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания
нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или
загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с
гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее
поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее
поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания.
При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения
величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме
того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется
следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное
положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки;
как правило, этот угол составляет 60o.

120.

- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины
пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия
натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М.,
Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения
болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой
предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения
коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в
конкретных условиях эксплуатации соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий
натяжения болтов в период обследования конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам
обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым
вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину
угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания
гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по
формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α

121.

i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1,
07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)

122.

(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта.
Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть
использовано для определения фактического напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в
которых передача усилия обжатия соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям
усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие,
отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент
условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые
отражаются в проектной документации, являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного
соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:

123.

, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное
усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы
оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае
сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования
высокопрочных болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно
большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при
коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует
исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным
методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного
пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена
применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ
его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных
поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на
строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью
захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На
строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной
эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает
трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных центров
требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно
снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения
климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время
обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об
условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки
фактической надежности работы фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и
инструментальной базы, способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.

124.

Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при
восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов,
необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям
соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами
отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008
г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.),
заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента затяжки. Приращение усилия
натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного
положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных
поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после
предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора
болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ
№2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном
монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3,
скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением
усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти
раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего соединения.

125.

Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с
высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность
способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из
основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной
машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от
величины отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к
тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического,
так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому
фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего
устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может
не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от
величины отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении
величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную
модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для
обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят
дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным
отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие
позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54.
Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки
контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент

126.

трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом
преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух
стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом
рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве
силоизмерительного устройства используется динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое
соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической
накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое
соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной
металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11
осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной
величине. Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения
усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой
10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6
надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который
воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную
величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по
обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции
дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.

127.

Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно
использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в
отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали,
узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный
из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60
корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии
дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь
зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных
размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на
строительстве при сборке соединений на высокопрочных болтах.

143.

Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в
отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы
пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной
машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме нтов,
стянутых одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в
каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика,
проектной и научно-исследоват е льской организаций.

144.

145.

146.

147.

148.

Научные консультанты от СПб ГАСУ , ПГУПС : Х.Н.Мажиев, проф.дтн СПбГАСУ
Тихонов Ю.М , ученый секретарь кафедры ТСМиМ СПб ГАСУ , заместитель
руководителя ИЦ «СПб ГАСУ» И. У. Аубакирова [email protected] ИНН
2014000780 по подготовке экспертизы заключения о применении в районах с
сейсмичность. 7-9 баллов оборудования для очистки промышленного масла (ТУ 3616-00147992552-2010), с трубопроводами ( ГОСТ Р 55989-2014)изготавливаемые в

149.

соответствии с техническими условиями, предназначенные для сейсмоопасных районов с
сейсмичностью до 9 баллов, серийный выпуск
Материалы научного сообщения, изобретения, специальные технические условия, альбомы
, чертежи, лабораторные испытания : о сейсмоизоляции оборудования для очистки
промышленного масла (ТУ 3616-001- 47992552-2010), с трубопроводами ( ГОСТ Р 559892014) на основе демпфирующей сейсмоизоляции с использованием изобретения номер
165076 «Опора сейсмостойкая» с применением фрикционно –подвижных болтовых
соединений для обеспечение сейсмостойкости оборудования для очистки промышленного
масла (ТУ 3616-001- 47992552-2010), с трубопроводами ( ГОСТ Р 55989-2014),
предназначенных для сейсмоопасных районов с сейсмичностью до 9 баллов, на основе
изобретений проф дтн ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076
«Опора сейсмостойкая», 154505 «Панель противовзрывная», № 2010136746 «Способ
защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и
легко сбрасываемых соединений , использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» ,
хранятся на Кафедре металлических и деревянных конструкций 190005, Санкт-Петербург,
2-я , Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и
деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич строительный
факультет [email protected] [email protected] [email protected]
[email protected] (921) 962-67-78, (996) 798-26-54, (999) 535-47-29 Президент
организации «Сейсмофонд» при СПб ГАСУ Х.Н.Мажиев ИНН 201400780 ОРГН
1022000000824
Подтверждение компетентности организации «Сейсмофонд» при СПб ГАСУ
https://pub.fsa.gov.ru/ral/view/13060/applicant

150.

Ссылки разработанных организацией Сейсмофонд при СПб ГАСУ специальных технических
условий (СТУ) о пригодности оборудования для очистки промышленного масла с применением
косых компенсаторов, на фрикционно -подвижных болтовых соединений для промышленных
трубопроводов, предназначены для обеспечения сейсмостойкости оборудования
https://disk.yandex.ru/d/Qoedgn2B0vUmrg
https://ppt-online.org/881920
https://ru.scribd.com/document/498726054/MGSU-ZAKLYUCHENIE-ENAVELVIVODI-Rekomendatsii-Priminenii-Seismichnostoykoy-ProduktsiiOborudovaniya-Dlya-Ochstki-Promishlennogo-226-Str
https://cyberleninka.ru/article/n/primenenie-friktsionno-podvizhnyh-boltovyh-soedineniy-dlya-obespecheniya-seysmostoykostistroitelnyh-konstrutsiy-mostov-i-drugih
http://www.izvestiapgups.org/assets/files/10.20295-1815-588X-2016-3/10.20295-1815-588X-2016-3-353-360.pdf
https://disk.yandex.ru/d/UWsfXyzs8Wsv5Q
https://ppt-online.org/880052
https://ru.scribd.com/document/498433437/Pgups-Инструкция-Применеию-Фрикционно-Подвижные-Соедиения-Фпс-64-Стр-УздинаФПС
https://ru.scribd.com/document/498433760/Публикация-ФПС-Научная-Статая-ЛИИЖТ-ПГУПС-Каптелин-Соеврешенствоание-Уздин-8-Стр
https://ppt-online.org/880056
https://disk.yandex.ru/i/cVuSSWyS5_lCaw
https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ
https://www.youtube.com/watch?v=trhtS2tWUZo https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Y https://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
https://ru.scribd.com/document/498434514/Ispitanie-Fragmentov-Uzlov-Friktsionno-Podvijnix-Kompensatorov-s-Kosimi-Stikami-DlyaSoedineniya-Promishlennix-Truboprovodov
https://disk.yandex.ru/i/ryVGsH4DB229WA
https://disk.yandex.ru/d/O7F2K9ay97x7yA
https://ppt-online.org/880063
https://ppt-online.org/879889
https://ru.scribd.com/document/498342525/PGUPS-11-03-2021-Protokol-Ispitaniy-Oborudovaniya-Ochistki-Promishlennogo-Masla-ENAVEL
https://ppt-online.org/879890
https://disk.yandex.ru/i/k9jJHylCk7GA0Q
https://ppt-online.org/880097
https://ru.scribd.com/document/498443146/SCAD-Office-Progress-15-Str
https://ok.ru/video/1995861986017
Файл 13 https://ok.ru/video/2082975714017
Файл 15 https://ok.ru/video/2083009727201
Файл 16 https://ok.ru/video/2083013069537
Файл
18
https://ok.ru/video/2082651048673

151.

Файл 19
https://ok.ru/video/2083023227617
файл 13 https://disk.yandex.ru/i/YBOdekodVz9NjQ
https://disk.yandex.ru/client/disk?idApp=client&dialog=slider&idDialog=%2Fdisk%2F00013.MTS
файл 15 https://disk.yandex.ru/i/jCd7RcJYU-P61Q
https://disk.yandex.ru/client/disk?idApp=client&dialog=slider&idDialog=%2Fdisk%2F00015.MTS
Файл
16
https://disk.yandex.ru/i/ynK5WYWIDqzNpw
https://disk.yandex.ru/client/disk?idApp=client&dialog=slider&idDialog=%2Fdisk%2F00016.MTS
файл
18 https://disk.yandex.ru/i/m6-O7KIOkJQjbA
https://disk.yandex.ru/client/disk?idApp=client&dialog=slider&idDialog=%2Fdisk%2F00018.MTS
Файл 19
https://disk.yandex.ru/i/A5IFqVDHSWlZbg
https://disk.yandex.ru/client/disk?idApp=client&dialog=slider&idDialog=%2Fdisk%2F00019.MTS
https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ
https://www.youtube.com/watch?v=trhtS2tWUZo https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Y https://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
https://www.youtube.com/watch?v=b5ZvDAGQGe0
https://www.youtube.com/watch?v=LnSupGw01zQ
https://www.youtube.com/watch?v=trhtS2tWUZo https://www.youtube.com/watch?v=YlCu9fU6A3M
https://www.youtube.com/watch?v=IScpIl8iI1Y https://www.youtube.com/watch?v=ktET4MHW-a8&t=637s
https://yadi.sk/d/yIYtSp9oTwXTBA
https://ru.scribd.com/document/493931261/SNAN-NEWS-Protokol-Laboratornikh-Ispitaniy-Seismostoykost-Zadvizhek-KompaktnitStalnimikh-Zavod-Gadzhieva-Rdialektov-Mail-ru-161-Str
https://ppt-online.org/864525
https://yadi.sk/d/U9cgf872IfzclQ
https://www.wessex.ac.uk/components/com_chronoforms5/chronoforms/uploads/Abstract/20210209174411_Doklad_protokol_laboratornikh_ispi
taniy_seismostoykost_zadvizhek_kompaktnit_stalnimikh_Zavod_Gadzhieva_rdialektovmail.ru_109_str.pdf
https://www.wessex.ac.uk/components/com_chronoforms5/chronoforms/uploads/Abstract/20210209013040_SPBGASU_Providing_earthquake_resis
tance_of_damping_oblique_compensators_for_main_pipelines_on_friction-movable_bolted_joints_137.pdf
https://yadi.sk/i/gPlRNzCW4U-Z_w
https://ppt-online.org/863664
https://ru.scribd.com/document/493835267/STAN-SPBGASU-Providing-Earthquake-Resistance-of-Damping-Oblique-Compensators-for-MainPipelines-on-Friction-movable-Bolted-Joints-137
https://yadi.sk/i/vjKr1lZLZd6OXg

152.

http://krestiyaninformagency1.narod.ru
https://ppt-online.org/810519
https://ru.scribd.com/document/474722687/PGUPS-t3487810-Interzet-ru-Posledniy-Izobretatel-USSR-Boris-Andreev-Ne-Tolko-IzobrelPortativniy-Avtonomniy-Obogrevatel-Delovoy-Peterburg-116-Str
https://ru.scribd.com/document/476767775/PGUPS-Sertifikatsiyaprodutsii-Yandex-ru-Obespechenie-Seismostoykosti-ZheleznodorozhnikhMostov-Na-Osnove-Friktsionno-Dempfiruyucheyi-167
https://ppt-online.org/810519
https://ru.scribd.com/document/478699630/Рaschet-Na-Progressiruyuchee-Lavinojbraznoe-Obruchenie-Pri-Osobikh-Vozdeystviyakh-vNagornom-Karabakhe-Stepanokert-SCAD-Offic-214-Str
https://ru.scribd.com/document/478198820/PROTOKOL-9854514864-Kostychev-m-Ograx-ru-Ispitaniy-Seismostoykost-OgnezachitnogoMateriala-OGRAX-СКЭ-UNIKHINTEK-PODOLSK-121стр
https://en.ppt-online.org/819024
https://ru.scribd.com/document/474596670/t3487810-Interzet-ru-Obespechenie-Ustoychivosti-Na-Osobie-Vozdeystviya-SeismostoikostIspolzovaniem-Friktsi-Dempfera-171
https://en.ppt-online.org/842232
https://ru.scribd.com/document/473271537/MIN-TEZITSI-SPBGASU-Vzaimodeystviya-Sooruzheniy-Na-Osobie-Vozdeystviya-Dlya-ObespecheniyaUstoychivosti-Za-Schet-Ispolzovaniya-Uprugoplastichnikh-Shar
https://ru.scribd.com/document/476044896/Obespecheni-Seismostoykosti-Truboprovodov-s-Ispolzovaniem-Friktsi-DempfiruyuchikhDempferov-i-Friktsionno-Dempfiruyucheysya-Seismoizolyatsii184
https://en.ppt-online.org/811462
https://ppt-online.org/855936
https://disk.yandex.ru/i/_8RpC2hvdeuKnw
https://ru.scribd.com/document/494800185/PGUPS-LISI-GASU-Spiralnaya-Seismoizoliruyuchaya-Opora-s-Uprugimi-Dempferami-SukhogoTreniya-172-Стр
https://ppt-online.org/867995
https://disk.yandex.ru/i/FJtLJHNVAk7gWA
https://yadi.sk/i/8jZeKHCJTsGvxg https://yadi.sk/i/8jZeKHCJTsGvxg
https://yadi.sk/i/DrTK71PO-o-m9Q
https://yadi.sk/i/ZLSfhrh8ra22_g https://yadi.sk/i/lRzA_SOpdEa37w
https://yadi.sk/i/g7Lyr5YoGYJasg https://yadi.sk/i/C0BFkQoNEse9ZA
https://yadi.sk/i/y93RsSoAq8k3-g https://yadi.sk/i/gSart1hjsQrklg

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

С научным
докладом рук. ОО «Сейсмофонд» инж. А.И.Коваленко на XXVI Международной конференции
«Математическое и компьютерное моделирование в механике деформируемых сред и
конструкций» 28.09 -30-09.2015 в СПб ГАСУ: с научным сообщением «Испытание
математических моделей на фрикционно-подвижные соединения (ФПС) их реализация в ПК
SCAD Office» можно ознакомится
k-a-ivanovich.narod.ru т/ф (812) 694-78-10

193.

С инструкцией по применению фрикционно -подвижных соединений (ФПС), можно ознакомится:
http://www.youtube.com/watch?v=76EkkDHTvgM
См. так же изобретения № 2010136746 E04C 2/00 «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И
СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» и патент на полезную модель"Панель противовзрывная"№ 154506
С рабочими чертежами по креплению оборудования с помощью ФПС, можно ознакомиться на сайте:
http://youtube.com/watch?v=9ribfdbpKLk https://vimeo.com/124118260
Смотри изобретения по использованию ФПС проф. дтн ПГУПС Уздина А М : 1143895, 1168755, 1174616.
и узлы и фрагменты лабортарных испытаний упругопластической стальной фермы моста-балки,
пролетом: 6, 9, 12, 18, 24 и 30 метров c большими перемещениями на предельное равновесие и
приспособляемость , для автомобильного моста, шириной 3 метра, грузоподъемностью 5 тонн ,
сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ УЧАСТКА
ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С
ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные
конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный
мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073
от 02.06.2022 ) , на болтовых соединениях с демпфирующей способностью при импульсных растягивающих
нагрузках при многокаскадном демпфировании при динамических нагрузках, между диагональными натяжными
элементами, верхнего и нижнего пояса фермы, из пластинчатых балок, с применением гнутосварных
прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» с
использованием изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372,
2228415, 2155259, 1143895, 1168755

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

Application of BRB to Seismic Mitigation of Steel Truss Arch Bridge Subjected to Near-Fault
Ground Motions
by

221.

Haoyuan Gao
1
,
Kun Zhang
2
,
Xinyu Wu
3
,
Hongjiang Liu
4,*
and
Lianzhen Zhang
5

222.

1
College of Civil Engineering, Tongji University, Shanghai 200092, China
2
College of Engineering, University of Auckland, Auckland 1023, New Zealand
3
Shenyang Geotechnical Investigation & Surveying Research Institute Co., Ltd., Shenyang 110004, China
4
College of Civil, Environmental and Land Magement Engineering, Polytechnic University of Milan, 20133 Milan, Italy
5
College of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150096, China
*
Author to whom correspondence should be addressed.
Buildings 2022, 12(12), 2147; https://doi.org/10.3390/buildings12122147
Received: 16 October 2022 / Revised: 23 November 2022 / Accepted: 1 December 2022 / Published: 6 December 2022
(This article belongs to the Special Issue New Trends in Seismic Performance Evaluation)
Download
Browse Figures
Versions Notes
Abstract
In this paper, the seismic response of a steel truss arch bridge subjected to near-fault ground motions is studied. Then, the idea of applying buckling restrained braces (BRBs) to a steel truss arch bridge in near-fault areas is
proposed and validated. Firstly, the basic characteristics of near-fault ground motions are identified and distinguished. Furthermore, the seismic response of a long span steel truss arch bridge in the near fault area is
analyzed by elastic-plastic time analysis. Finally, the braces prone to buckling failure are replaced by BRBs to reduce the seismic response of the arch rib through their energy dissipation properties. Four BRB schemes were
proposed with different yield strengths, but the same initial stiffness. The basic period of the structure remains the same. The results show that near-fault ground motion will not only obviously increase the displacement and
internal force response of the bridge, but also cause more braces to buckle. By replacing a portion of the normal bars with BRBs, the internal forces and displacements of the arch ribs can be reduced to some extent, which is
more prominent under the action of pulsed ground motion. There is a clear correlation between the damping effect and the parameters of BRB, so an optimized solution should be obtained by comparison and calculation.
Keywords:
near-fault ground motion; forward-directivity effect; fling-step effect; steel truss arch bridge; buckling restrained brace
Graphical Abstract
1. Introduction
In the event of an earthquake, the ground motions in the areas within 20 km of the fault have a super destructive power. In recent years, some historical earthquakes have broken out in some countries and regions,
and some valuable ground motions have been recorded. These seismic data [1] provide conditions for structural engineers to carry out seismic research.
Seismologists and engineers have analyzed the characteristics of near fault ground motions in some ways. Somerville et al. [2] have pointed out that pulse effects in near-fault areas cause spatial variations in ground
motion amplitude and duration. Their characteristics and mechanism have been elaborated by many studies (Wu et al. [3], Yang and Zhou [4], Yan and Chen [5]). Because of the difference of fault rupture mechanism, pulselike ground motions can be divided into forward-directivity pulses (F-D pulses) and fling-step pulses (F-S pulses). The velocity time history of forward-directivity pulses usually contain double or multiple peaks. The ground
motions with fling-step pulses usually exhibit two important characteristics: single velocity pulse and permanent ground displacement, which may make the structure subject to large deformations and internal forces. In terms
of research methods, Chopra and Chintanapakdee [6] have extended well-known concepts of elastic and inelastic response spectra based on far-fault motion to near-fault motion. Mavroeidis and Papageorgiou [7] have
proposed a simple analytical model for the representation of pulse-like ground motions, which adequately describes the impulsive character of near-fault ground motions both qualitatively and quantitatively. Ghahari et al. [8]
have used the moving average filtering method with appropriate cut-off frequency to decompose the near-fault ground motion into two components with different frequency contents. This method has been promoted in recent
years. On this basis, Li et al. [9] have proposed a recorded decomposition integration method to synthesize artificial pulse-like ground motion by combining high-frequency background records with simple equivalent pulses.
Thus, scientists and engineers now have a mature understanding of the mechanism, characteristics, and research methods of near-fault earthquakes, but their impact on structures needs more attention. Some
researchers (Billah et al. [10], Davoodi et al. [11], Cui and Sheng [12], Losanno et al. [13]) have studied the seismic responses of various structures, including frames, dams, underground structures, and bridges near faults.
Some researchers have tried to find correlations between ground motion parameters and structural responses but there have been no consistent consensus (Chen et al. [14]). The response spectrum is an important way to
investigate the special influence of near-fault ground motion on structures. Yang and Zhao [15] have studied the influence of near-fault ground motions with forward-directivity pulse and fling-step pulse on the seismic
performance of base-isolated buildings with lead rubber bearings. Through time history and damage analyses of a tested 3-storey reinforced concrete frame under 204 near-fault pulse-type records, some researchers (Vui
Van et al. [16], Zaker et al. [17], Upadhyay et al. [18]) found that velocity spectrum intensity is leading parameter demonstrating the best correlation.
In addition to the above studies, the low-frequency pulse effects of near-fault seismic waves lead to the need for more attention to their effects on long-period structures. Adanur et al. [19] have compared the effects of
near-fault and far-fault ground motions on the geometrically non-linear seismic behavior of suspension bridges. Shrestha [20] presented an analytical investigation on the effect of the near fault ground motions on a long span
cable-stayed bridge considering the vertical ground motion. They found that near-fault ground motions produce greater displacements and internal forces on suspension bridges and cable-stayed bridges compared to far-fault
ground motions. However, fewer studies have been conducted on the seismic response of near-fault arch bridges. The arch bridge has a large span and high material utilization rate, which is especially suitable for solid rocks
in mountainous and canyon areas near faults. So it is necessary to study the near fault seismic response of the arch bridge. Som e researchers (Lu et al. [21], Bai et al. [22], Alvarez et al. [23], R. Li et al. [24], Bazaez et al.
[25]) studied the seismic response of arch bridges by means of pushover analysis or time-history analysis, but have not fully considered the special destructiveness of near-fault ground motions to this flexible structure.
The seismic responses of the arch bridge in the near fault areas need further analysis, and the corresponding seismic mitigation methods are also worthy of attention. Chen et al. [26,27,28] have pointed out that
advanced seismic isolation devices and systems have been recognized as promising measures toward resilient design of bridge structures. Some researchers (Alam et al. [29], Dezfuli and Alam [30], R. Li et al. [24]) have
proposed seismic mitigation methods, such as rubber bearings, elastic-plastic steel dampers, and shape memory alloys, but these devices are limited and uneconomical in arch bridges. Kim and Choi [31] have pointed that
buckling-restrained braces (BRBs) can yield in tension and compression, exhibit stable and predictable hysteretic behavior, provide significant energy dissipation capacity and ductility, and are an attractive alternative to
conventional steel braces. Some researchers (Hoveidae and Rafezy [32], Li et al. [33], Xing et al. [34]) have optimized its structure and applied it to buildings, obtaining good seismic mitigation effect. Beiraghi and Zhou [35]

223.

have designed a braced frame consisting of steel buckling-restrained braces (BRB model), braces with shape memory alloy (SMA model), or combination of BRB and SMA braces. It is worth mentioning that they have taken
advantage of performance-based design concepts. Concentric braced frames have been combined with moment-resisting frame as a dual system subjected to near-field pulse-like and far-field ground motions (Wang et al.
[36]). To date, BRBs have been used extensively in building structures, but are not as widely used or researched in bridge structures. Dong et al. [37] installed self-centering buckling-restrained braces on the reinforced
concrete double-column bridge piers. Experimental results have demonstrated the obvious advantages of SC-BRB in increasing the strength and minimizing the residual deformation of the bridge column. Sosorburam and
Yamaguchi [38] has conducted a parametric study on the seismic behavior of the truss bridge with BRB by changing the length, the cross-sectional area, the location, and the inclination. Xiang et al. [39] investigated the
effect of BRB distribution on the seismic performance of retrofitted multi-story reinforced concrete high bridge piers. However, the application of BRB in a steel truss arch bridge is rare (Celik et al. [40]).
The objectives of this paper are to investigate special seismic response of long-period steel truss arch bridge and introduce BRBs into the vibration reduction in steel truss arch bridge in near fault areas. Firstly, nine
ground motions with different characteristics are selected from PEER database [1], and their differences are analyzed by response spectrum. Subsequently, taking a steel truss arch bridge as the research object, the
response law of the bridge under forward-directivity pulsed, fling-step pulsed, and non-pulsed motions is analyzed with an elastic-plastic time history analysis method. Finally, the seismic mitigation method of using BRB to
replace buckling-prone components is proposed and verified. The results show that the internal force and displacement of the arch ribs can be reduced by replacing a portion of the normal bars with BRBs, which is more
prominent under the action of pulsed ground motion.
2. Near-Fault Ground Motions
2.1. Selected Seismic Waves
The Chi-Chi earthquake in Taiwan in 1999 is a typical large earthquake near the fault. In this paper, nine ground motions of different types in this earthquake are taken from the latest database of the PEER NGA-West
2. The selection principles of ground motion are as follows: (1) the fault is within 20 km; and (2) peak acceleration and velocity are greater than 100 cm/s2 and 30 cm/s, respectively. The three groups of time-history of ground
motion velocity with different characteristics are shown in Figure 1a–i. The first group contains three seismic waves, TCU-051, TCU-082, and TCU-102, representing F-D effect seismic waves; the second group contains
three seismic waves, TCU-052, TCU-068, and TCU-075, representing F-S effect seismic waves; the third group contains three seismic waves, TCU-071, TCU-089, and TCU-079, representing non-pulse effect seismic waves.
The basic properties of the ground motions, such as the closest distance to fault rupture (Rrup), peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), PGV/PGA, and pulse period
(Tp) are listed in Table 1. PGV/PGA is usually taken as the pulse parameter in the study to preliminarily judge the strength of the velocity pulse. According to the preliminary judgment, the pulse effect of the selected P-S
motions is the strongest, followed by the P-D motions. In contrast, the ordinary non pulse ground motion is gentle.
Figure 1. Velocity time history curve of ground motions.
Table 1. Characteristics of different types of ground motions.
2.2. Response Spectrum of Seismic Waves
From the above-ground motion parameters, it can be seen that there are obvious differences in the motion characteristics of three different types of ground motion (Zaker at el. [41]). Therefore, further research is
needed through response spectrum. The elastic response spectrum of linear elastic single-degree-of-freedom system with 5% damping ratio under three groups of ground motion is calculated, respectively, and the average
value of each group is taken. The calculation results are shown in Figure 2a–c.

224.

Figure 2. The average response spectrum curves of three groups of ground motions.
Comparing the response spectrum curves, the differences between the three types of ground motions are obvious. In the short period, the spectral velocity of non-pulse ground motion is the largest. In the middle
period, the acceleration value of the ground motion with forward effect is the largest. In the long period, the acceleration value of ground motion with lightning effect is the largest. As for velocity spectrum and displacement
spectrum, the spectrum value of pulse ground motion is larger than that of non-pulse ground motion in a long period. In general, the low-frequency components of pulse ground motion are relatively rich, which should be paid
attention to in the design of long-period structures near faults.
The peak accelerations of the nine primary seismic waves are adjusted with reference to the Chinese seismic code for bridges (Wu at el. [3]). The rare earthquakes in the Chinese code are similar to ASCE maximum
considered earthquakes. The studied bridge is in the octave zone, so the peak acceleration in rare earthquakes was adjusted to 400 cm/s2.
3. Bridge Prototype and Modelling
3.1. Case Study Bridge for System Response
The prototype bridge is a long-span steel truss arch bridge spanning a valley in a near-fault area. Its net span is 400 m, the vector span ratio is 1/5, and the arch axis is ducted. The main arch rib adopts steel truss
structure, and the beam body is composed of steel and concrete. The height of the steel truss is 10 m, and the spacing of the three transverse arch ribs is 10 m. The arch rib adopts a steel box structure with equal section,
with a height of 1.5 m and a width of 1.0 m. The columns on the arch ribs are steel-bending structures, and the three transverse columns are equal-section steel boxes. Stiffening ribs and transverse spacers are provided
along the height of the columns. The columns are supported by steel bars in the transverse direction to improve stability and safety. The layout of the bridge is shown in Figure 3. Critical details and parameters are shown
in Table 2. The brace members are made from Q345qD steel, with a nominal yield strength of 345 MPa. The elastic modulus, Poisson’s ratio, density of structural member are listed in Table 3.
Figure 3. General layout of bridge. (unit: cm).
Table 2. Section of members.

225.

Table 3. Material parameters.
3.2. Finite Element Model
The finite element model of the bridge is established by means of the finite element software Midas Civil, as shown in Figure 4. The quality, stiffness, and boundary conditions directly determine the accuracy of the
finite element analysis results. The arch ribs are simulated by the beam element, and the material model is a Menegotto–Pinto theoretical model (Carreño at el. [42]). To account for non-linearity, lateral braces, vertical bars,
cross bars, and braces of columns are embodied by the elasto-plastic hinge element, and the material is simulated by a steel buckling model. The superstructure of the bridge was assumed to be elastic and was modeled by
an elastic beam-column element with a modulus of elasticity of 3.45 × 104 Mpa. A non-linear beam-column fiber element was adopted to model the non-linear behavior of the columns. The Concrete01 material model, which
was developed based on the uniaxial Kent–Scott–Park model, was used for the concrete of the columns, with compressive strengths of 26.8 and 32.8 MPa for the unconfined and confined concrete, respectively. The
reinforcing steel was modeled with uniaxial bilinear steel material of Steel01. The yield strength, elastic modulus and strain-hardening ratio were assumed to be 400 MPa, 200 GPa and 0.02, respectively.
Figure 4. Finite element model of bridge.
In terms of boundary conditions, the support between the cover beam and the main beam is simulated with fixed support. At the end of the beam, movable supports are used to simulate the longitudinal constraints of
the bridge. The bearing is a basin type rubber bearing, whose construction and model are drawn in Figure 5. The fixed direction of the bearing is restricted and the movable direction is represented by the bilinear model
in Figure 5. The sliding displacement xy is 2 mm.
Figure 5. Composition and model of bearing.
4. Bridge Response
The analysis of the dynamic characteristics shows that the first three order periods of the bridge are 1.651 s, 0.921 s, and 0.745 s in the longitudinal direction; 3.927 s, 1.612 s, and 0.809 s in the transverse direction;
and 0.973 s, 0.741 s, and 0.577 s in the vertical direction. Elastoplastic time history analysis is used to simulate the seismic response of bridges under rare earthquakes. Assume that the bridge is perpendicular to the fault.
The seismic waves with the same name are input in the longitudinal, lateral, and vertical directions of the bridge. The difference is that the PGA of the horizontal seismic wave is 400 cm/s2, while the vertical one is 2/3 of the
horizontal one, which is determined by referring to the Chinese code [43]. In Figure 6, the results for the nine working conditions are listed and each seismic wave represents one working condition. The three conditions,

226.

TCU-051, TCU-082, and TCU-102, represent the bridge response under the F-D effect seismic waves, TCU-052, TCU-068, and TCU-075 represent the bridge response under the F-S effect seismic waves, and TCU-071,
TCU-089, and TCU-079 represent the bridge response under the non-pulsed effect seismic waves. According to the internal force and displacement of key parts, such as arch foot, arch bottom, and 1/4 arch section, and the
buckling of lateral braces, vertical bars, cross bars and braces of columns, the response law of the bridge is summarized.
Figure 6. Envelope results of arch rib response.
4.1. Response of Arch Ribs
Under the action of three different types of ground motions, the envelope results of the internal force response of the arch ribs are shown in Figure 6a–c. The arch bridge span is 400 m, the horizontal coordinates of
the graph are the positions of the arch ribs in the axial direction of the bridge and the vertical coordinates are the results of the various seismic responses. Figure 6 shows the envelope results for the axial forces of the arch
ribs at each section. Figure 6b shows the results for in-plane bending moments and Figure 6c shows the results for out-of-plane bending moments. Under various cases, the maximum axial force of the arch rib occurs in the
arch foot section, and the bending moment of the arch foot section is also much greater than that of the arch top and 1/4 arch section. The in-plane bending moment envelopment diagram is not smooth and appears zigzag
fluctuation, which is mainly caused by the force change of the upper column directly connected to the arch ribs.
Compared with non-pulsed ground motions, the internal force of key sections of arch rib is obviously greater under pulsed ground motion. For example, the mean value of peak axial force of the arch foot under the
action of three non-pulsed ground motions is 55,150.9 kN. The mean value under the action of F-D pulsed ground motions is 104,641.9 kN, and that under the action of F-S pulsed ground motions is 94,825.7 kN, which are
increased by 89.7% and 71.9%, respectively, compared with the non-pulsed effect. For arch ribs at different positions, the influence of pulse effect is also different. The pulsed ground motion has the greatest influence on the
peak moment of arch foot surface. Compared with non-pulsed ground motion, the increase rates of F-D effect and F-S effect pulse are 207% and 141.2%, respectively. Pulsed ground motions have the least influence on the
axial force of the vault, and the increase rates of forward-direction pulse and fling-step pulse are only 10.5% and 7.6%, respectively.
In terms of deformation, the distribution of longitudinal and vertical deformation is similar. Figure 6d–f show the results of the displacement envelope of the arch rib section relative to the ground in the longitudinal,
transverse, and vertical directions, respectively. The maximum displacement occurs near 1/4 arch section, while the peak value of lateral displacement occurs near the vault. The displacement responses in all directions
under the two kinds of pulsed ground motions are much greater than those of non-pulsed ground motions. On the one hand, it is because that the time-domain energy of pulse type ground motion is concentrated and the lowfrequency pulse component is rich, which makes it easier to excite the basic mode of arch bridge with long-period. On the other hand, compared with the ordinary ground motions, the internal force response of the component
increases because of the huge velocity pulse. Thus, the braces near the arch foot are more prone to buckling failure, which reduces the overall stiffness of the structure, and then leads to the increase in displacements.
The influence of the P-S effect on displacement is greater than the F-D effect. The slip effect seismic wave chosen for the study has a larger impulse period than that of the directional effect seismic wave and is closer
to the fundamental period of the steel truss arch bridge. Therefore, the displacement response is greater.
In general, long-period steel arch bridges are more susceptible to the low-frequency impulsive component of near-fault ground vibrations. Therefore, the seismic response of steel truss arch bridges under impulsive
seismic action is much larger than that of non-impulsive ones.
4.2. Buckling of Braces
Under the action of rare ground motion, the various supports of the bridge will buckle to varying degrees. The number of buckling braces under pulse ground motion is much higher than that under non-pulse ground
motion, as shown in Table 4.
Table 4. The number of buckling of braces under rare ground motions.

227.

Due to complex forces near the arch foot, the number and degree of buckling of all kinds of braces near the arch foot are the largest in each working condition. A small part of lateral braces near the 1/4 arch and the
arch roof also suffer from buckling failure. Under the two kinds of pulsed ground motions, the braces buckle in different degrees, but it keeps elastic under three non-pulsed ground motions. Figure 7a–i show the state of the
bridge braces under the action of nine seismic waves. Braces in green represent no buckling damage and braces in red represent buckling damage. In general, the number of buckling braces is proportional to the transverse
displacement of the arch rib. The greater the lateral displacement is, the more likely the braces are to buckle, which will further weaken the lateral stiffness of the bridge.
Figure 7. Distribution of buckling members under rare ground motion. Note: elements in red are the braces where flexural damage occur.
Compared with vertical bars, the number and degree of buckling of lateral braces and cross bars are greater. When it comes to reasons, one is that the transverse stiffness of the bridge is obviously less than that of the
longitudinal and vertical directions, which makes the forces of the transverse connecting members more unfavorable. The other is that the design strength of the transverse and cross bar members is smaller than that of the
vertical bars. Therefore, it is necessary to focus on the transverse seismic response and seismic mitigation measures of large span steel truss arch bridges.
In summary, the axial force, bending moment and displacement response in all three directions of the arch ribs are significantly greater under pulsed seismic waves compared to non-pulsed seismic waves. From the
perspective of the braces, more buckling damage occurs in the braces under the action of pulsed seismic waves.
5. Seismic Mitigation Scheme Using BRB
The above research indicates that the transverse stiffness of steel truss arch bridge is insufficient, which makes it easy to be damaged by the pulse components of pulse-like ground motions. However, it is neither
economical nor reasonable to increase the transverse stiffness singly during the design. Therefore, this paper attempts to introduce the buckling restrained braces (BRBs) into the seismic mitigation of arch bridge. Some
braces are designed as BRBs to improve the overall mechanical performance of the bridge during earthquakes. It is expected that the BRBs can play the role of ―fuse‖ to provide normal bearing capacity in the normal service
condition and help the main structure maintain elasticity under frequent earthquake. Under the action of rare earthquakes with impulse effect, it yields earlier, but does not fail in buckling and still has considerable stiffness in
hysteresis. It can not only prevent the collapse of the overall load carrying capacity of the bridge caused by buckling damage, but also protect the arch ribs by allowing the braces to fully dissipate the seismic energy under
earthquakes.
5.1. Design Parameters of BRB
When determining the design parameters, it needs to be considered that BRBs must keep elastic under frequent earthquake but can yield and consume energy under rare earthquake. Firstly, considering the condition
of frequent earthquakes, the PGA of 9 seismic records is adjusted to 0.1 g. Then, the non-linear time history analysis is carried out. The maximum axial force of braces under various ground motions is shown in Table 5, and
the calculation results are used as the main basis for preliminary design. After the deployment of BRBs, the bridge members and overall load capacity should not differ much from that of the prototype bridge.
Table 5. Maximum axial force of members under frequent earthquakes (kN).

228.

Based on the seismic response data of the bridge, BRBs design and calculation are carried out with reference to technical specification for buckling restrained braces (DBJ/CT105-2011) [44]. In this paper, the structure
of TJI (F.F. Sun at el. [45]) steel buckling restrained brace developed by Tongji University is adopted. TJI buckling restrained brace is made of steel, and the restrained sleeve is made of square steel tube. The restraint effect
of outer sleeve on the yield section of core plate is realized by special stiffener. Physical object is shown in Figure 8, and main components are shown in Figure 9.
Figure 8. Physical object.

229.

Figure 9. Main composition and structure.
The calculation of BRBs is similar to that of ordinary brace, the difference is that the designer only need to check whether the strength meets the requirements without considering the instability. Considering that the
stiffness of the brace joint is generally greater than that of the brace itself, the equivalent sectional area (Ae) of the brace in the model is larger than that of the brace itself (Abe).
The braces of the bridge are over 12 m. According to the design manual for supporting design with the length over 12 m, the yield section area of core plate is A1 = 0.99 Ae. Therefore, considering the steel area and
yield strength of the core plate, the approximate formula for calculating the maximum design bearing capacity is obtained as Equation (1):
Nb1=0.9fyA1=0.9fy0.99Abe≤0.891fyAe 1=0.9 1=0.9 0.99 ≤0.891
(1)
Considering frequent earthquake load combination, the design value of maximum tension and compression axial force of BRBs should meet the requirements of Equation (2):
N≤Nb1/γre≤1.188fyAe ≤ 1/ ≤1.188
(2)
where N represents design value of BRBs axial force, Nb1 represents design bearing capacity of BRBs, γre represents seismic adjustment coefficient, generally 0.75 according to Technical specification for buckling
restrained braces (DBJ/CT105-2011).
Through the above methods, the specifications and dimensions of BRBs can be preliminarily obtained. Next, the yield bearing capacity of the model is calculated by Equation (3) as the basis of finite element analysis.
Nby=ηyfyA1 = 1
(3)
where Nby represents yield bearing capacity of BRBs, ηy represents super strength coefficient of core plate steel.
According to the above formulas, four different seismic mitigation schemes are formulated with the cross section area of the core panel as the variable. The dimensions and mechanical parameters of buckling
restrained braces under the four schemes are preliminarily formulated, and the yield bearing capacity is calculated as shown in Table 6. The difference of each scheme is that the cross-sectional area of the selected core, so
the design bearing capacity and yield bearing capacity are different, but the number and layout position are consistent.
Table 6. Design parameters of BRBs.
The buckling-restrained braces are simulated by means of plastic hinge elements according to Technical specification for buckling restrained braces (DBJ/CT105-2011) [44]. The bi-linear model with equal tension and
compression can be used in the elastic-plastic analysis of BRBs, as shown in Figure 10a, where Nby represents yield bearing capacity of BRBs, Δy represents initial plastic deformation, k represents elastic stiffness,
and q represents strengthening coefficient of core steel plate.

230.

Figure 10. (a) Bilinear restoring force model of BRB and (b) comparison of experimental and numerical models.
The scaled uniaxial quasi-static reciprocating testing is commonly used to test the tensile and compressive properties of BRBs. The numerical model was subjected to a BRB quasi-static cyclic test and the results were
compared with data extracted from published experimental as shown in Figure 10b [18]. The BRB numerical model shows stable hysteretic behavior, sufficient energy-dissipating capacity, and appropriate level of yield force,
which matched the published experiment data well.
5.2. Layout Scheme of BRBs
The layout of buckling restrained braces should be able to give full play to its energy dissipation performance and meet the needs of the overall static bearing capacity and stability of the structure. According to the
characteristics of steel truss arch bridge, the BRBs are arranged according to the following principles:
(1)
BRBs need to be arranged near sections with large force and relative displacement;
(2)
The layout of supports includes single diagonal bracing, V-shaped or herringbone form, but they should not be arranged in X-shaped cross form;
(3)
BRBs should be arranged in multiple directions of the structure, and it is expected to play a seismic mitigation role in multiple directions;
(4)
In order to reflect the seismic mitigation ratio of BRBs through comparative analysis, the study only replaces the original bridge braces with BRB members, without changing the number of braces;
(5)
The bearing capacity and dynamic characteristics of the bridge installed with BRB cannot be significantly changed.
Based on the above layout principles, a preliminary layout plan is drawn up, as shown in Figure 11a–d. There are 80 lateral braces, 50 Vertical bars, 50 Cross bars, and 8 column diagonal braces near the positions
with large internal force and displacement designed as BRB members. The blue braces are the ordinary steel members, and the yellow braces are the BRBs. Table 7 lists the number of BRBs at different locations.

231.

Figure 11. BRB layout scheme.
Table 7. BRB layout quantity table.
5.3. The Seismic Mitigation Effect of BRBs on Bridges near Faults
5.3.1. Comparison of Hysteresis Curves
The study solution developed was to use BRBs to replace the original braces, without changing the number of braces. There are four BRBs in total and their stiffness is the same as that of the normal steel bars in the
original scheme, the difference being the difference in yield strength. So the basic period of the stiffness and elastic phase of the structure is the same as that for the prototype bridge. In an earthquake, the BRBs can yield but
not buckle. This ensures that the stiffness and load-bearing capacity of the bars are not lost instantaneously, thus protecting the main structure.
The comparison of the hysteretic curves of the braces in each scheme is plotted in Figure 12a–d. It can be seen from the brace hysteretic curves that the lateral braces, cross bars, and braces of column are mainly
subjected to compression in earthquake. The ordinary steel braces can keep elastic when they are under tension. However, when the axial pressure reaches about 0.5 times of the yield axial pressure, the stiffness loss is
serious, and the hysteretic curve presents pinch effect, indicating that their energy dissipation capacity is poor. In contrast, BRBs can yield under both tension and compression, and the unloading stiffness is guaranteed
without instantaneous loss. It has a large deformation capacity and plump hysteretic curve, which indicates that it has strong energy dissipation capacity. It is worth mentioning that because the pulsed ground motions are
particularly unfavorable to the transverse stress of steel truss arch bridge, the deformation degree of lateral braces is greater than that of other braces, which should be paid attention to during designing.
Figure 12. Hysteresis curves of braces.
5.3.2. Effect of BRBs on Force and Displacement of Bridge
The comparison results of the internal force and displacement responses of the main sections of the original structure and the BRB seismic mitigation structure under three groups of ground motions are shown
in Figure 13a–f.

232.

Figure 13. The seismic mitigation effect of BRBs on the internal force and displacement of arch rib.
The substitution of BRBs for ordinary steel braces can effectively reduce the axial force, in-plane bending moment, and transverse displacement of the arch rib. The seismic mitigation effect of BRBs varies with
different types of ground motions. Seismic mitigation rate of the bridge under the action of pulse-like ground motions is much larger than that of the ordinary non-pulsed ground motions. Under the effect of impulse-free ground
vibration, most of the bridge rods do not buckle, so the bridge bearing capacity is not significantly weakened, so the advantages of the seismic reduction scheme are not fully reflected.
The average reduction rate of the axial force of the arch foot in the BRB-I scheme is 22.7% for the F-D wave, 28.4% for the F-S wave, and only 16.3% for the non-pulse wave. The axial force envelope that should
receive the most attention in an arch bridge is shown in Figure 14. Since the vertical seismic waves exacerbate the bending moment of the arch ribs and the damage of the bars, the BRB scheme also has a significant
reduction in the internal bending moment in addition to the axial force of the arch ribs. For the in-plane bending moment, the reduction rates of these three groups are 28.2%, 26.3%, and 10.7%, respectively.
Figure 14. Axial force of arch rib in BRB-I scheme.
In comparison, the reduction rate of displacements in three directions is relatively small. The BRB seismic mitigation scheme has better effect on reducing lateral deformation than the longitudinal and vertical ones. The
main reason is that the transverse displacement of the bridge is the most significant, and BRBs is essentially a displacement-based metal damper. In addition, more lateral braces and cross bar members that provide
transverse support are replaced by BRBs, so that the transverse seismic mitigation rate is higher than the longitudinal and vertical of the bridge.
With the change of seismic mitigation scheme from I to IV, the yield strength of four BRBs braces decreases gradually, and the seismic mitigation rate of arch rib axial force increases gradually. However, with this
change, the stiffness of the bridge decreases slightly. So in some conditions, the seismic mitigation effect of bending moment and lateral displacement is reduced. Thus, it can be seen that although the reduction in BRBs
stiffness can continuously reduce the axial force of arch rib, it will weaken the seismic mitigation effect of bending moment and lateral displacement. Therefore, balance should be achieved through comparison in engineering,
and then the optimal scheme should be selected.
For a more visual system of the above law, TCU-082 (F-D wave), TCU068 (F-S wave), and TCU079 (Non pulse wave) are selected in Figure 15 to show the time course results of the axial force of the arch foot and
the lateral displacement of the arch top.

233.

Figure 15. Time history curve of transverse deformation of vault section under the action of TCU082.
The yield strength of BRBs affects the seismic mitigation effect of lateral displacement. The transverse displacement seismic mitigation ratio of the bridge is relatively large. The time-history curve is plotted in Figure
15. Only the results for the first 40 s are shown in the figure. For both impulsive seismic waves, the BRB scheme reduces the response for most of the time, more prominently at the peak. Additionally, the rate of force
reduction is more prominent than the displacement. For the non-pulsed seismic waves, little change is seen from the time course curves.
It is worth noting that for the displacement timescale of the TCU068 wave transverse, the peak displacement of the BRB-IV scheme is 20.3% larger than that of the BRB-III scheme at 15.32 s. At the same time, the
reduction rate of other BRB schemes for forces fluctuates no more than 6.3% compared to the BRB-I scheme. Therefore, although properly weakening the stiffness of BRBs can reduce the seismic response of internal force
of the bridge, it will be unfavorable to the displacement response if the stiffness of BRBs is too small. On the basis of ensuring the elastic and ultimate stability of the structure under small earthquakes, the designer should
appropriately reduce the yield strength of BRBs near the section with small displacement and increase the yield strength near the section with large displacement. In this way, the area of hysteretic loop can be increased,
which is beneficial to improve the overall seismic mitigation efficiency of the structure.
In addition to the areas of concern listed above, the results of the envelope of arch rib axial forces and in-plane bending moments are calculated in order to visualize the force variations of all arch ribs in the BRB
scheme. Taking TCU102 as an example, Figure 16a,b shows the arch rib axial force envelope results of the original and BRB seismic mitigation structure. BRB seismic mitigation structure has the highest seismic mitigation
rate for axial force near the arch foot, but the seismic mitigation efficiency is lower at top section of the arch, which should be paid enough attention to during research and design.
Figure 16. Envelope results of internal force under TCU102 ground motion.
In summary, the substitution of BRBs for ordinary steel braces can effectively reduce the axial force, in-plane bending moment. However, the effect in terms of reducing displacement is very limited. Compared to nonpulsed seismic waves, BRBs are more effective in seismic mitigation under pulsed seismic waves, due to the fact that BRBs are more likely to yield and dissipate energy under the action of pulsed waves, which act to their full
potential.
6. Conclusions
In this paper, nine ground motions are selected and divided into three groups according to their types, then the characteristics of near-fault ground motions are studied. Taking a steel truss arch bridge as the research
object, the responses law of the bridge under pulsed ground motions are analyzed with the help of elastic-plastic time history analysis method. Finally, the buckling restrained braces are introduced into the seismic design of
an arch bridge. The seismic mitigation effect is verified by elastic-plastic time history analysis. The main conclusions are as follows:
(1)
The low-frequency component of the pulsed ground motion in the near-fault zone significantly increases the displacement and internal force response of the bridge compared to the non-pulsed ground motion. The velocity pulses lead to
more buckling damage of the braces and weakening of the bridge stiffness. In addition, the selected fling-step effect ground motions were more destructive than that of forward directivity effect.
(2)
Buckling restrained braces can function as fuses in arch bridge. In the prototype bridge, ordinary steel rods buckled under rare earthquakes and suffered a rapid loss of stiffness and capacity, resulting in a loss of function. A proportion of
the plain steel supports could be replaced with BRBs without changing the quantity. Four BRB solutions were proposed, which differ in their yield strength. Since they have the same stiffness and are consistent with the original braces,
the basic period of the structure remains the same. They can remain elastic under static conditions and frequent earthquakes and dissipate energy in rare earthquakes. Therefore, the axial force, in-plane bending moment, and transverse
displacement of the arch rib can be significantly reduced, which is more prominent under the action of impulse ground motion.
(3)
The seismic mitigation rate of bridges under pulsed ground motions is much larger than that of ordinary non-pulse ground motion, which is particularly prominent in the axial force of arch foot and in-plane bending moment. This is
because the pulsed ground motions cause more braces in the prototype bridge to buckle, and the role of buckling restrained braces in the optimized bridge is fully utilized.
(4)
There is a correlation between the seismic mitigation effect of buckling restrained braces and the design parameters, so the optimal scheme should be obtained through comparison. To a certain degree, reducing the strength of BRBs is
helpful to improve the seismic mitigation effect of internal forces, but this should be adopted without reducing the stiffness of the prototype bridge.
In addition, it should be noted that the seismic mitigation effect of the BRB seismic mitigation scheme is closely related to parameters, such as yield strength, layout, and ground motion characteristics. Further research
is necessary to set BRBs of different specifications near the parts with different degrees of deformation and put forward the optimal seismic mitigation scheme.

234.

Author Contributions
Conceptualization, H.G.; methodology, H.G.; software, H.G. and K.Z.; validation, K.Z. and H.L.; formal analysis, H.G.; investigation, H.L.; resources, L.Z.; data curation, H.G.; writing—original draft preparation, H.G.;
writing—review and editing, K.Z., X.W., H.L. and L.Z.; visualization, H.G.; supervision, X.W. and L.Z.; project administration, L.Z.; funding acquisition, H.L. and L.Z. All authors have read and agreed to the published version of
the manuscript.
Funding
This research was financially supported by National Key R&D Program of China (grant number 2021YFB2600500).
Institutional Review Board Statement Not applicable. Informed Consent Statement Not applicable.
Data Availability Statement
The data presented in this study are available on request from the authors.
Conflicts of Interest
The authors declare no conflict of interest.
References
FEER Database. Available online: https://ngawest2.berkeley.edu (accessed on 1 July 2013).
Somerville, P.G.; Smith, N.F.; Graves, R.W.; Abrahamson, N.A. Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity. Seismol. Res. Lett. 1997, 68, 199–222.
[Google Scholar] [CrossRef]
Wu, G.; Zhai, C.; Li, S.; Xie, L. Effects of near-fault ground motions and equivalent pulses on Large Crossing Transmission Tower-line System. Eng. Struct. 2014, 77, 161–169. [Google Scholar] [CrossRef]
Yang, D.; Zhou, J. A stochastic model and synthesis for near-fault impulsive ground motions. Earthq. Eng. Struct. Dyn. 2015, 44, 243–264. [Google Scholar] [CrossRef]
Yan, G.; Chen, F. Seismic Performance of Midstory Isolated Structures under Near-Field Pulse-Like Ground Motion and Limiting Deformation of Isolation Layers. Shock Vib. 2015, 2015, 730612. [Google Scholar] [CrossRef][Green Version]
Chopra, A.K.; Chintanapakdee, C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions. Earthq. Eng. Struct. Dyn. 2001, 30, 1769–1789. [Google Scholar] [CrossRef]
Mavroeidis, G.P.; Papageorgiou, A.S. A mathematical representation of near-fault ground motions. Bull. Seismol. Soc. Am. 2003, 93, 1099–1131. [Google Scholar] [CrossRef]
Ghahari, S.F.; Jahankhah, H.; Ghannad, M.A. Study on elastic response of structures to near-fault ground motions through record decomposition. Soil Dyn. Earthq. Eng. 2010, 30, 536–546. [Google Scholar] [CrossRef]
Li, S.; Zhang, F.; Wang, J.-q.; Alam, M.S.; Zhang, J. Effects of Near-Fault Motions and Artificial Pulse-Type Ground Motions on Super-Span Cable-Stayed Bridge Systems. J. Bridge Eng. 2017, 22, 04016128. [Google Scholar] [CrossRef]
Billah, A.H.M.M.; Alam, M.S.; Bhuiyan, M.A.R. Fragility Analysis of Retrofitted Multicolumn Bridge Bent Subjected to Near-Fault and Far-Field Ground Motion. J. Bridge Eng. 2013, 18, 992–1004. [Google Scholar] [CrossRef]
Davoodi, M.; Jafari, M.K.; Hadiani, N. Seismic response of embankment dams under near-fault and far-field ground motion excitation. Eng. Geol. 2013, 158, 66–76. [Google Scholar] [CrossRef]
Cui, Z.; Sheng, Q. Seismic response of underground rock cavern dominated by a large geological discontinuity subjected to near-fault and far-field ground motions. Chin. J. Rock Mech. Eng. 2017, 36, 53–67. [Google Scholar] [CrossRef]
Losanno, D.; Hadad, H.A.; Serino, G. Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion. Earthq. Struct. 2017, 13, 119–130. [Google Scholar] [CrossRef]
Chen, X.; Li, J.; Guan, Z. Influence of Ground Motion Characteristics on Higher-Mode Effects and Design Strategy for Tall Pier Bridges. J. Bridge Eng. 2022, 28, 04022126. [Google Scholar] [CrossRef]
Yang, D.; Zhao, Y. Effects of rupture forward directivity and fling step of near-fault ground motions on seismic performance of base-isolated building structure. Acta Seismol. Sin. 2010, 32, 579–587. [Google Scholar] [CrossRef]
Vui Van, C.; Ronagh, H.R. Correlation between parameters of pulse-type motions and damage of low-rise RC frames. Earthq. Struct. 2014, 7, 365–384. [Google Scholar] [CrossRef]
Zaker Esteghamati, M.; Farzampour, A. Probabilistic seismic performance and loss evaluation of a multi-story steel building equipped with butterfly-shaped fuses. J. Constr. Steel Res. 2020, 172, 106187. [Google Scholar] [CrossRef]
Upadhyay, A.; Pantelides, C.P.; Ibarra, L. Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices. Eng. Struct. 2019, 199, 109663. [Google Scholar] [CrossRef]
Adanur, S.; Altunişik, A.C.; Bayraktar, A.; Akköse, M. Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges. Nat. Hazards 2012, 64, 593–614. [Google Scholar]
[CrossRef]
Shrestha, B. Seismic response of long span cable-stayed bridge to near-fault vertical ground motions. KSCE J. Civ. Eng. 2015, 19, 180–187. [Google Scholar] [CrossRef]
Lu, Z.H.; Usami, T.; Ge, H.B. Seismic performance evaluation of steel arch bridges against major earthquakes. Part 2: Simplified verification procedure. Earthq. Eng. Struct. Dyn. 2004, 33, 1355–1372. [Google Scholar] [CrossRef]
Bai, F.-L.; Hao, H.; Li, H.-N. Seismic Response of a Steel Trussed Arch Structure to Spatially Varying Earthquake Ground Motions Including Site Effect. Adv. Struct. Eng. 2010, 13, 1089–1103. [Google Scholar] [CrossRef]
Alvarez, J.J.; Aparicio, A.C.; Jara, J.M.; Jara, M. Seismic assessment of a long-span arch bridge considering the variation in axial forces induced by earthquakes. Eng. Struct. 2012, 34, 69–80. [Google Scholar] [CrossRef]
Li, R.; Ge, H.; Maruyama, R. Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences. Earthq. Struct. 2017, 13, 137–150. [Google Scholar] [CrossRef]
Bazaez, R.; Dusicka, P. Cyclic loading for RC bridge columns considering subduction megathrust earthquakes. J. Bridge Eng. 2016, 21, 04016009. [Google Scholar] [CrossRef]
Chen, X.; Ikago, K.; Guan, Z.; Li, J.; Wang, X. Lead-rubber-bearing with negative stiffness springs (LRB-NS) for base-isolation seismic design of resilient bridges: A theoretical feasibility study. Eng. Struct. 2022, 266, 114601. [Google Scholar]
[CrossRef]
Chen, X.; Xiang, N.; Guan, Z.; Li, J. Seismic vulnerability assessment of tall pier bridges under mainshock-aftershock-like earthquake sequences using vector-valued intensity measure. Eng. Struct. 2022, 253, 113732. [Google Scholar]
[CrossRef]
Chen, X.; Xiong, J. Seismic resilient design with base isolation device using friction pendulum bearing and viscous damper. Soil Dyn. Earthq. Eng. 2022, 153, 107073. [Google Scholar] [CrossRef]
Alam, M.S.; Bhuiyan, M.A.R.; Billah, A.H.M.M. Seismic fragility assessment of SMA-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones. Bull. Earthq.
Eng. 2012, 10, 1885–1909. [Google Scholar] [CrossRef]
Dezfuli, F.H.; Alam, M.S. Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires. Eng. Struct. 2014, 61, 166–183. [Google Scholar] [CrossRef]
Kim, J.K.; Choi, H.H. Behavior and design of structures with buckling-restrained braces. Eng. Struct. 2004, 26, 693–706. [Google Scholar] [CrossRef]
Hoveidae, N.; Rafezy, B. Overall buckling behavior of all-steel buckling restrained braces. J. Constr. Steel Res. 2012, 79, 151–158. [Google Scholar] [CrossRef]
Li, L.; Zhou, T.H.; Chen, J.W.; Chen, J.F. A New Buckling-Restrained Brace with a Variable Cross-Section Core. Adv. Civ. Eng. 2019, 2019, 4620430. [Google Scholar] [CrossRef][Green Version]
Xing, L.L.; Zhou, Y.; Huang, W. Seismic optimization analysis of high-rise buildings with a buckling-restrained brace outrigger system. Eng. Struct. 2020, 220, 110959. [Google Scholar] [CrossRef]
Beiraghi, H.; Zhou, H. Dual-steel frame consisting of moment-resisting frame and shape memory alloy braces subjected to near-field earthquakes. Struct. Des. Tall Spec. Build. 2020, 29, e1784. [Google Scholar] [CrossRef]
Wang, Y.; Ibarra, L.; Pantelides, C. Collapse capacity of reinforced concrete skewed bridges retrofitted with buckling-restrained braces. Eng. Struct. 2019, 184, 99–114. [Google Scholar] [CrossRef]
Dong, H.H.; Du, X.L.; Han, Q.; Bi, K.M.; Hao, H. Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces. Bull. Earthq. Eng. 2019, 17, 3255–3281. [Google Scholar] [CrossRef]
Sosorburam, P.; Yamaguchi, E. Seismic Retrofit of Steel Truss Bridge Using Buckling Restrained Damper. Appl. Sci. 2019, 9, 2791. [Google Scholar] [CrossRef][Green Version]
Xiang, N.; Alam, M.S.; Li, J. Effect of Multi-Story Brace Distribution on Seismic Performance of RC Tall Bridge Bents Retrofitted with Buckling Restrained Braces. J. Earthq. Eng. 2021, 26, 8688–8705. [Google Scholar] [CrossRef]
Celik, O.C.; Bruneau, M. Seismic behavior of bidirectional-resistant ductile end diaphragms with buckling restrained braces in straight steel bridges. Eng. Struct. 2009, 31, 380–393. [Google Scholar] [CrossRef]
Zaker Esteghamati, M. A Holistic Review of GM/IM Selection Methods from a Structural Performance-Based Perspective. Sustainability 2022, 14, 12994. [Google Scholar] [CrossRef]

235.

Carreño, R.; Lotfizadeh, K.H.; Conte, J.P.; Restrepo, J.I. Material model parameters for the Giuffrè-Menegotto-Pinto uniaxial steel stress-strain model. J. Struct. Eng. 2020, 146, 04019205. [Google Scholar] [CrossRef]
JTG/T 2231-01; Specifications for Seismic Design of Highway Bridges. Ministry of Transport: Beijing, China, 2020.
DBJ/CT105; Technical Specification for TJ Buckling Restrained Braces. Tongji University: Shanghai, China, 2011.
Sun, F.F.; Li, G.Q.; Guo, X.K.; Hu, D.Z.; Hu, B.L. Development of new-type buckling-restrained braces and their application in aseismic steel frameworks. Adv. Struct. Eng. 2011, 14, 717–730. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).
Share and Cite
https://www.mdpi.com/2075-5309/12/12/2147

236.

237.

238.

239.

240.

241.

Опора сейсмоизолирующая
маятниковая

242.

Фиг 1
Опора сейсмоизолирующая
Фиг 2
маятниковая

243.

Опора сейсмоизолирующая
маятниковая
Фиг 3
Опора сейсмоизолирующая
маятниковая
Фиг 4

244.

Опора сейсмоизолирующая
маятниковая
Фиг 5
Опора сейсмоизолирующая
маятниковая

245.

Фиг 6
Опора сейсмоизолирующая
маятниковая
Фиг 7
Опора сейсмоизолирующая
маятниковая

246.

Фиг 8
Опора сейсмоизолирующая
маятниковая
Фиг 9
Опора сейсмоизолирующая
маятниковая

247.

Фиг 10
Опора сейсмоизолирующая
маятниковая
Фиг 11
Опора сейсмоизолирующая
маятниковая

248.

Фиг 12
Опора сейсмоизолирующая
маятниковая
Фиг 13
Опора сейсмоизолирующая
маятниковая

249.

Фиг 14
Опора сейсмоизолирующая
Фиг 15
маятниковая

250.

Опора сейсмоизолирующая
маятниковая
Фиг 16
Опора сейсмоизолирующая
маятниковая
Фиг 17
Опора сейсмоизолирующая
маятниковая

251.

Фиг 18
Опора сейсмоизолирующая
Фиг 19
маятниковая

252.

ора сейсмоизолирующая
маятниковая
Фиг 20
Опора сейсмоизолирующая
маятниковая

253.

Фиг 21
Опора сейсмоизолирующая
маятниковая
Фиг 22
Опора сейсмоизолирующая
маятниковая
Фиг 23

254.

Опора сейсмоизолирующая
маятниковая
Фиг 24
Опора сейсмоизолирующая
маятниковая

255.

Фиг 25
Опора сейсмоизолирующая
маятниковая
Фиг 26
Опора сейсмоизолирующая
маятниковая

256.

Фиг 27
Опора сейсмоизолирующая
Фиг 28
маятниковая

257.

Опора сейсмоизолирующая
маятниковая
Фиг 29
Опора сейсмоизолирующая
маятниковая

258.

Фиг 30
Опора сейсмоизолирующая
маятниковая
Фиг 31
Опора сейсмоизолирующая
маятниковая

259.

Фиг 32
Опора сейсмоизолирующая
маятниковая
Фиг 33
Опора сейсмоизолирующая
маятниковая

260.

Фиг 34
Опора сейсмоизолирующая
маятниковая
Фиг 35
Опора сейсмоизолирующая
маятниковая

261.

Фиг 36
Опора сейсмоизолирующая
маятниковая
Фиг 37
Опора сейсмоизолирующая
маятниковая

262.

Фиг 38
Опора сейсмоизолирующая
Фиг 39
маятниковая

263.

Опора сейсмоизолирующая
маятниковая
Фиг 40
Опора сейсмоизолирующая
маятниковая

264.

Фиг 41
Опора сейсмоизолирующая
Фиг 42
маятниковая

265.

Опора сейсмоизолирующая
маятниковая
Фиг 43
Опора сейсмоизолирующая
маятниковая
Фиг 44

266.

Опора сейсмоизолирующая
маятниковая
Фиг 45
Опора сейсмоизолирующая
маятниковая
Фиг 46

267.

Опора сейсмоизолирующая
маятниковая
Фиг 47
Опора сейсмоизолирующая
маятниковая

268.

Фиг 50
Опора сейсмоизолирующая
маятниковая
Фиг 51
Опора сейсмоизолирующая
маятниковая

269.

Фиг 52
Испытание на сейсмостойкость в ПК SCAD демпфирующего компенсатора для трубопроводов
https://piter.tv/video_clip/19686/
https://disk.yandex.ru/d/m-e--HxD_oNWqw
https://ppt-online.org/1044577

270.

РЕКОМЕНДАЦИИ
по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций
УТВЕРЖДАЮ:
Главный инженер ЦНИИПроектстальконструкции им.Мельникова В.В.Ларионов 14 сентября 1988 г.
Директор ВНИПИ Промстальконструкция В.Г.Сергеев 13 сентября 1988 г.
Настоящие рекомендации составлены в дополнение к главам СНиП II-23-81*, СНиП III-18-75
и СНиП 3.03.01-87. С изданием настоящих
рекомендаций отменяется "Руководство по проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с поясами из
широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
_______________
На территории Российской Федерации действует ГОСТ 23118-99. - Примечание изготовителя базы данных.
Фланцевые соединения стальных строительных конструкций - наиболее эффективный вид болтовых монтажных соединений, их применение в
конструкциях одно- и многоэтажных зданий и сооружений позволяет существенно повысить производительность труда и сократить сроки монтажа
конструкций.
В рекомендациях изложены требования к качеству материала фланцев и высокопрочных болтов, основные положения по конструированию и
расчету фланцевых соединений, особенности технологии изготовления и монтажа конструкций с фланцевыми соединениями.
При составлении рекомендаций использованы результаты экспериментально-теоретических исследований, выполненных во ВНИПИ
Промстальконструкция, ЦНИИПроектстальконструкции им. Мельникова, а также другие отечественные и зарубежные материалы по исследованиям
фланцевых соединений.
Рекомендации разработаны ВНИПИ Промстальконструкция (кандидаты техн. наук В.В.Каленов, В.Б.Глауберман, инж. В.Д.Мартынчук,
А.Г.Соскин; ЦНИИПроектстальконструкцией им. Мельникова (канд. техн. наук И.В.Левитанский, доктор техн. наук И.Д.Грудев, канд. техн. наук
Л.И.Гладштейн, инж. О.И.Ганиза) и ВНИКТИСтальконструкцией (инж. Г.В.Тесленко).
1. ОБЩИЕ УКАЗАНИЯ
1.1. Настоящие рекомендации разработаны в развитие глав СНиП II-23-81*, СНиП III-18-75 в части изготовления и СНиП 3.03.01-87 в части
монтажа конструкций, а также в дополнение к ОСТ 36-72-82 "Конструкции строительные стальные. Монтажные соединения на высокопрочных болтах.
Типовой технологический процесс".
Рекомендации следует соблюдать при проектировании, изготовлении и монтажной сборке фланцевых соединений (ФС) несущих стальных
строительных конструкций производственных зданий и сооружений, возводимых в районах с расчетной температурой минус 40 °С и выше.
Рекомендации не распространяются на ФС стальных строительных конструкций:

271.

эксплуатируемых в сильноагрессивной среде;
воспринимающих знакопеременные нагрузки, а также многократно действующие подвижные, вибрационные или другого вида нагрузки
с количеством циклов 10 и более при коэффициенте асимметрии напряжений в соединяемых элементах
.
1.2. ФС элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует выполнять только с
предварительно напряженными высокопрочными болтами. Такие соединения могут воспринимать местные поперечные усилия за счет сопротивления
сил трения между контактирующими поверхностями фланцев от предварительного натяжения болтов и наличия "рычажных усилий".
1.3. ФС элементов стальных конструкций, подверженных сжатию или совместному действию сжатия с изгибом при однозначной эпюре
сжимающих напряжений в соединяемых элементах (в дальнейшем ФС сжатых элементов), следует выполнять на высокопрочных болтах без
предварительного их натяжения, затяжкой болтов стандартным ручным ключом. Такие соединения могут воспринимать сдвигающие усилия за счет
сопротивления сил трения между контактирующими поверхностями фланцев, возникающих от действия усилий сжатия соединяемых элементов.
1.4. В рекомендациях приведены сортаменты ФС растянутых элементов открытого профиля - широкополочные двутавры и тавры, парные уголки,
замкнутого профиля - круглые трубы, изгибаемых элементов из широкополочных двутавров, которые следует, как правило, применять при
проектировании, изготовлении и монтаже стальных строительных конструкций.
1.5. ФС следует изготавливать в заводских условиях, обеспечивающих требуемое качество, в соответствии с требованиями, изложенными в разделе
6 настоящих рекомендаций, а также с учетом положительного опыта освоенной технологии изготовления ФС Белгородским, Кулебакским,
Череповецким заводами металлоконструкций Минмонтажспецстроя СССР и Восточно-Сибирским заводом металлоконструкций (г.Назарово) Минэнерго
СССР.
1.6. Материалы рекомендаций составлены на основе экспериментально-теоретических исследований, выполненных в 1981-1987 гг. во ВНИПИ
Промстальконструкция, ЦНИИПроектстальконструкции им. Мельникова и ВНИИКТИСтальконструкции. В рекомендациях отражен опыт внедрения
ФС, выполненных в соответствии с "Руководством по проектированию, изготовлению и сборке монтажных фланцевых соединений стропильных ферм с
поясами из широкополочных двутавров" (ЦНИИПроектстальконструкция, 1982).
2. МАТЕРИАЛЫ
2.1. Металлопрокат для элементов конструкций с ФС следует применять в соответствии с требованиями главы СНиП II-23-81*, постановления
Государственного строительного комитета СССР от 21 ноября 1986 г. N 28 о сокращенном сортаменте металлопроката в строительных стальных
конструкциях и приказа Министерства монтажных и специальных строительных работ СССР от 28 января 1987 г. N 34 "О мерах, связанных с
утверждением сокращенного сортамента металлопроката для применения в строительных стальных конструкциях".
Основные профили для элементов конструкций с ФС: сталь уголковая равнополочная по ГОСТ 8509-72, балки двутавровые по ГОСТ 8239-72* ,
балки с параллельными гранями полок по ГОСТ 26020-83, швеллер горячекатаный по ГОСТ 8240-72* , сталь листовая по ГОСТ 19903-74*, профили
гнутые замкнутые сварные, квадратные и прямоугольные по ТУ 36-2287-80, электросварные прямошовные трубы по ГОСТ 10704-76
и
горячедеформированные трубы по ГОСТ 8732-78* (для сооружений объектов связи).
______________
На территории Российской Федерации действуют ГОСТ 8239-89, ГОСТ 8240-97 и ГОСТ 10704-91, соответственно. - Примечание изготовителя
базы данных.

272.

2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует применять
листовую сталь по ГОСТ 19903-74* марок 09Г2С-15 по ГОСТ 19282-73
и 14Г2АФ-15 по ТУ 14-105-465-82 с гарантированными механическими
свойствами в направлении толщины проката.
______________
Редакция пункта 2.2 с учетом дополнений и изменений.
На территории Российской Федерации действует ГОСТ 19281-89., здесь и далее по тексту. - Примечание изготовителя базы данных.
2.3. Фланцы могут быть выполнены из других марок низколегированных сталей, предназначенных для строительных стальных конструкций по
ГОСТ 19282-73, при этом сталь должна удовлетворять следующим требованиям:
______________
Редакция пункта 2.3 с учетом дополнений и изменений.
категория качества стали - 12;
относительное сужение стали в направлении толщины проката
%, минимальное для одного из трех образцов
%.
Проверку механических свойств стали в направлении толщины проката осуществляет завод строительных стальных конструкций по методике,
изложенной в приложении 8.
2.4. Фланцы сжатых элементов стальных конструкций следует изготавливать из листовой стали по ГОСТ 19903-74*.
2.5. Качество стали для фланцев (внутренние расслои, грубые шлаковые включения и т.п.) должно удовлетворять требованиям, указанным в
табл.1.
______________
Редакция пункта 2.5 с учетом дополнений и изменений.
Таблица 1
Зона дефектоскопии
Характеристика дефектов
Площадь дефекта, см
минимального
учитываемого
Допустимая
частота
дефекта
Максимальная
допустимая
длина дефекта
Минимальное
допустимое
расстояние между
дефектами
максимального
допустимого
см

273.

Площадь листов фланцев
0,5
1,0
10 м
4
10
Прикромочная зона
0,5
1,0

4
10
Примечания: 1. Дефекты, расстояния между краями которых меньше протяженности минимального из них, оцениваются как один дефект.
2. По усмотрению завода строительных стальных конструкций разрешается дефектоскопический контроль материала фланцев производить только
после приварки их к элементам конструкций.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод строительных стальных конструкций.
2.6. Для ФС следует применять высокопрочные болты М20, М24 и М27 из стали 40Х "Селект" климатического исполнения ХЛ с временным
сопротивлением не менее 1100 МПа (110 кгс/мм ), а также высокопрочные гайки и шайбы к ним по ГОСТ 22353-77* - ГОСТ 22356-77**.
________________
* На территории Российской Федерации действует ГОСТ Р 52644-2006, здесь и далее по тексту;
** На территории Российской Федерации действует ГОСТ Р 52643-2006, здесь и далее по тексту. - Примечание изготовителя базы данных.
Допускается применение высокопрочных болтов, гаек и шайб к ним из стали других марок. Геометрические и механические характеристики таких
болтов должны отвечать требованиям ГОСТ 22353-77, ГОСТ 22356-77 - для болтов исполнения ХЛ; гаек и шайб - ГОСТ 22354-77* - ГОСТ 22356-77.
Применение таких болтов в ФС каждого конкретного объекта должно быть согласовано с проектной организацией-автором.
________________
* На территории Российской Федерации действует ГОСТ Р 52645-2006. - Примечание изготовителя базы данных.
2.7. Для механизированной сварки ФС следует применять сплошную сварочную проволоку по ГОСТ 2246-70 или порошковую проволоку ПП-АН8
по ТУ 14-4-1059-80.
2.8. Фасонки, ужесточающие фланцы (ребра жесткости), следует выполнять из стали тех же марок, что и основные соединяемые профили.
3. РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ И УСИЛИЯ
3.1. Расчетные сопротивления стали соединяемых элементов, фланцев, сварных швов и коэффициенты условий работы следует принимать в
соответствии с указаниями главы СНиП II-23-81*.
3.2. Расчетное усилие растяжения
болтов ФС следует принимать равным:
,

274.

где
- расчетное сопротивление растяжению высокопрочных болтов;
- нормативное сопротивление стали болтов;
- площадь сечения болта нетто.
3.3. Расчетное усилие предварительного натяжения
болтов ФС следует принимать равным:
.
4. КОНСТРУИРОВАНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
4.1. ФС в зависимости от характера внешних воздействий могут состоять из участков, подверженных воздействию растяжения или сжатия.
Растянутые участки фланцев передают внешние усилия через предварительно натянутые пакеты "фланец-болт", сжатые - через плотное касание
фланцев.
4.2. Сварные швы фланца с присоединяемым профилем следует выполнять угловыми без разделки кромок.
В обоснованных случаях может быть допущена сварка с разделкой кромок.
4.3. Для ФС элементов стальных конструкций следует применять высокопрочные болты диаметром 24 мм (М24); использование болтов М20 и М27
следует допускать в тех случаях, когда постановка болтов М24 невозможна или нерациональна.
4.4. При конструировании ФС, как правило, следует применять следующие сочетания диаметра болтов и толщин фланцев:
Диаметр болта
Толщина фланца, мм
М20
20
М24
25
М27
30
Толщина фланцев проверяется расчетом в соответствии с указаниями раздела 5.
4.5. Болты растянутых участков фланцев разделяют на болты внутренних зон, ограниченных стенками (полками профиля, ребрами жесткости) с
двух и более сторон, и болты наружных зон, ограниченных с одной стороны (рис.1); характер работы и расчет ФС в этих зонах различны.

275.

Рис.1. Схемы фланцевых соединений растянутых элементов открытого профиля:
а - ФС элементов из широкополочных тавров; б - ФС элементов из парных уголков
4.6. Болты растянутых участков фланцев следует располагать по возможности равномерно по контуру и как можно ближе к элементам
присоединяемого профиля, при этом (см. рис.1):
,
,
,
где - наружный диаметр шайбы;
- номинальный диаметр резьбы болта;
- ширина фланца, приходящаяся на
-ый болт наружной зоны;

276.

- катет углового шва.
Если по конструктивным особенностям ФС
, то в расчетах на прочность ФС (раздел 5) величину
принимают равной
.
4.7. При конструировании ФС элементов, подверженных воздействию центрального растяжения, болты следует располагать безмоментно
относительно центра тяжести присоединяемого профиля с учетом неравномерности распределения внешних усилий между болтами наружной и
внутренней зон (раздел 5, табл.2).
Если такое расположение болтов невозможно, то несущую способность ФС определяют с учетом действия местного изгибающего момента.
4.8. Конструктивная схема соединяемых элементов (полуфермы, рамные конструкции и др.) должна обеспечивать возможность свободной
установки и натяжения болтов, в том числе выполнения контроля усилий натяжения болтов согласно п.7.13.
4.9. Если несущая способность сварных швов присоединения профиля к фланцу недостаточна для передачи внешних силовых воздействий или
необходимо повысить несущую способность растянутых участков ФС без увеличения числа болтов или толщины фланцев, последние следует усиливать
ребрами жесткости (рис.1 и 2).
Рис.2. Схемы фланцевых соединений растянутых элементов замкнутого профиля:
а - ФС элементов из круглых труб; б - ФС элементов из гнутосварных профилей
Толщина ребер жесткости не должна превышать 1,2 толщины элементов основного профиля, длина должна быть не менее 200 мм. Ребра жесткости
следует располагать так, чтобы концентрация напряжений в сечении основных профилей была минимальной.
Ребра жесткости могут быть использованы для крепления связей, путей подвесного транспорта и т.п.
4.10. В поясах ферм, где к узлу ФС примыкают раскосы решетки фермы, несущая способность ФС должна удовлетворять суммарному усилию в
узле, а не усилию в смежной панели пояса.

277.

4.11. Для обеспечения требуемой жесткости ФС, подверженных изгибу (рамные ФС), следует строго соблюдать требования точности изготовления
и монтажа ФС, изложенные в разделах 6 и 7 настоящих рекомендаций.
При выполнении таких соединений следует, как правило, предусматривать следующие меры:
на растянутых участках ФС применять фланцы увеличенной толщины;
на сжатых участках устанавливать дополнительное количество болтов с предварительным их натяжением в соответствии с указаниями п.1.2.
Если такие или подобные им меры по обеспечению требуемой жесткости ФС не предусмотрены, расчетные рамные моменты следует снижать до
15%.
4.12. ФС элементов двутаврового сечения, подверженных воздействию центрального растяжения, следует выполнять, кроме случаев, отмеченных в
п.4.9, без ребер жесткости. Рекомендуемый сортамент ФС этого типа (приложение 1) с фланцами толщиной 25-40 мм включает в себя профили от 20Ш1
до 30Ш2 и от 20К1 до 30К2, расчетные продольные усилия 1593-3554 кН (163-363 тс).
С целью унификации при расчете каждого ФС использованы максимальные расчетные сопротивления стали данного типоразмера профиля.
4.13. ФС элементов парного уголкового сечения, подверженных воздействию центрального растяжения, следует выполнять с фасонками для
обеспечения необходимой несущей способности сварных швов. Рекомендуемый сортамент ФС этого типа (приложение 2) с фланцами толщиной 20-40
мм включает профили от 100х7 до 180х12, расчетные продольные усилия 957-2613 кН (98-266 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали данного типоразмера профиля.
Для ФС элементов из парных уголков 180х11 и 180х12 применены высокопрочные болты М27.
4.14. ФС элементов таврового сечения, подверженных воздействию центрального растяжения, следует выполнять, кроме случаев, отмеченных в
п.4.9, без ребер жесткости. Рекомендуемый сортамент ФС этого типа (приложение 3, табл.1 и 2) включает в себя профили от 10Шт1 до 20Шт3,
расчетные продольные усилия 800-2681 кН (81-273 тс).
При расчете каждого ФС использованы максимальные расчетные сопротивления стали тавров данных типоразмеров.
Для ФС элементов из тавра 20Шт применены высокопрочные болты М27.
4.15. ФС элементов из круглых труб, подверженных воздействию центрального растяжения, следует выполнять, как правило, со сплошными
фланцами и ребрами жесткости в количестве не менее 3 шт. Ширина ребер определяется разностью радиусов фланцев и труб, длина - не менее 1,5
диаметра трубы (см. рис.2).
Рекомендуемый сортамент ФС этого типа (приложение 4) включает в себя электросварные прямошовные и горячедеформированные трубы
размерами от 114х2,5 до 377х10, расчетные продольные усилия 630-3532 кН (64-360 тс).
Материал труб - малоуглеродистая и низколегированная сталь с расчетными сопротивлениями
МПа, болты

278.

высокопрочные М20, М24 и М27.
Для ФС элементов из круглых труб, выполненных из малоуглеродистой стали, допустимо применение сплошных фланцев без ребер жесткости при
условии выполнения сварных швов равнопрочными этим элементам и экспериментальной проверки натурных ФС данного типа.
4.16. ФС элементов из гнутосварных профилей прямоугольного или квадратного сечений, подверженных воздействию центрального растяжения,
следует выполнять со сплошными фланцами и ребрами жесткости, расположенными, как правило, вдоль углов профиля (см. рис.2). Ширина ребер
определяется размерами фланца и профиля, длина - не менее 1,5 высоты меньшей стороны профиля.
Если между ребрами жесткости будет размещено более двух болтов или ребра жесткости будут установлены не только вдоль углов профиля, то ФС
элементов из гнутосварных профилей данного типа могут быть применены только после экспериментальной проверки натурных соединений данного
типа.
4.17. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных воздействию изгиба, следует выполнять, как правило,
со сплошными фланцами с постановкой ребра жесткости на растянутом поясе в плоскости стенки двутавра. При необходимости увеличения количества
болтов и ширины фланцев соответствующее уширение поясов двутавров следует осуществлять за счет приварки дополнительных фасонок (рис.3, а).
Рис.3. Схемы фланцевых соединений изгибаемых элементов из прокатных или сварных двутавров
Рекомендуемый сортамент ФС этого типа (приложение 5) включает в себя профили от 26Б1 до 100Б2 и от 23Ш1 до 70Ш2 с несущей способностью

279.

127-2538 кН·м (13-259 тс·м). Несущая способность ФС на изгиб для данного типа соединения и данного типоразмера двутавра определена из условия
прочности фланца, болтов и сварных швов соединения, воспринимающих данный изгибающий момент.
Для этого типа соединений предусмотрено применение высокопрочных болтов М24 и М27.
4.18. ФС элементов из прокатных широкополочных или сварных двутавров, подверженных воздействию изгиба, возможно выполнять со
сплошными фланцами, высота которых не превышает высоты двутавра (см. рис.3, б). Такие соединения следует применять, если расчетный момент в
рамных соединениях ниже несущей способности двутавров на изгиб.
При необходимости уменьшения количества болтов или увеличения жесткости растянутых участков ФС допустимо применять составные фланцы,
увеличивая их толщину на растянутом участке до 36-40 мм (см. рис.3, в).
Если изгибающий момент в рамных соединениях превышает несущую способность двутавра на изгиб, следует предусматривать устройство вутов
(см. рис.3, г).
ФС указанных типов следует проектировать в соответствии с указаниями настоящих рекомендаций.
4.19. Для ФС элементов, подверженных воздействию сжатия, когда непредусмотренные проектом (КМ) эксцентриситеты передачи продольных
усилий недопустимы, необходимо строго выполнять требования по точности изготовления и монтажа ФС, изложенные в разделах 6 и 7 настоящих
рекомендаций. В таких соединениях следует предусматривать также установку болтов с суммарным предварительным натяжением, равным расчетному
усилию сжатия в соединяемых элементах.
4.20. ФС элементов, подверженных центральному растяжению, следует, как правило, применять для передачи усилий (кН), не превышающих для
элементов из:
парных уголков - 3000;
одиночных уголков - 1900;
широкополочных двутавров и круглых труб - 3500;
широкополочных тавров и прямоугольных труб - 2500.
ФС сварных или прокатных двутавров, подверженных изгибу или совместному действию изгиба и растяжения, следует, как правило, применять,
если суммарное растягивающее усилие, воспринимаемое ФС от растянутой зоны присоединяемого элемента, не превышает 3000 кН.
5. РАСЧЕТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
5.1. ФС элементов стальных конструкций следует проверять расчетами на:
прочность болтов;

280.

прочность фланцев на изгиб;
прочность соединений на сдвиг;
прочность сварных швов соединения фланца с элементом конструкции.
5.2. Методы расчета следует применять только для ФС, конструктивная форма которых отвечает требованиям раздела 4.
5.3. Предельное состояние ФС определяют следующие yсловия:
усилие в наиболее нагруженном болте, определенное с учетом совместной работы болтов соединения, не должно превышать расчетного усилия
растяжения болта;
изгибные напряжения во фланце не должны превышать расчетных сопротивлений стали фланца по пределу текучести.
5.4. Расчет прочности ФС элементов открытого профиля, подверженных центральному растяжению.
Количество болтов внутренней зоны
назначают из условия:
определяет конструктивная форма соединения. Количество болтов наружной зоны предварительно
,
где
- внешняя нагрузка на соединение;
- предельное внешнее усилие на один болт внутренней зоны, равное 0,9
- предельное внешнее усилие на один болт наружной зоны, равное
(1)
;
;
- коэффициент, учитывающий неравномерное распределение внешней нагрузки между болтами внутренней и наружной зон, определяемый по
табл.2.
Таблица 2
Диаметр болта
Толщина фланца, мм
Соотношение внешних усилий на один болт внутренней и
наружной зон

281.

М20
М24
М27
16
2,5
20
1,7
25
1,4
30
1,2
20
2,6
25
1,8
30
1,5
40
1,1
25
2,1
30
1,7
40
1,2
Прочность фланца и болтов, относящихся к внутренней зоне, следует считать обеспеченной, если: болты расположены в
соответствии с указаниями п.4.6, толщина фланца составляет 20 мм и выше, а усилие на болт от действия внешней нагрузки не превышает
величины
.
5.5. При расчете на прочность болтов и фланца, относящихся к наружной зоне, выделяют отдельные участки фланцев, которые
рассматривают как Т-образные (см. рис.1) шириной
.
Прочность ФС следует считать обеспеченной, если
,
где
(2)
- расчетное усилие растяжения, воспринимаемое ФС, определяемое по формулам
,
(3)

282.

если
если
где
;
,
(4)
,
(5)
;
,
,
- расчетное усилие на болт, определяемое из условия прочности соединения по болтам;
- расчетное усилие на болт, определяемое из условия прочности фланца на изгиб.
где
- коэффициент, зависящий от безразмерного параметра жесткости болта
, определяемый по табл.3 или по формуле:
;
(6)
;
(7)
,
где
,
(8)
,
- параметр, определяемый по табл.4 или из уравнения
,
где
- толщина фланца;
- ширина фланца, приходящаяся на один болт наружной зоны
- расстояние от оси болта до края сварного шва
-го Т-образного участка фланца;
-го Т-образного участка фланца.
(9)

283.

Таблица 3
0,02
0,04
0,06 0,08
0,1
0,2
0,4
0,6
0,8
1,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
8,0
10
15
0,907 0,836 0,79 0,767 0,744 0,67 0,602 0,561 0,53 0,509 0,467 0,438 0,41 0,396 0,367 0,34 0,325 0,296 0,27 0,232
6
3
2
5
4
3
Таблица 4
Параметр
при
1,4
1,6
1,8
2,0
2,2
2,4
2,7
3,0
4,0
5,0
0,02
3,252
2,593
2,221
1,986
1,826
1,710
1,586
1,499
1,333
1,250
0,06
2,960
2,481
2,171
1,962
1,812
1,702
1,582
1,497
1,333
1,250
0,1
2,782
2,398
2,130
1,939
1,799
1,694
1,578
1,494
1,332
1,249
0,5
2,186
2,036
1,908
1,776
1,711
1,636
1,545
1,475
1,327
1,248
1,0
1,949
1,860
1,780
1,707
1,643
1,586
1,514
1,454
1,321
1,246
2,0
1,757
1,704
1,653
1,607
1,564
1,524
1,470
1,424
1,312
1,242
3,0
1,660
1,621
1,584
1,548
1,515
1,483
1,440
1,402
1,303
1,238
4,0
1,599
1,568
1,537
1,508
1,480
1,454
1,417
1,384
1,296
1,235
5,0
1,555
1,529
1,503
1,478
1,454
1,431
1,399
1,370
1,289
1,232
6,0
1,522
1,498
1,476
1,454
1,433
1,413
1,384
1,357
1,283
1,230
8,0
1,473
1,454
1,436
1,418
1,401
1,384
1,360
1,337
1,273
1,224

284.

10
1,438
1,422
1,406
1,391
1,377
1,362
1,341
1,322
1,264
1,219
15
1,381
1,369
1,358
1,346
1,335
1,324
1,308
1,293
1,247
1,210
Примеры расчета и проектирования соединений элементов, подверженных растяжению, приведены в приложении 6.
5.6. Расчет ФС элементов открытого профиля, подверженных изгибу и совместному действию изгиба и растяжения.
Максимальные и минимальные значения нормальных напряжений в присоединяемом профиле
сил определяют в плоскости его соединения с фланцем по формуле*:
где
и
от действия изгиба и продольных
,
(10)
,
(11)
- изгибающий момент и продольное усилие, воспринимаемые ФС;
- момент сопротивления сечения присоединяемого профиля;
- площадь поперечного сечения присоединяемого профиля.
_______________
* При расчете
с целью упрощения наличием ребер, ужесточающих фланец, можно пренебречь.
Усилия в поясах присоединяемого профиля
где
- площадь поперечного сечения пояса
определяют по формуле
или
(рис.4);
- площадь поперечного сечения участка стенки в зоне болтов растянутого пояса;
;
;
- толщина стенки, полок и высота присоединяемого профиля; остальные обозначения приведены на рис.4.

285.

286.

287.

Рис.4. Схема к расчету фланцевых соединений изгибаемых элементов из двутавров
Усилия в растянутой части стенки присоединяемого профиля определяют по формуле
при
при
где
,
,
,
;
(12)
,
.
Прочность ФС считается обеспеченной, если:
при
,
(13)
;
при
,
(14)
,
где
- расчетное усилие, воспринимаемое болтами растянутого пояса
при наличии ребра жесткости (см. рис.4)
, равное:
;
при симметричном расположении болтов относительно пояса
(15)

288.

;
(16)
;
(17)
при отсутствии ребра жесткости
при отсутствии болтов ряда
;
(18)
- расчетное усилие, воспринимаемое болтами растянутой части стенки, равное:
;
- расчетное усилие, воспринимаемое болтами растянутого пояса
(19)
, равное:
при наличии ребра жесткости
;
(20)
;
(21)
при отсутствии ребра жесткости
при отсутствии болтов ряда
- расчетное усилие на болт наружной зоны
(2)-(9) в соответствии с указаниями п.5.5;
;
(22)
-го Т-образного участка фланца растянутого пояса или стенки, определяемое по формулам

289.

- число болтов наружной зоны растянутого пояса
;
- число болтов наружной зоны растянутого пояса
;
- число рядов болтов растянутой части стенки;
;
;
;
;
;
- коэффициент, равный 0,8 для
400 мм, 0,9 для
мм, в остальных случаях 1,0.
Пример расчета фланцевого соединения изгибаемых элементов приведен в приложении 7.
5.7. Расчет прочности ФС элементов замкнутого профиля, подверженных центральному растяжению.
Прочность соединения, конструктивная форма которого отвечает требованиям раздела 4, следует считать обеспеченной, если
,
где
мм,
(23)
- количество болтов в соединении;
- коэффициент, значение которого следует принимать по табл.5.
Таблица 5
Диаметр болта, мм
Толщина фланца, мм
М20
0,85
М24
0,8
0,85
М27
0,8

290.

0,85
5.8. Прочность ФС растянутых элементов открытого и замкнутого профилей на действие местной поперечной силы
проверять по формуле
следует
,
где
(24)
- количество болтов наружной зоны для ФС элементов открытого профиля и количество болтов для ФС элементов замкнутого профиля;
- контактные усилия, принимаемые равными 0,1
определяемые по формуле
для ФС элементов замкнутого профиля, а для элементов открытого профиля
;
(25)
- расчетное усилие на болт, определяемое по формуле (5) в соответствии с указаниями п.5.5;
- коэффициент трения соединяемых поверхностей фланцев, принимаемый в соответствии с указаниями п.11.13* главы СНиП II-23-81*.
При отсутствии местной поперечной силы в расчет вводится условное значение
.
5.9. Прочность ФС сжатых элементов открытого и замкнутого профилей, а также ФС изгибаемых элементов открытого профиля на
действие сдвигающих сил следует проверять по формуле
,
где
(26)
- усилие сжатия в ФС от действия внешней нагрузки, для ФС изгибаемых элементов определяемое по формуле
,
(27)
где
- усилие растяжения или сжатия в присоединяемом элементе от действия внешней нагрузки.
5.10. Расчет прочности сварных швов соединения фланца с элементом конструкции следует выполнять в соответствии с требованиями главы
СНиП II-23-81* с учетом глубины проплавления корня шва на 2 мм по трем сечениям (рис.5):

291.

Рис.5. Схемы расчетных сечений сварного соединения (сварка механизированная):
1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления с профилем; 3 - сечение по металлу границы сплавления с фланцем
по металлу шва (сечение 1)
;
(28)
по металлу границы сплавления с профилем (сечение 2)
;
(29)
по металлу границы сплавления с фланцем в направлении толщины проката (сечение 3)
,
где
(30)
- расчетная длина шва, принимаемая меньше его полной длины на 10 мм;
- коэффициенты:
=0,7;
принимается по табл.34* главы СНиП II-23-81*;
- коэффициенты условий работы шва;
- коэффициент условий работы сварного соединения,
=1,0;
- расчетные сопротивления угловых швов срезу (условному) по металлу шва и металлу границы сплавления с профилем соответственно,
принимаются по табл.3 главы СНиП II-23-81*;

292.

- расчетное сопротивление растяжению стали в направлении толщины фланца, принимается по табл.1* главы СНиП II-23-81*.
6. ИЗГОТОВЛЕНИЕ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
Материал и обработка деталей ФС
6.1. Качество проката, применяемого для изготовления фланцев в соответствии с требованиями п.2.2, должно быть гарантировано сертификатом
завода - поставщика проката.
Завод строительных стальных конструкций (в дальнейшем завод-изготовитель) обязан маркировать каждый фланец с указанием марки стали,
номера сертификата завода - поставщика проката, номера плавки, номера приемного акта завода - изготовителя конструкций.
Маркировку следует выполнять металлическими клеймами на поверхности фланца в месте, доступном для осмотра после монтажа конструкций.
Глубина клеймения не должна превышать 0,5 мм. Место для клейма должно быть указано в чертежах КМ.
6.2. При входном контроле проката, применяемого для изготовления фланцев, следует проверить соответствие данных сертификата требованиям,
предъявляемым к качеству этого проката. При отсутствии сертификата завод-изготовитель должен проводить испытания проката с целью определения
требуемых механических свойств и химического состава, определяющих качество проката. При этом проверку механических свойств стали в
направлении толщины проката следует проводить по методике, приведенной в приложении 8. Контроль качества стали фланцев методами
ультразвуковой дефектоскопии следует выполнять в соответствии с указаниями п.2.4.
6.3. Заготовку фланцев следует выполнять машинной термической резкой.
6.4. Заготовку элементов, присоединяемых к фланцам, следует выполнять машинной термической резкой или механическим способом (пилы,
отрезные станки). При применении ручной термической резки торцы элементов должны быть затем обработаны механическим способом (например,
фрезеровкой).
6.5. Отклонения размеров фланцев, отверстий под болты и элементов, соединяемых с фланцем, должны удовлетворять требованиям, изложенным в
табл.6.
Таблица 6
Контролируемый параметр
Предельное отклонение
1. Отклонения торца присоединяемого к
фланцу элемента
0,002
, где
- высота и ширина сечения элемента. Максимальный зазор между
фланцем и торцом присоединяемого элемента не должен превышать 2 мм

293.

2. Шероховатость торцевой поверхности
элемента, присоединяемой к фланцу
320, допускаются отдельные "выхваты" глубиной не более 1 мм в количестве 1
шт. на длине 100 мм
3. Отклонение габаритных размеров фланца
±2,0 мм
4. Разность диагоналей фланца
±3,0 мм
5. Отклонение центров отверстий в пределах
группы
±1,5 мм
6. Отклонение диаметра отверстия
+0,5 мм
6.6. Отверстия во фланцах следует выполнять сверлением. Заусенцы после сверления должны быть удалены.
Сборка и сварка ФС
6.7. Сборку элементов конструкций с фланцевыми соединениями следует производить только в кондукторах.
6.8. В кондукторе фланец следует фиксировать и крепить к базовой поверхности не менее чем двумя пробками и двумя сборочными болтами.
6.9. Базовые поверхности кондукторов должны быть фрезерованы. Отклонение тангенса угла их наклона не должно превышать 0,0007 в каждой из
двух плоскостей.
6.10. ФС следует сваривать только после проверки правильности их сборки. Сварные швы следует выполнять механизированным способом с
применением материалов, указанных в п.2.7, и проплавлением корня шва не менее 2 мм.
6.11. Технология сварки должна обеспечивать минимальные сварочные деформации фланцев.
6.12. После выполнения сварных швов ФС сварщик должен поставить свое клеймо, место расположения которого должно быть указано в чертежах
КМ.
6.13. После выполнения сварки внешние поверхности фланцев должны быть отфрезерованы. Толщина фланцев после фрезеровки должна быть не
менее указанной в чертежах КМД.
Запрещается осуществлять наклон соединяемых элементов за счет изменения толщины фланца (клиновидности).
6.14. Точность изготовления отправочных элементов конструкций с ФС должна соответствовать требованиям, изложенным в табл.7.
Таблица 7

294.

Контролируемый параметр
1. Тангенс угла отклонения фрезерованной поверхности фланцев
Предельное отклонение
Не более 0,0007
2. Зазор между внешней плоскостью фланца и ребром стальной
линейки
0,3 мм
3. Отклонение толщины фланца (при механической обработке
торцевых поверхностей)
±0,02
4. Смещение фланца от проектного положения относительно осей
сечения присоединяемого элемента
±1,5 мм
5. Отклонение длины элемента с ФС
0; -5,0 мм
6. Совпадение отверстий в соединяемых фланцах при контрольной
сборке
Калибр диаметром, равным номинальному диаметру болта,
должен пройти в 100% отверстий
Грунтование и окраска
6.15. При отсутствии специальных указаний в чертежах КМ фланцы должны быть огрунтованы и окрашены теми же материалами и способами,
что и конструкция в целом.
Контроль качества ФС
6.16. Контрольную сборку элементов конструкций с ФС следует проводить в объеме не менее 10% общего количества, но не менее 4 шт. взаимно
соединяемых элементов.
Обязательной контрольной сборке подлежат первые и последние номера элементов в соответствии с порядковым номером изготовления.
6.17. В процессе выполнения работ по сварке ФС следует контролировать:
квалификацию сварщиков в соответствии с правилами предприятия, изготавливающего конструкции;
качество сварочных материалов в соответствии с действующими стандартами и паспортами изделий;
качество подготовки и сборки деталей под сварку в соответствии с главой СНиП III-18-75, раздел 1 и настоящими рекомендациями;
качество сварных швов в соответствии со СНиП III-18-75: в соединениях сжатых элементов по поз.1.2 табл.3 раздела 1, в соединениях растянутых и
изгибаемых элементов категории швов сварных соединений 1 по поз.3 табл.41 и поз.1, 2, 3 табл.42 разд.9; а также в соответствии с ГОСТ 14771-76 и
требованиями пп.6.10 и 6.11 настоящих рекомендаций.

295.

6.18. 100-процентному контролю следует подвергать параметры, указанные в пп.1, 2 табл.6 и пп.1-6 табл.7 настоящих рекомендаций, а также
наличие и правильность маркировки и клейма сварщиков на фланце.
6.19. Фланцы после их приварки к соединяемым элементам следует подвергать 100-процентному контролю ультразвуковой дефектоскопией.
Результаты контроля должны удовлетворять требованиям п.2.5 настоящих рекомендаций.
6.20. При отправке конструкций с ФС завод-изготовитель кроме документации, предусмотренной п.1.22 главы СНиП 3.03.01-87, должен
представить копию сертификата, удостоверяющего качество стали фланцев, а также документы о контроле качества сварных соединений. Если фланцы
изготовлены из марок стали, отличных от указанных в п.2.2, завод-изготовитель должен представить документы о качестве проката, применяемого для
фланцев в соответствии с указаниями пп.2.3 и 2.4 настоящих рекомендаций.
7. МОНТАЖНАЯ СБОРКА ФЛАНЦЕВЫХ СОЕДИНЕНИЙ
7.1. Проекты производства работ (ППР) по монтажу конструкций должны содержать технологические карты, предусматривающие выполнение ФС
в конкретных условиях монтируемого объекта в соответствии с указаниями "Рекомендаций по сборке фланцевых монтажных соединений стальных
строительных конструкций" (ВНИПИ Промстальконструкция, ЦНИИПроектстальконструкция. - М.: ЦБНТИ Минмонтажспецстроя СССР, 1986).
7.2. Подготовку и сборку ФС следует проводить под руководством лица (мастера, прораба), назначенного приказом по монтажной организации
ответственным за выполнение этого вида соединений на объекте.
7.3. Технологический процесс выполнения ФС включает:
подготовительные работы;
сборку соединений;
контроль натяжения высокопрочных болтов;
огрунтование и окраску соединений.
7.4. Высокопрочные болты, гайки и шайбы к ним должны быть подготовлены в соответствии с п.4.25 главы СНиП 3.03.01-87, пп.3.1.2-3.1.8 ОСТ
36-72-82.
7.5. Подготовку контактных поверхностей фланцев следует осуществлять в соответствии с указаниями чертежей КМ и КМД по ОСТ 36-72-82. При
отсутствии таких указаний контактные поверхности очищают стальными или механическими щетками от грязи, наплывов грунтовки и краски, рыхлой
ржавчины, снега и льда.
7.6. Применение временных болтов в качестве сборочных запрещается.
7.7. Под головки и гайки высокопрочных болтов необходимо ставить только по одной шайбе.

296.

Выступающая за пределы гайки часть стержня болта должна иметь не менее одной нитки резьбы.
7.8. Натяжение высокопрочных болтов ФС необходимо выполнять от наиболее жесткой зоны (жестких зон) к его краям.
7.9. Натяжение высокопрочных болтов ФС следует осуществлять только по моменту закручивания.
7.10. Натяжение высокопрочных болтов на заданное усилие следует производить закручиванием гаек до величины момента
закручивания
, который определяют по формуле
,
(31)
где - коэффициент, принимаемый равным: 1,06 - при натяжении высокопрочных болтов; 1,0 - при контроле усилия натяжения болтов;
- среднее значение коэффициента закручивания для каждой партии болтов по сертификату или принимаемое равным 0,18 при отсутствии таких
значений в сертификате;
- усилие натяжения болта, Н;
- номинальный диаметр резьбы болта, м.
Отклонение фактического момента закручивания от момента, определяемого по формуле (31), не должно превышать 0; +10%.
7.11. После натяжения болтов гайки ничем дополнительно не закрепляются.
7.12. После выполнения ФС монтажник обязан поставить на соединение личное клеймо (набор цифр) в месте, предусмотренном в чертежах
конструкций КМ или КМД, и предъявить собранное соединение ответственному лицу.
7.13. Качество выполнения ФС на высокопрочных болтах ответственное лицо проверяет путем пооперационного контроля. Контролю подлежат:
качество обработки (расконсервации) болтов; качество подготовки контактных поверхностей фланцев; соответствие устанавливаемых болтов, гаек и
шайб требованиям ГОСТ 22353-77 - ГОСТ 22356-77, а также требованиям, указанным в чертежах КМ и КМД; наличие шайб под головками болтов и
гайками; длина части болта, выступающей над гайкой; наличие клейма монтажника, осуществляющего сборку соединения; выполнение требований
табл.8.
Таблица 8
Наименование отклонения
Допускаемое
отклонение, мм
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
0,2

297.

линии стенок и полок профиля
Просвет между фланцами или фланцем и полкой колонны после преднапряжения высокопрочных болтов по
краям фланцев:
для фланцев толщиной не более 25 мм
0,6
для фланцев толщиной более 32 мм
1,0
Примечание. Щуп толщиной 0,1 мм не должен проникать в зону радиусом 40 мм от оси болта
7.14. Контроль усилия натяжения следует осуществлять во всех установленных высокопрочных болтах тарированными динамометрическими
ключами. Контроль усилия натяжения следует производить не ранее чем через 8 ч после выполнения натяжения всех болтов в соединении, при этом
усилия в болтах соединения должны соответствовать значениям, указанным в п.3.3 или табл.9.
Таблица 9
Усилие натяжения болтов (контролируемое), кН (тс)
М20
М24
М27
167(17)
239(24,4)
312(31,8)
7.15. Отклонение фактического момента закручивания от расчетного не должно превышать 0; +10%. Если при контроле обнаружатся болты, не
отвечающие этому условию, то усилие натяжения этих болтов должно быть доведено до требуемого значения.
7.16. Документация, предъявляемая при приемке готового объекта, кроме предусмотренной п.1.22 главы СНиП 3.03.01-87, должна содержать
сертификаты или документы завода-изготовителя, удостоверяющие качество стали фланцев, болтов, гаек и шайб, документы завода-изготовителя о
контроле качества сварных соединений фланцев с присоединяемыми элементами, журнал контроля за выполнением монтажных фланцевых соединений
на высокопрочных болтах.
Приложение 1

298.

СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ШИРОКОПОЛОЧНЫХ ДВУТАВРОВ
N
Схема фланцевого соединения
Марка профиля
,
кН
(тс)
, мм
2
3
4
5
6
7
20Ш1
1593
(163)
25
8
6
20К1
1626
(166)
25
9
6
20К2
1879
(192)
40
10
6
п
/
п
1
1
, мм
, мм

299.

2
23Ш1
1608
(164)
25
9
6
3
23К1
2237
(228)
30
9
6
23K2
2274
(232)
30
10
6
26Ш1
1913
(195)
30
10
7
26Ш2
1937
(197)
30
11
6
4

300.

5
6
7
26К1
2815
(287)
30
10
6
26K2
2933
(299)
30
12
8
30К1
3306
(337)
30
12
8
30К2
4032
(411)
40
12
8
30Ш1
2197
(224)
30
10
7
30Ш2
2668
(272)
40
12
7
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для
применения в стальных строительных конструкциях.

301.

2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Болты М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 27 мм. Усилие предварительного
натяжения 239 кН (24,4 тс).
4. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
5. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
сопротивление стали двутавра растяжению по пределу текучести);
, где
- площадь сечения двутавра;
- максимальное расчетное
- толщина фланцев;
- катеты угловых сварных швов стенки и полки двутавра соответственно.
Приложение 2
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ПАРНЫХ РАВНОПОЛОЧНЫХ УГОЛКОВ
N
Схема фланцевого соединения
Сечение элемента, мм
мм
, кН (тс)
, мм
2
3
4
5
957
(97,6)
20
п
/
п
1
1
100
7

302.

2
3
4
5
100
8
110
8
125
8
125
9
140
9
140
10
160
10
1224 (124,8)
25
1579*
(161,0)
30
1928** (196,5)
40
2156 (219,8)
30

303.

6
160
11
180
11
180
12
2613 (266,4)
30
_______________
* Марка сварочной проволоки - Св-10HMA; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Св-08ХН2ГМЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали равнополочных уголков по ГОСТ 8509-72 соответствуют сокращенному сортаменту металлопроката
для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Длина фасонок определяется конструктивными
особенностями соединений, но не менее 200 мм.
4. Все болты (за исключением болтов по схеме 6) М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр
отверстий 27. Усилие предварительного натяжения 239 кН (24,4 тс).
5. Болты по схеме 6 - М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм. Усилие
предварительного натяжения 312 кН (31,8 тс).
6. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
7. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
указанных в графе 3 для каждого фланцевого соединения;
- толщина фланцев;
, где
- площадь сечения уголка с максимальными типоразмерами из
- максимальное расчетное сопротивление стали уголка растяжению по пределу текучести);

304.

- катет угловых сварных швов.
Приложение 3
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ ШИРОКОПОЛОЧНЫХ ТАВРОВ
Таблица 1
N п/п
Схема фланцевого соединения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5
10Шт1
800**
(81,5)
30
881**
(89,8)
25
1
11,5Шт1
2
13Шт1
13Шт2 (см. п.6 примечаний)

305.

3
15Шт1
1439* (146,7)
30
1919**
(195,6)
30
2537*
(258,6)
40
15Шт2
15Шт3
4
17,5Шт1
17,5Шт2
17,5Шт3
5
20Шт1
20Шт2
20Шт3
Таблица 2

306.

N п/п
Схема фланцевого сечения
Марка профиля
, кН (тс)
, мм
1
2
3
4
5
10Шт1
958
(97,6)
20
1227*
(125,1)
25
1494**
(152,3)
25
1
11,5Шт1
2
13Шт1
13Шт2
3
15Шт1
15Шт2

307.

4
17,5Шт1
1919**
(195,6)
30
2681**
(273,3)
40
17,5Шт2
17,5Шт3
5
20Шт1
20Шт2
20Шт3
_______________
* Марка сварочной проволоки - Св-10НМА; Св-10Г2 по ГОСТ 2246-70*.
** Марка сварочной проволоки - Св-10ХГ2СМА, Cв-08XH2ГMЮ по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали тавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для применения в
стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г20-15 по ГОСТ 19282-73.
3. Марку стали фасонок назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Длина фасонок определяется конструктивными
особенностями соединений, но не менее 200 мм.
4. Все болты, за исключением болтов по схеме 5 (табл.1 и табл.2), М24 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77.
Диаметр отверстий 27 мм. Усилие предварительного натяжения 239 кН (24,4 тс).

308.

5. Болты по схеме 5 (табл.1 и табл.2) М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 30 мм.
Усилие предварительного натяжения 312 кН (31,8 тс).
6. На схеме (табл.1) представлено фланцевое соединение тавров с расчетным сопротивлением не выше 315 и 270 МПа для 13Шт1 и 13Шт2
соответственно.
7. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
8. Обозначения, принятые в таблицах:
- расчетная продольная сила фланцевых соединений (
указанных в графе 3 для каждой схемы фланцевых соединений;
текучести);
, где
- площадь сечения тавра с максимальными типоразмерами из
- максимальное расчетное сопротивление стали тавра растяжению по пределу
- толщина фланцев;
- катеты угловых сварных швов стенки и полки тавра соответственно.
Приложение 4
COPTAМEHT ФЛАНЦЕВЫХ СОЕДИНЕНИЙ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ИЗ КРУГЛЫХ ТРУБ
N
п/п
Схема фланцевого соединения
1
2
1
Сечение трубы, мм
мм
, кН (тс)
, мм
, мм
,
, мм
мм
3
114
2,5
121
5,0; 6,0*
5,0
4
5
6
7
8
(64,2)
630
20
245
175
20
255
185

309.

127
3,0
4,0
255
185
140
3,5; 4,5
275
205
20
140
4,0
8,0*
(92,2)
903
25
310
220
24
159
3,5; 5,5
630
20
300
220
20
168
4,0
903
25
350
250
24
(138,2) 1356
25
350
250
24
400
300
400
300
430
330
168
2
3
6,0
6,0*
168
8,0
219
6,0; 8,0*
219
10,0*
219
245
10,0*
4,0
(184,3) 1808
25
6,0
8,0*
24

310.

4
5
219
7,0; 8,0
(230,4) 2260
25
400
300
245
10,0
12,0*
430
330
273
4,5.....**6,0
460
360
273
8,0; 10,0*
325
5,0; 5,5
535
425
377
5,0
560
460
273
7,0; 8,0
460
360
273
12,0*
460
360
377
9,0; 10,0
560
460
325
6,0
520
410
8,0
(276,5) 2712
8,0
(360)
3532
25
30
24
24
27
_______________
* Горячедеформированные трубы по ГОСТ 8732-78*
** Брак оригинала. - Примечание изготовителя базы данных.
Примечания: 1. Типоразмеры и марки стали электросварных прямошовных труб по ГОСТ 10704-76 и горячедеформированных труб по ГОСТ 8732-

311.

78* соответствуют сокращенному сортаменту металлопроката для применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ТУ 14-105-465-82 и 09Г2С-15 по ГОСТ 19282-73.
3. Марку стали ребер жесткости назначают в соответствии с указаниями п.2.8 настоящих рекомендаций. Толщина ребер принимается равной
толщине стенки трубы с округлением в большую сторону. Длина ребер определяется конструктивными особенностями соединения, но не менее 1,5
диаметра трубы для четных и 1,7 диаметра трубы для нечетных ребер.
4. Болты М20, М24 и М27 высокопрочные из стали 40Х "Селект" по ГОСТ 22353-77 - ГОСТ 22356-77. Диаметр отверстий 23, 28 и 31 мм. Усилие
предварительного натяжения 167, 239 и 312 кН соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
6. Обозначения, принятые в таблице:
- расчетная продольная сила фланцевых соединений (
для каждого фланцевого соединения;
, где
- площадь сечения трубы с типоразмерами из указанных в графе 3
- расчетное сопротивление стали трубы растяжению по пределу текучести);
- толщина фланцев;
- диаметр фланцев;
- диаметр болтовой риски;
- диаметр болтов.
Приложение 5
СОРТАМЕНТ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

312.

Геометрические параметры соединений
Диаметр
болта
Параметры,
мм
Номер профиля ригеля
26Б1
30Б1
35Б1
35Б2
40Б1
М24
90
45Б1
50Б1
55Б1
60Б1
45Б2
50Б2
55Б2
60Б2
90
70Б1
70Б2
80Б1
90Б1
100Б1
100Б2
23Ш1
26Ш1
26Ш2
100
100
90
30Ш1
35Ш1
40Ш1
50Ш1
30Ш2
35Ш2
40Ш2
90
60Ш1
70Ш1
70Ш2
100
100

313.

М27
60
60
60
60
60
60
60
60
40
45
45
50
40
45
45
50
100
100
110
110
100
100
110
110
70
70
70
70
70
70
70
70
45
50
50
55
45
50
50
55
Примечание. Параметр
рекомендаций.
может быть изменен в зависимости от типа колонны при выполнении условий, изложенных в разделе 4 (п.4) настоящих
НЕСУЩАЯ СПОСОБНОСТЬ СОЕДИНЕНИЯ (тс·м)
Тип
фла
н- ца
1
2
Диаметр
болт
а
Номер профиля ригеля
26
Б1
30Б1
35
Б1
35
Б2
40Б1
40Б2
45
Б1
45
Б2
50Б1
50Б2
55
Б1
55
Б2
60Б1 70Б1 80Б1
60Б2 70Б2
90
Б1
100Б
1
23Ш
1
26Ш
1
26Ш
2
30Ш
1
30Ш
2
35Ш
1
35Ш
2
40
Ш
1
40
Ш
2
50Ш
1
50Ш
2
60Ш
1
70Ш
1
70Ш
2
М24
15,
5
18,5
22,
2
25,9
31,
7
35,6
41,
9
46,7
-
-
-
-
13,0
15,2
17,8
21,1
-
-
-
-
М27
-
-
-
36,3
40,
7
-
-
-
-
-
-
-
-
19,4
22,6
-
-
-
-
-
М24
-
-
-
28,8
35,
3
40,2
48,
1
53,5
63,9
74,4
-
-
-
-
-
-
-
-
-
-

314.

3
4
М27
-
-
-
-
-
50,5
58,
6
-
-
-
-
-
-
-
-
-
-
-
-
-
М24
-
-
-
-
-
63,5
73,
8
81,9
97,4
112,
9
12
9,5
145,
4
-
-
31,3
37,6
44,
8
61,6
79,2
-
М27
-
-
-
-
-
-
-
100,
7
119,
8
139,
0
-
-
-
-
-
45,6
54,
5
-
-
-
М24
-
-
-
-
-
-
-
-
136,
7
159,
4
18
3,7
206,
8
-
-
-
-
62,
8
86,1
110,
3
132
М27
-
-
-
-
-
-
-
-
-
-
22
2,0
258,
6
-
-
-
-
-
103,
1
132,
7
160
40
Ш
50
Ш
60
Ш
70Ш
СВАРНЫЕ ШВЫ
Номер
профиля
ригеля
26
Б
30Б
35Б
40Б
45
Б
50
Б
55
Б
60
Б
70
Б
8
0
Б
90
Б
100Б
23
Ш
26
Ш
30
Ш
35
Ш
8
8
8
8
8
10
12
12
*
14
*
1
4
*
14
*
14*
8
10
10
12
*
12*
10
10
10
10
14
14
16
16
*
16
*
1
6
*
16
*
20*
10
14
16
16
*
18*
_______________

315.

* Марка сварочной проволоки Св-10 НМА, Св-10Г2 по ГОСТ 2246-70*.
Примечания: 1. Типоразмеры и марки стали двутавров по ГОСТ 26020-83 соответствуют сокращенному сортаменту металлопроката для
применения в стальных строительных конструкциях.
2. Сталь листовая горячекатаная для фланцев по ГОСТ 19903-74* марки 14Г2АФ-15 по ГОСТ 19282-73, 09Г2С-15 по ГОСТ 19282-73.
3. Болты высокопрочные М24 и М27 из стали 40Х ’’Селект" климатического исполнения ХЛ с временным сопротивлением не менее
1100 МПа (110 кгс/мм ), а также гайки высокопрочные и шайбы к ним по ГОСТ 22353-77 - ГОСТ 22356-77.
Усилие предварительного натяжения болтов: М24 - 239 кН; М27 - 312 кН.
4. Диаметр отверстий 28 и 31 мм под высокопрочные болты М24 и М27 соответственно.
5. Сварка механизированная. Сварочная проволока марки Св-08Г2С по ГОСТ 2246-70.
Приложение 6
ПРИМЕРЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ПРОЧНОСТИ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ ЭЛЕМЕНТОВ, ПОДВЕРЖЕННЫХ
РАСТЯЖЕНИЮ
1. Фланцевое соединение растянутых элементов из парных равнополочных уголков
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - парные равнополочные уголки
по ГОСТ 8509-72 из стали марки 09Г2С-6 по ГОСТ
19282-73 с расчетным сопротивлением стали растяжению по пределу текучести
=360 МПа (3650 кгс/см ) и временным сопротивлением стали
разрыву с
=520 МПа (5300 кгс/см ), площадь сечения профиля
усилие растяжения, действующее на соединение,
=2х22=44 см ;
=1557 кН (159 тс);
материал фланца - сталь марки 09Г2С-15 по ГОСТ 19282-73 с расчетным сопротивлением растяжению по пределу текучести
МПа (2950 кгс/см ) и нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное сопротивление стали фланца
растяжению в направлении толщины проката (в соответствии с указаниями главы СНиП II-23-81*)
кгс/см ). Толщина фланца =30 мм;
болты высокопрочные М24, расчетное усилие болта
(24,4 тс);
=290
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
МПа (1480
=239 кН

316.

катеты сварных швов принять равными
=10 мм, сварка механизированная проволокой марки Св-08Г2С по ГОСТ 2246-70* с обеспечением
проплавления корня шва не менее 2 мм, расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления соответственно
=215 МПа (2200 кгс/см ),
МПа (2390 кгс/см );
материал фасонки - сталь марки 09Г2С-12-2 по ТУ 14-1-3023-80, толщина фасонки
=14 мм.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.1):
см, а также необходимые для расчета параметры в соответствии с требованиями
главы СНиП II-23-81*:
по трем сечениям:
=0,7,
=1,0,
=1,0,
=1,0,
=1,0. Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2390 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).

317.

Рис.1. Схема к примеру расчета фланцевого соединения парных равнополочных уголков 125х9
Таким образом, прочность сварных швов обеспечена.
Для предотвращения внецентренного приложения внешнего усилия на соединение центр тяжести сварных швов должен совпадать с
центром тяжести соединяемого профиля. Поэтому необходимо выполнение условия:
=0, где
- статический момент сварных швов
относительно оси
, или
= , где
и
- статические моменты сварных швов выше и ниже оси
соответственно.
Разница между
и
составляет
.
Конструирование и расчет прочности ФС
Конструктивная форма соединения принята, как показано на рис.1. В таком соединении количество болтов внутренней зоны
Количество болтов наружной зоны
предварительно назначаем из условия (1) [см. раздел 5]:
,
=4.

318.

где
- предельное внешнее усилие на болт внутренней зоны от действия внешней нагрузки;
- предельное внешнее усилие на один
болт наружной зоны, определяемое по табл.2 (раздел 5). По конструктивным особенностям соединения предварительно назначаем количество болтов
наружной зоны
=4.
Расстановку болтов производим в соответствии с указаниями п.4.6. В соответствии с указаниями п.4.7 болты должны быть
расположены безмоментно относительно оси
(см. рис.1), поэтому
. С учетом, что
=1,5 имеем:
,
таким образом это условие выполнено.
Прочность ФС следует считать обеспеченной, если выполняется условие (2):
,
где
- расчетное усилие растяжения, воспринимаемое ФС и определяемое по формулам (3) или (4). Для определения
необходимо найти
величину
- расчетное усилие на болт наружной зоны -го участка фланца, представляемого условно как элементарное Т-образное ФС. Заметим, что
в силу конструктивных особенностей в этом соединении можно выделить два участка наружной зоны I и II (на рис.1 эти участки заштрихованы).
Поэтому для нахождения величины необходимо определить значения
и
и выбрать наименьшее из них.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к участку I наружной зоны, определяем из условия:
.
Значение
определяем по формуле (5)
, где
находим по формуле (6)
,a
- по формуле (7)
,
здесь
=24 мм - номинальный диаметр резьбы болта,
- ширина фланца, приходящаяся на один болт участка I наружной зоны,

319.

мм - усредненное расстояние между осью болта и краями сварных швов полки уголка и фасонки.
Тогда:
кН (17,7 тс).
Значение
определяем по формуле (8)
,
для чего находим значения
и
:
,
а значение
Тогда:
определяем по табл.4 (
).
кН (28,4 тс).
Поскольку
, принимаем
кН (17,7 тс).
Определение
Значение
находим так же, как и
, с той лишь разницей, что для участка II
С учетом этого
тогда
кН (17,6 тс).
мм, а

320.

Определим усилие на болт из условия прочности фланца на изгиб:
значение
тогда:
определяем по табл.4 (
=1,5),
кН (20,7 тс).
Поскольку
, принимаем
кН.
Так как
, принимаем
.
Поскольку
, расчетное усилие растяжения, воспринимаемое ФС, определяем по формуле (3)
(162 тс).
Проверяем выполнение условия (2):
.
Условие (2) выполнено, таким образом, прочность ФС следует считать обеспеченной.
2. Фланцевое соединение растянутых элементов из круглых труб
Спроектировать и рассчитать ФС по следующим исходным данным:
профиль присоединяемых элементов - электросварная прямошовная труба 273х8 мм по ГОСТ 10704-76 из стали марки 09Г2С по ТУ
14-3-500-76 с расчетным сопротивлением стали растяжению по пределу текучести
стали разрыву
=470 МПа (4800 кгс/см ), площадь сечения трубы
=66,62 см ;
=250 МПа (2550 кгс/см ) и временным сопротивлением

321.

усилие растяжения, действующее на соединение,
=1666 кН (170 тс);
материал фланца - сталь марки 09Г2С-15 по ГОСТ 19282-73 с расчетным сопротивлением растяжению по пределу текучести
МПа (2950 кгс/см ) и нормативным сопротивлением по пределу текучести
=305 МПа (3100 кгс/см ), расчетное сопротивление стали фланца
растяжению в направлении толщины проката (в соответствии с указаниями главы СНиП II-23-81*)
кгс/см ). Толщина фланца =25 мм;
болты высокопрочные М24, расчетное усилие болта
(24,4 тс);
=290
МПа (1480
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
=239 кН
катеты сварных швов принять равными
=8 мм, сварка механизированная проволокой марки Св-08Г2С по ГОСТ 2246-70* с обеспечением
проплавления корня шва не менее 2 мм, расчетное сопротивление угловых швов срезу по металлу шва и по металлу границы сплавления соответственно
=215 МПа (2200 кгс/см ),
МПа (2160 кгс/см );
материал ребер жесткости - сталь марки 09Г2С по ТУ 14-1-3023-80, толщина ребер жесткости
=10 мм.
Расчет прочности и проектирование ФС
В соответствии с указаниями п.5.7 прочность ФС элементов замкнутого профиля считается обеспеченной, если:
при
Из этого условия определим необходимое количество болтов
мм.
в соединении:
шт.
Количество болтов в соединении принимаем
=8 шт.
Конструирование ФС осуществляем в соответствии с указаниями раздела 4.
При принятом количестве болтов в соединении минимальное количество ребер жесткости
мм,
длина четных ребер:
мм, принимаем
=470 мм.
=4. Длина нечетных ребер:

322.

где
- диаметр трубы.
В соответствии с указаниями п.4.6 болты располагаем как можно ближе к элементам присоединяемого профиля, при этом:
мм,*
_________________
* Формула соответствует оригиналу. - Примечание изготовителя базы данных.
мм, с округлением принимаем =50 мм.
Определяем диаметр риски болтов:
мм, принимаем
=355 мм, а диаметр фланца:
мм.
Угол между радиальными осями ребра и болтов, расположенными у ребра:
, с округлением принимаем
=20°.
Проверка прочности сварных швов
Определяем длину сварных швов (рис.2):
главы СНиП II-23-81*:
мм, а также необходимые для расчета параметры в соответствии с требованиями
=0,7,
=1,0,
=1,0,
=1,0,
=1,0.
Рис.2. Схема к примеру расчета фланцевого соединения элементов из круглых труб 273х8

323.

Проверку прочности сварных швов в соответствии с указаниями п.5.10 выполняем по трем сечениям:
по металлу шва по формуле (28):
;
МПа (2200 кгс/см );
по металлу границы сплавления с профилем по формуле (29):
;
МПа (2160 кгс/см );
по металлу границы сплавления с фланцем в направлении толщины проката по формуле (30):
;
МПа (1480 кгс/см ).
Таким образом, прочность сварных швов обеспечена.
Приложение 7
ПРИМЕР РАСЧЕТА ФЛАНЦЕВОГО СОЕДИНЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ
Провести проверочный расчет фланцевого соединения (см. рисунок).

324.

Схема к примеру расчета фланцевого соединения широкополочного двутавра 160Б1, подверженного
воздействию изгиба и растяжения
Данные, необходимые для расчета:
профиль присоединяемого элемента - 160Б1 по ГОСТ 26020-83 из стали марки 09Г2С, площадь сечения профиля
сечения пояса
=35,4 см , момент сопротивления профиля
=131 см , площадь
=2610 см ;
изгибающий момент и продольное усилие, действующие на соединение, соответственно
=686 кН·м (70 тс·м) и
=490,5 кH (50 тс);
материал фланца - сталь марки 14Г2АФ-15 по ТУ 14-105-465-82 с расчетным сопротивлением изгибу по пределу текучести
МПа (3750 кгс/см ), толщина фланца принята равной =25 мм;
болты высокопрочные М24, расчетное усилие растяжения болта
=368
=266 кН (27,1 тс), расчетное усилие предварительного натяжения болтов
=239 кН (24,4 тс);
катеты сварных швов по поясам профиля
=12 мм, по стенке
=8 мм.
Максимальное и минимальное значения нормальных напряжений в присоединяемом профиле от действия изгиба и продольных усилий определяем
по формуле (10) [см. раздел 5]:
;

325.

.
Усилие в растянутом поясе присоединяемого элемента определяем по формуле (11):
,
где
- площадь сечения участка стенки в зоне болтов растянутого пояса (см. рис.4 и рисунок в настоящем приложении);
;
=10 мм - толщина стенки профиля;
=70 мм - ширина фланца, приходящаяся на один болт, расположенный вдоль стенки профиля;
=15,5 мм - толщина пояса профиля.
мм,
=80·10=800 мм, тогда
=(3540+800)·300=1302 кН (132,5 тс).
Усилие в растянутой части стенки определяем по формуле (12):
,
где
,
;
мм,
тогда
кН (30,5 тс).
Прочность ФС считаем обеспеченной, если при
и
выполняется условие (13):
;

326.

.
При принятом конструктивном решении ФС (наличие ребра жесткости растянутого пояса и симметричное расположение болтов
относительно пояса
, см. рисунок) расчетное усилие растяжения, воспринимаемое болтом и фланцем, относящимися к растянутому
поясу,
определяем по формуле (16):
,
то же, к растянутой части стенки,
- по формуле (19):
.
Определение
Поскольку
мм, то
,
,
,
мм - расстояние от оси болтов ряда
до пояса профиля.
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к наружной зоне пояса, определяем из условия:
.
Значение
определяем по формуле (5):
, где
находим по формуле (6):
,a
- по формуле (7):

327.

,
здесь
=24 мм - номинальный диаметр резьбы болта,
=70 мм - ширина фланца, приходящаяся на один болт наружной зоны растянутого пояса профиля;
=33 мм - расстояние от оси болтов ряда
до края сварного шва растянутого пояса профиля (
Тогда:
,
и
кН (15,7 тс).
Значение
определяем по формуле (8):
,
для чего находим значения
и
:
Н·см;
.
Значение
определяем по табл.4 (
=1,48).
Тогда:
кН (20,1 тс).
мм).

328.

Поскольку
, принимаем
кН (15,7 тс) и
.
Определение
Расчетное усилие растяжения, воспринимаемое фланцем и болтом, относящимися к растянутой части стенки профиля, определяем из условия:
.
Значения
и
как и при определении
определяем по формулам (5) и (8). Расчет всех параметров, необходимых для определения
;
,
кН (14,7 тс).
Определим усилие на болт из условия прочности фланца на изгиб:
Н·см;
;
определяем по табл.4 (
=1,42);
кН (18,2 тс).
Поскольку
, выполняем так же,
, с той лишь разницей, что для болтов и фланца, относящихся к стенке профиля, параметр
мм). Тогда:
значение
и
, то принимаем
=37 мм (

329.

кН (14,7 тс).
Находим значение
:
кН (31,8 тс).
Определив значения
кН (132,5 тс)
кН (30,5 тс)
и
, проверяем условие (13):
кН (138,4 тс);
кН (31,8 тс).
Условие (13) выполнено. Проверка прочности сварных швов выполнена в соответствии с п.5.10 настоящих рекомендаций. Прочность сварных
швов обеспечена.
Таким образом, прочность фланцевого соединения обеспечена.
Приложение 8
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ ТОЛСТОЛИСТОВОГО
ПРОКАТА ДЛЯ ФЛАНЦЕВ
1. Общие положения
1.1. Настоящие указания распространяются на толстолистовой прокат строительных сталей толщиной от 12 до 50 мм включительно,
предназначенный для изготовления фланцев соединений растянутых и изгибаемых элементов, и устанавливают методику испытаний на
статическое растяжение с целью определения следующих характеристик механических свойств металлопроката в направлении толщины
при температуре
°С: предела текучести (физического или условного); временного сопротивления разрыву; относительного удлинения после
разрыва; относительного сужения после разрыва.
1.2. Определяемые в соответствии с настоящими методическими указаниями механические свойства могут быть использованы для контроля
качества проката для металлоконструкций; анализа причин разрушения конструкций; сопоставления материалов при обосновании их выбора для
конструкций; расчета прочности несущих элементов с учетом их работы по толщине листов; сравнения сталей в зависимости от химического состава,
способа выплавки и раскисления, сварки, вида термообработки, толщины и т.д.
1.3. При испытании на статическое растяжение принимаются следующие обозначения и определения:
рабочая длина
*, мм - часть образца с постоянной площадью поперечного сечения между его головками или участками для захвата;

330.

_______________
* Буквенные обозначения приняты по ГОСТ 1497-73**.
** На территории Российской Федерации действует ГОСТ 1497-84. Здесь и далее. - Примечание изготовителя базы данных.
начальная расчетная длина образца
, мм - участок рабочей длины образца до разрыва, на которой определяется удлинение;
конечная расчетная длина образца после его разрыва
, мм;
начальный диаметр paбочей части цилиндрического образца до разрыва
минимальный диаметр цилиндрического образца после его разрыва
, мм;
, мм;
начальная площадь поперечного сечения рабочей части образца до разрыва
площадь поперечного сечения образца после его разрыва
, мм ;
, мм ;
осевая растягивающая нагрузка
,
предел текучести (физический)
, МПа - наименьшее напряжение, при котором образец деформируется без заметного увеличения нагрузки;
- нагрузка, действующая на образец в данный момент испытания;
предел текучести условный
, МПа - напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца, удлинение
которого принимается в расчет при определении указанной характеристики;
временное сопротивление
, МПа - напряжение, соответствующее наибольшей нагрузке
относительное удлинение после разрыва
длине ;
, предшествующей разрушению образца;
- отношение приращения расчетной длины образца (
) после разрыва к ее первоначальной
относительное сужение после разрыва , % - отношение разности начальной площади и площади поперечного сечения после разрыва
к начальной площади поперечного сечения образца
.
2. Форма, размеры образцов и их изготовление
2.1. Для испытания на растяжение в направлении толщины проката применяют укороченные цилиндрические образцы (см. рисунок, а) диаметром
5 мм, начальной расчетной длиной
мм по п.2.1 ГОСТ 1497-73. При этом металл, испытываемый в направлении толщины, условно
рассматривается как хрупкий. Рабочая длина образца в соответствии с п.2.3 ГОСТ 1497-73 составляет
мм.

331.

Образцы для испытаний на растяжение в направлении толщины проката
2.2. Образец вырезают из испытываемого листа так, чтобы ось образца была перпендикулярна к поверхности листа.
2.3. На торцах образцов, выполненных из металлопроката толщиной 30 мм, сохраняется прокатная корка. При толщине испытываемого проката
более 30 мм такая корка сохраняется на одном торце образца.
2.4. Для испытания металлопроката толщиной 12-29 мм применяются сварные образцы. С этой целью к листовой заготовке испытываемого металла
приваривают в тавр две пластины из стали той же прочности, чтобы получить крестовое соединение со сплошным проваром. Цилиндрические образцы
вырезают из сварного соединения так, чтобы испытываемый металл попадал в рабочую часть образца. При этом продольная ось образца должна
совпадать с направлением толщины испытываемого листа. Этапы изготовления сварных образцов указаны на рисунке, б.
2.5. Для испытания металлопроката толщиной 24-29 мм допускается применять несварные образцы с укороченной рабочей длиной по сравнению с
указанной в п.2.1 и на рисунке, а. При этом высота головок образцов не изменяется.
2.6. Образцы рекомендуется обрабатывать на металлорежущих станках. Глубина резания при последнем проходе не должна превышать 0,3 мм.
Чистота обработки поверхности образцов и точность изготовления должны соответствовать требованиям ГОСТ 1497-73.
2.7. При определении относительного удлинения нужно обходиться без нанесения кернов на рабочей части образца; за начальную расчетную длину
следует принимать общую длину образца вместе с головками.
2.8. Начальную и конечную длину образца измеряют штангенциркулем с точностью до 0,1 мм, и полученные значения округляют в
большую сторону. Диаметр рабочей части образца до испытания измеряют микрометром в трех местах (посередине и с двух краев) с
точностью до 0,01 мм; в каждом сечении диаметр измеряют дважды (второе измерение производят при повороте образца на 90°), и за
начальный диаметр принимают среднее значение из двух измерений; причем фиксируют все три значения начальных диаметров (в
середине и с двух краев рабочей части образца). После испытания определяют, вблизи какого измеренного сечения произошел разрыв
образца, и в дальнейшем при определении относительного сужения после разрыва
диаметр этого сечения принимают за начальный диаметр.
Диаметр образцов после испытания следует измерять штангенциркулем с точностью до 0,1 мм.
2.9. Для испытания изготавливают по три образца от каждого листа, пробы отбирают из средней трети листа (по ширине).
3. Испытание образцов
3.1. Для определения механических свойств в направлении толщины проката при статическом растяжении используют универсальные
испытательные машины с механическим, гидравлическим или электрогидравлическим приводом с усилием не выше 100 кН (10 тс) при условии

332.

соответствия их требованиям ГОСТ 1497-73 и ГОСТ 7855-74.
3.2. При проведении испытаний должны соблюдаться следующие основные условия:
надежное центрирование образца в захватах испытательной машины;
плавность нагружения;
скорость перемещения подвижного захвата при испытании до предела текучести - не более 0,1, за пределом текучести - не более 0,4 длины
расчетной части образца, выраженная в мм/мин.
3.3. Рекомендуется оснащать машины регистрирующей аппаратурой для записи диаграмм "усилие-перемещение" в масштабе не менее 25:1.
3.4. Испытания на растяжение образцов для определения механических свойств в направлении толщины проката и подсчет результатов испытаний
проводят в полном соответствии с § 3 и 4 ГОСТ 1497-73.
3.5. При разрушении сварных образцов вне основного металла испытываемого листа из-за возможных дефектов соединения (поры непроваров,
шлаковые включения, трещины и др.) результаты их испытания не принимают во внимание и испытание повторяют на новых образцах.
3.6. Результаты испытаний каждого образца в виде значений
прикладываемом к сертификату на металлоконструкции. Величины
и
вносят в журнал испытаний и фиксируют в протоколе,
нормируются и служат критериями при выборе и назначении
толстолистового проката для изготовления фланцев. Значения других характеристик
данных.
и
факультативны и используются для накопления
В журнал испытаний вносят также данные из сертификата металлургического завода-изготовителя металлоизделий: марку стали, номер партии,
номер плавки, номер листа, химический состав и механические свойства при обычных испытаниях.
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ
"РЕКОМЕНДАЦИЙ ПО РАСЧЕТУ, ПРОЕКТИРОВАНИЮ, ИЗГОТОВЛЕНИЮ И МОНТАЖУ
ФЛАНЦЕВЫХ СОЕДИНЕНИЙ СТАЛЬНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ"
Содержание пункта 2.2 раздела ’’Материалы’’ заменяется на следующее.
2.2. Для фланцев элементов стальных конструкций, подверженных растяжению, изгибу или их совместному действию, следует принять листовую
сталь по ГОСТ 19903-74* с гарантированными механическими свойствами в направлении толщины проката по ТУ 14-1-4431-88 классов 3-5 марок
09Г2С-15 и 14Г2АФ-15 (по ГОСТ 19282-73) или по ТУ 14-105-465-89 марки 14Г2АФ-15. Допускается применение листовой стали электрошлакового
переплава марки 16Г2АФШ по ТУ 14-1-1779-76 и 10 ГНБШ по ТУ 14-1-4603-89.
______________
Механические характеристики листовой стали марки 10ГНБШ толщиной 10-40 мм: временное сопротивление
=52-70 кгс/мм ,
предел текучести
=40 кгс/мм , относительное удлинение
вязкость при температуре - 60 °С KCV не менее 8,0 кгс/см .
%, относительное сужение в направлении толщины -
%, ударная

333.

Содержание пункта 2.3 раздела ’’Материалы’’ заменяется на следующее.
2.3. Фланцы могут быть выполнены из листовой низколегированной стали марок С345, С375 по ГОСТ 27772-88, при этом сталь должна
удовлетворять следующим требованиям:
- категория качества стали (только для С345 и С375) - 3 или 4 в зависимости от требований к материалу конструкции по СНиП II-23-81*;
- относительное сужение стали в направлении толщины проката
%, минимальное для одного из трех образцов
%.
Проверку механических свойств стали в направлении толщины проката осуществляет завод строительных стальных конструкций по методике,
изложенной в приложении 8.
Содержание пункта 2.5 раздела "Материалы" заменяется на следующее.
2.5. Качество стали для фланцев по характеристикам сплошности в зонах шириной 80 мм симметрично вдоль оси симметрии каждого из элементов
профиля, присоединяемого к фланцу, должно удовлетворять требованиям в таблице 1.
Контроль качества стали методами ультразвуковой дефектоскопии осуществляет завод строительных конструкций. На рисунке в качестве примера
показаны зоны контроля стали фланцев для соединений элементов открытого и замкнутого профилей.
Таблица 1
Зона
дефектоскопии
Характеристика сплошности
Площадь несплошности, см
Контролируема
я зона фланцев
Минимальная
учитываемая
Максимальна
я
учитываемая
0,5
1,0
Допустимая
частота
несплошностей
Максимальная
допустимая
протяженность
несплошности
Минимальное
допустимое
расстояние
несплошностями*
10 м
4 см
10 см
_________________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.

334.

Оценку качества стали фланцев марки 10ГНБШ по характеристикам сплошности можно осуществлять по дефектограммам, прилагаемым заводомпоставщиком стали к каждому листу. При удовлетворении требований, указанных в таблице 1, ультразвуковую дефектоскопию завод строительных
конструкций не выполняет.
Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
/ Министерство монтажных и специальных
строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-Etaja-Obespecheniya-Seismostoykosti-351-Str

360.

361.

362.

363.

364.

365.

366.

367.

Более подробно об использовании ЛСК и фрикционно -подвижных болтовых соединений для обрушение верхнего
пятого этажа для обеспечения сейсмостойкости оставшихся четырех этажей, на фрикционно-подвижных
соединениях сери ФПС-2015- Сейсмофонд, с использованием изобретения Андреева Борис Александровича №
165076 «Опора сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с
использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования
фрикционности и сейсмоизоляцию для поглощения сейсмической энергии» и патент № 154506 «Панель
противовзрывная» для г Грозный оставшихся двух пятиэтажек у памятника Ленина
Более подробно о ФФПС и ЛСК смотрите внедренные изобртения организации "Сейсмофонд" при СПб ГАСУ
Японо-Американской фирмой RUBBER BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBERBEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает
преимущества вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер испытан фирмы RBFD
Damptech , где резиновый сердечник, является пластическим шарниром, трубчатого в вида
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK

368.

https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВСН 144-76
-----------------------------Минтрансстрой, МПС
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ
ИНСТРУКЦИЯ
ПО ПРОЕКТИРОВАНИЮ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ
БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
Дата введения 1977-01-01
РАЗРАБОТАНА Всесоюзным научно-исследовательским институтом транспортного строительства (ЦНИИС) - авторы К.П.Большаков, В.А.Зубков - и Научно-исследовательским институтом мостов
Ленинградского института инженеров железнодорожного транспорта (НИИмостов ЛИИЖТ) - авторы В.Н.Савельев, Р.Г.Хусид - взамен действовавших ранее "Указаний по применению высокопрочных
болтов в стальных конструкциях мостов" (ВСН 144-68) в отношении норм проектирования (в отношении норм и правил выполнения соединений на высокопрочных болтах ВСН 144-68 были ранее
заменены ВСН 163-69 - ‖Инструкцией по технологии устройства соединений на высокопрочных болтах в стальных конструкциях мостов‖) и п.7.24. ‖Указаний по проектированию вспомогательных
сооружений и устройств для строительства мостов‖ (ВСН 136-67).
При разработке ВСН 144-76 был учтен отечественный и зарубежный опыт в области исследования, проектирования, строительства и эксплуатации пролетных строений с соединениями на
высокопрочных болтах и использованы результаты последних научно-исследовательских работ ЦНИИС и НИИмостов ЛИИЖТ по нормам вероятностного расчета фрикционных соединений (авторысоставители настоящей Инструкции), по клеефрикционным (М.Л.Лобков), фланцевым (В.Н.Савельев, А.А.Ровный) соединениям и фрикционным соединениям с консервацией контактных поверхностей
специальным грунтом (Б.П.Кругман, А.Н.Потапов) и др.
Инструкция разработана в развитие действующих нормативных документов по проектированию мостов. В Инструкции учтены требования действующих государственных и отраслевых стандартов.
ВНЕСЕНА ЦНИИС Минтрансстроя и НИИмостов ЛИИЖТ МПС
УТВЕРЖДЕНА распоряжением Минтрансстроя и МПС от 8 октября 1976 года N А-1470/П-30621
ВЗАМЕН ВСН 144-68 и п.7.24 ВСН 136-67

369.

370.

МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
СВОД ПРАВИЛ
СП 16.13330.2011
СТАЛЬНЫЕ КОНСТРУКЦИИ
Актуализированная редакция
СНиП II-23-81* Москва 2011
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах с контролируемым натяжением) СП 16.13330.2011
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,
возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:

371.

в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям.
Болты следует размещать согласно требованиям таблицы 40.
14.3.3 Расчетное усилие, которое может быть воспринято каждой плоскостью
трения элементов, стянутых одним высокопрочным болтом, следует определять по
формуле
Qbh
Rbh Abn
h
,
где Rbh
(1)
– расчетное сопротивление растяжению высокопрочного болта, определяемое
согласно требованиям;
Аbп – площадь сечения болта по резьбе, принимаемая согласно таблице Г.9
приложения Г;
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент, принимаемый по таблице 42.
14.3.4 При действии на фрикционное соединение силы N, вызывающей сдвиг
соединяемых элементов и проходящей через центр тяжести соединения, распределение
этой силы между болтами следует принимать равномерным. В этом случае количество
болтов в соединении следует определять по формуле
n
N
,
Qbh k b c
где Qbh
k
γс
γb
(2)
– расчетное усилие, определяемое по формуле Ошибка! Источник ссылки не найден.;
– количество плоскостей трения соединяемых элементов;
– коэффициент условий работы, принимаемый по таблице 1;
– коэффициент условий работы фрикционного соединения, зависящий от
количества п болтов, необходимых для восприятия расчетного усилия, и принимаемый равным:

372.

0,8 при п < 5;
0,9 при 5 ≤ п < 10;
1,0 при п ≥ 10.
14.3.5 При действии на фрикционное соединение момента или силы и момента,
вызывающих сдвиг соединяемых элементов, распределение усилий между болтами
следует принимать согласно указаниям СП 16.13330.2011
Т а б л и ц а 42
Коэффициент γh при контроле натяжения
болтов по моменту закручивания при разности
номинальных
Способ обработки
диаметров отверстий и болтов
Коэффиц
(очистки)
δ, мм, при нагрузке
иент
соединяемых
трения μ
динамической δ = 3
поверхностей
– 6;
динамической δ = 1;
статической δ = 5 – статической δ = 1 – 4
6
1 Дробемѐтный 0,58
или
дробеструйный
двух
поверхностей
без
консервации
1,35
1,12
2
1,35
1,12
0,42
Газопламенный
3 двух
Стальными
0,35
1,35
1,17
поверхностей
щетками
двух
4 без
Без обработки 0,25
1,70
1,30
консервации
поверхностей
П р и м е ч а н и е – При контроле натяжения болтов по углу поворота гайки
без
значения γh
консервации
следует
умножать на 0,9.

373.

2) Несущую способность по местной устойчивости сжатых пластин на участках между крепежными деталями следует
определять в соответствии с ТКП EN 1993-1-1, принимая расчетную длину равной 0,6р-|. Расчет на местную устойчивость не
требуется, если отношение p-i/f меньше 9в. Расстояние до края элемента поперек усилия не должно превышать значений для
свободных свесов сжатых элементов согласно ТКП EN 1993-1-1. Эти требования не распространяются на расстояния до края
элемента вдоль усилия.
Крепежные изделия фрикционно-подвижных соединений и демпфирующих узлов крепления в виде болтовых соединений с
изолирующими трубами и амортизирующими элементами широк используются в США , Канаде на Алскинском нефтепроводе (
см Канадские изобретения ) для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64),
серийный выпуск, закрепленных на основании фундамента с помощью фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК), выполненных согласно ТКП 45-5.04-274-2012 (02250), п.10.3.2 и изобретениям
№№ 1143895,1174616, 1168755 SU, 4094111US, TW201400676
Наименование
Нормативная
Применение
изделия
документация
Шпилька
ГОСТ 9066-75
Фланцевое соединение по ГОСТ
12815-80
Шпилька
DIN 976-1
Для крепления транспортировочных
полнорезьбовая
брусков
Гайка
ГОСТ 9064-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 9065-75
Фланцевое соединение по ГОСТ
12815-80
Шайба
ГОСТ 6402-70
Фланцевое соединение по ГОСТ
12815-80
Болт
ГОСТ 7798-70
Фланцевое соединение по ГОСТ
12815-80
Заклѐпка
Установка доборного элемента
вытяжная
Саморезы
Закрепления
металоосайдинга/сэндвича и
дополнительного оборудования к
блок – боксу
Хомут
АТК-25.000.000
Фиксация трубопровода
БОЛТЫ
ИСПОЛЬЗОВАНИЕ ЛЕГКО СБРАСЫВАЕМЫХ КОНСТРУКЦИЙ ДЛЯ ПОВЫШЕНИЯ СЕЙСМОСТОЙКОСТИ
СООРУЖЕНИЙ
Андреев Б.А., инж.

374.

инж, Коваленко А.И.,инж.,. (ОО «Сейсмофонд»),
Долгая А.А., к.т.н. , (ОАО «Трансмост»)
Предложено использовать легкосбрасываемые конструкции для повышения сейсмостойкости сооружений. В процессе
резонансных колебаний предусматривается возможность падения отдельных элементов сооружения, например панелей
перекрытия или части стеновых панелей. В результате собственные частоты колебаний сооружения меняются и система
отстраивается от резонанса. Приведен пример такого решения для одноэтажного сельскохозяйственного здания.
Ключевые слова: легко-сбрасываемые конструкции, сейсмостойкость
Адаптивные системы сейсмозащиты являются эффективными для снижения сейсмических нагрузок на здания и сооружения. В литературе большое
внимание уделяется адаптивной сейсмоизоляции [1,2]. Между тем, такие системы могут быть эффективными при любом изменении жесткости в
процессе сейсмических колебаний. Это связано с тем, что для сооружения опасны резонансные колебания. Отстройка частоты колебаний системы от
резонанса в любую сторону должна снижать сейсмические нагрузки. Даже если после отстройки от одной частоты сооружение попадет на другую
резонансную частоту, что маловероятно, у системы будет мало времени на раскачку до опасных значений смещений и ускорений. Сказанное
иллюстрируется простым примером проектирования коровника в высокосейсмичном районе на Камчатке. Для повышения сейсмостойкости сооружения
предложено использовать легкосбрасываемые плиты перекрытий, применяемые во взрывоопасных производствах. При сбрасывании плиты масса
системы уменьшается, частота собственных колебаний увеличивается, а сейсмические нагрузки падают.
Устройство предлагаемой панели перекрытия показано на рис.1.
Панель состоит из опорной плиты 1, жестко соединенной с каркасом здания и имеющей проем 2. На опорной плите размещается сбрасываемая
панель 4, прикрепленная к плите крепежными элементами 3 (саморежущими шурупами), имеющими ослабленное резьбовое сечение. Панель соединена с
опорной плитой тросом 5. Ослабленное поперечное сечение резьбовой части образовано лысками, выполненными с двух сторон по всей длине резьбы.
Ослабленная резьбовая часть в совокупности с обычным резьбовым отверстием в опорной плите, образует ослабленное резьбовое соединение,
разрушаемое при сильном землетрясении. Разрушение должно происходить при вертикальных и горизонтальных сейсмических нагрузках. Панель
целесообразно использовать для устройства перекрытия и верхней части стен. После падения панель зависает на крепежном тросе 6.
На рис. 2 показаны фото ослабленных болтов и петли крепления сбрасываемой панели.
Для оценки работы здания с предлагаемыми панелями проведены расчеты сейсмических колебаний сооружения. В качестве модели воздействия
принят временной процесс, предложенный в [3], детально описанный в [4] и регламентированный в Рекомендациях [5]. Расчет выполнен в соответствии
с общими принципами современного сейсмостойкого строительства на действие относительно слабого с повторяемостью раз в 100 лет (проектное
землетрясение, или ПЗ) и сильного с повторяемостью раз в 500 лет (максимальное расчетное землетрясение или МРЗ) землетрясений [6,7]. Большие
повторяемости ПЗ и МРЗ связаны с малой ответственностью объекта.

375.

Рис.1. Схема устройства сбрасываемой панели
Рис.2. Внешний вид крепежной петли и ослабленных крепежных шурупов
Расчет пиковых ускорений МРЗ выполнен по методике [8]. В соответствии с [3-5] велосиграмма V(t) включает три гармоники.
3
V A i e i t sin i t
(1)
i 1
Частота первой гармоники совпадает с собственной частотой сооружения при закрепленных панелях. Частота второй гармоники настроена на
частоту здания со сброшенными панелями. Числовые значения параметров приведены в таблице 1. На рис.3 представлена сгенерированная
велосиграмма V(t), а на рис.4 – соответствующая ей акселерограмма W(t).
Таблица 1
Значения параметров сгенерированного воздействия
i
Ai
i
1
0.038
0.11
2
-0.106
0.21
3
0.02
0.1

376.

Рис.3. Расчетная велосиграмма, построенная по Рекомендациям [5].
Рис.4. Расчетная акселерограмма, построенная по Рекомендациям [5].
На рис. 4 приведена сейсмограмма в уровне крыши здания при жестком креплении панелей. На рисунке ясно видно, что здание «выбирает» из
воздействия опасную частоту и совершает опасные резонансные колебания, достигая амплитуды 16.1 см. .
Рис.5. Сейсмограмма колебаний конструкции в уровне крыши при жестком закреплении панелей (точкой отмечен момент для срыва шурупов)

377.

Опасным для здания в целом является смещение 6.5 см, а разрушающим – 11 см. В связи с этим крепление панелей сделано так, что при
достижении опасных перемещений происходит сброс панелей и изменение собственной частоты объекта. Смещения сброса с некоторым запасом
приняты равными 5 см. Точка сброса отмечена на рис.5 зеленым кружком. Она имеет место при t=1.31 с.
Рис.6. Сейсмограмма колебаний конструкции в уровне крыши при сбросе панелей при t=1.31 c
Сейсмограмма в уровне крыши с учетом сброса панелей приведена на рис. 5. Как видно из приведенных результатов расчета предлагаемое решение
позволяет снизить смещения сооружение более, чем в 1.5 раза с 16.1 см до 10.5 см.
Выполненные исследования показывают, что принципы адаптации можно использовать, как понижая, так и повышая жесткость системы в процессе
колебаний с целью ее отстройки от резонанса.
Материалы хранятся
Литература
1.
Айзенберг Я.М., Нейман А.И., Абакаров А.Д., Деглина М.М., Чачуа Т.Л. Адаптивные системы сейсмической защиты сооружения.- М.:Наука.-1978.-246
2.
Айзенберг Я.М. Сооружения с выключающимися связями для сейсмических районов.М.:Стройиздат.-1976.-229 с.
3.
Долгая А.А. Моделирование сейсмического воздействия коротким временным процессом. // Э-И. ВНИИНТПИ. Сер. ―Сейсмостойкое
строительство‖, Вып. 5-6., 1994, с.56-63
4.
Уздин А.М., Елизаров С.В., Белаш Т.А. Сейсмостойкие конструкции транспортных зданий и сооружений. Учебное пособие. ФГОУ
«Учебно-методический центр по образованию на железнодорожном транспорте», 2012-500 с.
5.
Рекомендации по заданию сейсмических воздействий для расчета зданий разной степени ответственности. - С.-Петербург - ПетропавловскКамчатский, КамЦентр, 1996, 12с.
6.
Уздин А.М. Задание сейсмического воздействия. Взгляд инженера-строителя. Сейсмостойкое строительство. Безопасность сооружений.
2005, №1, с. 27-31
7.
Уздин А.М. Что скрывается за линейно-спектральной теорией сейсмостойкости. Сейсмостойкое строительство. Безопасность сооружений.
2009, №2, с. 18-23
8.
Сахаров О.А. К вопросу задания сейсмического воздействия при многоуровневом проектировании сейсмостойких конструкций
Сейсмостойкое строительство. Безопасность сооружений, № 4, 2004 г. С.7-9
9.

378.

379.

380.

381.

382.

383.

ПРИЛОЖЕНИЕ 1. Выдержки из методики расчета фрикционно-подвижных соединений
контролируемых натяжением и растяжные соединения описаны в СП 16. 13330.2011 . Стальные
конструкции (СНиП II-23-81*) п.14.3 Фрикционные соединения (на болтах с контролируемым
натяжением) и ТКП 45-05. 04-274-2012 (02250). Стальные конструкции (правила расчета). Минск.
2013 г.,п.10.3.2. Соединения, работающие на соединения.
СП 16.13330.2011
14.3 Фрикционные соединения (на болтах
с контролируемым натяжением)
14.3.1 Фрикционные соединения, в которых усилия передаются через трение,

384.

возникающее по соприкасающимся поверхностям соединяемых элементов вследствие
натяжения высокопрочных болтов, следует применять:
в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и
непосредственно воспринимающих подвижные, вибрационные и другие динамические
нагрузки;
в многоболтовых соединениях, к которым предъявляются повышенные
требования в отношении ограничения деформативности.
14.3.2 Во фрикционных соединениях следует применять болты, гайки и шайбы
согласно требованиям 5.6.

385.

386.

Расчетную несущую способность фланцевого фрикционно -подвижного соединения (ФФПС) или фланцевого
демпфирующего узла крепления (ФДУК) двух или четырех бандажных стальных колец на сдвиг поверхностей
трения, стянутых одним болтом с предварительным натяжением классов прочности 8.8 и 10.9, следует определять
по формуле
, (3.6)
где ks — принимается по таблице 3.6;
n — количество поверхностей трения соединяемых элементов;
m — коэффициент трения, принимаемый по результатам испытаний поверхностей, приведенных в ссылочных
стандартах группы 7 (см. 1.2.7), или в таблице 3.7.
(2) Для болтов классов прочности 8.8 и 10.9, соответствующих ссылочным стандартам группы 4 (см. 1.2.4) с
контролируемым натяжением, в соответствии со ссылочными стандартами группы 7
(см. 1.2.7), усилие предварительного натяжения Fp,C в формуле (3.6) следует принимать равным

387.

(3.7)
Таблица 3.6 — Значения ks
Описание
Болты, установленные в нормальные отверстия
Болты, установленные в отверстия с большим зазором или в короткие овальные отверстия при передаче
усилия перпендикулярно продольной оси отверстия
Болты, установленные в длинные овальные отверстия при передаче нагрузки перпендикулярно продольной
оси отверстия
Болты, установленные в короткие овальные отверстия при передаче нагрузки параллельно продольной оси
отверстия
Болты, установленные в длинные овальных отверстиях при передаче нагрузки параллельно продольной оси
отверстия
ks
1,0
0,85
0,7
0,76
0,63
Таблица 3.7 — Значения коэффициента трения m для болтов с предварительным натяжением
Класс поверхностей трения (см. ссылочные стандарты группы 7 (см. 1.2.7))
A
B
C
D
Примечание 1 — Требования к испытаниям и контролю приведены в ссылочных стандартах
группы 7 (см. 1.2.7). Примечание 2 — Классификация поверхностей трения при любом другом
способе обработки должна быть основана на результатах испытаний образцов поверхностей по
процедуре, изложенной в ссылочных стандартах группы 7 (см. 1.2.7). Примечание 3 —
Определения классов поверхностей трения приведены в ссылочных стандартах группы 7 (см.
1.2.7). Примечание 4 — При наличии окрашенной поверхности с течением времени может
Коэффициент
трения m
0,5
0,4
0,3
0,2

388.

произойти потеря предварительного натяжения.
Вместо упруго пластичного материала для внутренней трубы виброизолирующих материал гофрированные бы
или Виброфлекс а болт обматываетсмя медной мягкой лентой
См изобретение 2357146 F16L 25/02 Электроизолирующее фланцевое соединение Епишев А П , Клепцов И.П
Можно использовать в демпфирующем болтовом соединении используется с бронзовой гильзой (
втулкой ) или с демпфирующей обмоткой из бронзовой и свинцовой проволоки
В заключение необходимо сказать о соединении работающим на растяжение при контролируемом натяжении
может обеспечить не разрушаемость сухого или сварного стыка при импульсных растягивающих нагрузках и
многокаскадном демпфировании магистрального трубопровода
На практике советские и отечественные изобретения утекают за границу за бесценок , внедряются за рубежом
на аляскинском нефтепроводе в США, патентуются в Канаде, США
Узлы фрикционно -подвижных соединений работающих на растяжение по изобретению проф А.М.Уздина 1168755, 1174616, 1143895

389.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU

390.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(11)
2010 136 746
(13)
A
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(72) Автор(ы):
(22) Дата подачи заявки: 01.09.2010
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант" Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади для снижения
до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся тем,
что в объеме каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким
материалом и установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении, при этом
обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет
ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности
фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и
«сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем
пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных землетрясениях.

391.

3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой
шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких
диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определить величину
горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение
до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном
комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem
10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и
проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых
деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по
методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(45) Опубликовано: 10.05.2000 Бюл. № 13
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович

392.

(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые
(RU)
соединения на высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83.
(72) Автор(ы):
EP 0170068 A'', 05.02.86.
Рабер Лев Матвеевич (UA),
Адрес для переписки:
Кондратов В.В.(RU),
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Хусид Р.Г.(RU),
Миролюбов Ю.П.(RU)
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания
резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на
его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может
быть использовано в мостостроении и других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР),
так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М.,
Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют момент закручивания M з, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 6064):
Mз = Ndk,

393.

где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие
натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты
закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ,
поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в
результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные
усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты
измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений
(Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в
случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание
предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой
пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в
резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не
могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие
таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента
закручивания для подтяжки болтов. Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с
учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента k i в лабораторных условиях (см. тот же
источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания
нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или
загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с
гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.

394.

Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее
поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее
поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания.
При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения
величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме
того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется
следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное
положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки;
как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины
пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия
натяжения болтов при повороте гайки на угол 60o от исходного положения.

395.

Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М.,
Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения
болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой
предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения
коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в
конкретных условиях эксплуатации соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий
натяжения болтов в период обследования конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам
обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым
вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину
угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания
гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по
формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)

396.

2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1,
07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта.

397.

Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть
использовано для определения фактического напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в
которых передача усилия обжатия соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям
усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие,
отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент
условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые
отражаются в проектной документации, являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного
соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное
усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы
оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае
сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования
высокопрочных болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно
большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при
коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует

398.

исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным
методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного
пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена
применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ
его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных
поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на
строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью
захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На
строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной
эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает
трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных центров
требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно
снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения
климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время
обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об
условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки
фактической надежности работы фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и
инструментальной базы, способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при
восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов,
необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям
соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами
отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008
г., с.8-10).

399.

Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.),
заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента затяжки. Приращение усилия
натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного
положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных
поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после
предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора
болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ
№2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном
монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3,
скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением
усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти
раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с
высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность
способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из
основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной
машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от
величины отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к
тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического,
так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому

400.

фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего
устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может
не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от
величины отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении
величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную
модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для
обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят
дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным
отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие
позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54.
Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки
контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент
трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом
преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух
стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом
рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве
силоизмерительного устройства используется динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.

401.

На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое
соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической
накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое
соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной
металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11
осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной
величине. Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения
усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой
10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6
надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который
воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную
величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по
обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции
дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно
использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в
отрасли.
Формула изобретения

402.

1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали,
узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный
из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60
корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.03.2017)
Пошлина:учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(24) Дата начала отсчета срока действия патента:
17.06.2011
Приоритет(ы):
(22) Дата подачи заявки: 17.06.2011
(72) Автор(ы):
Андрейченко Игорь Леонардович
(RU),
Полатиди Людмила Борисовна (RU),
Бурцева Ирина Валерьевна (RU),
Бугреева Светлана Ильинична (RU),
Красинский Леонид Григорьевич
(RU),
Миллер Олег Григорьевич (RU),

403.

(45) Опубликовано: 20.01.2013 Бюл. № 2
Шумягин Николай Николаевич (RU)
(56) Список документов, цитированных в отчете о поиске: SU 176199 A1, 15.09.1992. SU 1751463 A1,
30.07.1992. RU 2263828 C1, 10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, 19.05.2005.
(73) Патентообладатель(и):
Открытое акционерное общество
"Авиадвигатель" (RU)
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО "Авиадвигатель", отдел защиты
интеллектуальной собственности
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть использовано для соединения вращающихся деталей ротора
газотурбинного двигателя авиационного и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных
отверстиях стяжными болтами. Каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением,
вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер сечения втулки в радиальном направлении; b - размер сечения
втулки в окружном направлении; с - длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение циклического
ресурса и надежности болтового соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в
указанных деталях. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть использовано для соединения вращающихся деталей ротора
газотурбинного двигателя авиационного и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым сечением, которую используют для центровки и
разгрузки болта, снижения напряжений среза в самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении деталей в районе отверстий под болты возникают
напряжения. Наличие концентратора напряжения, повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов. Отверстия под болты, являющиеся концентраторами
напряжений, могут быть расположены в полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления концентратора в
виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень действующих напряжений в 3-4 раза и снижает ресурс
деталей, является основным недостатком такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что обеспечивает достаточную разгрузку отверстий.
Эффективность подобной доработки деталей подтверждена испытаниями и широко используется, например, во фланцах под балансировочные грузики
лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин,
В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических установок, том 4,стр.109).

404.

Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий пакет деталей, цилиндрическую втулку и болт с
гайкой. В деталях выполнены круглые отверстия (Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая повышенные напряжения в болте и в соединяемых деталях,
снижающие циклический ресурс и надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и надежности болтового соединения вращающихся
деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей, объединенных в пакет, с расположенными по окружности
отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами, согласно
п.1 формулы изобретения, каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением,
вытянутым в окружном направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и сохранения необходимой площади контакта между
деталями и болтом необходимо соблюдать следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков и расчетов напряженно-деформированного
состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении, и выполнение втулки с соответствующим
овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения циклического ресурса деталей, оцененного по
условной кривой малоцикловой усталости для дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и сокращения затрат при ресурсных испытаниях
(применительно к двигателю ПС-90А и его модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:

405.

- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей компрессора, а при изготовлении втулок из легкого и
прочного материала - позволяет снижать массу фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу использования в современных двигателях последнего
поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных напряжений в отверстиях соединяемых деталей,
следовательно, снижается циклическая долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается площадь цилиндрического сечения сопрягаемых
деталей, что повышает риск потери несущей способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально уменьшается и площадь цилиндрического сечения
соединяемых деталей, что повышает риск потери несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии действий окружных напряжений при этом
выравниваются, а эффект снижения концентраций напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между деталями и болтом, а также из технологических
соображений необходимо соблюдать следующее соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового соединения дает возможность не только выравнивать
напряжения по толщине пакета деталей и в болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях, повышая их
ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение, на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано
болтовое соединение в сборке деталей ротора КВД в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД), например, фланца 1 диска первой ступени (КВД), фланца 2
вала КВД и диска 3 второй ступени КВД. В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5 с таким
же овальным сечением и размерами а и b в радиальном и окружном направлениях, соответственно. В отверстии 4 втулка 5 размещена на всю толщину
пакета деталей 1, 2, 3. Во втулке 5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого сечения. Диаметр
головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.

406.

Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую площадь контакта между фланцами и стяжным болтом
7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при этом длина окружности С между ними зависит от
размера сечения b втулки 5 в окружном направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой размещают стандартный болт 7 и закрепляют гайкой 8. В
процессе работы КВД концентрация напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет работать при
высоких заданных параметрах двигателя, повышая циклический ресурс и надежность болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту пакета
деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое отверстие выполнено
овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5;
c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d - диаметр отверстия втулки под болт.
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2

407.

(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
(56) Список документов, цитированных в отчете о поиске: RU 2192383 C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР
Туманов Антон Вячеславович
0194615 A1, 18.09.1986.
(RU)
Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы кранов. Согласно изобретению узел снабжен
размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса. Ширина упомянутой прокладки на 510% меньше ширины верхнего пояса подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами. Изобретение обеспечивает
повышение долговечности рельсовой конструкции. 1 ил.

408.

Изобретение относится к транспортным конструкциям, преимущественно к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается резинометаллическая прокладка, являющаяся податливым
слоем, уменьшающим максимумы локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне подкрановой балки.
Резинометаллическая прокладка значительно снижает локальные напряжения σу и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового рельса, и поэтому ее приходится менять чаще, чем
рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка, обладающая такой же податливостью, как
резинометаллическая, но обладающая большей долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].
За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс. Тормозная балка симметрична и помещена ниже
боковых глав рельса для обеспечения свободного прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с подкрановой балкой и тормозной балкой между рельсом и
подкрановой балкой размещена демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой
прокладкой, выполненной из пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем
ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний пояс упомянутой балки полки
швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.

409.

На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной тормозной балкой. Тормозная балка находится ниже
боковых глав рельсов на расстоянии, обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные безребордные колеса 2 мостового крана и передают
вертикальные силовые импульсы Р. Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по боковым главам
рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с продольными гофрами (5...10 шт.) одинаковой высоты с
плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной балки. Швеллеры 6 соединяют верхний пояс 5 с
симметричной тормозной балкой 7. Тормозная балка 7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной балки 7 также соединены друг с другом через стенку
двутавровой прокатной подкрановой балки посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого рельса 1 и
полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10, выполненными из пружинной стали. Кроме этого, в зазоре между
боковой гранью верхнего пояса 5 и гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на верхний пояс 5, а
между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1 упруго оседает под каждым из колес 2, сдавливая
демпфирующую подрельсовую прокладку 4. Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения. Напряжение в тарельчатых пружинах несколько
ослабевает (на 10...15%). Локальное взаимодействие между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσу значительно снижаются и этим выносливость повышается. При уходе колеса крана
демпфирующая подрельсовая прокладка 4 упруго возвращается в исходное положение.
При действии же горизонтального силового импульса Т от одного из направляющих роликов 3 горизонтальные усилия передаются за счет сил трения.
Если же силы трения будут превышены, то в работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7, опирающаяся в горизонтальной плоскости на колонны
каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса размещена демпфирующая подрельсовая прокладка с
продольными гофрами (5...10 штук) одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью пружинной стали, толщиной листа, высотой продольных
гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые шайбы, выполненные пружинными стальными.

410.

4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за старения резины, свойства демпфирующей
подрельсовой прокладки остаются неизменными во времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой прокладки, так как в ней отсутствует быстро
изнашивающаяся и стареющая резина. Экономический эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки долговечности подкрановых путей
производственных зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая
транспортная конструкция. Опубликован 10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся тем, что узел снабжен размещенной под рельсом и
опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина упомянутой прокладки на 5-10% меньше ширины
верхнего пояса подкрановой балки, при этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний
пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.
Адреса американских и немецких фирм, организация занимающихся проектированием,
изготовлением монтажом гасителей динамических колебаний для применения легко сбрасываемость (ЛСК) из последних двух
этажей жилого дома, для обеспечения сейсмостойкости, за счет легко сбрасываемости панелей с существующего здания , при импульсных
растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым натяжением из латунных ослабленных
болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы латунного болта и их программная
реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых
панелей с применением фрикционно-подвижных, для сдвига болтовых соединений для обеспечения сейсмостойкости конструкций здания:
масса здания уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает
в США , Германии,
Китае и др странах
JCM Industries, Inc. P. O. Box 1220 Nash, TX 75569-1220 www.jcmindustries.com
For information, contact: Pacific Flow Control Ltd. P.O. Box 31039 RPO Thunderbird Langley V1M
0A9 Call Toll Free: 1-800-585-TAPS (8277) Phone: 604-888-6363 www.pacificflowcontrol.ca

411.

INDUSTRIES S 'IMSERTS St Fabricated Tapping Sleeves Carbon Steel - Stainless Steel 21919
20th Avenue SE • Suite 100 • Bothell, WA 98021 425.951.6200 • 1.800.426.9341 • Fax:
425.951.6201 www.romac.com
CORPORATE HEADQUARTERS 21919 20th Avenue SE Bothell, WA 98021 [map] Toll Free:
800.426.9341 Local: 425.951.6200 Fax: 425.951.620 Website address: www.romac.com
NON-METALLIC EXPANSION JOINT DIVISION FLUID SEALING ASSOCIATION 994 Old Eagle
School Road, Suite 1019, Wayne, PA 19087 Telephone: (610) 971-4850 Facsimile: (610) 9714859
Fluid Sealing Association 994 Old Eagle School Road #1019
610.971.4850 (USA)
Wayne, PA 19087-1866
WILLBRANDT KG Schnackenburgallee 180 22525 Hamburg Germany Phone +49 40 540093-0
Fax +49 40 540093-47 [email protected]
Subsidiary Hanover Reinhold-Schleese-Str. 22
30179 Hannover
Germany Tel +49 511 99046-0 Fax +49 511 99046-30 [email protected]
Berlin Breitenbachstra?e 7 – 9 13509 Berlin
Subsidiary
Germany Tel +49 30 435502-25 Fax +49 30 435502-20 [email protected] WILLBRANDT
Gummiteknik A/S Finlandsgade 29 4690 Haslev Denmark www.willbrandt.dk
www.willbrandt.se
СТП 006 -97
СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ
МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998 Предисловие
1 РАЗРАБОТАН Научно-исследовательским центром «Мосты» ОАО « ЦНИИС» (канд. техн. наук А.С. П латонов, канд. техн. наук И.Б . Ройзм ан, инж .
А.В. К ру чинки н, канд. техн. наук М.Л. Лобков, инж . М .М. Мещеряков)
ВНЕСЕН Научно-техническим центром Корпорации «Трансстрой»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией «Трансстрой» распоряжением от 09 октября 1997 г. № МО-233

412.

3 СОГЛАСОВАН специализированными фирмами « Мостострой», «Транспроект» Корпорации «Трансстрой», Главным управлением пути Министерства
путей сообщения РФ
4 С введением настоящего стандарта утрачивает силу ВСН 163 -69 «Инструкция по технологии устройства соединений на высокопрочных болтах в
стальных конструкциях мостов»
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии двух срезных одноболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии (выполнен согласно изобретениям: №№ 1143895, 1168755, 1174616, № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ
И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ" опубликовано 20.01.2013 , № 165076 RU E 04H 9/02
«Опора сейсмостойкая», опубликовано 10.10.16, Бюл. № 28 , согласно заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка", E04 Н
9 /02, заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопро-водов" F 16L 23/02 , заявки на
изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маят-никовая" E04 H 9/02, заявки на изобретение № 20190028 "Виброизолирующая опора E04 Н 9
/02 для лабораторного испытание на взрывостойкость и взрывопожаростойкость сейсмостойкость фрагментов крепления на ФФПС).
:1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при использовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в плане. Отверстия образуются
сверлением, заусенцы по кромкам и в отверстиях удаляются.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях конструкции. Натяжение болта
осуществляется динамометрическими ключами, применяемыми на строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется нагрузка Т, характеризующая исчерпание
несущей способности образца. Испытания рекомендуется проводить с записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести
риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, где отмечается дата испытания, маркировка образца, нагрузка, соответствующая сдвигу (прикладывается
диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.

413.

Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте сооружения, которое может быть
воспринято каждой поверхностью трения соединяемых элеме нтов, стянутых одним высокопрочным болтом (одним болтоконтактом), оценивается
соотношением Qbh ≤ Т/ 2 в каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и научно-исследовательской
организаций.
Приложение М (информационное) Библиография
[1 ] . Правила по охране труда при сооружении мостов. ЦНИИС, 1991 г.
[2 ] . Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. Госгортехнадзор СССР, 1970 г.
[3 ] . Санитарные правила при работе с эпоксидными смолами. Госсанинспекция СССР, 1960 г.
[4 ] . Типовая инструкция по охране труда при хранении и перевозке горюч их, легко воспламеняющихся и взрывоопасных грузов. Оргт рансст рой, 1978
г.
[ 5 ] . Правила пожарной безопасности при производстве строительно-монтажных работ. П ПБ1 -93 Российской Федерации.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

ОПОРА СЕЙСМОСТОЙКАЯ165 076
(19)
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ
U1
СЛУЖБА
(51) МПК
ПО
E04H
ИНТЕЛЛЕКТУАЛЬНОЙ
9/02 (2006.01)
СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее
Статус:
изменение статуса: 07.06.2017)
)(22) Заявка: 2016102130/03,
22.01.2016
) Дата начала отсчета срока
действия патента:
22.01.2016
иоритет(ы):
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)

429.

) Дата подачи заявки: 22.01.2016
) Опубликовано: 10.10.2016 Бюл.
№ 28
рес для переписки:
197371, Санкт-Петербург,
Коваленко Александр Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
165 076
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования фрикцион
но податливых соединений. Опора состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной оси, выполнены отверстия в котор ых
установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в штоке. Ширина паза в штоке соответствует
диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока совмещают с
поперечными отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до заданного усилия.
Увеличение усилия затяжки приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток
и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических
воздействий за счет использования фрикционно податливых соединений. Известны фрикционные соединения для защиты
объектов от динамических воздействий. Известно, например Болтовое соединение плоских деталей встык по Патенту RU
1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В листах, накладках
и прокладках выполнены овальные отверстия через которые пропущены болты, объединяющие листы, прокладки и накладки в
пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением
нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью. Взаимное смещение листов происходит до упора болтов в края овальных отверстий после че го соединения
работают упруго. После того как все болты соединения дойдут до упора в края овальных отверстий, соединение начинает
работать упруго, а затем происходит разрушение соединения за счет смятия листов и среза болтов. Недостатками известного
являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению. Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint anti-wind and anti-seismic
friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое основание, поддерживающее защищаемый объект,
нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение
демпфирования создается между пластинами и наружными поверхностями сегментов. Перпендикулярно вертикальной
поверхности сегментов, через пазы, проходят запирающие элементы - болты, которые фиксируют сегменты и пластины друг

430.

относительно друга. Кроме того, запирающие элементы проходят через блок поддержки, две пластины, через паз сегмента и
фиксируют конструкцию в заданном положении. Таким образом получаем конструкцию опоры, которая выдерживает в етровые
нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней - корпуса,
закрепленного на фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси и с
возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В корпусе выполнено
центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия (перпендикулярные к
центральной оси) в которые устанавливают запирающий элемент-болт. Кроме того в корпусе, параллельно центральной оси,
выполнены два открытых паза, которые обеспечивают корпусу возможность деформироваться в радиальном направлении. В
теле штока, вдоль центральной оси, выполнен паз ширина которого соответствует диаметру запирающего элемента (болта), а
длина соответствует заданному перемещению штока. Запирающий элемент создает нагрузку в сопряжении шток -отверстие
корпуса, а продольные пазы обеспечивают возможность деформации корпуса и «переход» сопряжения из состояния возможного
перемещения в состояние «запирания» с возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса
превышает расстояние от торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции поясняется
чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3
изображен разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое охватывает
цилиндрическую поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его оси,
выполнено два отверстия в которых установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси отверстия
корпуса, выполнены два паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный глухой паз длиной «h»
(допустмый ход штока) соответствующий по ширине диаметру калиброванного болта, проходящего через этот паз. При этом
длина пазов «I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней части корпуса 1 выполнен
фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с
защищаемым объектом. Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной
посадке. Паз штока совмещают с поперечными отверстиями корпуса и соединяют калиброванн ым болтом 3, с шайбами 4, с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя
поверхность паза штока контактирует с поверхностью болта (высота опоры максимальна). После этого гайку 5 затягивают
тарировочным ключом до заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия
трения) в сопряжении отверстие корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток зависит от
величины усилия затяжки гайки (болта) и для каждой конкретной конструкции (компоновки, габаритов, материалов,
шероховатости поверхностей, направления нагрузок и др.) определяется экспериментально. При воздействии сейсмических

431.

нагрузок превышающих силы трения в сопряжении корпус-шток, происходит сдвиг штока, в пределах длины паза
выполненного в теле штока, без разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом,
отличающаяся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде калиброванного болта,
проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в теле штока и закрепленный гайкой
с заданным усилием, кроме того в корпусе, параллельно центральной оси, выполнено два открытых паза, длина которых, от
торца корпуса, больше расстояния до нижней точки паза штока.

432.

433.

434.

435.

436.

437.

2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)

438.

Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(72) Автор(ы):
(45) Опубликовано: 10.05.2000 Бюл. № 13
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые
Хусид Р.Г.(RU),
соединения на высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. Миролюбов Ю.П.(RU)
EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
Рабер Лев Матвеевич (UA),
Кондратов Валерий
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания
резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на
его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может
быть использовано в мостостроении и других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.

439.

При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР),
так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М.,
Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют момент закручивания Mз, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 6064):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие
натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты
закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ,
поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в
результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные
усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты
измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений
(Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в
случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание
предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой
пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в
резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не
могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие
таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента
закручивания для подтяжки болтов. Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с
учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).

440.

Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента ki в лабораторных условиях (см. тот же
источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания
нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или
загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с
гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее
поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее
поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания.
При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения
величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме
того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется
следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное
положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки;
как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;

441.

- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины
пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия
натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М.,
Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения
болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой
предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения
коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в
конкретных условиях эксплуатации соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий
натяжения болтов в период обследования конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам
обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым
вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину
угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания
гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по
формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i

442.

- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(24) Дата начала отсчета срока действия патента:
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1,
07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:

443.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта.
Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть
использовано для определения фактического напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в
которых передача усилия обжатия соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям
усилием обжатия болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие,
отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент
условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые
отражаются в проектной документации, являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного
соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное
усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).

444.

Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы
оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае
сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования
высокопрочных болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно
большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при
коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует
исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным
методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного
пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена
применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ
его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных
поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на
строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью
захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На
строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной
эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает
трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных центров
требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно
снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения
климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время
обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об
условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки
фактической надежности работы фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и
инструментальной базы, способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при
восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:

445.

где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов,
необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям
соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами
отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008
г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.),
заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента затяжки. Приращение усилия
натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного
положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных
поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после
предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора
болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ
№2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы
динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном
монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3,
скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением
усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти
раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с
высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность
способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,

446.

применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из
основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной
машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от
величины отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к
тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического,
так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому
фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего
устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может
не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от
величины отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении
величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную
модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для
обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят
дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным
отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие
позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54.
Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки
контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент
трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.

447.

Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом
преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух
стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом
рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве
силоизмерительного устройства используется динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое
соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической
накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое
соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной
металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11
осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной
величине. Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения
усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой
10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6
надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который
воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную
величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по
обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции
дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.

448.

Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно
использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в
отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали,
узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный
из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60
корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии
дву хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).

449.

Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь
зовании болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных
размеров в плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.
Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на
строительстве при сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в
отверстии пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы
пластин 2 находиться на одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной
машины должна быть не ниже ±2 % .

450.

Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме нтов,
стянутых одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в
каждом из трех образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика,
проектной и научно-исследоват е льской организаций.
F 16 L 23/02 F 16 L 51/00
Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназнечено для
защиты шаровых кранов и трубопровода от возможных вибрационных , сейсмических и взрывных
воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитмы медным обожженным
клином позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении,
вибрационных вождействий от железнодорожного и автомобильно транспорта и взрыве .Конструкция
фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) . Кроме того между энергопоглощаюим
клином вставляютмс свинффцовые шайбы с двух сторо, а латунная шпилька вставлдяетт фв ФФПС с
медным ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от
сейсмических воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные

451.

соединения для защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое
соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное
демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соедиения (ФФПС), при
импульсных растягивающих нагрузках при многокаскадном демпфировании, корые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по
трению. Известно также устройство для фрикционного демпфирования и антисейсмических воздействий,
патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В
сегментах выполнены продольные пазы. Сжатие пружин создает демпфирование
Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает
сейсмические нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального
положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений в виде фрикци -болта , а также повышение точности
расчета при использования фрикци- болтовых демпфирующих податливых креплений для шаровых кранов и
трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с
пропиленным пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет
деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным
пазом в стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки
или свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет сухого трения, которые
обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода
обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной шпильки.

452.

Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт
повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных
соединений, работающих на растяжение на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр.
74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек 4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный
клин и снабжен энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленныым пазом , кужа
забиваенься стопорный обожженный медный, установленных на стержнях фрикци- болтов Медный
обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является
медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении,
осуществляется смянанием с энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между
цилиндрическими выступами . При этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной виброизоляции и сейсмозащиты
шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы

453.

Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос (
на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является
амортизирующим элементом при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединени , выполненные из латунной
шпильки с забиты с одинаковым усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно выполняет роль упругого элемента,
воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность
соединения в условиях повышенных вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего
производится стягивание соединения гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную
величину, обеспечивающую рабочее состояние медного обожженного клина . свинцовые шайбы применяются с
одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия,
чтобы их жесткость соответствовала расчетной, обеспечивающей надежную сейсмомозащиту и
виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность
соединения и надежность его работы в тяжелых условиях вибронагрузок при моногкаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из,
частоты вынужденных колебаний вибрирующего трубчатого элемента с учетом частоты собственных
колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта
будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы,
подпружиненные и энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного

454.

фрикци -болта с пропиленным пазом и забитым медным обожженным клином с медной обожженной втулкой
или гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный
элемент, фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с забитимы с одинаковм усилеи м медым
обожженм коллином расположенными во фоанцемом фрикционно-подвижном соедиении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими
выступами фланцев, а крепежные элементы подпружинены также на участке между фланцами, за счет
протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным обожженным энергопоголощающим клином
установлены тонкие свинцовые или обожженные медные шайбы, а в латунную шпильку устанавливает медная
обожженная гильза или втулка .
Фиг 1
Фиг 2
Фиг 3
Фиг 4

455.

Фиг 5
Фиг 6
Фиг 7
Фиг 8
Фиг 9

456.

457.

458.

459.

460.

Рис На рисунке показан узел гасителе
динамических колебаний для применения легко сбрасываемость (ЛСК) из последних двух этажей жилого дома, для обеспечения сейсмостойкости, за
счет легко сбрасываемости панелей с существующего здания , при импульсных растягивающих нагрузках с использованием протяжных фрикционноподвижных соединений с контролируемым натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с

461.

образованными лысками, по всей длине резьбы латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office
c использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746,
1143895, 1168755, 1174616 При сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых
соединений для обеспечения сейсмостойкости конструкций здания: масса здания уменьшается, частота собственных колебаний
увеличивается, а сейсмическая нагрузка падает

462.

463.

464.

465.

При компьютерном моделировании в ПК SCAD использовалось изобретение СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ , патент № 2010 136 746
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
(11)
2010 136 746
(13)
A
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(51) МПК 2010 136 746
E04C 2/00 (2006.01)
(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства:Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
Приоритет(ы):
(72) Автор(ы):
(22) Дата подачи заявки: 01.09.2010
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Адрес для переписки:
Гусев Михаил Владимирович (RU),

466.

443004, г.Самара, ул.Заводская, 5, ОАО "Теплант" Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения № 2010 136 746
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади для снижения
до допустимой величины взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, отличающийся тем,
что в объеме каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким
материалом и установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении, при этом
обеспечивают плотную посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и соскальзывают с болтового соединения за счет
ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности
фрикционных, скользящих соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости,
состоящих из стальных регулируемых натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и
«сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем
пятки на уровне фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой
шайбой, которая распределяет одинаковое напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и
взрывной энергии, не позволяя разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких
диафрагмах «сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определить величину
горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на
строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение
до землетрясения и аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на программном
комплексе ВК SCAD 7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem
10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и
проверяются экспериментальным путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых
деревянных панелей, колонн, перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9 баллов перемещение по
методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов».
2 148805 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

467.

RU
(11)
2 148 805
(13)
C1
(51) МПК
G01L 5/24 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина:учтена за 3 год с 27.11.1999 по 26.11.2000
(21)(22) Заявка: 97120444/28, 26.11.1997
(24) Дата начала отсчета срока действия патента:
26.11.1997
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(72) Автор(ы):
Рабер Лев Матвеевич (UA),
Кондратов В.В.(RU),
(56) Список документов, цитированных в отчете о поиске: Чесноков А.С., Княжев А.Ф. Сдвигоустойчивые
Хусид Р.Г.(RU),
соединения на высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU 763707 A, 15.09.80. SU 993062 A, 30.01.83. Миролюбов Ю.П.(RU)
EP 0170068 A'', 05.02.86.
(73) Патентообладатель(и):
Адрес для переписки:
Рабер Лев Матвеевич (UA),
Кондратов Валерий
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
Владимирович (RU),
Хусид Раиса Григорьевна
(RU),
Миролюбов Юрий Павлович
(RU)
(45) Опубликовано: 10.05.2000 Бюл. № 13
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ
(57) Реферат:

468.

Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определения параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих деформаций.
Определяют приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания
резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на
его диаметр. Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для
повышения точности результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения, преимущественно высокопрочных болтов, и может
быть использовано в мостостроении и других отраслях строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки выполненных работ (Инструкция по технологии
устройства соединений на высокопрочных болтах в стальных конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР),
так и в период обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила обследований и испытаний. - М.,
Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими ключами измеряют момент закручивания M з, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов. М.,Транспорт, 1971, с. 6064):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайки.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном коэффициенте закручивания усилие
натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того, в какой мере действительные коэффициенты
закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на стадии приемки выполненных работ,
поскольку предусматриваемая технологией постановки болтов стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких пределах, что вносит существенную неточность в
результаты измерений. По данным Чеснокова А.С. и Княжева А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974,
табл. 17, с. 73) коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12-0,264. Таким образом измеренные
усилия в болтах с помощью динамометрических ключей могут отличаться от фактических значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина коэффициента k не оказывает влияния на результаты
измерений. Способ реализован с помощью устройства (А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений
(Бокатов В.И., Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил его надежную работу в
случае сравнительно непродолжительного (до пяти лет) срока эксплуатации конструкций. При более длительном сроке эксплуатации срабатывание
предусмотренных конструкцией устройства пружин происходит недостаточно четко, поскольку с течением времени неподвижный контакт резьбовой
пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких величин, что величина момента сил трения в

469.

резьбе превосходит величину крутящего момента, создаваемого преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не
могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы болта не менее, чем на 20 мм. Наличие
таких болтов в узлах и прикреплениях должно специально предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения необходимо назначить величину момента
закручивания для подтяжки болтов. Для назначения этого момента необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения коэффициента закручивания болтов с
учетом влияния времени, аналогичному влиянию качества изготовления болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на
высокопрочных болтах. - М., Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента k i в лабораторных условиях (см. тот же
источник, с. 74-77) путем одновременного обеспечения и контроля заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической оценки необходимо произвести испытания
нескольких десятков или даже сотен болтов. Кроме того, при извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или
загрязненной резьбе болта, а испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором болт быть сопряжен с
гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее
поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее
поворота в области упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение момента закручивания.
При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
i
/60o(170-0,96δ), кH, (1)
где A, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.

470.

Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении и повысить точность определения
величины коэффициента закручивания за счет исключения необходимости прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме
того, в отличие от прототипа испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ осуществляется
следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) Mз и измеряют фактическую величину этого момента (исходное
положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками соответствует заданному углу поворота гайки;
как правило, этот угол составляет 60o.
- поворачивают гайку на заданный угол αo и измеряют величину момента закручивания гайки по достижении этого угла - Mк.
- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол αo приращение усилия натяжения болта ΔN по эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов, состоящих в исследовании влияния толщины
пакета и уточнении влияния толщины и количества деталей, составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия
натяжения болтов при повороте гайки на угол 60o от исходного положения.
Поворот гайки на 60o соответствует середине области упругих деформаций болта (Вейнблат Б.М. Высокопрочные болты в конструкциях мостов - М.,
Транспорт, 1974, с. 65-68). В пределах этой области, равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения
болта. Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре болта зависит от толщины этого пакета. Следовательно,
поворот гайки на определенный угол в области упругих деформаций идентичен созданию в болте заданного натяжения. Этот эффект явился основой
предложенного способа определения коэффициента закручивания.
Угол поворота гайки 60o технологически удобен, поскольку он соответствует перемещению гайки на одну грань. Погрешность системы определения
коэффициента закручивания, характеризуемая как погрешностью выполнения отдельных операций, так и погрешностью регистрации требуемых
параметров, составляет около ± 8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает возможность проводить испытания в
конкретных условиях эксплуатации соединений, что повышает точность полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть использованы как при определении усилий
натяжения болтов в период обследования конструкций, так при назначении величины момента для подтяжки болтов, в которых по результатам
обследования выявлено недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения
Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении параметров затяжки соединения, по которым
вычисляют коэффициент закручивания, отличающийся тем, что в эксплуатируемом соединении производят затягивание гайки на заданную величину

471.

угла ее поворота от исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения момента закручивания
гайки в области упругих деформаций и определяют приращение момента закручивания, при этом приращение усилия натяжения болта определяют по
формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента закручивания гайки к произведению приращения
усилия натяжения болта на его диаметр.
2413098 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.08.2017)
Пошлина:учтена за 7 год с 20.11.2015 по 19.11.2016
(21)(22) Заявка: 2009142477/11, 19.11.2009
(72) Автор(ы):
Кунин Симон Соломонович (RU),
(24) Дата начала отсчета срока действия патента:
Хусид Раиса Григорьевна (RU)
19.11.2009
Приоритет(ы):
(22) Дата подачи заявки: 19.11.2009
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ
ПРОИЗВОДСТВЕННО-ИНЖИНИРИНГОВАЯ ФИРМА
"ПАРТНЁР" (RU)

472.

(45) Опубликовано: 27.02.2011 Бюл. № 6
(56) Список документов, цитированных в отчете о поиске: SU 1753341 A1,
07.08.1992. SU 1735631 A1, 23.05.1992. JP 2008151330 A, 03.07.2008. WO
2006028177 A1, 16.03.2006.
Адрес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И. Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспечения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные по проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимости от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного болта.
Определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел
сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего отверстие
под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного
материала. В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами, но может быть
использовано для определения фактического напряженно-деформированного состояния болтовых соединений в различных конструкциях, в частности
стальных мостовых конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью болтовых фрикционных соединений, в
которых передача усилия обжатия соединяемых элементов высокопрочными метизами осуществляется только силами трения по контактным плоскостям
усилием обжатия болтов до 22 т и выше.

473.

Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по среднему ряду болтов. Сдвигающее усилие,
отнесенное к одному высокопрочному болту и одной плоскости трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы мостов m1=0,9; m2 - коэффициент
условий работы соединения; Рн - нормативное усилие натяжения болта; fн - нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с высокопрочными болтами, которые
отражаются в проектной документации, являются усилие натяжения болта и нормативный коэффициент трения, с учетом условий работы фрикционного
соединения. Нормативное усилие натяжения болтов назначается с учетом механических характеристик материала и его определяют по формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для натяжения болта на заданное нормативное
усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой ранее выполненных соединений важными являются вопросы
оценки коэффициентов трения по соприкасающимся поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае
сочетания металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки возможности повторного использования
высокопрочных болтов. В качестве нормативного коэффициента трения принимается среднестатистическое значение, определенное по возможно
большему объему экспериментального материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость контактных соединений выполняется при
коэффициенте трения поверхностей f≥0,55. Это значение можно принять в качестве основного критерия сдвигоустойчивости, и оно соответствует
исходному значению Ктр. для монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно-струйным
методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия определяют обычно по показаниям испытательного
пресса, а обжимающие - по суммарному усилию натяжения болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут
приводить к тем или иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения требуемой величины f≥0,55 решена
применением разработанного НПЦ Мостов съемного покрытия «Контакт» (патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ
его нанесения», которое обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью контактных
поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в течение 1-1,5 лет (до начала монтажных работ на
строительном объекте). Непосредственно перед монтажом покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с
контактных поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно-струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными строениями осуществляется с помощью
захватов, фиксируемых в отверстиях контактных поверхностей, временное защитное покрытие «Контакт» в районе установки захватов повреждается. На
строительном объекте приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они после длительной
эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение дополнительной очистки значительно увеличивает
трудоемкость монтажных работ. Кроме того, в условиях открытой атмосферы и удаленности строительных площадок мостов от промышленных центров
требуемые показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных показателей, соответственно
снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное воздействие на контактные соединения
климатических факторов, соответствующих в пределах Российской Федерации умеренно-холодному климату (У1), а также циклических сдвиговых
нагрузок от транспорта, движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в настоящее время

474.

обработка металлических поверхностей металлоконструкций осуществляется в заводских условиях, и при поставке их указываются сведения об
условиях обработки поверхности, усилие натяжения высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому возникает необходимость проверки
фактической надежности работы фрикционного соединения с высокопрочными болтами перед монтажом, для обеспечения надежности при их
эксплуатации, причем возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости совершенствования диагностической и
инструментальной базы, способствующей повышению эффективности реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется отсутствием сдвигов соединяемых элементов при
восприятии внешней нагрузки как на срез, так и растяжение. Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Yb - коэффициент условий работы соединения, зависящий от количества (n) болтов,
необходимых для восприятия расчетного усилия; Abn - площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям
соединенных элементов; Yh - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f, разницы между диаметрами
отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008
г., с.8-10).
Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805, G01L 5/24, опубл. 10.05.2000 г.),
заключающийся в отношении измеряемого момента закручивания гайки к произведению определяемого усилия натяжения болта на его диаметр.
Измерения проводят без извлечения болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения приращения момента затяжки. Приращение усилия
натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм2; a, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм2; αi - угол поворота гайки от исходного
положения; σ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными коэффициентами трения контактных
поверхностей и коэффициентом закручивания, т.к. затягивание гайки на заданную величину поворота (α=60°) от исходного положения производят после
предварительного ее ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить фактические значения
усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность точной оценки усилий приводит к необходимости выбора
болтов и их количества на основании так называемого расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы трения покоя), например (патенты РФ
№2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с помощью электрического сигнала или заранее оттарированной шкалы

475.

динамометрического ключа, но точность измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном
монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две пластины 1 и 2 устанавливают на накладке 3,
скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5, расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и
определяют величину смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и 2 и приращением
усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль оси, на которой расположены болты 4 и 5 (Патент
№1753341, опубл. 07.08. 1992 г.). На практике этого может и не быть, если болты, например, расположены несимметрично по отношению к направлению
действия продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому сдвиг в них может произойти
раньше, чем в менее напряженных. В итоге, это может привести к более раннему разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения несущей способности фрикционного соединения с
высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность
способа заключается в определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы изготавливают из стали,
применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по технологии, принятой в проекте конструкций. Образец состоит из
основного элемента и двух накладок, скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия испытательной
машины определяют по показаниям прибора. Затем определяют коэффициент трения, который сравнивают с нормативным значением и в зависимости от
величины отклонения осуществляют меры по повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента
трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе нагружения образцов могут приводить к
тем или иным неточностям в определении коэффициента трения, т.к. коэффициент трения может меняться и по другим причинам как климатического,
так и эксплуатационного характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения болтов, поэтому
фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием натяжения. Следует отметить, что в качестве сдвигающего
устройства применяются специальные средства (пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может
не быть, поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, устраняющего недостатки, присущие прототипу и позволяющие повысить надежность монтажа и эксплуатации
металлоконструкций с высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности фрикционного соединения с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего основной элемент металлоконструкции и накладку,
контактирующие поверхности которых предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и постепенно увеличивают нагрузку на
накладку до момента ее сдвига, фиксируют усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, в зависимости от
величины отклонения осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта, полученное при заданном (проектном) значении
величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство, защищенное патентом РФ №88082 на полезную
модель, обладающее рядом преимуществ и обеспечивающее достоверность и точность измерения усилия сдвига.

476.

В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта от оптимального значения, для
обеспечения надежности работы фрикционного соединения металлоконструкции при монтаже ее изменяют натяжение болта и/или проводят
дополнительную обработку контактирующих поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований установлено, что оптимальным
отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания высокопрочных болтов на 10-20%, то это действие
позволяет увеличить сопротивление сдвигу, если отношение усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50-0,54.
Если же это отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение дополнительной обработки
контактирующих поверхностей, т.к. при значительном увеличении момента закручивания можно сорвать резьбу, поэтому увеличивают коэффициент
трения. Если же величина отношения усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является переносным и обладает рядом
преимуществ перед известными устройствами. Оно содержит неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде
рычага, имеющего отверстие под нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из двух
стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена отверстиями под болтовое соединение для крепления к
металлоконструкции, а также отверстием для вала, на котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а между выступом
рычага и сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из закаленного материала. В качестве
силоизмерительного устройства используется динамометрический ключ с предварительно оттарированной шкалой для фиксации момента затяжки.
Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного шкалой 5 и накидной головкой 6, болтовое
соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9, выполненный из закаленной стали, образец-свидетель состоит из металлической
накладки 10, пластины 11 обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а также болтовое
соединение 13, предназначенное для крепление корпуса измерительного устройства к неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения тестовой накладки 10 с пластиной
металлоконструкции 11, если производится ремонт на обследуемом объекте, причем контактирующая поверхность пластины обрабатывается
дробепескоструйным способом, чтобы обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских условиях. Соединение пластин 10, 11
осуществляют высокопрочным болтом и гайкой с применением шайб. Усилие натяжения высокопрочного болта должна соответствовать проектной
величине. Расчетный момент закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для определения
усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким образом, чтобы сухарик 9 соприкасался с накладкой
10 и рычагом 2, размещенным на валу 3. Далее, динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6
надевается на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через рычаг 5 передается на сухарик 9, который
воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В
момент сдвига детали 10 фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя). Сравнивают полученную

477.

величину момента сдвига (Мсд) с расчетной величиной - моментом закручивания болта (Мр). В зависимости от величины Мсд/Мз производят действия по
обеспечению надежности монтажа конкретной металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в технологию монтажа не вносят;
- при отношении Мсд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения высокопрочного болтов примерно на 10-15%;
- при отношении Мсд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при монтаже металлоконструкции
дополнительно обработать контактирующие поверхности поставленных заводом деталей металлоконструкции дробепескоструйным методом.
При отношении Мсд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается в его универсальности, т.к. его можно
использовать для любых болтовых соединений на высокопрочных болтах независимо от сложности конструкции, диаметров крепежных болтов и
методов обработки соприкасающихся поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и выданы рекомендации к его применению в
отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами, включающий приготовление
образца-свидетеля, содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного болта, а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали,
узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства и
имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный
из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения высокопрочного болта в диапазоне 0,54-0,60
корректировку технологии монтажа не производят, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей металлоконструкции.
2472981 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)

478.

2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.03.2017)
Пошлина:учтена за 5 год с 18.06.2015 по 17.06.2016
(21)(22) Заявка: 2011125214/12, 17.06.2011
(24) Дата начала отсчета срока действия патента:
17.06.2011
Приоритет(ы):
(22) Дата подачи заявки: 17.06.2011
(45) Опубликовано: 20.01.2013 Бюл. № 2
(56) Список документов, цитированных в отчете о поиске: SU 176199 A1, 15.09.1992. SU 1751463 A1,
30.07.1992. RU 2263828 C1, 10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044 U1, 19.05.2005.
Адрес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО "Авиадвигатель", отдел защиты
интеллектуальной собственности
(72) Автор(ы):
Андрейченко Игорь Леонардович
(RU),
Полатиди Людмила Борисовна (RU),
Бурцева Ирина Валерьевна (RU),
Бугреева Светлана Ильинична (RU),
Красинский Леонид Григорьевич
(RU),
Миллер Олег Григорьевич (RU),
Шумягин Николай Николаевич (RU)
(73) Патентообладатель(и):
Открытое акционерное общество
"Авиадвигатель" (RU)
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть использовано для соединения вращающихся деталей ротора
газотурбинного двигателя авиационного и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с
расположенными по окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных
отверстиях стяжными болтами. Каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением,
вытянутым в окружном направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер сечения втулки в радиальном направлении; b - размер сечения

479.

втулки в окружном направлении; с - длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение циклического
ресурса и надежности болтового соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в
указанных деталях. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть использовано для соединения вращающихся деталей ротора
газотурбинного двигателя авиационного и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым сечением, которую используют для центровки и
разгрузки болта, снижения напряжений среза в самом болте и исключения сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин.
В.Н.Быков, С.П.Фадеев, Издательство «Высшая школа», 1969 г., с.83, рис.3.4). При вращении деталей в районе отверстий под болты возникают
напряжения. Наличие концентратора напряжения, повышающего уровень действующих напряжений в 3-4 раза, является основным недостатком такой
конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов. Отверстия под болты, являющиеся концентраторами
напряжений, могут быть расположены в полотне дисков и на выносных фланцах деталей. Выносные фланцы применяют для удаления концентратора в
виде отверстия из полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень действующих напряжений в 3-4 раза и снижает ресурс
деталей, является основным недостатком такой конструкции.
Практически эта проблема решается путем выполнения выкружек типа «короны» во фланцах, что обеспечивает достаточную разгрузку отверстий.
Эффективность подобной доработки деталей подтверждена испытаниями и широко используется, например, во фланцах под балансировочные грузики
лабиринтов диска 13-ой ступени ротора компрессора высокого давления (КВД) двигателей ПС-90А, ПС-90А2 (А.А.Иноземцев, М.А.Нихамкин,
В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий пакет деталей, цилиндрическую втулку и болт с
гайкой. В деталях выполнены круглые отверстия (Патент РФ №2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая повышенные напряжения в болте и в соединяемых деталях,
снижающие циклический ресурс и надежность болтового соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и надежности болтового соединения вращающихся
деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей, объединенных в пакет, с расположенными по окружности
отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами, согласно
п.1 формулы изобретения, каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением,
вытянутым в окружном направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;

480.

с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и сохранения необходимой площади контакта между
деталями и болтом необходимо соблюдать следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков и расчетов напряженно-деформированного
состояния.
Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении, и выполнение втулки с соответствующим
овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения циклического ресурса деталей, оцененного по
условной кривой малоцикловой усталости для дисковых сплавов (Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления
ресурсами авиационного ГТД с целью повышения прочностной надежности, увеличения ресурсов и сокращения затрат при ресурсных испытаниях
(применительно к двигателю ПС-90А и его модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей компрессора, а при изготовлении втулок из легкого и
прочного материала - позволяет снижать массу фланцев дисков и всего ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу использования в современных двигателях последнего
поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровень окружных напряжений в отверстиях соединяемых деталей,
следовательно, снижается циклическая долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается площадь цилиндрического сечения сопрягаемых
деталей, что повышает риск потери несущей способности, возрастает уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально уменьшается и площадь цилиндрического сечения
соединяемых деталей, что повышает риск потери несущей способности.

481.

Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии действий окружных напряжений при этом
выравниваются, а эффект снижения концентраций напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между деталями и болтом, а также из технологических
соображений необходимо соблюдать следующее соотношение: (a-d)/2>1,4 мм. В противном случае возникают технологические сложности с
изготовлением втулки, т.к. толщина стенки втулки слишком мала. Кроме того, в тонкой стенке втулки возникают недопустимо высокие напряжения.
Таким образом, при высоких параметрах работы использование данной конструкции болтового соединения дает возможность не только выравнивать
напряжения по толщине пакета деталей и в болтах, но и значительно снижать уровень действующих напряжений в соединяемых деталях, повышая их
ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение, на фиг.2 - разрез А-А на фиг.1. На фиг.3 показано
болтовое соединение в сборке деталей ротора КВД в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД), например, фланца 1 диска первой ступени (КВД), фланца 2
вала КВД и диска 3 второй ступени КВД. В деталях 1, 2, 3 выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5 с таким
же овальным сечением и размерами а и b в радиальном и окружном направлениях, соответственно. В отверстии 4 втулка 5 размещена на всю толщину
пакета деталей 1, 2, 3. Во втулке 5 имеется круглое центральное отверстие 6 диаметром d под стандартный стяжной болт 7 круглого сечения. Диаметр
головки болта 7 и наружный диаметр гайки 8 перекрывают при сборке радиальный размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую площадь контакта между фланцами и стяжным болтом
7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при этом длина окружности С между ними зависит от
размера сечения b втулки 5 в окружном направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой размещают стандартный болт 7 и закрепляют гайкой 8. В
процессе работы КВД концентрация напряжений в зоне отверстий 4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет работать при
высоких заданных параметрах двигателя, повышая циклический ресурс и надежность болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности отверстиями, внутри которых на высоту пакета
деталей установлены втулки с размещенными в их центральных отверстиях стяжными болтами, отличающееся тем, что каждое отверстие выполнено
овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном направлении, при этом b/a=1,36-1,5;
c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.

482.

2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d - диаметр отверстия втулки под болт.
2249557 РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 249 557
(13)
C2
(51) МПК
B66C 7/00 (2000.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.03.2008)
(21)(22) Заявка: 2003107392/11, 17.03.2003
(24) Дата начала отсчета срока действия патента:
17.03.2003
(43) Дата публикации заявки: 10.09.2004 Бюл. № 25
(45) Опубликовано: 10.04.2005 Бюл. № 10
(72) Автор(ы):
Нежданов К.К. (RU),
Туманов В.А. (RU),
Нежданов А.К. (RU),
Кузьмишкин А.А. (RU)
(73) Патентообладатель(и):
Туманов Антон Вячеславович
(56) Список документов, цитированных в отчете о поиске: RU 2192383 C1, 10.11.2002. SU 1735470 A1, 23.05.1992. ЕР
(RU)
0194615 A1, 18.09.1986.

483.

Адрес для переписки:
440047, г.Пенза 47, ул. Минская, 13, кв.56, А.В. Туманову
(54) УЗЕЛ УПРУГОГО СОЕДИНЕНИЯ ТРЕХГЛАВОГО РЕЛЬСА С ПОДКРАНОВОЙ БАЛКОЙ
(57) Реферат:
Изобретение относится к подкрановым конструкциям с интенсивным тяжелым режимом работы кранов. Согласно изобретению узел снабжен
размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой. Эта подкладка выполнена из
пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса. Ширина упомянутой прокладки на 510% меньше ширины верхнего пояса подкрановой балки. Сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие
верхний пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами. Изобретение обеспечивает
повышение долговечности рельсовой конструкции. 1 ил.
Изобретение относится к транспортным конструкциям, преимущественно к подкрановым конструкциям с интенсивным тяжелым режимом работы
кранов (8К, 7К).
Известны технические решения, разработанные В.Ф.Сабуровым [1]. Под рельс укладывается резинометаллическая прокладка, являющаяся податливым
слоем, уменьшающим максимумы локальных напряжений σу, приводящих к появлению усталостных трещин в подрельсовой зоне подкрановой балки.
Резинометаллическая прокладка значительно снижает локальные напряжения σу и, соответственно, повышает долговечность подкрановой балки.
Недостаток резинометаллической прокладки - ее долговечность ниже, чем долговечность кранового рельса, и поэтому ее приходится менять чаще, чем
рельс.
Для устранения этого недостатка должна быть разработана демпфирующая подрельсовая прокладка, обладающая такой же податливостью, как
резинометаллическая, но обладающая большей долговечностью. Известен также трехглавый рельс, четко фиксирующийся на подкрановой балке [2].

484.

За аналог примем патент России RU №2192383 С1 [3]. В этом аналоге применен трехглавый рельс. Тормозная балка симметрична и помещена ниже
боковых глав рельса для обеспечения свободного прохода направляющих роликов крана. Симметрия тормозной балки исключает косой изгиб
подкрановой конструкции и позволяет достичь наибольшего снижения материалоемкости.
Технический результат изобретения - повышение долговечности подкрановых балок и рельсов и удобство эксплуатации конструкции.
Технический результат реализован тем, что в узле упругого соединения трехглавого рельса с подкрановой балкой и тормозной балкой между рельсом и
подкрановой балкой размещена демпфирующая подрельсовая прокладка.
Отличие в том, что узел снабжен размещенной под рельсом и опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой
прокладкой, выполненной из пружинной стали с продольными, имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем
ширина упомянутой прокладки на 5...10% меньше ширины верхнего пояса подкрановой балки.
При этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний пояс упомянутой балки полки
швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.
На чертеже показан узел упругого соединения трехглавого рельса с подкрановой и симметричной тормозной балкой. Тормозная балка находится ниже
боковых глав рельсов на расстоянии, обеспечивающем свободный проход направляющих роликов крана.
Узел содержит трехглавый крановый рельс 1 с центральной главой, по которой катятся основные безребордные колеса 2 мостового крана и передают
вертикальные силовые импульсы Р. Направляющие ролики 3 крана фиксируют основные колеса 2 на трехглавом рельсе 1, катятся по боковым главам
рельса и передают на них горизонтальные силовые импульсы Т.
У направляющих роликов 3 имеются аварийные удерживающие гребни снизу.
Под рельсом 1 помещена демпфирующая подрельсовая прокладка 4 из пружинной стали, с продольными гофрами (5...10 шт.) одинаковой высоты с
плавными закруглениями.
Демпфирующая подрельсовая прокладка 4 опирается на верхний пояс 5 двутавровой прокатной балки. Швеллеры 6 соединяют верхний пояс 5 с
симметричной тормозной балкой 7. Тормозная балка 7 может быть и не симметричной. Швеллеры 6 и тормозная балка 7 также соединены друг с другом
посредством болтов 8, затянутых с гарантируемым натягом. Симметричные элементы тормозной балки 7 также соединены друг с другом через стенку
двутавровой прокатной подкрановой балки посредством болтов 8 с гарантируемым натягом. Болты 9 проходят сквозь подошву трехглавого рельса 1 и
полку швеллера 6. Болты 9 снабжены пружинными тарельчатыми шайбами 10, выполненными из пружинной стали. Кроме этого, в зазоре между
боковой гранью верхнего пояса 5 и гранью боковой главы рельса имеется шайба, передающая давление с боковой главы рельса на верхний пояс 5, а
между нижней гранью боковой главы рельса и швеллером 6 имеется зазор.
Работа упругого узла соединения трехглавого рельса с подкрановой балкой.
При действии вертикальных силовых импульсов Р от катящихся безребордных колес крана 2 рельс 1 упруго оседает под каждым из колес 2, сдавливая
демпфирующую подрельсовую прокладку 4. Высота каждого из гофров уменьшается, ширина ее увеличивается. В зоне контакта с поверхностью
подошвы рельса 2 и верхнего пояса 5 возникают распорные силы, гасящиеся за счет сил трения. Напряжение в тарельчатых пружинах несколько
ослабевает (на 10...15%). Локальное взаимодействие между трехглавым рельсом 2 и верхним поясом 5 подкрановой балки распределяется на большую
длину и тем самым локальные суммарные напряжения Σσу значительно снижаются и этим выносливость повышается. При уходе колеса крана
демпфирующая подрельсовая прокладка 4 упруго возвращается в исходное положение.

485.

При действии же горизонтального силового импульса Т от одного из направляющих роликов 3 горизонтальные усилия передаются за счет сил трения.
Если же силы трения будут превышены, то в работу вступает внутренняя поверхность боковой главы рельса через шайбу с продольной торцевой
кромкой верхнего пояса 5. Далее в работу на изгиб включается симметричная тормозная балка 7, опирающаяся в горизонтальной плоскости на колонны
каркаса цеха.
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой трехглавого рельса и верхним поясом подкрановой балки по всей длине рельса размещена демпфирующая подрельсовая прокладка с
продольными гофрами (5...10 штук) одинаковой высоты.
2. Упругая податливость демпфирующей подрельсовой прокладки регулируется прочностью пружинной стали, толщиной листа, высотой продольных
гофров, числом гофров.
3. Под болтами, соединяющими рельс с подкрановой балкой, применены упругие тарельчатые шайбы, выполненные пружинными стальными.
4. В отличие от рези неметаллической прокладки, свойства которой ухудшаются со временем, из-за старения резины, свойства демпфирующей
подрельсовой прокладки остаются неизменными во времени, а долговечность их такая же, как у рельса.
Экономический эффект достигнут из-за повышения долговечности демпфирующей подрельсовой прокладки, так как в ней отсутствует быстро
изнашивающаяся и стареющая резина. Экономический эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки долговечности подкрановых путей
производственных зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая
транспортная конструкция. Опубликован 10.11.2002.
Формула изобретения
Узел упругого соединения трехглавого рельса с подкрановой и тормозной балками, отличающийся тем, что узел снабжен размещенной под рельсом и
опирающейся на верхний пояс подкрановой балки демпфирующей подрельсовой прокладкой, выполненной из пружинной стали с продольными,
имеющими плавные закругления гофрами и непрерывной по всей длине рельса, причем ширина упомянутой прокладки на 5-10% меньше ширины
верхнего пояса подкрановой балки, при этом сквозь подошву рельса снаружи верхнего пояса подкрановой балки и сквозь поддерживающие верхний
пояс упомянутой балки полки швеллеров пропущены болты, снабженные тарельчатыми пружинными шайбами.
Материалы лабораторных испытаний фрагментов , узлов . чертежей на обрушение пятого этажа пятиэтажки -хрущевки в
программном комплексе SCAD Office, с демпфирующих узлами крепления на фрикционно-подвижных болтовых соединениях,
для восприятия усилий -за счет трения, при термически растягивающих нагрузках , на сдвиг трубопровода в программном

486.

комплексе SCAD Office, со скощенными торцами, согласно изобретения №№ 2423820, 887743, демпфирующих компенсаторов на
фрикционно-подвижных болтовых соединениях, для восприятия усилий -за счет трения, при землетрясением растягивающих
нагрузках в трубопроводах и предназначенного для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск (в районах с
сейсмичностью 8 баллов и выше для трубопроводов необходимо использование сейсмостойких телескопических опор, а для соединения
трубопроводов - фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из
латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-device и согласно изобретения «Опора
сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от 10.10.2016, хранятся на кафедре теоретическая механика по адресу: ПГУПС
190031, СПб, Московский пр 9 , кафедра теоретической механики проф дтн А.М.Уздин [email protected] [email protected]
[email protected] [email protected] [email protected]
(921) 962-67-78, (996) 798-26-54,

487.

488.

Материалы хранятся на Кафедре металлических и деревянных конструкций 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ у
заведующий кафедрой металлических и деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич строительный факультет
Альбом Специальные технические условия (СТУ) по изготовлению и монтажу энергопоглощающего демпфирующего компенсатора для
трубопроводов, демпфирующей сейсмоизолирующей опоры, демпфирующие соединения , альбом ШИФР 1.010.1-1-2с.94 , выпуск 0-2 , 0-3
можно заказать по [email protected] [email protected] [email protected] (911) 175-84-65, (921) 962-67-78, (966) 798-26-54 т/ф
(812) 694-78-10 Карта Сбербанка № 2202 2006 4085 5233
Более подробно об использовании Специальные технические условия по применения огнестойкого компенсатора -гасителя температурных
напряжений , для обеспечения сдвиговой прочности и сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью
более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ , с использованием изобретения Андреева Борис Александровича №
165076 «Опора сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко

489.

сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической энергии» и патент
№ 154506 «Панель противовзрывная» для разработки и испытания на сейсмостойкость по применению изобретения; "Огнестойкого компенсатора
-гасителя температурных напряжений" ( отправлено в ФИПС, Москва, от 14.02.2022 , для получения патента на применение огнестойкого
компенсатора -гасителя температурных напряжений , для обеспечения сейсмостойкости строительных конструкций в сейсмоопасных районах ,
сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ
Более подробно о применения огнестойкого компенсатора -гасителя температурных напряжений ,смотрите внедренные изобретения организации
"Сейсмофонд" при СПб ГАСУ Японо-Американской фирмой RUBBER BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/RUBBER-BEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTION-DAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой RUBBER BEARING FRICTION DAMPER (RBFD) разработан и запроектирован амортизирующий демпфер, который совмещает
преимущества вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде вставной резины, которая не
долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится. Амортизирующий демпфер испытан фирмы RBFD
Damptech , где резиновый сердечник, является пластическим шарниром, трубчатого в вида Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s https://www.youtube.com/watch?v=CIZCbPInf5k https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA Seismic Friction Damper - Small Model QuakeTek https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s https://www.youtube.com/watch?v=oT4Ybharsxo Earthquake Protection Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s Friction damper for impact absorption DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s https://www.youtube.com/watch?v=EFdjTDlStGQ https://www.youtube.com/watch?v=NRmHBla1m8A
Материалы специальных технических условий (СТУ) по испытанию огнестойкого компенсатор - гасителя температурных напряжений в ПК SCAD
(ОКГТН -СПб ГАСУ) согласно заявки на изобретение от 14.02.2022 : "Огнестойкого компенсатора -гасителя температурных напряжений" , для
обеспечения сейсмостойкости строительных конструкций в сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-00135635096-2021 СПб ГАСУ: Cпециальные технические условия (СТУ), альбомы , чертежи, лабораторные испытания : о применения огнестойкого
компенсатора -гасителя температурных напряжений , для обеспечения сдвиговой прочности !!! и сейсмостойкости строительных конструкций в
сейсмоопасных районах , сейсмичностью более 9 баллов . Серия ШИФР ТУ 20.30.12-001-35635096-2021 СПб ГАСУ, новых огнестойких компенсаторов гасителей температурных напряжений, которые используются в США, Канаде фирмой STAR SEIMIC , на основе изобретений проф дтн ПГУП
А.М.Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая», 154505 «Панель противовзрывная», № 2010136746 «Способ защиты зданий и
сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений , использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии» , хранятся на Кафедре технологии строительных материалов и метрологии КТСМиМ
190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб ГАСУ, у проф. дтн Юрий Михайловича Тихонова в ауд 305 С. Тема докторской диссертации
дтн проф Тихонова Ю.М " Аэрированные легкие и тепло-огнезащитные бетоны и растворы с применением вспученного вермикулита и перлита и изделия
на их основе" [email protected] [email protected] [email protected] (921) 962-67-78, ( 996) 535-47-29, (911) 175-84-65
https://disk.yandex.ru/d/_ssJ0XTztfc_kg https://ppt-online.org/1100738 https://ppt-online.org/1068549 https://ppt-online.org/1064840
English     Русский Правила