Похожие презентации:
1,3_Геометрия_10_26.09
1.
2.
Через любые три точки, не лежащиеАксиома 1. на одной прямой, проходит
плоскость, и притом только одна.
В
А
С
A, B, C одной прямой
! : А , В , С
3.
Если две точки прямой лежат вАксиома 2:
плоскости, то все точки прямой
лежат в этой плоскости.
В
А
А , В прямая АВ
4.
Аксиома 3:Если две плоскости имеют общую
точку, то они имеют общую прямую,
на которой лежат все общие точки
этих плоскостей.
М
M ,
M ,
m
m
В таком случае говорят, что плоскости пересекаются по прямой
5.
1. Через прямую и не лежащую на ней точкупроходит плоскость, и притом только одна.
m
М
М m ! плоскость
6.
2. Через две пересекающиеся прямыепроходит плоскость, и притом только одна.
b
а
a b ! плоскость
7.
Две прямые лежат в одной плоскости1. Прямые
параллельны
2. Прямые
пересекаются
Нет общих точек
Одна общая точка
8.
Не лежат в одной плоскости:являются скрещивающимися
m
М
a
a , m M , M a a m
9.
1. Прямая лежит в плоскостиБесконечно
много общих
точек
2. Прямая пересекает плоскость
Одна общая
точка
10.
3. Прямая параллельна плоскости.Нет общих точек
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости,
параллельна какой-нибудь прямой, лежащей в
этой плоскости, то она параллельна данной
плоскости.
11.
По трем точкам(аксиома 1)
По прямой и не лежащей
на ней точке (следствие 1)
По двум пересекающимся По двум параллельным
прямым (по определению
прямым (следствие 2)
параллельных прямых)
12.
АНет точек пересечения
А
В
Пересечением
является отрезок
Одна точка пересечения
В
А
С
Пересечением
является плоскость
13.
Секущей плоскостью многогранника называют любуюплоскость, по обе стороны от которой имеются точки
данного многогранника.
Многоугольник, полученный при пересечении многогранника
и плоскости, называется сечением многогранника
указанной плоскостью
14.
Используяполученные
знания,
применим их к построению сечений
многогранников на основе аксиоматики.
ПРОБЛЕМА!!!
15.
Умение решать задачи –практическое искусство,
подобное плаванию, или
катанию на лыжах … :
научиться этому можно
лишь подражая избранным
образцам и постоянно
тренируясь..
Д. Пойа
16. Алгоритм построения сечения
Построить точки пересечения секущей плоскости сребрами многогранника.
Полученные точки, лежащие в одной грани, соединить
отрезками.
Многоугольник, ограниченный данными отрезками, и
есть построенное сечение.
Замечание: если секущая плоскость пересекает
противоположные грани параллелепипеда по каким –
либо отрезкам, то эти отрезки параллельны.
17.
№1. Построить сечение, определенноеточками K, L, M.
Р
1. Прямая КМ
K
2. Прямая МL
L
3. Прямая КL
В
КМL –сечение
?
А
M
(аксиома 1)
18.
N2. Построить сечение, определяемоепересекающимися прямыми АС1 и А1С.
В1
А1
С1
D1
2. Прямые АА1 и СС1
АА1С1С - сечение
В
А
1. Прямые А1С1 и АС
С
D
?
(следствие 2)
19.
N3. Определите вид сечения куба АВСДА1В1С1Д1плоскостью, проходящей через ребро А1Д1 и
середину ребра ВВ1.
D1
С1
А1
В1
1. Прямая А1М
2. Прямая МК A1D1
К 3. Прямая D1K
A1D1KM - сечение
D
А
С
М
В
20.
N4. Постройте сечение куба плоскостью,проходящей через точку М и прямую АС .
К
В1
А1
М
С1
А
С
D
2. Прямая МК II AC
3. Прямая AK
D1
В
1. Прямая СМ
AKМС - сечение
21.
N5. Построить сечение пирамиды плоскостью,проходящей через точку К и параллельно
плоскости основания пирамиды.
S
1. Прямая КМ II AD
2. Прямая КN II DC
3. Прямая МP II AB
4. Прямая PN II BC
В
P
N
M
К
С
KMPN - сечение
А
D
22.
МЕТОД СЛЕДОВСуть метода: построение вспомогательной
прямой, являющейся линией пересечения
секущей плоскости с плоскостью грани фигуры.
Эту линию называют следом секущей
плоскости.
23.
Постройте сечение куба, проходящее черезточки P, М, К.
М
А
К
О
С
1. Прямая МК
В
Т
2. Прямая КР
3. Прямая ОТ
Р
4. Прямая МТ
МАВРС - сечение