Раздел 6. - Основные понятия сопротивления материалов
ЛЕКЦИЯ 1 План:
Сопротивление материалов - наука о методах расчетов на прочность, жесткость и устойчивость элементов машин и сооружений
Основные виды элементов конструкций:
РЕАЛЬНАЯ КОНСТРУКЦИЯ
Гипотезы (допущения) сопротивления материалов
ВНЕШНИЕ СИЛЫ (нагрузки)
Внутренние силы (усилия)
(ВСФ)
План построения эпюры ВСФ
ЛЕКЦИЯ 2 План
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Раздел 7 - Простейшие виды деформации
ЛЕКЦИЯ 3 План:
РАСТЯЖЕНИЕ И СЖАТИЕ
РАСТЯЖЕНИЕ И СЖАТИЕ
РАСТЯЖЕНИЕ И СЖАТИЕ
РАСТЯЖЕНИЕ И СЖАТИЕ
РАСТЯЖЕНИЕ И СЖАТИЕ
РАСТЯЖЕНИЕ И СЖАТИЕ
ЛЕКЦИЯ 4 План:
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
ЛЕКЦИЯ 5 План:
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ
ЛЕКЦИЯ 6 План:
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЛЕКЦИЯ 7 План:
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
ЛЕКЦИЯ 8 План:
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
ЛЕКЦИЯ 9 План:
ИЗГИБ
ИЗГИБ
ИЗГИБ
ИЗГИБ
В общем виде УНИВЕРСАЛЬНЫЕ УРАВНЕНИЯ
ИЗГИБ
ИЗГИБ
Раздел - 8. СЛОЖНОЕ СОПРОТИВЛЕНИЕ
ЛЕКЦИЯ 10 План:
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
ЛЕКЦИЯ 11 План:
Сложное сопротивление
ИЗГИБ
ИЗГИБ
ИЗГИБ
ЛЕКЦИЯ 12 План:
Сложное сопротивление
Сложное сопротивление
Сложное сопротивление
Сложное сопротивление
Раздел – 9. ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ И ДИНАМИЧЕСКИХ НАПРЯЖЕНИЯХ
ЛЕКЦИЯ 13 План:
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
ЛЕКЦИЯ 14 План:
ЛЕКЦИЯ 15 План:
ПРОЧНОСТЬ ПРИ УДАРЕ
Раздел –10. УСТОЙЧИВОСТЬ
ЛЕКЦИЯ 16 План:
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
ЛЕКЦИЯ 17 План:
УСТОЙЧИВОСТЬ
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
3.39M
Категория: МеханикаМеханика

сопротивление материалов

1.

М
Е
Х
А
Н
И
К
А
Модуль 2.
СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Раздел 6. Основные понятия
Раздел 7. Простейшие виды деформаций
Раздел 8. Сложное сопротивление
Раздел 9. Прочность при переменных и
динамических напряжениях
Раздел 10. Устойчивость
Лекционный курс - 34 час
Лабораторные занятия – 17 час
Самостоятельная работа : - Выполнение и защита РГЗ

2. Раздел 6. - Основные понятия сопротивления материалов

МЕХАНИКА
Сопротивление материалов
Модуль 2
Раздел 6. - Основные понятия
сопротивления материалов
Общие сведения
ЛЕКЦИЯ 1
ЛЕКЦИЯ 2

3. ЛЕКЦИЯ 1 План:

МЕХАНИКА
1.1
Модуль 2
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ
СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Основные понятия и определения
ЛЕКЦИЯ 1
План:
1.1 Основные определения
1.2 Допущения (гипотезы) в сопротивлении материалов
1.3 Внешние силы
1.4 Внутренние силы. Метод сечений.

4. Сопротивление материалов - наука о методах расчетов на прочность, жесткость и устойчивость элементов машин и сооружений

1.2
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Сопротивление материалов - наука
о методах расчетов на прочность, жесткость и
устойчивость элементов машин и сооружений
Прочность – это способность элемента
конструкции сопротивляться разрушению под
нагрузкой.
Жесткость – это способность элемента
конструкции сопротивляться деформациям.
Устойчивость – это способность элемента
конструкции сопротивляться воздействию
больших отклонений от равновесия при малых
изменениях нагрузки.

5. Основные виды элементов конструкций:

ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
1.3
Основные виды элементов конструкций:
а
б
а, б, в – брус;
в
г
г – оболочка;
д
д – пластина;
е
е – массив

6. РЕАЛЬНАЯ КОНСТРУКЦИЯ

1.4
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
РЕАЛЬНАЯ
КОНСТРУКЦИЯ
освобождение от
несущественных
особенностей
РАСЧЕТНАЯ
СХЕМА

7. Гипотезы (допущения) сопротивления материалов

1.5
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Гипотезы (допущения)
сопротивления материалов
сплошности
однородности
изотропности
независимости действия сил
малости деформаций
внутренних усилий

8. ВНЕШНИЕ СИЛЫ (нагрузки)

1.6
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ВНЕШНИЕ СИЛЫ
(нагрузки)
активные и реактивные
сосредоточенные и
распределенные (линейно, поверхностно,
объемно распределенные)
статические и динамические

9. Внутренние силы (усилия)

1.7
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Внутренние силы (усилия)
- это силы сопротивления изменению
формы и размеров тела под действием
нагрузки
Метод сечений:

10. (ВСФ)

ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
1.8
Внутренние силовые факторы (ВСФ)
________________________________________________________
ВСФ
Вид деформации
продольная сила N
«растяжение» или «сжатие»
поперечная сила Q
«чистый сдвиг».
крутящий момент Т
«кручение»
изгибающий момент М
- «чистый изгиб»
комбинированные
виды нагружения
«сложное сопротивление».
________________________________________________________
Эпюры ВСФ - графики изменения внутренних силовых
факторов вдоль оси бруса

11. План построения эпюры ВСФ

1.9
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Внутренние силы.
Метод сечений
План построения эпюры ВСФ
1.
Вычерчивают схему нагружения стержня.
2.
Определяют реакции связей
3.
Выявляют «характерные участки» стержня
4.
Применяя метод сечений на каждом характерном
участке, составляют уравнения ВСФ по длине участка
5.
Строят графики зависимостей ВСФ

12. ЛЕКЦИЯ 2 План

МЕХАНИКА
2.1
Модуль 2
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ОСНОВНЫЕ ПОНЯТИЯ
СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Основные понятия и определения
ЛЕКЦИЯ 2
План
2.1. Напряжения.
2.2. Перемещения и деформации.
2.3. Закон Гука.
2.4. Условия прочности и жесткости в общем виде

13. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.2
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Напряжения - мера интенсивности внутренних сил
(усилия, приходящиеся на единицу площади сечения)
R dR
lim
р
0
dA

14. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.3
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Нормальное напряжение , направленное по
нормали к плоскости сечения
N dN
lim
0
dA
Касательное напряжение , лежащее в плоскости
сечения:
Q dQ
lim
0
dA

15. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.4
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Связь напряжений и ВСФ
dA
A
Qx zx dA
Qy zy dA
zx y zy x dA
A
x y dA
A
y x dA
A
где x и y – координаты точки в поперечном сечении
__________________________________________
Паскаль (1 Па = 1 Н/м2).
Мегапаскаль (1 МПа = 106 Па = 106 Н/м2 =1 Н/мм2.

16. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.5
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Деформации и перемещения
Линейные перемещения сечений
Угловые перемещения (поворот) линий и плоскостей
Деформации - характеристики интенсивности
изменения линейных и угловых перемещений
введено понятие

17. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.6
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ВИДЫ ДЕФОРМАЦИИ
l - абсолютная линейная деформация
- относительная линейная деформация
= l / l
γ - угловая деформация (угол сдвига)
γ= +

18. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.7
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
ХАРАКТЕР ДЕФОРМАЦИИ
Остаточные (пластические) деформации не
исчезают после снятия нагрузки
Упругие деформации исчезают после разгрузки
Закон Гука:
E Е - модуль Юнга (модуль продольной
упругости)
G
G - модуль сдвига

19. ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

2.8
ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
Условия прочности
max
max
расч .
расч
Условия жесткости
max
расч
max
расч

20. Раздел 7 - Простейшие виды деформации

МЕХАНИКА
Сопротивление материалов
Модуль 2
Раздел 7 - Простейшие виды деформации
Растяжение и сжатие
ЛЕКЦИЯ 3
Механические испытания
конструкционных материалов
ЛЕКЦИЯ 4
Геометрические характеристики
плоских сечений
ЛЕКЦИЯ 5
Чистый сдвиг. Кручение
ЛЕКЦИЯ 6
Изгиб
ЛЕКЦИЯ 7
ЛЕКЦИЯ 8
ЛЕКЦИЯ 9

21. ЛЕКЦИЯ 3 План:

МЕХАНИКА
3.1
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Растяжение и сжатие
ЛЕКЦИЯ 3
План:
3.1. Внутренние усилия при растяжении-сжатии
3.2. Напряжения при растяжении-сжатии
3.3. Деформации при растяжении-сжатии
3.4. Условия прочности и жесткости при растяжении и сжатии

22. РАСТЯЖЕНИЕ И СЖАТИЕ

3.2
РАСТЯЖЕНИЕ И СЖАТИЕ
Правило знаков
продольных сил
N:

23. РАСТЯЖЕНИЕ И СЖАТИЕ

3.3
РАСТЯЖЕНИЕ И СЖАТИЕ
Напряжения при растяжении-сжатии
Ν dA,
A
Ν
Α

24. РАСТЯЖЕНИЕ И СЖАТИЕ

3.4
РАСТЯЖЕНИЕ И СЖАТИЕ
Деформации при растяжении-сжатии
абсолютное удлинение l l1 l
относительное удлинение
l
l
абсолютная поперечная b b b
1
деформация
относительная b
поперечная деформация
b
коэффициент Пуассона:

25. РАСТЯЖЕНИЕ И СЖАТИЕ

3.5
РАСТЯЖЕНИЕ И СЖАТИЕ
Коэффициент Пуассона μ
для различных материалов
Модуль продольной упругости Е
для различных материалов
Материал
μ
Сталь
0,25 - 0,33
Медь
0,31 - 0,34
Материал
Е, МПа
Сталь
2 · 105
Медь
Бронза
0,32 – 0,35
1 - 105
Алюминий
0,32 - 0,36
Дерево
1 - 104
Чугун
0,23 - 0,27
Алюминий
0,67 - 105
Камень
0,16 - 0,34
Чугун
1,6 - 105
Бетон
0,08 - 0,18
Мрамор
0,56 -· 105
Фанера
0,07
Пробка
≈0

26. РАСТЯЖЕНИЕ И СЖАТИЕ

3.6
РАСТЯЖЕНИЕ И СЖАТИЕ
Деформации при растяжении-сжатии
закон Гука:
= Е · ,
где:
Ν
,
Α
l
l
абсолютное удлинение
стержня
Νl
l
ΕΑ
N dl
l
0 E A
l
(Е·А) - жесткость сечения
стержня

27. РАСТЯЖЕНИЕ И СЖАТИЕ

3.7
РАСТЯЖЕНИЕ И СЖАТИЕ
Условие прочности стержня
max = Nmax/A ≤ [ ].
Условие жесткости стержня
l ≤ [ l],

28. ЛЕКЦИЯ 4 План:

4.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Механические испытания конструкционных
материалов
ЛЕКЦИЯ 4
План:
4.1. Диаграммы растяжения
4.2. Пластическое и хрупкое разрушение материала
4.3. Испытание на сжатие
4.4. Испытание на твердость
4.5. Ползучесть, релаксация и длительная прочность материала
4.6. Допускаемые напряжения. Коэффициент запаса прочности

29. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.2
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
ИСПЫТАНИЕ НА РАСТЯЖЕНИЕ
Образец для испытаний на растяжение
До
испытаний
После
испытаний

30. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.3
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Диаграмма растяжения
пластичных материалов
σпц – предел пропорциональности
Е - модуль продольной упругости
(модуль Юнга)
у - предел упругости
в - предел прочности
(временное сопротивление)
т - предел текучести
δ - относительное удлинение
при разрыве
l1 l
l
100 %;

31. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.4
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Диаграмма растяжения
без площадки текучести
0,2 - условный предел текучести
НАКЛЕП - явление повышения
предела пропорциональности и
снижения пластичности материала
при повторных нагружениях

32. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.5
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Разрушение материала
пластическое
δ > 10%
хрупкое
δ = 1 - 5%

33. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.6
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Испытания на сжатие
Образец – цилиндр h < 3d
пластичный материал
хрупкий материал

34. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.7
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Испытание на твердость
Твердость - способность материала оказывать сопротивление
механическому внедрению в него другого более твердого тела
(индентора).
Метод
Обозначение
Индентор
Измерение
Твердость
по Бринеллю
НВ
Стальной
закаленный
шарик
Диаметр
отпечатка
Твердость
по Роквеллу
HRА, HRВ,
HRC
Алмазный
конус
Глубина
внедрения
HV
Алмазная
пирамида
Диагональ
отпечатка
Твердость
по Виккерсу

35. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.8
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
ПОЛЗУЧЕСТЬ МАТЕРИАЛА - изменение деформаций и
напряжений, возникающих в нагруженной конструкции с
течением времени в условиях не изменяющейся нагрузки
Последействие - рост пластических деформаций
материала при постоянном напряжении.
Релаксация напряжений - процесс уменьшения
напряжений при постоянной величине деформации
материала.
Предел длительной прочности -
900
1000

36. МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

4.9
МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ
Допускаемые напряжения.
[ ]= np / n
пр - предельные
Для хрупких материалов: ( пр = в),
напряжения
Для пластичных материалов: ( пр = т)
n – коэффициент
для пластичных материалов n = 2...4,
запаса прочности
для хрупких материалов n = 4...6.

37. ЛЕКЦИЯ 5 План:

5.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Геометрические характеристики плоских
сечений
ЛЕКЦИЯ 5
План:
5.1. Статический момент сечения
5.2. Моменты инерции
5.3. Моменты инерции при параллельном переносе и повороте осей
5.4. Главные оси и главные моменты инерции

38. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.2
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Влияние площади поперечного сечения,
формы сечения и расположения сечения
относительно приложенных нагрузок
на прочность и жесткость конструкции определяется
«геометрическими характеристиками плоских
сечений»

А
А
А

39. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.3
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Статический момент сечения
S y x dA = xc · A,
A
S x y dA
= yc · A,
A
ус
с
Центральные оси - оси, проходящие
через центр тяжести сечения
хс
Sxc= 0,
Syc = 0

40. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.4
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Моменты инерции сечения
Осевой момент
инерции
I I x I y
I x y 2 dA
A
I y x 2 dA
A
Полярный момент I 2 dA
инерции
A
Центробежный момент инерции
I xy y x dA
A
Единица измерения моментов инерции сечения – м4

41. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.5
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Моменты инерции при
параллельном переносе и
повороте осей
Ix = Ixс + a2 A,
Iy = Iyс + b2 A,

42. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.6
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Моменты инерции при повороте
осей
Іu = Ix cos2α + Iy sin2α - Ixy sin2α ,
Iν = Ix sin2α + Iy cos2α + Ixy sin2α ,
Iuν =
Ix Iy
2
sin 2α + Ixy cos 2α.
Іu + Iν = Ix + Iy.

43. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

5.7
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ПЛОСКИХ СЕЧЕНИЙ
Главные оси и главные моменты инерции
Главные оси сечения - это оси u и v, относительно которых
центробежный момент инерции Іuν = 0, а осевые моменты инерции Іu и
Iν имеют экстремальные значения max или min
tg 2 0
2 I xy
Ix Iy
Главные центральные оси - это
главные оси проходящие через центр тяжести
сечения
Главные моменты инерции
I max
min
Ix Iy
2
1
2
( I x I y )2 4 I xy
2
.

44. ЛЕКЦИЯ 6 План:

6.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Чистый сдвиг. Кручение
ЛЕКЦИЯ 6
План:
6.1. Чистый сдвиг
6.2. Кручение. Эпюры крутящих моментов
6.3. Напряжения при кручении
6.4. Деформации при кручении
6.5. Расчёт вала на прочность и на жёсткость

45. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.2
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
ЧИСТЫЙ СДВИГ - напряженное состояние, при
котором на гранях элемента конструкции возникают только
касательные напряжения
= G· ,
где
- угол сдвига;
G - модуль сдвига,
для стали G = 8 ·104 МПа
Для изотропных материалов :
G = E / [2(1 + )]

46. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.3
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
КРУЧЕНИЕ.
Построение эпюр крутящих моментов
Правило знаков
крутящих моментов:
М
М
М
М

47. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.4
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
Напряжения при кручении
dQ = dA
dQ ·ρ = ·ρ dA
T dA
A

48. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.5
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
Напряжения при кручении
КК dz d
d
dz
по закону Гука: = G·
d
G
dz
d
d T
- относительный
dz угол закручивания,
dz GI
d 2
d
G
dA G
I
dz A
dz
T
I

49. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.6
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
Напряжения при кручении
T
T
max max
I
W
W I / max I / R 2 I / d
Для круглого сечения W = π d3/16 ≈ 0,2 d3
Для сечения в виде кольца
d
d
W = 0,2 D3(1- с4)
D

50. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.7
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
Деформации при кручении
d
T
dz
GI
l GI
T
l GI
T
dz
dz
T
l
GI
GI - жесткость сечения вала при кручении

51. ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ

6.8
ЧИСТЫЙ СДВИГ. КРУЧЕНИЕ
Расчёт вала на прочность и жёсткость
Условие прочности вала
d 3
Tmax
0,2[ ]
max [ ]
Условие жесткости вала
Tmax
max
[ ]
W
[T ] [ ]W
T
max
[ ]
GI

52. ЛЕКЦИЯ 7 План:

7.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Изгиб
ЛЕКЦИЯ 7
План:
7.1. Общие сведения
7.2. Внутренние силовые факторы при изгибе балки
7.3. Дифференциальные зависимости Журавского
7.4. Внутренние силовые факторы в сечениях рам

53. ИЗГИБ

7.2
ИЗГИБ
Вид деформации, при котором
продольная ось бруса искривляется -
ИЗГИБ
балка
силовая
линия
силовая
плоскость
рама
Чистый
Поперечный
Прямой
Косой
Плоский
Пространственный

54. ИЗГИБ

7.3
ИЗГИБ
Внутренние силовые факторы
Правило знаков для поперечных сил Q :
Правило знаков для изгибающих моментов М :

55. ИЗГИБ

7.4
ИЗГИБ
Дифференциальные зависимости Журавского
dM
Q
dz
dQ
q
dz
q
d 2M
dz 2
Общие закономерности эпюр Q и М
а
б
в
г

56. ИЗГИБ

7.5
ИЗГИБ
ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ
В СЕЧЕНИЯХ РАМ
В сечениях стержней рамы кроме изгибающих
моментов M и поперечных сил Q, обычно действуют
еще и продольные силы N.
Границами характерных участков для рамы
- являются также места изменения направления оси
рамы.
При определении знаков внутренних силовых
факторов наблюдателю удобно располагать взгляд как
бы изнутри контура рамы.
При построении этих эпюр положительные
ординаты M, Q и N откладывают с внешней стороны,
а отрицательные – внутрь контура рамы.

57. ЛЕКЦИЯ 8 План:

8.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Изгиб
ЛЕКЦИЯ 8
План:
8.1. Напряжения при чистом изгибе
8.2. Напряжения при плоском поперечном изгибе

58. ИЗГИБ

8.2
ИЗГИБ
Чистый изгиб
Нейтральный слой - продольный
слой волокон, который, искривляясь, не
испытывает ни растяжения, ни сжатия
Упругая линия - деформированная ось
балки, которая, будучи частью нейтрального
слоя, длину не меняет.
Нейтральная линия (нейтральная
ось) - линия пересечения нейтрального слоя
с плоскостью поперечного сечения

59. ИЗГИБ

8.3
ИЗГИБ
Напряжения при чистом изгибе
dz = ρ d .
M x y dA
A
ε = y/ρ.
σ =E·y /ρ.

60. ИЗГИБ

8.4
ИЗГИБ
Напряжения при чистом изгибе
Уравнения равновесия:
n
Fkz dA 0,
k 1
n
m x ( Fk ) dA y M 0,
k 1
n
A
k 1
A
m y ( Fk ) dA x 0.
Из первого уравнения равновесия:
dA
A
а так как
E
0, то
y dA S y 0
A
E
y dA 0,
A
Нейтральная ось проходит
через центр тяжести
сечения

61. ИЗГИБ

8.5
ИЗГИБ
Напряжения при чистом изгибе
Уравнения равновесия:
n
Fkz dA 0,
k 1
n
Третье из уравнений равновесия
E
dA
x
y x dA 0.
A
A
Так как
E
0,
y x dA I xy 0.
A
m x ( Fk ) dA y M 0,
k 1
n
A
k 1
A
m y ( Fk ) dA x 0.
то
Нейтральная линия совпадает с главной
центральной осью поперечного сечения
балки.

62. ИЗГИБ

8.6
ИЗГИБ
Напряжения при чистом изгибе
Второе из уравнений равновесия:
E 2
dA y y dA M .
A
A
2
y
dA I x ,. тогда
Так как
A
1 M
EI x
Уравнения равновесия:
n
Fkz dA 0,
k 1
n
m x ( Fk ) dA y M 0,
k 1
n
A
k 1
A
m y ( Fk ) dA x 0.
- уравнение упругой линии
(E·Ix) - жесткость сечения
балки
так как σ =E·y /ρ,
M y
.
Напряжения в любой точке сечения:
Ix

63. ИЗГИБ

8.7
ИЗГИБ
Напряжения при чистом изгибе
M y
.
Ix
Максимальное напряжение возникают в верхних
и нижних волокнах балки:
max
M y max
Ix
M
max
Wx
где:
Ix
Wx =
y max
- осевой момент сопротивления сечения
при изгибе

64. ИЗГИБ

8.8
Напряжения при плоском поперечном
изгибе
Касательные напряжения
Нормальные напряжения
M
max
Wx
M y
.
Ix
Формулы
нормальных напряжений
для чистого изгиба
применимы и для
поперечного изгиба
из-за малости сдвиговых
деформаций:
Возникновение
касательных
напряжений τ
сопровождается
появлением сдвиговых деформаций γ
Q S xотс
τ
Ix b

65. ЛЕКЦИЯ 9 План:

9.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОСТЕЙШИЕ ВИДЫ ДЕФОРМАЦИИ
Изгиб
ЛЕКЦИЯ 9
План:
9.1. Условие прочности при изгибе
9.2. Перемещения при изгибе

66. ИЗГИБ

9.2
ИЗГИБ
УСЛОВИЯ ПРОЧНОСТИ ПРИ ИЗГИБЕ
max [ ]
max
σ >> τ.
Момент сопротивления сечения
b
Wx= bh2/6
σmax , сравнивают с [σ] и делают
вывод о прочности балки.
Mx
max
Wx
h
Проверочный расчет: значение
d
Wx = πd 3/32
≈ 0,1d 3
Проектный расчёт:
M max
Wx
при известных значениях М и
допускаемого напряжения [σ]:
Расчёт допускаемой
нагрузки:
[ М ] [ ] Wx
при известных [σ] и Wx

67. ИЗГИБ

9.3
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
Прогиб балки у перемещение центра тяжести
поперечного сечения балки в
направлении, перпендикулярном
к ее оси.
у>0 если перемещение
происходит вверх.
Угол поворота сечения - угол, на который поворачивается
сечение по отношению к своему первоначальному положению.
>0 при повороте против хода часовой стрелки.

68. ИЗГИБ

9.4
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
Прогибы у и углы поворота
dy
связаны между собой: tgθ
y' θ
dz
1
y
.
3
2
1 y 2
y
M
2 32
EI x
1 y
Так как
y
1
, то
2
M
y
EI x
1 М
ЕI x
дифференциальное
уравнение упругой
линии
приближенное
дифференциальное
уравнение упругой линии

69. ИЗГИБ

9.5
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
Приближенное дифференциальное
уравнение упругой линии:
EI x y M
Интегрируя его получим
для углов поворота:
( z1 b )2
( z1 c )3
ЕI x y1 C М ( z1 a ) F
q
2!
3!
С = ЕIx 0
для прогибов:
( z1 a )2
( z1 b )3
( z1 c )4
ЕI x y1 D EI x 0 z1 М
F
q
2!
3!
4!
D = ЕIxy0

70. В общем виде УНИВЕРСАЛЬНЫЕ УРАВНЕНИЯ

9.6
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
В общем виде УНИВЕРСАЛЬНЫЕ УРАВНЕНИЯ
для прогибов:
( z lq )
( z lM )2
( z lF )3
EI x у EI x y0 EJ x 0 z M
F
q
2!
3!
4!
4
для углов поворота :
( z lq )
( z lM )
( z l F )2
EI x EI x 0 M
F
q
1!
2!
3!
3
Начальные параметры находят из условий закрепления балки.
для консольной балки в заделке : y0 = 0, 0 = 0,
для балки на шарнирных опорах в опорных точках: yA = 0, yB = 0.

71. ИЗГИБ

9.7
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
Метод Мора:
В точке с искомым перемещением конструкцию
нагружают единичной силой, которая совершает
работу на возможном (искомом) перемещении.
Порядок определения перемещений :
1.
Строят «вспомогательную систему» и нагружают ее единичной
нагрузкой в точке с искомым перемещением .
2. Для каждого участка
системы записывают выражения изгибающих
.
моментов от приложенной нагрузки Мf и от единичной нагрузки - М1.
3. По всем участкам системы вычисляют и суммируют интегралы Мора,
получая в результате искомое перемещение :
M f M1
EI x
dz

72. ИЗГИБ

9.8
ИЗГИБ
ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ
Правило Верещагина (графоаналитический способ)
Af – площадь эпюры изгибающего
момента Мf от заданной
нагрузки;
A f yc
yc – ордината эпюры от
единичной
EI x
нагрузки под центром
тяжести
эпюры Мf ;
EIx – жесткость сечения участка
балки.
Вычисления производятся по участкам,
на каждом из которых
прямолинейная эпюра должна быть без переломов.
Сложная эпюра Мf разбивается на простые фигуры.
Площадь каждой фигуры умножается на ординату под ее
центром тяжести

73. Раздел - 8. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

МЕХАНИКА
Сопротивление материалов
Раздел - 8. СЛОЖНОЕ СОПРОТИВЛЕНИЕ
Напряжено-деформированное
состояние в точке
Сложное сопротивление бруса
ЛЕКЦИЯ 10
ЛЕКЦИЯ 11
ЛЕКЦИЯ 12

74. ЛЕКЦИЯ 10 План:

10.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
Теория напряженно-деформированного
состояния
ЛЕКЦИЯ 10
План:
10.1. Напряженное состояние в точке
10.2. Обобщенный закон Гука
10.3. Теории прочности

75. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.2
НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ - это
совокупность напряжений на множестве площадок,
которые можно провести через какую-либо точку тела
Закон парности
касательных напряжений :
τxy = τyx , τxz = τzx, τzy = τyz.
Главные площадки
1, 2, 3, - Главные напряжения
1 2 3
1 3
max
2
(с учетом знаков)

76. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.3
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ
Различают
напряженные состояния :
- одноосное (линейное);
- двухосное (плоское);
- трехосное (объемное).
Линейное
напряженное состояние:
1≠ 0, 2 = 0, 3 = 0,
max= 1
max = 1/2 при = 45

77. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.4
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ
Плоское
напряженное состояние:
1≠ 0, 2 ≠ 0, 3 = 0,
1 = x ;
2 = y ;
3 = 0
1
max ( x y ) ( x y )2 4 xy 2
2
min
Положение главных площадок
определяют по углу поворота осей ψ0:
2
tg 2 0
x y

78. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.5
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ
Объемное
напряженное состояние:
1≠ 0, 2 ≠ 0, 3 ≠ 0
Максимальное касательное напряжение τmax действует по
площадке, наклоненной под углом 45° к 1 и 3 и параллельной 2
1
max ( max min )
2

79.

10.6
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
ОБОБЩЕННЫЙ ЗАКОН ГУКА
Направле
-ние
деформации
x
y
z
Относительные деформации
ε и ε' от действия нормальных
напряжений
σx
x
E
x
E
x
E
σy
y
E
y
E
y
E
σz
z
E
z
E
z
E
Сложив все деформации одного
направления, получают
обобщенный закон Гука
1
x x ( y z )
E
1
y y ( x z )
E
1
z z ( x y )
E
относительное изменение объема при деформации
v x y z ( 1 2 )( x y z ) / E

80. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.7
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
ТЕОРИИ ПРОЧНОСТИ
Предельное напряженное состояние тела характеризуется
началом текучести материала, значительными остаточными
деформациями или появлением трещин, свидетельствующих о
начале его разрушения.
Эквивалентным напряжением называется напряжение, которое
следует создать в растянутом образце, чтобы его напряженное
состояние стало равноопасным заданному напряженному состоя
экв р
где [ p] - допускаемое напряжение
при простом растяжении

81. СЛОЖНОЕ СОПРОТИВЛЕНИЕ

10.8
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
ТЕОРИИ ПРОЧНОСТИ
1. Теория наибольших нормальных напряжений
(первая гипотеза прочности)
экв ma x [ ]
2. Теория наибольших относительных удлинений
(вторая гипотеза прочности)
3. Теория наибольших касательных напряжений
(третья гипотеза прочности) экв ( z ) 4 zy [ ]
2
2
4. Теория энергии формоизменения
(энергетическая теория) экв ( z )2 3 2 [ ]
5. Теория прочности Мора
(пятая гипотеза прочности) экв 1 k 3

82. ЛЕКЦИЯ 11 План:

11.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
Сложное сопротивление бруса
ЛЕКЦИЯ 11
План:
11.1. Понятие сложного сопротивления
11.2. Косой изгиб

83. Сложное сопротивление

11.2
Сложное сопротивление
Сложное сопротивление - вид нагружения,
при котором в поперечных сечениях бруса одновременно
возникает несколько внутренних силовых факторов.
Случаи сложного сопротивления:
- одноосное напряженное состояние, или приближенное
к
нему (косой изгиб, внецентренное
растяжение
и
-плоское
напряженное
состояние (изгиб с кручением,
сжатие, или
изгиб
с растяжением
);
растяжение
сжатие
с кручением,
растяжение или сжатие с изгибом).

84. ИЗГИБ

11.3
КОСОЙ ИЗГИБ
Косой изгиб имеет место, когда плоскость действия
нагрузки не совпадает ни с одной из главных
плоскостей инерции бруса.
Разложим силу F на две
составляющие:
Fx= Fsin φ;
Fy= Fcos φ.
Изгибающие моменты в
поперечном сечении бруса:
Мx=Fy·z=(Fcos φ)z;
My=Fx·z=(Fsin φ)z.
Влиянием поперечных сил Q
на прочность и жесткость бруса обычно пренебрегают

85. ИЗГИБ

11.4
ИЗГИБ
КОСОЙ ИЗГИБ
Напряжения в произвольной
точке Д:
My
Mx
Д


Ix
Iy
для точки О, лежащей на нейтральной
линии:
My
Mx
о

xо 0
Ix
Iy
Нейтральная линия при косом изгибе всегда
проходит через центр тяжести сечения
M y Ix
yo
Fsin z I x
Ix
tg
tg
xo
M x I y Fcos z I y I y

86. ИЗГИБ

11.5
ИЗГИБ
КОСОЙ ИЗГИБ
Условие прочности :
My
Mx
max
ymax
xmax
Ix
Iy
Для сечений, имеющих две оси симметрии:
Mx My
max
Wx W y
Прогибы определяют геометрическим суммированием
прогибов вдоль направления главных осей:
y
y x2 y 2y .

87. ЛЕКЦИЯ 12 План:

12.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
СЛОЖНОЕ СОПРОТИВЛЕНИЕ
Сложное сопротивление бруса
ЛЕКЦИЯ 12
План:
12.1. Изгиб с растяжением (сжатием)
12.2. Внецентренное растяжение или сжатие
12.3. Кручение с изгибом

88. Сложное сопротивление

12.2
ИЗГИБ С РАСТЯЖЕНИЕМ (СЖАТИЕМ)
Внутренние усилия :
N= Fz,
Qx= Fx, Мх = Fy z,
Qy= Fy , My = Fx z
Напряжение в произвольно
выбранной точке Д :
My
N Mx


A Ix
Iy
Условие прочности для сечений с двумя осями симметрии :
N Mx My
max
A Wx Wy

89. Сложное сопротивление

12.3
ВНЕЦЕНТРЕННОЕ РАСТЯЖЕНИЕ
(СЖАТИЕ)
Внутренние усилия :
N = F;
Мх = F ·yF;
Му = F ·xF ,
Нормальное напряжение
в произвольной точке Д:
My
N Mx


A Ix
Iy
Условие прочности:
N Mx My
max
A Wx Wy

90. Сложное сопротивление

12.4
КРУЧЕНИЕ С ИЗГИБОМ
По третьей гипотезе прочности:
экв 2 4 2
или
М экв
экв
Wx
где
М М х2 М 2у
М 2 Т 2
Wx
Эпюры
напряжений
в поперечном
сечении
вала:

91. Сложное сопротивление

11.5
Сложное сопротивление
КРУЧЕНИЕ С ИЗГИБОМ
По четвертой гипотезе прочности:
экв 2 3 2 , или
М 2 0 ,75Т 2
М экв
экв
Wx
Wx
где
М М х2 М 2у

92. Раздел – 9. ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ И ДИНАМИЧЕСКИХ НАПРЯЖЕНИЯХ

МЕХАНИКА
Сопротивление материалов
Раздел – 9. ПРОЧНОСТЬ ПРИ
ПЕРЕМЕННЫХ И ДИНАМИЧЕСКИХ
НАПРЯЖЕНИЯХ
Прочность при переменных
напряжениях
Прочность при ударе
ЛЕКЦИЯ 13
ЛЕКЦИЯ 14
ЛЕКЦИЯ 15

93. ЛЕКЦИЯ 13 План:

13.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ И
ДИНАМИЧЕСКИХ НАПРЯЖЕНИЯХ
Расчеты на прочность при переменных
напряжениях
ЛЕКЦИЯ 13
План:
13.1. Явление усталости
13.2. Кривая усталости при симметричном цикле

94. ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ

13.2
УСТАЛОСТЬ - процесс постепенного
накопления повреждений в материале под действием
переменных напряжений, приводящий к изменению его
свойств, образованию трещин, их развитию и
разрушению.
Усталостное разрушение – разрушение, происходящее при
напряжениях, значительно меньших предела прочности σВ, а
иногда даже и предела пропорциональности σпц.
Зона А - область распространения
трещины
Зона Б - зона разрыва
Вид усталостного излома

95.

13.3
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
УСТАЛОСТЬ
Неустановившийся режим (закон изменения напряжений во
времени может быть любым)
Установившийся режим (изменение напряжений во времени
носит циклически повторяющийся характер)
Цикл напряжений совокупность
последовательных значений
напряжений за один период
нагружения при
установившемся режиме

96.

ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
13.4
УСТАЛОСТЬ
Характеристики
цикла напряжений:
max - максимальное (наибольшее по модулю) напряжение;
min - минимальное (наименьшее по модулю) напряжение;
max min
- среднее напряжение
2
max min
- амплитудное напряжение
а
2
min
r
- коэффициент асимметрии цикла
max
m

97.

ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
13.5
УСТАЛОСТЬ
циклы нагружения
симметричный
пульсационный
ассимметричный
m = 0,
а= max= min;
r = -1.
наиболее опасный
σmin=0;
m = а = max/2;
r = 0.
m ≠ 0,
max ≠ σmin;.

98.

13.6
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
УСТАЛОСТЬ
Кривая усталости при симметричном цикле
Предел
выносливости
база
испытаний
для сталей:
-1 (0,4...0,5) В,
для цветных
металлов:
-1 (0,25...0,5) В

99. ЛЕКЦИЯ 14 План:

14.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ И
ДИНАМИЧЕСКИХ НАПРЯЖЕНИЯХ
Расчеты на прочность при переменных
напряжениях
ЛЕКЦИЯ 14
План:
14.1 Факторы, влияющие на предел выносливости.
14.2 Расчеты конструкций на усталость

100.

ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
14.2
ФАКТОРЫ, ВЛИЯЮЩИЕ
НА ПРЕДЕЛ ВЫНОСЛИВОСТИ
концентрация напряжений,
масштабный фактор,
состояние поверхности,
внешняя среда

101.

14.3
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
ФАКТОРЫ,
ВЛИЯЮЩИЕ НА ПРЕДЕЛ ВЫНОСЛИВОСТИ
Концентрация напряжений
Концентраторы напряжений - надрезы, отверстия, выточки,
резкие изменения размеров и др. ослабления в детали
Кσ, - эффективный
коэффициент концентрации
напряжений
1
K
1k
max
K
ном

102.

ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
14.4
ФАКТОРЫ,
ВЛИЯЮЩИЕ НА ПРЕДЕЛ ВЫНОСЛИВОСТИ
Масштабный фактор
статистический фактор (высокая вероятность появления
дефектных зон - раковин, неметаллических включений, микротрещин);
технологический фактор (способ обработки детали в
процессе ее изготовления);
производственный фактор (ухудшение качества материала
с увеличением объема детали).
- масштабный коэффициент
1
о
1
Предел выносливости материала в гладком
образце диаметром d
Предел выносливости того же материала в
стандартном образце диаметром do = 6...10 мм

103.

14.5
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
ФАКТОРЫ,
ВЛИЯЮЩИЕ НА ПРЕДЕЛ ВЫНОСЛИВОСТИ
Состояние поверхности детали
- коэффициент состояния поверхности (для шлифованной
неупрочненной поверхности = 1)
Способ повышения σ-1 - поверхностное упрочнение детали
(наклеп, ХТО, закалка ТВЧ и др.),
Внешняя среда
Коррозия металлов (в поверхностных слоях возникают трещины
коррозионной усталости)
Способ повышения σ-1 - защита от коррозии (антикоррозионные
покрытия, окраска).

104.

ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ
14.6
РАСЧЕТЫ КОНСТРУКЦИЙ НА УСТАЛОСТЬ
Условие усталостной прочности :
n
n n
n 2 n 2
n
[n] = 1,5 – 4.
n - коэффициент запаса усталостной прочности,
n
n
1
K
a m
1
K
a m
а
M
Wx
m 0
T
а m
2W

105. ЛЕКЦИЯ 15 План:

15.1
МЕХАНИКА
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ И
ДИНАМИЧЕСКИХ НАПРЯЖЕНИЯХ
Прочность при ударе
ЛЕКЦИЯ 15
План:
15.1 Ударная нагрузка
15.2. Динамический коэффициент
15.3. Расчеты на прочность при динамическом нагружении

106. ПРОЧНОСТЬ ПРИ УДАРЕ

15.2
ПРОЧНОСТЬ ПРИ УДАРЕ
Ударная нагрузка
Ударная нагрузка - всякая быстроменяющаяся нагрузка.
Гипотезы теории удара:
Удар считают неупругим;
Ударяемое тело имеет одну степень свободы и вся масса
тела сосредоточена в точке удара;
Ударяемая конструкция считается идеально упругой;
Вся кинетическая энергия ударяющего тела преобразуется
в потенциальную энергию упругой деформации ударяемой
конструкции.
Потенциальная энергия статической упругой
деформации растянутого стержня :
N 2l EA( l ) 2
U
2 EA
2l

107.

15.3
ПРОЧНОСТЬ ПРИ УДАРЕ
Динамический коэффициент
Работа падающего груза:
A mg (h d )
d kd ст - динамический прогиб системы
kd
ст
- динамический коэффициент
- прогиб системы при статическом
нагружении.
kd 1 1
2h
cm
d kd ст

108.

ПРОЧНОСТЬ ПРИ УДАРЕ
15.4
Расчеты на прочность при
динамическом нагружении
Частные случаи удара:
1. Внезапное динамическое приложение нагрузки
При h = 0
тогда
2h
kd 1 1
2
cm
d 2 ст
d 2 ст
2. Высота падения значительно больше статической
деформации
При h >> ст
kd
2h
cm

109. Раздел –10. УСТОЙЧИВОСТЬ

МЕХАНИКА
Сопротивление материалов
Раздел –10. УСТОЙЧИВОСТЬ
Устойчивость сжатых стержней
ЛЕКЦИЯ 16
ЛЕКЦИЯ 17

110. ЛЕКЦИЯ 16 План:

МЕХАНИКА
16.1
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
УСТОЙЧИВОСТЬ
Устойчивость сжатых стержней
ЛЕКЦИЯ 16
План:
16.1. Понятие об устойчивости первоначальной формы
равновесия
16.2. Формула Эйлера для критической силы

111. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

16.2
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
Понятие об устойчивости
первоначальной формы равновесия
При отклонении системы от положения равновесия
после устранения причин, вызывающих это отклонение,
различают три формы равновесия системы:
Устойчивое равновесие - система возвращается в первоначальное
положение.
Неустойчивое равновесие - система не возвращается в исходное
положение, а отклоняется от него еще больше.
Безразличное равновесие - новое положение системы после
отклонения от исходного остается равновесным и
после удаления внешнего воздействия.

112.

16.3
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
Понятие об устойчивости
первоначальной формы равновесия
Устойчивое равновесие при F > Fk,
(ось стержня прямолинейная)
Неустойчивое равновесие при
F < Fk,
(ось стержня искривляется)
Fk - критическая сила
Продольный изгиб - явление изгиба
стержня продольной силой

113.

16.4
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
Понятие об устойчивости
первоначальной формы равновесия
Для обеспечения устойчивости определяют
допускаемую нагрузку на сжатый стержень.
Fk
Fдоп

Fk - критическая сила
nу - коэффициент запаса устойчивости
для стали пу = 2 … 4,

114.

16.5
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
Формула Эйлера для критической силы
М = -Fk y ;
ЕImin у"= ± М .
EIminy" = -Fk y.
Пусть Fk / (EImin) = α2,
у" + α2у = 0,
у = Asin αx + Bcos αx
В = 0, т.к.
при х = 0 прогиб у = 0.
y = A sin αx.
при х = l прогиб у = 0
Поэтому
у = A sin αl = 0
sin αl = 0, или αl = πn
Fk
EImin
n 2 2 EImin
Fk
l2
при n = 1 получаем
2 EImin
Fk
l2

115.

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
16.5
Формула Эйлера для критической силы
EImin
Fk
2
( l )
2
(μl) – приведенная длина стержня
μ – коэффициент
приведения длины
стержня

116. ЛЕКЦИЯ 17 План:

МЕХАНИКА
17.1
Модуль 2.
СОПРОТИВЛЕНИЕ
МАТЕРИАЛОВ
УСТОЙЧИВОСТЬ
Устойчивость сжатых стержней
ЛЕКЦИЯ 17
План:
17.1. Пределы применимости формулы Эйлера.
17.2. Устойчивость сжатых стержней за пределами упругости
17.3. Расчет на устойчивость с помощью коэффициента снижения
допускаемого напряжения

117. УСТОЙЧИВОСТЬ

17.1
УСТОЙЧИВОСТЬ
УСТОЙЧИВОСТЬ СЖАТЫХ
СТЕРЖНЕЙ
_________________________________________________________________
ЛЕКЦИЯ 8
_________________________________________________________________
План
17.1. Пределы применимости формулы Эйлера.
17.2. Устойчивость сжатых стержней за
пределами упругости
17.3. Расчет на устойчивость с помощью
коэффициента снижения допускаемого
напряжения

118. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

17.2
ПРЕДЕЛЫ ПРИМЕНИМОСТИ
ФОРМУЛЫ ЭЙЛЕРА
Fk 2 EImin
k
пц
2
A
( l ) A
Imin /A, = i2min, тогда
k
l
imin
2
2 E imin
( l )
2
пц
- гибкость стержня
2 E
k 2 пц
Условие применимости
формулы Эйлера:
2 Е
пц
или
λ ≥ λ0
λ ≥ 100
для чугуна - λ ≥ 80,
для алюминиевого сплава - λ ≥ 60
для стали -

119.

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
17.3
УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
ЗА ПРЕДЕЛАМИ УПРУГОСТИ
Полная диаграмма критических напряжений
А( а в )
Fдоп
.
пу
λ1≈(0,2...0,4)λ0
2 EImin
Fдоп
п у ( l )2

120.

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
17.4
РАСЧЕТ НА УСТОЙЧИВОСТЬ
С ПОМОЩЬЮ КОЭФФИЦИЕНТА СНИЖЕНИЯ
ДОПУСКАЕМОГО НАПРЯЖЕНИЯ
F
с ,
A
где: [σс] - допускаемое напряжение сжатия;
φ - коэффициент снижения
допускаемого напряжения (коэффициент
продольного изгиба)
Допускаемое напряжение
при расчете на устойчивость:
у с .
Площадь сечения стержня:
F
A
.
с
Значение φ подбирается последовательно, начиная с 1 0 ,5
English     Русский Правила