Лекция № 3. ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дре
В случае невыполнения условия дрейфового приближения, то есть при или при действие электрического поля не компенсируется действием магни
Дрейфовое движение заряженных частиц в неоднородном магнитном поле.
Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.
Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.
Дрейф в магнитном поле прямого тока.
Центробежный (инерционный) дрейф.
Поляризационный дрейф.
Тороидальный дрейф и вращательное преобразование
593.50K
Категория: ФизикаФизика

Дрейфовое движение заряженных частиц. (Лекция 3)

1. Лекция № 3. ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дре

Лекция № 3.
ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ
Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости,
дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант.
Движение в скрещенных электрическом и магнитном полях.
Движение в скрещенных однородных E H полях.
Дрейфовое приближение применимо в случае, если можно выделить
некоторую одинаковую для всех частиц одного сорта постоянную скорость
дрейфа, не зависящую от направления скоростей частиц. Магнитное поле не
влияет на движение частиц в направлении магнитного поля. Поэтому скорость
дрейфа может быть направлена только перпендикулярно магнитному полю.
E H
Vдр c
H2
- скорость дрейфа.
Условие применимости дрейфового движения E H
в полях:
E
V
H
c
Для определения возможных траекторий заряженных частиц в полях рассмотрим
уравнение движения для вращающейся компоненты скорости :
. q
mu
c
u H

2.

В плоскости скоростей (Vx, Vy) можно
выделить четыре области характерных
траекторий.
Область 1. Круг, описываемый
неравенством 0 u Vдр в координатах
(x,y) соответствует трохоиде без петель
(эпициклоида) с «высотой», равной , 2 re
где re u / л
Область 2. Окружность, задаваемая
уравнением u Vдр , соответствует
циклоиде. При вращении вектора
вектор скорости на каждом периоде
будет проходит через начало координат,
то есть, скорость будет равна нулю.
Область 3. Область вне круга,
соответсвует трохоиде с петлями
(гипоциклоида).
V
Vy
0
V др
u
Vx
1
2
3
Области характерных траекторий в
плоскости скоростей.
e
E
i
H
1
e
2
i
e
3
i
Область 4: Точка
V0 Vдр
- прямой.
4

3. В случае невыполнения условия дрейфового приближения, то есть при или при действие электрического поля не компенсируется действием магни

В случае невыполнения условия дрейфового приближения, то есть при или
при E H действие электрического поля не компенсируется действием
магнитного, поэтому частица переходит в режим непрерывного
E H
ускорения
H
y
e
x
H
e
E
E
x
E
H
Ускорение электрона в
полях при E H
.
Ускорение электрона в полях
E H
Все выводы, сделанные выше, верны, если вместо электрической силы
использовать произвольную силу , действующую на частицу, причем F H
Скорость дрейфа в поле произвольной силы:
c F H
Vдр
q H2

4. Дрейфовое движение заряженных частиц в неоднородном магнитном поле.


Если магнитное поле медленно меняется в пространстве, то движущаяся
в нем частица совершит множество ларморовских оборотов, навиваясь на
силовую линию магнитного поля с медленно меняющимся ларморовским
радиусом.
Можно рассматривать движение не собственно частицы, а её
мгновенного центра вращения, так называемого ведущего центра.
Описание движения частицы как движение ведущего центра, т.е.
дрейфовое приближение, применимо, если изменение ларморовского
радиуса на одном обороте будет существенно меньше самого
ларморовского радиуса.
Это условие, очевидно, будет выполнено, если характерный
пространственный масштаб изменения полей будет значительно
превышать ларморовский радиус:
хар
lполя
что равносильно условию: rл
H
H

1.
Очевидно, это условие выполняется тем лучше, чем больше величина
напряженности магнитного поля, так как ларморовский радиус убывает
обратно пропорционально величине магнитного поля.

5. Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.


Рассмотрим задачу о движении
заряженной частицы в
магнитном поле со скачком,
слева и справа от плоскости
которого магнитное поле
однородно и одинаково
направлено При движении
частицы её ларморовская
окружность пересекает
плоскость скачка. Траектория
состоит из ларморовских
окружностей с переменным
ларморовским радиусом, в
результате чего происходит
«снос» частицы вдоль плоскости
скачка. Скорость дрейфа можно
определить как
l 2V H 2 H1 V H
Vдр
t
H 2 H1 H
H1 H 2
V др е
e
H
Vдр i
i

6. Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.


Дрейф возникает и том случае, когда слева
и справа от некоторой плоскости магнитное
поле по величине не меняется, но изменяет
направление Слева и справа от границы
частицы вращаются по ларморовским
окружностям одинакового радиуса, но с
противоположным направлением вращения.
Дрейф возникает, когда ларморовская
окружность пересекает плоскость раздела.
Пусть пересечение плоскости слоя
частицей происходит по нормали, тогда
ларморовскую окружность следует
«разрезать» вдоль вертикального диаметра
и затем, правую половину следует отразить
зеркально вверх для электрона, и вниз для
иона, как это изображено на рисунке. При
этом за ларморовский период смещение
вдоль слоя, очевидно, составляет два
ларморовских диаметра, так что скорость
дрейфа для этого случая:
4
Vдр
H1
H2
Vдр е
H1 H 2
e
Vдр i
i
V
2rл
л 2V
T
2
2
л
Градиентный дрейф при смене
направления магнитного поля

7. Дрейф в магнитном поле прямого тока.


Дрейф заряженных частиц в
неоднородном магнитном поле прямого
проводника тока связан, прежде всего с
тем, что магнитное поле обратно
пропорционально расстоянию от тока,
поэтому будет существовать градиентный
дрейф движущейся в нем заряженной
частицы. Кроме этого дрейф связан с
кривизной магнитных силовых линий.
Рассмотрим две составляющие этой силы,
вызывающей дрейф, и соответственно
получим две составляющие дрейфа.
Вращающуюся вокруг силовой линии
заряженную частицу можно рассматривать
как магнитный диполь эквивалентного
кругового тока. Выражение для скорости
градиентного дрейфа можно получить из
известного выражения для силы,
действующей на магнитный диполь в
неоднородном поле:
H
F H
H
W
H
Для магнитного поля, как можно показать,
справедливо соотношение:
H
Hn
Rкр
r
b r n
i
n
Rкр
H
R
Vдр i
Vдр е
e
Диамагнитный дрейф в магнитном
поле прямого тока.
c mV 2 H H
Vдр
2
q 2H
H
2
V H H
V 2
b
2
2 л
2 л Rкр
H

8. Центробежный (инерционный) дрейф.


При движении частицы,
навивающейся на силовую
линию с радиусом
кривизны R, на нее
действует центробежная
mv||2
сила инерциии
Fцб
n
R
возникает дрейфовая
скорость, равная по
величине
v цб
2
2
2
mv
v
v
c
||
|| 1
|| | B|
e RB
R B
и направленная по
бинормали
v цб
v||2 [ B B ]
B2

9. Поляризационный дрейф.

Дрейф в неоднородном магнитном поле прямого проводника тока
представляет собой сумму скоростей градиентного и
V2
центробежного дрейфов (тороидальный дрейф):
Так как ларморовская частота
содержит заряд, то электроны и
ионы в неоднородном магнитном
поле дрейфуют в
противоположных направлениях,
ионы в направлении протекания
тока электроны – против тока,
создавая диамагнитный ток.
Кроме того, при разделении
зарядов в плазме возникает
электрическое поле , которое
перпендикулярно магнитному
полю. В скрещенных полях
электроны и ионы дрейфуют уже
в одном направлении то есть
происходит вынос плазмы на
стенки как целого.
H
V||2
Vдр 2
b
л Rкр
Vдр
E

10. Тороидальный дрейф и вращательное преобразование


Картина принципиально
изменится, если внутри, в центре
сечения соленоида, поместить
проводник с током, или
пропустить ток непосредственно
по плазме. Этот ток создаст
собственное магнитное поле В ,
перпендикулярное к полю
соленоида Вz, так что суммарная
силовая линия магнитного поля
пойдет по винтовой траектории,
охватывающей ось соленоида.
Образование винтовых линий
магнитного поля получило
название вращательного (или
ротационного) преобразования.
Эти линии будут замыкаться
сами на себя, если коэффициент
запаса устойчивости,
представляющий собой
отношение шага винтовой
силовой линии к длине оси тора:
Bz a
q
B R
English     Русский Правила