Повторим значения синуса и косинуса
Арккосинус
Уравнение cost = a
Частные случаи уравнения cost = a
Арксинус
Уравнение sint = a
Частные случаи уравнения sint = a
Повторим значения тангенса и котангенса
Арктангенс
Арккотангенс
Формулы корней простых тригонометрических уравнений
Решение простейших уравнений
Другие тригонометрические уравнения
Найти наименьший положительный корень
Найти наименьший положительный корень
Найти наибольший отрицательный корень
Найти наибольший отрицательный корень
Найти наименьший положительный корень
Наибольшее отрицательное (в градусах)
680.08K
Категория: МатематикаМатематика

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений

1.

Простейшие
тригонометрические
Уравнения.
Решение
Тригонометрических
уравнений

2. Повторим значения синуса и косинуса

у π/2 90°
1
120° 2π/3
135° 3π/4
150° 5π/6
π/6 30°
1/2
180° π -1
0
-
(cost)
π/3 60°
π/4 45°
-
210° 7π/6
-1/2
1/2
1 0 0°
½
x
2π 360
11π/6 330° [-π/6]
225° 5π/4
240° 4π/3
-1
270° 3π/2 [-π/2]
(sint)
7π/4 315° [-π/4]
5π/3 300° [-π/3]

3. Арккосинус

Арккосинусом числа а называется
такое число (угол) t из [0;π], что
cos t = а.
Причём, | а |≤ 1.
у
arccos(-а)
π/2
arccos а = t
π
0
-1

Примеры:
а
arccos(- а) = π- arccos а
1
1)arccos(-1)
2)arccos
х

4. Уравнение cost = a

Уравнение
t1
-1
a
1. Проверить условие | a | ≤ 1
y
0
cost = a
1
x
2. Отметить точку а на оси
абсцисс.
3. Построить перпендикуляр в
этой точке.
4. Отметить точки пересечения
перпендикуляра с окружностью.
5. Полученные точки – решение
уравнения cost = a.
6. Записать общее решение
уравнения.
-t1
t t1 2 n,
n Z

5. Частные случаи уравнения cost = a

cost = 1
y
t 2 n,
π/2
n Z
cost = 0
0
-1
1
0
x
t n, n Z
2
cost = -1
-π/2
t 2 n,
n Z

6. Арксинус

у
π/2
1
а
arcsin а =t
Арксинусом числа а называется
такое число (угол) t из [-π/2;π/2],
что sin t = а.
Причём, | а |≤ 1.
х

-1
-π/2
Примеры:
arcsin(- а)
arcsin(- а)= - arcsin а

7. Уравнение sint = a

1. Проверить условие | a | ≤ 1
y
π-t1
2. Отметить точку а на оси
ординат.
1
3. Построить перпендикуляр в
этой точке.
4. Отметить точки пересечения
перпендикуляра с окружностью.
t1
a
0
x
5. Полученные точки – решение
уравнения sint = a.
6. Записать общее решение
уравнения.
-1
t1 2 n, n Z
t
t1 2 n, n Z

8. Частные случаи уравнения sint = a

Частные случаи уравнения
Π
y
2
1
π
0
0
-1
π
2
sint = a
sint = 1
t 2 n, n Z
2
sint = 0
x
t n, n Z
sint = -1
t 2 n, n Z
2

9. Повторим значения тангенса и котангенса

Линия тангенсов
tg t ЄR , но t ‡
+ π k, kЄZ
у π/2
2π/3
π/3
5π/6
1
π/4
ctg t ЄR, но t ‡ 0 + πk, kЄZ
π/6
0
х
Линия котангенсов
у
4π/3
-π/2
π
0
х

10. Арктангенс

Арктангенсом числа а называется
такое число (угол) t из (-π/2;π/2),
что tg t = а .
Причём, а Є R.
а
у
π/2
arctgа = t
0
х
arctg(-а) = - arctg а
arctg(-а )
-π/2

Примеры:
1) arctg√3/3 =
π/6
2) arctg(-1) =
-π/4

11. Арккотангенс

у

arcctg(- а)
а
arcctg а = t
π
0 х
Арккотангенсом числа а называется
такое число (угол) t из (0;π),
что ctg t = а.
Причём, а ЄR .
arcctg(- а) = π – arcctg а
Примеры:
1) arcctg(-1) =
3π/4
2) arcctg√3 =
π/6

12. Формулы корней простых тригонометрических уравнений

1.cost = а , где |а| ≤ 1
или
Частные случаи
2.sint = а, где | а |≤ 1
или
3. tgt = а, аЄR
t = arctg а + πk‚ kЄZ
Частные случаи
1)cost=0
t = π/2+πk‚ kЄZ
1)sint=0
t = 0+πk‚ kЄZ
2)cost=1
t = 0+2πk‚ kЄZ
2)sint=1
t = π/2+2πk‚ kЄZ
3)cost = -1
t = π+2πk‚ kЄZ
3)sint = - 1
t = - π/2+2πk‚ kЄZ
4. ctgt = а, аЄR
t = arcctg а + πk‚ kЄZ

13.

Простейшие
тригонометрические
уравнения
Sin t=a;
Cos t=a;
где t=f(x)
Введение новой
переменной
Разложение
на
множители

14.

Решение простейших уравнений
1) cost= - ½;
t= ±arccos(-1/2)+2πk, kЄZ
t= ±2π/3+2πk, kЄZ
3) tgt = 1;
t = arctg1+πk, kЄZ
t = π/4+πk, kЄZ.
2) sint = 0;
Частный случай:
t = 0+πk, kЄZ
4) ctgt = t = arcctg( )+πk, kЄZ
t = 5π/6+πk, kЄZ.

15. Решение простейших уравнений

1) tg2x = -1
2) cos(x+π/3) = ½
2x = arctg (-1) + πk, kЄZ
2x = -π/4 + πk, kЄZ
x = -π/8 + πk/2, kЄZ
x+π/3 = ±arccos1/2 + 2πk, kЄZ
x+π/3 = ±π/3 + 2πk, kЄZ
x = -π/3 ± π/3 + 2πk, kЄZ
Ответ: -π/8 + πk/2, kЄZ.
Ответ: -π/3 ± π/3 + 2πk, kЄZ
3) sin(π – x/3) = 0
упростим по формулам
приведения
sin(x/3) = 0
частный случай
x/3 = πk, kЄZ
x = 3πk, kЄZ.
Ответ: 3πk, kЄZ.

16. Другие тригонометрические уравнения

1.Сводимые к квадратным
a∙sin²x + b∙sinx + c=0
Пусть sinx = p, где |p| ≤1, тогда
a∙p² + b∙p + c = 0
Найти корни, вернуться к замене и
решить простые уравнения.
2.Однородные
1)Первой степени:
a∙sinx + b∙cosx = 0
Т.к. sinx и cosx одновременно
не равны нулю, то разделим обе
части уравнения на cosx. Получим:
простое уравнение
a∙tgx + b = 0 или tgx = m
2)Второй степени:
a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0
Разделим обе части на cos²x.
Получим квадратное уравнение:
a∙tg²x + b∙tgx + c = 0.

17. Найти наименьший положительный корень

у
3
х
x
1
cos
3
2
x
3 3
x 1

18. Найти наименьший положительный корень

3
4
у
tg
х
4
x
12
1
x 3
12 4
x 9

19. Найти наибольший отрицательный корень

x
5
6
3
cos
3
2
у
х
5
6
x 5
3
6
x 2,5

20. Найти наибольший отрицательный корень

y
tg
4
x
3
4
x
10
1
x 3
10
4
x 7,5

21.

2 cos x 3
180;270
y
150
30
210
180
x
210
270

22. Найти наименьший положительный корень

120
у
3
sin 2 x
2
60
х
240
300
2 x 240
x 120

23. Наибольшее отрицательное (в градусах)

2 sin 3x 2
Наибольшее
отрицательное (в градусах)
у
3х 225
225
х
135
45
х 75

24.

25.

I вариант (БУ)
II вариант (ПУ)
Решите уравнения:
1.
1.
2.
2.
3.
3.
В ответе запишите букву (код ответа) соответствующую ответу вашего решения.
a=1
a=0
a= -1
,

26.

I вариант (БУ)
II вариант (ПУ)
Решите уравнения:
1.
1.
2.
2.
3.
3.
В ответе запишите букву (код ответа) соответствующую ответу вашего решения.
Ответы:
САМ
English     Русский Правила