Найдите угол между прямой АА1 и прямыми плоскости (АВС): АВ, АD, АС, ВD, МN.
0.96M
Категория: МатематикаМатематика

Перпендикулярность прямой и плоскости

1.

2.

Дано: АВСDA1B1C1D1 – параллелепипед, угол
ВАD равен 300. Найдите углы между прямыми
АВ и А1D1; А1В1 и АD; АВ и В1С1.
В1
А1
С1
D1
В
С
А
300
D

3.

Найдите угол между прямыми АА1 и DC;
ВВ1 и АD.
D1
А1
С1
В1
D
А
С
В

4.

Перпендикулярные прямые в пространстве.
Две прямые в пространстве называются
перпендикулярными (взаимно перпендикулярными),
если угол между ними равен 900.
c a,
c a
a b,
a b
/
c
c
a
b

5.

Лемма.
Если одна из двух параллельных прямых
перпендикулярна к третей прямой, то и другая прямая
перпендикулярна к этой прямой.
A
a
b
c
M
C
aIIb,
a c

6.

D
№117.
В тетраэдре АВСD ВС АD.
Докажите, что АD MN, где М и N
– середины ребер АВ и АС.
ВС АD
BC II MN
N
А
M
B
C
MN AD

7. Найдите угол между прямой АА1 и прямыми плоскости (АВС): АВ, АD, АС, ВD, МN.

D1
С1
А1
В1
D
С
М
А
N
В

8.

Определение. Прямая называется перпендикулярной к
плоскости, если она перпендикулярна к любой прямой,
лежащей в этой плоскости.
a
a

9.

Построение прямых углов на местности с помощью
простейшего прибора,
который называется экер
Треножник
с
экером
В
Отвес Экера
перпендикулярен
плоскости земли.
А
1
О

10.

Канат в спортивном зале
перпендикулярен
плоскости пола.

11.

12.

№119. Прямая ОА OBC. Точка О является серединой
отрезка АD. Докажите, что АВ = ВD.
По опр.
АD AD ОВ
A
O
С
D
В

13.

№119. Прямая ОА OBC. Точка О является серединой
отрезка АD, ОВ = ОС. Докажите, что АВ = АС.
По опр.
АD AD ОВ , AD ОС
A
O
С
D
В

14.

Теорема.
Если одна из двух параллельных прямых
перпендикулярна к плоскости, то и другая прямая
перпендикулярна к этой плоскости.
a
a
a1

15.

Обратная теорема.
Если две прямые перпендикулярны к плоскости, то
они параллельны.
a
a
b
b
a II b

16.

Обратная теорема.
Если две прямые перпендикулярны к плоскости, то
они параллельны.
a
b
M
a
b
a II b
c
b1

17.

АВС – правильный треугольник. О – его центр, ОМ –
перпендикуляр к плоскости АВС, ОМ = 1. Сторона
треугольника равна 3. Найдите расстояние от точки М до
вершин треугольника.
По опр.
МО ( АВС ) МО ОВ
М
1
В
А
3
O
С

18.

Через вершину А треугольника АВС проведена плоскость,
параллельная ВС, ВВ1
и СС1 , СС1=4, АС1= 209
0
АВ1= 33 , ВАС 60 . Найдите ВС.
В
С
4
В1
С1
33
А
209
ВВ1
СС1
English     Русский Правила