Похожие презентации:
Настройка лазерного сканирующего конфокального микроскопа
1.
Лекция 4Настройка лазерного
сканирующего
конфокального микроскопа
2. Эквивалентный размер пиксела
Эквивалентный размер пиксела – размер пиксела камеры припроекции его в пространство предметов.
Эквивалентный размер пиксела равен физическому размеру
пиксела матрицы камеры, деленному на общее увеличение,
создаваемое
микроскопом
на
матрице
камеры.
Соответственно, он уменьшается с ростом увеличения
объектива.
Пример: для объектива х60 и пиксела камеры 6,45 мкм
эквивалентный размер пиксела составляет 107,5 нм.
Для микроскопов, скорректированных на бесконечность и
имеющих специальный порт для присоединения камеры,
общее увеличение определяется объективом и проекционной
линзой, устанавливаемой перед камерой.
Как правило,
проекционная линза имеет коэффициент х1.
3. Определение эквивалентного размера пиксела
Увеличение объектива толькопримерно равно указанному на
оправе. Точное увеличение
может отличаться на 2-3% от
паспортного.
Определение эквивалентного
размера пиксела проводится
эмпирически на каждом
микроскопе с помощью съемки
объект-микрометра.
Цена деления объект-микрометра
– 10 мкм (малое деление).
Пример для малого увеличения
(справа) – эквивалентный
размер пиксела составляет
18,18 мкм.
4.
Условия оптимальной записиизображения в микроскопе
Уменьшение эквивалентного размера пиксела приводит к
уменьшению количества света, попадающего на него, что
аналогично эффекту уменьшения чувствительности камеры.
Поэтому
уровень
пикселизации
во
флуоресцентной
микроскопии, составляет около 1/3-2/5 радиуса диска Эри, но
меньший
эквивалентный
размер
пиксела
позволяет
сохранить больший контраст.
В практической флуоресцентной микроскопии эквивалентный
размер пиксела рассчитывается исходя из требований
светочувствительности. Компромисс обычно достигается
при эквивалентном размере пиксела около 35-40% от
разрешающей способности объектива, однако для ярких
препаратов его целесообразно уменьшить до 25-30%.
Для эффективной цифровой обработки светлопольных
изображений эквивалентный размер пиксела должен быть не
более ¼ разрешающей способности объектива микроскопа.
5. Теорема дискретизации (Sampling theorem)
Дляоднозначного
восстановления
(передачи)
непрерывного периодического сигнала с помощью
дискретной (цифровой) записи частота измерения
величины сигнала (частота дискретизации) должна
быть по крайней мере в 2 раза больше самой
высокой частоты из спектра исходного сигнала,
которую надо передать.
Пример:
для передачи звука
в цифровых
устройствах используется частота дискретизации 44
кГц, поскольку максимальная частота звука,
воспринимаемого человеком, составляет 20 кГц.
6. Теорема дискретизации в микроскопии
Теорема гласит, что для записи изображения безсущественной потери информации эквивалентный размер
пиксела должен быть по крайней мере в 2 раза меньше
разрешающей способности микроскопа (радиуса диска Эри
или 0,5 /NA).
Например, если радиус диска Эри для микроскопа с
иммерсионным объективом х60/1,4 составляет 0,24 мкм, то
размер пиксела при записи должен быть не более 0,12 (0,1)
мкм.
На самом деле для сохранения полной информации размер
пиксела должен быть существенно меньше указанного
выше, так как диск Эри не описывается синусоидой, а
матрица камеры является двумерной.
7. Ограничения дискретного изображения
Контраст дискретного изображения всегда меньше, чемнепрерывного. Основной вопрос – насколько? Так как научная
камера позволяет записать больше оттенков серого, чем
различает глаз, то при «восстановлении» изображения
контраст может быть увеличен.
При достаточно малых эквивалентных размерах пиксела (около
1/10 радиуса диска Эри) записанное изображение является
хорошим приближением оригинала, то есть контраст его мало
отличается от исходного.
При размерах пиксела свыше ¼ но менее ½ радиуса диска Эри
контраст изображения становится переменной величиной. Он
зависит
от
относительного
расположения
элементов
изображения и элементов матрицы камеры.
При размерах пиксела больше ½ разрешающей способности
прибора, разрешающая способность цифровой системы
существенно снижается и ограничивается исключительно
величиной пиксела.
8. Недостаточная пикселизация изображения
Максимальный эквивалентный размер пиксела, диктуемыйтелеграфной теоремой (1/2 радиуса диска Эри), в случае, когда
объекты разделены минимальным промежутком, приводит к
значительному снижению контраста при «удачной» пикселизации,
и полной потере контраста при «неудачной» пикселизации.
9. Пикселизация изображения
Исходя из критерия Рэлея, для сохранения положительногоконтраста при произвольном расположении точек в объекте,
максимальный эквивалентный размер пиксела должен
составлять менее 1/3.2 радиуса диска Эри. Тогда за счет
увеличения контраста при съемке (12-16 разрядный АЦП)
сохраняется возможность разрешения любых близко
расположенных объектов.
При размере пиксела равном 1/5 радиуса диска Эри, контраст
цифрового изображения снижается не более, чем в 1,5 раза.
10. Съемка с максимальным разрешением
В большинстве микроскопов использование камеры состандартной установкой (то есть без промежуточного
увеличения) не позволяет достичь максимального
разрешения при использовании объективов с относительно
небольшим увеличением и большой апертурой (40/1.3; 20/0.8
и др.) из-за слишком большого эквивалентного размера
пиксела.
Для достижения максимального разрешения (уменьшения
эквивалентного размера пиксела) в этих случаях следует
использовать объектив х100 и/или систему промежуточного
увеличения изображения (имеется только на небольшом
числе современных микроскопов – Nikon TiE, Zeiss в
специальной комплектации).
11. Максимально допустимый размер пиксела камеры для некоторых объективов при прямой съемке
х100/1.3 (имм.) – 10 мкмх60/1.4 (имм.) – 5,6 мкм
х40/1.4 (имм.) – 3,7 мкм
х40/0.75 – 6,9 мкм
х20/0.8 – 3,3 мкм
х20/0.5 – 5,2 мкм
х10/0.3 – 4,3 мкм
12. Теорема дискретизации для конфокальной микроскопии
i)Предел разрешения:
0.4 x wavelength/NA = Resolvable Distance
ii) Теорема дискретизации (одномерный
случай): 2 pixels is smallest optically
resolvable distance
iii) Расчет пиксела: Resolvable Distance/2 =
smallest resolvable point
12
13. Минимальная дискретизация (Nyquist sampling)
Пример:Объектив 100x, 1.40 NA, 530 nm (ФИТЦ)
Теоретическое разрешение = 0.15 мкм
Максимальный размер шага сканирования менее 0.1 мкм (примерно 80 нм).
Поле зрения объектива – 220 мкм.
Доступно для сканирования – 150*150 мкм
При формате 512x512 пикселы будут
слишком большими
Что делать?
Использовать большее число пикселов
(1024x1024; 2048x2048) или растягивать
изображение (zoom).
14. Растяжение (zooming)
Масштабирование означает, что вы используететот же растр (число шагов), скорость
сканирования и освещение для записи
изображения с меньшей площади (уменьшаете
шаг сканирования).
Во многих случаях для достижения правильного
шага необходимо растяжение (zoom) в 2 и более
раз.
Соответственно, световая нагрузка на препарат
возрастает с уменьшением шага сканирования
(пропорционально плотности шагов на единицу
площади). Это влечет за собой нежелательные
эффекты – выцветание, фототоксичность (для
живых клеток).
14
15. Пример минимального расчета
Объектив X10 с апертурой 0.3 для изображения GFP:(0.4 x 520)/0.3 = 693nm (разрешение)
693/2 = 346.6nm (допустимый размер пиксела)
Область сканирования = 1500µm; Box Size = 1024 pixels
Шаг: 1500/1024 = 1464nm, что больше допустимого размера
Для данного формата сканирования:
1464/346.6 = 4.2 – фактор растяжения (zoom)
Другой вариант - сканировать все поле в формате
4096х4096 (размер пиксела составит 366 нм, что
примерно соответствует расчетам - 346.6 нм)
16. Скорость сканирования: разрешение по времени
В современных микроскопах скорость измеряется вгерцах и составляет от 1000 до 4000 Гц. Скоростные
(резонансные) сканеры позволяют достичь частоты
сканирования около 10 кГц.
Снижение скорости сканирования приводит к тому,
что:
- собирается больше света (возрастает время
экспозиции в точке)
- увеличивается фотообесцвечивание и
фототоксичность
- ограничивается пространственное разрешение
Увеличение скорости сканирования дает
противоположные эффекты, но снижает отношение
сигнал/шум
17. Дискретизация по оси z
Каково необходимое расстояние по оси z ?Оптимум – менее половины от аксиального
разрешения.
Для объективов с большой NA рекомендуемые
шаги составляют около 0.3 мкм, но для точной
реконструкции желательно иметь шаги 0.1-0.2 мкм
(особенно, при закрытой конфокальной
диафрагме).
На практике такие шаги приводят к очень
большим объемам файлов. Если реконструкции
не требуется, то шаг в 0,5-1 мкм обычно
достаточен (особенно, если диафрагма открыта
свыше 1 диска Эри).
z
x
y
18. Недостаточная и избыточная дискретизация
Избыточная дискретизация (пикселы маленькие посравнению с оптическим разрешением):
Изображение «гладкое» и хорошо выдерживает
различные преобразования
Препарат избыточно экспонирован
Уменьшена площадь сканирования
Большой объем файла
Недостаточная дискретизация (пикселы велики по
сравнению с оптическим разрешением):
Страдает пространственное разрешение
Уменьшаются эффекты засветки (выцветание)
В изображении появляются артефакты (пятна,
нарушение элементов - aliasing)
Примечание: если приходится записывать изображение с
недостаточной дискретизацией, то лучше открывать диафрагму!
19.
1 проходСреднее
усиление
Лазер 488 нм 80%
ФЭУ - 800 В
Большое
усиление
Лазер 488 нм 10%
ФЭУ - 1000 В
PlanApo 63x
16 проходов
20. Шум в цифровом изображении
Определение: шум это любая неоднородность в измерениях, которая несвязана с изменением входного сигнала.
Шум определяет предел чувствительности аппаратуры ( то есть способность
записывать минимальные изменения)
Максимальная величина сигнала ограничивается возможностями аппаратуры
(ток насыщения).
Отношение S/N определяет динамический диапазон измерителя
Источники шума:
Дробовый шум (вариации в числе фотонов)
Электронный шум - вариации в напряжении в ФЭУ и в усилителе сигнала. Он
возрастает с ростом напряжения.
Чтобы уменьшить шум, надо собрать больше фотонов, для чего следует
увеличить время сканирования или открыть диафрагму.
Усреднение кадров (для фиксированных препаратов):
Отношение S/N растет пропорционально квадратному корню из числа кадров.
20
21. Сигнал и шум
В идеально работающем детекторе при однородноместественном фоне отношение сигнал/шум (S/N или SNR) может
быть рассчитано по формуле:
{SNR} = PQet / [PQet + Dt + Nr2]1/2
где P - поток фотонов (фотонов/пиксел/секунду), Qe - квантовый
выход детектора, t - время записи (секунд), D - темновой ток
(электронов/пиксел/секунду), и Nr - шум считывания
(электронов/пиксел).
В «идеальном» ФЭУ формула упрощается:
{SNR} = PQet 1/2
Отношение сигнал/шум не может быть увеличено в результате
цифровой обработки отдельного изображения и убывает при
всех операциях с кадрами (сложение, вычитание, деление).
22. Зависимость отношения сигнал/шум от экспозиции
Одно и то же поле записано с выдержками 1,12 и 4,48 мксек.Различия в отношении сигнал/шум составляют 6 Дб.
23.
Фотоэлектронныйумножитель
получает
свет
через
стеклянное
или
кварцевое
окно,
покрытое
фоточувствительной поверхностью – фотокатодом, который
испускает электроны, а они в свою очередь умножаются в
специальных электродах, называемых диноды. Работа
динода основана на эффекте вторичной электронной
эмиссии — явления, когда первичный электрон, попадая на
динод, выбивает несколько электронов (называемых
вторичными). Сколько в среднем появляется вторичных
электронов, зависит и от энергии первичного электрона и от
материала
динода.
Эта
величина
называется
коэффициентом вторичной эмиссии δ и обычно для
современных ФЭУ лежит в пределах от 3 до 10. Чтобы
вылетевший из фотокатода фотоэлектрон пришел на 1-ый
динод, имея достаточную энергию, потенциал динода
должен быть на несколько десятков или сотен вольт более
положительным. Аналогично, чтобы появившиеся с 1-ого
динода примерно δ вторичных электронов достигли
следующего 2-ого динода, обладая достаточной энергией,
потенциал 2-ого динода также должен превышать
потенциал 1-ого на 100–200 В. Очень важно при этом, чтобы
все вторичные электроны попали именно на динод, а не на
стойки электродов и стекло колбы. В конце динодной
системы находится анод или собирательный электрод. Как
правило, ток, идущий через анод пропорционален фототоку,
генерируемому фотокатодом. Выводы от всех электродов
ФЭУ осуществлены через основание колбы, заделанной в
пластмассовый цоколь.
24. Детектор сигналов – ФЭУ
Фотоэлектронный умножитель (ФЭУ) – вакуумный прибор. Фотоэлектронныйумножитель (ФЭУ) представляет собой электровакуумный прибор, в котором
поток электронов, эмитируемый фотокатодом под действием оптического
излучения, усиливается в умножительной системе в результате вторичной
электронной эмиссии. Квантовый выход (фотокатода) составляет не более 10-30%.
Максимальная чувствительность – как правило, в синей области спектра (450 нм).
ФЭУ с увеличенной полосой чувствительности в красной и ИК области имеют более
низкий квантовый выход (менее 10%). Новейшие ФЭУ (на основе арсенида галлия)
имеют квантовый выход до 40%.
Коэффициент усиления фототока – до 106.
25. Кривая светочувствительности ФЭУ
Современные ФЭУ имеют удовлетворительнуючувствительность в диапазоне 500-650 нм, но
быстро теряют ее в ближнем инфракрасном
свете
26. ФЭУ на арсениде галлия (GaAsP)
Максимальная чувствительность детектора GaAsP вдиапазоне 450-650 нм достигает 45%, в три-пять раз
превышая чувствительность стандартного ФЭУ.
27.
Настройка ФЭУНастройка ФЭУ состоит в подборе усиления и пьедестального
напряжения. (а) исходный сигнал; (b) после вычитания фона
(offset); (c) после растяжения выходного сигнала (gain)
28. Факторы, определяющие качество изображения
Пространственное разрешениеОпределяется оптикой, но может ухудшаться при недостаточной
плотности сканирования. Возможность получения максимального
разрешения зависит от диафрагмы.
Глубина изображения (разрешение по уровням
серого)
Определяется детектором, но может ограничиваться малым
потоком фотонов и неправильной настройкой ФЭУ.
Отношение сигнал/шум
Определяется ФЭУ, мощностью лазера, экспозицией и
автофлуоресценцией. Часто ограничивается жизнеспособностью
клеток.
Разрешение по времени
Зависит от скорости сканирования и размера растра (512x512;
1024х1024 и т.д.).
Реальная картина всегда представляет собой
компромисс между вышеперечисленными условиями.
29. Критические параметры ЛСКМ
Настройка лазера (мощность)Апертура и увеличение объектива
Размер пиксела (шага) при
сканировании и размер растра
(например, 1024х1024)
Толщина покровного стекла
Показатель преломления
препарата и его гомогенность
Размер конфокальной диафрагмы
Настройки детектора (ФЭУ) – gain
(усиление), offset (порог)
Оцифровка сигнала на
компьютере (16 бит)
30. Конфокальные компромиссы
31. Перекрывание спектров эмиссии
Перекрывание спектров эмиссии неизбежно при использованиинескольких красителей, возбуждаемых от одного лазера (при одной
длине волны). Оно приводит к тому, что при одновременной окраске
клетки несколькими красителями измеряемый каждым ФЭУ сигнал
увеличивается за счет дополнительного сигнала от других красителей
возбуждаемых тем же лазером.
Перекрывание для органических красителей асимметрично –
коротковолновые красители дают большее «затекание» в следующий
канал. Величина перекрывания возрастает по мере сближения
максимумов флуоресценции и максимумов возбуждения.
32. Компенсация
При использовании нескольких красителей возникаетпроблема перекрывания спектров флуоресценции.
Проблема усугубляется с ростом числа красителей.
Для того, чтобы определить, является ли сигнал
истинным, или обусловлен затеканием эмиссии из
другого канала, применяется специальная процедура
под названием «компенсация».
Компенсация в первом приближении означает вычитание
одного
сигнала,
умноженного
на
некоторый
коэффициент (как правило, от 1 до 100%) из другого.
Цифровая компенсация производится с помощью
заранее
подготовленной
таблицы,
которая
расcчитывается на основании перекрывания спектров
(при
использовании
лазеров),
или
вручную,
эмпирически подбирая коэффициенты.
33. Сравнение пар красителей
FITCTRITC ~20%
FITC
Texas Red ~3%
34. Затекание сигналов
35. Затекание сигналов
Как проверить наличие затекания:Выключить возбуждение для длинноволнового красителя
Как уменьшить затекание сигналов:
Использовать флуорохромы с дальше отстоящими
спектрами. Например, FITC + Texas Red лучше, чем FITC +
TRITC
Более слабый сигнал желательно пометить
коротковолновым флуорохромом.
Последовательное, а не одновременное сканирование.
35
36. Запись изображения в нескольких каналах
Варианты записи:одновременно (хуже) или последовательно (лучше,
но дольше).
Основная трудность – возможность перекрывания
сигналов в разных каналах детекции.
37.
Разделениеперекрывающихся сигналов
Для уменьшения эффекта затекания применяются
несколько подходов:
Сдвиг полосы пропускания детектора.
Использование дифракционной решетки для
выделения узкой полосы сигнала.
Последовательное сканирование.
Разделение спектров проводится с помощью базы
данных микроскопа.
38.
Параллельное ипоследовательное сканирование
Слева: красный и зеленый каналы перекрываются,
справа – каналы полностью разделены.
39. Последовательное сканирование
Спектры флуоресценции снимаютсяпоследовательно при возбуждении разными
лазерами.
40. Запись спектров с помощью щелевого детектора
41. Анализ спектров
Спектры анализируются для каждой точкиизображения и сравниваются со спектрами из
библиотеки (записанной в программе).
42. Запись спектров с помощью щелевого детектора
Ширина и положение щели перед детекторомрегулируются – таким образом возможно
сканирование спектра флуоресценции.
43. Результаты разделения
Слева – суммарная картина, справа – послевычитания спектра автофлуоресценции. Сохранен
сигнал только от GFP.
44. Системы спектральной детекции
Слева – последовательная (за счет поворотарешетки), справа – параллельная (панель с 32
детекторами предустановлена перед решеткой).
45. Спектральный детектор Никон
32-канальный детектор с регулируемой шириной щели – 2.5,6 и 10 нм на канал. Возбуждение препарата возможно
одновременно от всех 4 лазеров.
46. Спектральный детектор
Линейка из ФЭУ позволяет одновременно записывать сигналв 32 каналах для последовательных длин волн (ширина
канала устанавливается на 2,5, 5-6 или 10 нм)
47. Спектральный детектор
Галерея из 32 картинокпрепарата, окрашенного
DAPI и Alexa 488
Регулируемый детектор
позволяет выделять
несколько каналов для
одновременной записи
48. Лямбда стек (Lambda stack)
Лямбда стек или спектральный куб – набор изображений,записанных при различных длинах волн. Он позволяет
проследить за интенсивностью флуоресценции в каждом
пикселе изображения в зависимости от длины волны.
49. Запись стека для трех белков
50. Возможности спектрального детектора
Быстрая запись изображения в 32 каналах.Возможность разделения перекрывающихся
спектров (spectral unmixing). Разделение
спектров проводится по базе данных.
Регулировки спектрального детектора:
- изменение ширины (2, 5 или 10 нм на канал) –
достигается заменой решетки
- сдвиг всей рамки (500-820 нм) – производится
поворотом решетки
- объединение изображений с нескольких каналов.
51. Разделение спектров
Можно разделить спектры, максимумы которыхотстоят не менее, чем на 6-10 нм при условии, что
красители пространственно разделены (хотя бы
частично). Для разделения близких спектров
необходимо использовать минимальную ширину
52. Разделение спектров - стек
53. Разделение спектров - результат
Разделение спектров результат54. Виртуальный фильтр на базе 32-канального детектора
Выбирая каналы на детекторе, можно получить до четырехразличных флуоресцентных сигналов. Чувствительность
регулируется числом каналов, сигналы от которых
объединяются.