Похожие презентации:
Перпендикулярность прямых и плоскостей в пространстве
1. Перпендикулярность прямых и плоскостей
2. Перпендикулярные прямые в пространстве
Две прямые называются перпендикулярными,если угол между ними равен 90о
с
а
b
а b
α
c b
3. Лемма
Если одна из двух параллельных прямыхперпендикулярна к третьей прямой, то и другая
прямая перпендикулярна к этой прямой.
a
Доказать: b c
b
M
Дано: а || b, a c
A
c
C
α
Доказательство:
4. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости
аα
а α
5. Теорема 1
Если одна из двух параллельных прямыхперпендикулярна к плоскости, то и другая
прямая перпендикулярна к этой плоскости.
a
Дано: а || а1; a α
а1
Доказать: а1 α
α
х
Доказательство:
6. Теорема 2
βЕсли две прямые
перпендикулярны к
плоскости, то они
параллельны.
M
с
Дано: а α; b α
α
a
b
b1
Доказать: а || b
Доказательство:
7. Признак перпендикулярности прямой и плоскости
Если прямая перпендикулярна к двумпересекающимся прямым, лежащим в плоскости,
то она перпендикулярна к этой плоскости.
a
q O
p
m
Дано: а p; a q
p α; q α
α
p∩q=O
Доказать: а α
Доказательство:
8.
Доказательство:а) частный случай
a
A
P
l
Q
q
O
α
p
m
B
L
9.
Доказательство:а) общий случай
a1
a
m
q
p
O
α
10.
Теорема 4Через любую точку пространства проходит
прямая, перпендикулярная к данной плоскости, и
притом только одна.
β
М
b
а
α
с
Дано: α; М α
Доказать:
1) ∃ с, с α, М с;
2) с – !
Доказательство:
11.
ЗадачаДано: ABC;
MB BC; MB BA;
MB = BD = a
M
Доказать: МB BD
Найти: MD
a
Решение:
В
А
a
D
C