Похожие презентации:
Определённый интеграл. Вычисление площади криволинейной трапеции
1.
2.
ПОВТОРИМ!1. Функция F(х) называется первообразной функции
f(x) на некотором промежутке, если для всех Х из
этого промежутка выполняется равенство:
F ( x) f ( x)
Другими словами нахождение первообразной – это
обратное действие нахождения производной.
2. F(x)+C, где С произвольная постоянная (любое
число), называется семейством первообразных.
3. Совокупность всех первообразных данной функции
f(x) называется неопределённым интегралом и
обозначается:
f ( x)dx F ( x) C
3.
Таблица первообразныхПравила нахождения первообразных
f ( x) g ( x) F ( x) G ( x) C
kf ( x) kF ( x) C
f (kx b)
1
F (kx b) C
k
4.
Найдите первообразную функции1) f ( x) 2 x
2) f ( x) 2 sin x e
3) f ( x) 25 x 3
4
4) f ( x) x
5) f ( x) (3x 1)
4
x
5.
Понятие о криволинейной трапеции.Определённый интеграл
Фигура, ограниченная неотрицательной на отрезке
[a;b] функцией y=f(x) и прямыми у=0, x=a, x=b
называется
криволинейной трапецией.
6.
Площадь криволинейной трапеции можно вычислитьпо формуле:
S F (b) F (a)
Где F(x) – первообразная функции y=f(x)
Вычисление площади криволинейной трапеции сводится
к отысканию первообразной F(x) функции f(x), то есть к
интегрированию функции f(x).
Определение
Разность F(b)–F(a) называют интегралом от
функции f(x) на отрезке [a;b] и обозначают:
Верхний предел
интегрирования
Нижний предел
интегрирования
Подынтегральная
функция
b
a
f ( x)dx
Подынтегральное
выражение
7.
Формула Ньютона - Лейбницаb
f ( x)dx F (b) F (a)
a
Таким образом:
Исаак Ньютон
1642-1727
Готфрид Лейбниц
1646-1716 гг.
b
b
a
a
S f ( x)dx F F (b) F (a)
8.
Геометрический смысл интегралаОпределённый интеграл от неотрицательной
непрерывной функции f(x) по [a, b] численно равен
площади
криволинейной
трапеции
с
основанием [a, b], ограниченной сверху графиком
функции y = f(x).
Пример
Вычислить интеграл, если график
функции y=f(x) изображён на
рисунке
Проверь себя!
x2
3 32
1
S ( x 2)dx 2 x 6 2
2
2
1 2
1
9 1
6 2 4 4 8(кв.ед)
2 2
3
9.
Физический смысл интегралаПри прямолинейном движении перемещение S
численно
равно
определённому
интегралу
зависимости скорости V от времени t
Пример
Материальная точка движется по прямой со скоростью,
определяемой формулой v=3t2-4t+1, (время измеряется в
секундах, скорость – в см/с). Какой путь пройдёт точка за
3 секунды, считая от начала движения (t=0)?
b
3
3
s v(t )dt (3t 4t 1)dt (t 2t t )
2
a
3
0
33 2 32 3 27 18 3 12(см)
2
0
10.
Вычисление площадей спомощью интегралов
1. Криволинейная трапеция, ограниченная сверху
графиком функции y=f(x), снизу осью ОХ и по бокам
отрезком [a;b]
b
S f ( x)dx
a
11.
2. Фигура, ограниченная сверху только графикомфункции y=f(x) и снизу осью ОХ
b
S f ( x)dx
a
Точки а и b находим из уравнения f(x) =0
3. Криволинейная трапеция, ограниченная сверху осью
ОХ, снизу графиком функции y=f(x) и по бокам отрезком
[a;b]
b
S f ( x)dx
a
12.
4. Фигура, ограниченная сверху двумя графикамифункций y=f(x) и g(x), снизу осью ОХ и по бокам
отрезком [a;b]
с
b
a
с
S f ( x)dx g ( x)dx
Точку С находим из уравнения f(x)=g(x)
5. Фигура, ограниченная сверху графиком функции
y=f(x), снизу графиком функции y=g(x)
b
S ( f ( x) g ( x)) dx
a
Точки a и b находим из уравнения
f(x)=g(x)
13.
Устная работаВыразите, с помощью интеграла площади фигур, изображённых
на рисунке
0
S
3
2
f ( x)dx
S g ( x)dx
S f ( x)dx
4
2
4
2
2
4
4
S g ( x)dx f ( x)dx
S
0
3
3
0
f ( x)dx g ( x)dx
14.
ПРАКТИКУМЗадание №1
Найти площадь криволинейной трапеции,
изображённой на рисунках
1)
Решение
Используя формулу:
Получаем:
3
3
x
S x 2 dx
3
1
3
1
33 13 27 1
1
2
9 8 (кв.ед.)
3 3
3 3
8
3
15.
Решение2)
1
S ( x 2)dx
2
x3
3
2x
2
1
2
( 2) 3
13
2
2( 2)
3
3
3)
1
8
2 4 9(кв.ед)
3
3
Решение
e
e
1
S ln x dx
x
1
1
ln e ln 1 1 0 1(кв.ед)
16.
Решение4)
2
4
x
S x 3 dx
4
1
2
1
24 1
4 4
1
3
4 3 (кв.ед)
4
4
Решение
5)
2
x 3
1 x2
S
dx
3 x
2
2 2
1
1
1 3
1 6
1 3 4
4 2
4 4
7
1
4 2 (кв.ед)
4
4
4
17.
y 4 x 2 , y 3x, y 06)
находится в I четверти
Решение
3x 2 1
x3 2
S 3 xdx (4 x )dx
4 x
2
3 1
0
0
1
3 8
1 19
1
8 4
3 (кв.ед)
2 3
3 6
6
1
2
2
Решение
7)
x2
1 x3
S ( x 2)dx x dx
2 x
2
2 3
2
2
3
1 8 3
1
6 6 3 4 (кв.ед)
2
3 3 2
2
1
1
2
1
2
18.
Контрольные вопросы:1. Какая функция называется первообразной для функции
f(x)?
2. Чем отличаются друг от друга различные первообразные
функции для данной функции f(x)?
3. Дайте определение неопределённого интеграла.
4. Дайте определение определённого интеграла.
5. Сформулируйте теорему Ньютона-Лейбница.
6. Перечислите свойства интеграла.
7. Как вычислить площадь плоской фигуры с помощью
интеграла (составьте словесный алгоритм)?
8. Перечислите области применения интеграла, назовите
величины, которые можно вычислить с помощью интеграла.