Похожие презентации:
Объем кристаллических веществ
1. Объем кристаллических веществ
Уравнение для энергии ГиббсаT
T
CP
G H 0 TS0 CP dT T
dT
T
T0
T0
приведенной к одному молю вещества, описывает химический потенциал
компонента i в чистой фазе j при давлении p0 и температуре T, отличной от
стандартной. Обозначим это значение молярной свободной энергии Гиббса через
Gi(T, p0). Для расчета молярной свободной энергии Гиббса (или химического
потенциала) этого компонента при давлении p, отличном от p0, Gi(T, p), используется
формула
p
Gi (T , p ) Gi (T , p0 ) Vi dp
p0
где Vi – молярный объем компонента, который является
функцией p и T.
2.
Термодинамическим определением объема является уравнение (24), которое гласит, что объем – это частная производная свободной энергии Гиббса по давлению при постоянной температуре.Отсюда следует, что объем имеет термодинамическую размерность – Дж/бар (кал/бар).
(кал/бар).
1 Дж/бар = 0.101325 см3
æ ¶G ö
V ç
÷
è ¶p øT
Для изменения объема газа на 1 л (1000 см3) газа необходима работа 101.325 Дж
Для кристаллических веществ в широком интервале давлений можно
принять, что их объем не зависит от давления. Тогда интеграл будет равен
p
V dp V ( p p )
i
p0
0
0
где V0 – объем кристаллического вещества при давлении p0.
3.
Зависимость молярноговеществ от давления
объема
кристаллических
Алмазные наковальни
Лазерный
нагрев
наковальня
образец
рубин
1 мм
4.
11 æ ¶V ö
b
ç
÷
KT
V0 è ¶p øT
KT ~ 100 ГПа
1 æ ¶V ö
a ç
÷
V0 è ¶T ø P
CP CV V0a 2TKT
3a K T
g
CV
Параметр
Грюнайзена
5. Berman & Brown (1985)
Berman & Brown (1985)VPT V0 [(1 v1 (T 298) v2 (T 298) 2 v3 ( p 1) v4 ( p 1) 2 ]
Holland & Powell (1990)
VPT V0 [(1 a (T 298) b (T 298)]
Holland & Powell (1998)
VPT
где
é
4P ù
V1,T ê1
ú
ë KT 4 P û
1
4
(уравнение Берча-Мурнагана)
V1,T V0 [(1 a 0 (T 298) 20a 0 ( T 298)]
KT K 298 (1 1.5 ´10 4 (T 298))
V0 – объем при стандартных условиях, K – объемный модуль
сжатия.
6.
Еще раз о фазовых переходах…Фазовые переходы первого рода – это переходы, при которых
скачком изменяются первые производные термодинамических
потенциалов по интенсивным параметрам системы (температуре
или давлению). Переходы первого рода реализуются как при
переходе системы из одного агрегатного состояния в другое, так и в
пределах одного агрегатного состояния (в отличие от фазовых
переходов второго рода, которые происходят в пределах одного
агрегатного состояния).
7.
Фазовые переходы второго рода сопровождаются изменениемсимметрии вещества. Изменение симметрии может быть связано со
смещением атомов определённого типа в кристаллической решётке,
либо с изменением упорядоченности вещества. В большинстве
случаев, фаза, обладающая большей симметрией (т. е. включающей
в себя все симметрии другой фазы), соответствует более высоким
температурам. При фазовых переходах второго рода химический
потенциал и его первые производные
(S, V) и
изменяются
непрерывно, а вторые производные (α, β, Cp) – скачком. Поскольку
фазовые переходы второго рода обычно связаны с изменением
каких-либо свойств симметрии тела, а эти изменения могут быть
сколь угодно малым, то они не приводят ни к затрате энергии, ни к
скачкообразному изменению объема.
8.
Термодинамические базы данныхМинералогические термодинамические базы данных включают
в себя данные, необходимые для расчетов реакций между
минералами, флюидами и расплавами.
1. Свободная энергия образования вещества из элементов при
298 К и 1 бар ( fG0)
2. Энтальпия образования вещества из элементов при 298 К и 1
бар ( fH0)
3. Энтропия вещества при 298 К и 1 бар (S0)
4. Коэффициенты в уравнении температурной зависимости
теплоемкости вещества (a, b, c, d )
5. Коэффициенты в уравнении температурной и барической
зависимости объема вещества (a , KT)
6. Некоторые дополнительные сведения, касающиеся процессов
упорядочения в веществах и фазовых переходов
9. Условие равновесия. Расчет линии твердофазной реакции в Р-Т координатах.
В равновесном процессе G = 0. Для химической реакцииG G прод. G исх.
G
прод.
G исх.
Если изменить температуру на dT, а давление на dp, так чтобы
при этом сохранилось равновесие, то
G
dG
G
dG
прод
.
исх .
прод.
исх .
10.
Принимая во внимание соотношение dG = Vdp – SdT, получим( S
прод.
dT Vпрод.dp ) ( Sисх.dT Vисх.dp )
или
dT
dp
V
S
прод.
прод.
Vисх.
Sисх.
Vr
S r
где Vr и Sr – объемный и энтропийный эффекты реакции r. Полученное
соотношение называется уравнением Клаузиуса-Клапейрона. Оно показывает,
как должны меняться Т и р, чтобы между фазами, участвующими в реакции,
соблюдалось равновесие. С графической точки зрения, dT/dp – это тангенс угла
наклона касательной к линии реакции в Р-Т координатах.
11.
Для расчета линии реакции необходимо1) Соблюсти условия баланса масс
2) Соблюсти условие термодинамического равновесия
T
T
p
CP
G H 0 T S0 CP dT T
dT Vdp 0
T
T0
T0
p0
где H0, S0, Сp, V –энтальпийный, энтропийный,
теплоемкостный и объемный эффекты реакций.
H 0 H 0 прод. H 0исх.
S0 S 0 прод. S 0исх.
CP C Pпрод . C Pисх .
V V прод. V исх.
12.
Для примера рассмотрим реакцию, в которой принимаютучастие только чистые твердые вещества
3CaAl2Si2O8 = Ca3Al2Si3O12 + 2Al2SiO5 + SiO2
анортит
Минерал
Гроссуляр
Кианит
Кварц
Анортит
гроссуляр
кианит
кварц
fH0,
ккал/моль
-1588.08
-619.817
S0, кал/моль/К
V0,
кал/моль/бар
60.95
19.96
2.9962
1.055
-217.72
-1011.90
9.919
47.80
0.542
2.409
Рассчитайте G реакции при Т = 900ОС и р = 25 кбар и Т =
1100ОС и р = 20 кбар. Принять во внимание, что СP = 0, а V
не зависит от давления. Какая из Р-Т точек наиболее близка к
линии равновесия?
13.
H 0 f H0
Grs
2 f H
0
Ky
f H
0
Qtz
3 f H
0
An
S0 S 0Grs 2S 0 Ky S 0Qtz 3S 0 An
V V 0Grs 2V 0 Ky V 0Qtz 3V 0 An
G H 0 T S0 V ( p 1)
кал
G(900,25) 10941
моль
кал
G(1100,20) 3478
моль
14.
Определите энтропию фаялита при стандартных условиях(298.15 К и 1 бар), если известно, что энтропийный эффект
реакции фаялит + кварц = феросиллит при 1000ОС и 1 бар S =
-1.9 Дж/К. Энтропии при стандартных условиях и
коэффициенты теплоемкости
c
d
CP a bT 2 1/ 2
T
T
для фаз приведены в таблице.
Фаза
SO ,
Дж/моль
a
кДж/моль
феросиллит
(Fe2Si2O6)
190.6
0.3987
кварц
(SiO2)
41.5
фаялит
(Fe2SiO4)
?
b (105)
кДж/моль
c
кДж/моль
d
кДж/моль
-0.6579
1290.1
-4.058
0.1107
-0.5189
0
-1.1283
0.2011
1.773
-1960.6
-0.9009
15.
По справочным данным рассчитать и построить в Р-Т координатах линии равновесиймежду следующими минералами в указанных температурных интервалах.
Гроссуляр (Ca3Al2Si3O12), анортит (CaAl2Si2O8), кианит (Al2SiO5), кварц (SiO2); T = 9001300OC
Фаялит (Fe2SiO4), феросиллит (Fe2Si2O6), кварц (SiO2); T = 1000-1500OC
Жадеит (NaAlSi2O6), альбит (NaAlSi3O8), кварц (SiO2); T = 800-1400OC
Пироп (Mg3Al2Si3O12), кордиерит (Mg2Al4Si5O18), силлиманит (Al2SiO5), кварц (SiO2); T =
600-1000OC
Шпинель (MgAl2O4), кордиерит (Mg2Al4Si5O18), кварц (SiO2); T = 600-1200OC