166.86K
Категория: МатематикаМатематика

Трапеция. Теорема Фалеса. Задачи. 8 класс

1.

Урок № 4
Трапеция
Ввести понятие трапеции и ее элементов.
Познакомить с равнобедренной и прямоугольной
трапецией.
Рассмотреть свойства равнобедренной трапеции.
04.12.2012
www.konspekturoka.ru
1

2.

В
А
Основание
С
Основание
D
АВСD – трапеция, если ВС∥AD,
АВ и СD – боковые стороны,
ВС и AD – основания.
04.12.2012
www.konspekturoka.ru
2

3.

В
С
А
D
АВСD – равнобедренная трапеция, если ВС∥ AD,
АВ = СD – боковые стороны.
04.12.2012
www.konspekturoka.ru
3

4.

В
С
А
D
АВСD – прямоугольная трапеция, если
ВС∥ AD,
∠А = 90° или ∠В= 90°.
04.12.2012
www.konspekturoka.ru
4

5.

В
С
М
N
А
D
М – середина АВ
N – середина CD
MN – средняя линия трапеции
BC + AD
MN =
2
04.12.2012
www.konspekturoka.ru
5

6.

В
С
А
D
1. В равнобедренной трапеции диагонали равны.
2. В равнобедренной трапеции углы при каждом основании
равны.
ВD = AC – диагонали трапеции
∠А = ∠D, ∠В = ∠С – углы при основаниях
04.12.2012
www.konspekturoka.ru
6

7.

В
С
А
D
1. Если диагонали трапеции равны, то она равнобедренная.
2. Если углы при основании трапеции равны, то она
равнобедренная.
ВD = AC – диагонали трапеции
∠А = ∠D, ∠В = ∠С – углы при основаниях
04.12.2012
www.konspekturoka.ru
7

8.

Если на одной из двух прямых отложить последовательно
равных несколько отрезков и через их концы провести
параллельные прямые, пересекающие вторую прямую,
то они отсекут на второй прямой равные между собой
отрезки.
б) l₁ ∥ l₂
а) l₁ ∥ l₂
А₁
А₂
А₃
В₃
А₄
В₄
А₅
l₂
В₅
А₁А₂ В₂ В₁ - параллелограмм
А₁А₂ = В₁В₂
04.12.2012
А₂
В₂
А₃
l₁
А₁
В₁
В₁
С
D
А₄
В₂
В₃
В₄
А₅
В₅
l₁
l
l₁ ∥ l
l₂
А₂ А₃DC - параллелограмм
А₂A₃ = CD
www.konspekturoka.ru
А₂A₃ = В₂B₃
8

9.

1
Задача
Докажите, что отрезок, соединяющий середины боковых
сторон трапеции, параллелен основаниям трапеции.
В
E
.
А
С
Доказательство
Пусть Е – середина АВ.
Проведем ЕF ∥ BC ∥ AD.
.F
Точка F – середина CD
(по теореме Фалеса).
D
Докажем, что ЕF - единственный
Через точки Е и F можно провести только одну прямую
(аксиома) т. е. отрезок, соединяющий середины боковых
сторон трапеции ABCD параллелен основаниям, ч. т. д.
04.12.2012
www.konspekturoka.ru
9

10.

А
2
Задача
Дано:
Найти:
В
АВСD – трапеция, ∠A = 36°, ∠C = 117°
∠В = ?, ∠D = ?
С
117°
Решение
АВСD – трапеция, то ВС∥ AD.
∠А + ∠В = 180°
36° + ∠В = 180°
36°
D
∠С + ∠D = 180°
∠В = 180° - 36°
∠В = 144°
∠117° + ∠D = 180° ∠D = 180° - ∠117°
∠D = 63°
Ответ:
04.12.2012
∠В = 144°, ∠D = 63°
www.konspekturoka.ru
10

11.

А
Задача
3
Дано:
АВСD – равнобокая трапеция, ∠A = 68°,
Найти:
В
∠В = ?, ∠С -?, ∠D = ?
Решение
С
Если АВСD – равнобокая трапеция,
то ∠A = ∠D = 68°,
∠ 68°+ ∠В = 180°
68°
68°
D
∠В = 180° - ∠ 68°
∠В = 112°
∠В = ∠С = 112°,
Ответ:
04.12.2012
∠С = 112°.
∠D = 68°∠, В =
112°www.konspekturoka.ru
,
11

12.

Задача
4
АВСD – прямоугольная трапеция,
∠D = 90°, BC = 4 см, AD = 7 см, ∠A = 60°
Дано:
Найти:
АВ - ?
В
4 см
Решение
С
Проведем ВВ₁ ⊥ AD
AВ₁ = AD - B₁D
AВ₁ = 7 - 4 = 3 (см)
60°

А
В₁
7 см
D
Рассмотрим ∆ АBВ₁:
∠A = 60° - по условию,
∠В₁ = 90° так как ВВ₁ ⊥ AD, то ∠В = 30°
AВ₁ = ½АВ – по свойству прямоугольного треугольника,
АВ = 3· 2 = 6 (см).
Ответ: 6 (см).
04.12.2012
www.konspekturoka.ru
12

13.

Какой четырехугольник называется трапецией?
Как называются стороны трапеции?
Какая трапеция называется прямоугольной? Равнобедренной?
Сформулируйте свойства равнобедренной трапеции.
Сформулируйте признаки равнобедренной трапеции.
Что такое средняя линия трапеции? Свойство средней
линии трапеции.
04.12.2012
www.konspekturoka.ru
13
English     Русский Правила