1.12M
Категория: МатематикаМатематика

Параллельные прямые. Обратные теоремы

1.

2.

Определение.
Две прямые на плоскости
называются
параллельными,
если они не пересекаются.

3.

Признаки параллельности прямых
Если при пересечении двух прямых
секущей накрест лежащие углы равны,
то прямые параллельны.
c
а
1
2
b
c
Если при пересечении двух прямых
секущей соответственные углы равны,
то прямые параллельны.
Если при пересечении двух прямых секущей
сумма односторонних углов равна 1800, то
прямые параллельны.
1
а
2
b
c
а
1
2
b

4.

Аксиома параллельности и следствия из неё.
c
А
Через точку, не лежащую на данной
b прямой, проходит только одна прямая,
параллельная данной.
а
с
а
b
Если прямая пересекает одну из
двух параллельных прямых, то она
пересекает и другую.
a II b, c b ⇒ c a
Следствие 1.
Если две прямые параллельны
третьей прямой, то они параллельны.
a II с, b II с ⇒ a II b
Следствие 2.

5.

Если две параллельные прямые пересечены секущей, то
накрест лежащие углы равны.
Дано: a II b, MN- секущая.
Р
1
N
2
M
а
Доказать: 1= 2 (НЛУ)
b
Доказательство:
способ от противного.
Допустим, что 1 2.
Отложим от луча МN угол NМР, равный углу 2.
По построению накрест лежащие углы NМР= 2
РМ II b.
Получили, что через точку М проходит две прямые (а и МР),
параллельные прямой b !!! Это противоречит аксиоме
параллельных прямых. Значит наше допущение неверно!!!
1= 2.
Теорема доказана.

6.

Теорема об односторонних углах, образованных при пересечении двух
параллельных прямых секущей.
Если две параллельные прямые пересечены секущей, условие
то сумма односторонних углов равна 1800.
заключение теоремы
c
а
3
1
2
b
Дано: а II b, c- секущая.
Доказать: OУ 1+ 2=1800.
Доказательство:
3+ 2 =1800, т. к. они смежные.
11= 3, т. к. это НЛУ при а II b
3 + 2 =1800
Теорема доказана.

7.

Если MN II AB, а угол 2 больше угла 1 на 300, то угол 2 равен…
Решение:
1= х,
2= х+30
Задача
В
1= ВОС,
N
М
2
A
О
1
С
B
они вертикальные.
2= х+30
ВОА=х,
1800, т.к. ОУ при а II b
Составь уравнение…
Найди сам угол.

8.

Теорема о соответственных углах, образованных при пересечении двух
параллельных прямых секущей.
Если две параллельные прямые пересечены секущей,
то соответственные углы равны. заключение теоремы
c
2
а
3
1
b
условие
Дано: а II b, c- секущая.
Доказать: СУ 1 = 2.
Доказательство:
2 = 3, т. к. они вертикальные.
3 = 1, т. к. это НЛУ при а II b
22
11 = 3 =
Теорема доказана.

9.

Свойства углов при параллельных прямых. Дано:
aIIb
1=
a
340
aIIb
aIIb.
1340
2=
b
2 1
a
1=
b 2=
2 1
Сумма углов 1 и 2 равна 760.
a
aIIb
2
b
1
3
1=
3=
1: 2 = 4 : 5.
aIIb
a
2
1
a
440
2
440
Проверить.
1
0
b
1=
2=
b 1=
2=

10.

Дано: а II b, c – секущая.
Один из односторонних углов на
20% меньше другого.
Задача
c
7 6
8
3
2
b
1
4 5
1=
а
5=
2=
6=
3=
7=
4=
8=
Найти: все углы.
Решение:
2=х,
1 на 20% меньше, т.е. 80%
1=0,8х
2=х
1=0,8х
1800, т.к. ОУ при
а II b
Составь уравнение…
Найди сам все углы…
Проверить.

11.

Тренировочные упражнения
Дано: а II b, с – секущая
1 = 4 2
Найдите:
1
и
2
c
а
Угол 1 в 4 раза больше
угла 2
1


b

12.

Тренировочные упражнения
Угол 1 на 300 больше
угла 2
Дано: а II b, с – секущая
1 – 2 = 300
Найдите:
1
и
2
c
а
1
х+30

b

13.

Тренировочные упражнения
Дано: а II b, с – секущая
2 = 0,8 1
Найдите:
1
и
2
c
а

0,8х
2
Угол 2 составляет 0,8 части
угла 1
b

14.

Тренировочные упражнения
Пусть х – 1 часть
Дано: а II b, с – секущая
1 : 2 = 5 : 4
Найдите:
1
и
2
c
а

1
5:4

2
b

15.

Тренировочные упражнения
Дано: а II b, с – секущая
2 составляет 80% от 1
Найдите:
1
и
2
c
%
а
х
1
0,8х
2
b

16.

AB = BC, A=600,
CD – биссектриса угла ВСЕ.
Докажите, что АВ II CD.
Дано: а II b, с – секущая
1 : 2 = 5 : 4
Найдите:
1
и
2
c
Пусть х – 1 часть
B
D
а

1
600
1200
600
A
С
600
5:4
E

2
b

17.

Используя данные рисунка, найдите углы 1, 2 и 3.
с
d
а
1200
1
2
200
1600 b
3

18.

Может ли еще один из семи остальных углов, образованных
при пересечении прямых a и
1100? 600? Почему?
b с прямой d, быть равен
d
m
1100
400
1100
400
а
b

19.

На рисунке АС II ВD и
Найдите СВD.
A
АС = АВ,
МАС = 400.
M
С
400
2
3
B
1
D

20.

На рисунке АВ II ЕD.
Докажите, что ВСD = B + D
B
Подсказка
A
1
N
2
3
C
Построим CN II AB
4
D
E

21.

На рисунке АВ II ЕD. CВА = 1400, СDE = 1300
Докажите, что ВС СD
Подсказка
B
A
140
400
N
C
Построим CN II AB
130
50 0
D
E

22.

a II b, c – секущая, DM и DN – биссектрисы
смежных углов, образованных прямыми a и c. DE = 5,8 см
На рисунке
Найдите MN.
с
а
400 D
2
3 6
5
1
M
4
E
?
b
N

23.

На рисунке АВ ED и KM ED, ABE = 340
MN – биссектриса КМС
Найдите EMN.
D
K
N
A
0
146
0
73
E
?
340
B
730 C
M

24.

На рисунке АС II BD и KC II MD, ACK = 480
CDK в 3 раза больше EDM
Найдите КDE.
A
B
K
C
480
480
M
3x
D
x
E
English     Русский Правила