Похожие презентации:
Теорема о трех перпендикулярах
1.
2. Цели урока
• Ввести понятие расстояния отточки до плоскости;
• Доказать теорему о трёх
перпендикулярах;
• Показать применение этой
теоремы при решении задач.
3. Ход урока
1. Организационный момент;2. Актуализация опорных
знаний;
3. Изучение нового
материала.
4.
ПовторениеОпределение. Прямая называется перпендикулярной к
плоскости, если она перпендикулярна к любой прямой,
лежащей в этой плоскости.
a
S
F
A
a
N
D
H
a AS , a AF , a FS , a ND, a DH , a HN
5.
ПовторениеПризнак перпендикулярности прямой и плоскости.
Если прямая перпендикулярна к двум
пересекающимся прямым, лежащим в плоскости, то
она перпендикулярна к этой плоскости.
a
p
p , a p,
q , a q,
a
6.
ПланиметрияСтереометрия
А
А
а
М
Н
М
Н
Отрезок АН – перпендикуляр
Точка Н – основание перпендикуляра
Отрезок АМ – наклонная
Точка М – основание наклонной
Отрезок МН – проекция
наклонной на прямую а
Отрезок МН – проекция
наклонной на плоскость
7.
ПланиметрияСтереометрия
А
А
а
М
Н
Н
М
Из всех расстояний от точки А
до различных точек прямой
а
плоскости
наименьшим является длина
перпендикуляра.
Расстояние от точки до
Расстояние от точки до
прямой – длина
плоскости – длина
перпендикуляра
перпендикуляра
8.
Расстояние от лампочки до землиизмеряется по перпендикуляру,
проведенному от лампочки к
плоскости земли
9.
Если две плоскости параллельны, то все точки однойплоскости равноудалены от другой плоскости.
II
Расстояние от произвольной точки одной из параллельных
плоскостей до другой плоскости называется
расстоянием между параллельными плоскостями.
10.
Если прямая параллельна плоскости, то все точки прямойравноудалены от этой плоскости.
a
a II
Расстояние от произвольной точки прямой до плоскости
называется расстоянием между прямой и параллельной
ей плоскостью.
11.
Если две прямые скрещиваются, то через каждую из нихпроходит плоскость, параллельная другой прямой, и притом
только одна.
a
a b
a II
b
Расстояние между одной из скрещивающихся прямых и
плоскостью, проходящей через другую прямую параллельно
первой, называется расстоянием между
скрещивающимися прямыми.
12.
Расстояние между одной из скрещивающихся прямых иплоскостью, проходящей через другую прямую параллельно
первой, называется расстоянием между
скрещивающимися прямыми.
В
А
13.
ВН-Я
П-Я
А
П-Р
С
Н-Я
П-Я
M
14.
Из точки А к плоскости проведены две наклонные,которые образуют со своими проекциями на плоскость
углы в 600. Угол между наклонными 900. Найдите
расстояние между основаниями наклонных, если
расстояние от точки А до плоскости равно 18 см.
A
18
К
В
600
600
15.
Из точки А к плоскости проведены две наклонные, длиныкоторых равны 26 см и 2 133 см. Их проекции на эту
плоскость относятся как 5:4. Найдите расстояние от точки А
до плоскости .
A
2 133
26
?
В
М
С
16.
Теорема о трех перпендикулярах.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ее проекции на эту
плоскость, перпендикулярна и к самой наклонной.
А
П-Р
Н
Н-я
П-я
М
a
17.
Обратная теорема.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ней,
перпендикулярна и к ее проекции.
А
П-Р
Н
Н-я
П-я
М
a
18. Применение знаний в стандартной ситуации
19.
Прямая АК перпендикулярна к плоскости правильноготреугольника АВС, а точка М – середина стороны ВС.
Докажите, что МК ВС.
№148.
К
П-Р
А
В
П-я
М
С
BC AМ
П-я
BC MК
TTП
Н-я
20.
Отрезок АD перпендикулярен к плоскости равнобедренноготреугольника АВС. Известно, что АВ = АС = 5 см, ВС = 6 см,
АD = 12 см.
Найдите расстояния от концов отрезка АD до прямой ВС.
№149
D
П-Р
В
12
П-я
А
N 6
5
С
BC AN
П-я
BC DN
TTП
Н-я
АN и DN – искомые расстояния
21.
В треугольнике угол С прямой, угол А равен 600, AС=12см.DC (АВС). DC= 6 5 Найдите расстояния:
а) от точки С до прямой АВ, б) от точки D до прямой АВ.
АВ СN
D
AB DN
TTП
Н-я
П-я
6 5
CN и DN – искомые расстояния
П-Р
12
С
А
600
N
В
22.
Через вершину прямого угла С равнобедренногопрямоугольного треугольника АВС проведена прямая СМ,
перпендикулярная к его плоскости. Найдите расстояние от
точки М до прямой АВ, если АС = 4 см, а СМ = 2 7 см.
№155.
М
П-Р
2 7
С
А
4
П-я
F
В
AВ СF
П-я
AВ MF
TTП
Н-я
МF – искомое расстояние
23. Подведение итогов Домашнее задание
• Пункты 19,20• №№ 140, 143.