317.50K
Категория: МатематикаМатематика

Эллипсоид. Сечение плоскостью YOZ

1.

Эллипсоид
Эллипсоидом называется поверхность, каноническое
уравнение которой имеет вид
x2 y2 z 2
2 2 1,
2
a
b
c
где a, b, c – положительные числа.
Эллипсоид обладает тремя плоскостями симметрии,
тремя осями симметрии и центром симметрии. Ими служат
соответственно координатные плоскости, координатные оси
и начало координат.

2.

z
3
2
-2
1
-1
-4
-3
-2
-1
О
1
1
2
3
4
-1
y
2
x
-2
-3
x2
y2
z2
4
16
9
1
a
2;
b
4;
c
3

3.

x
Сечение плоскостью YOZ :
z
3
0
y2
z2
16
9
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y
1

4.

Первое сечение :
z
3
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y

5.

y
Сечение плоскостью XOZ :
z
3
0
x2
z2
4
9
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y
1

6.

Два сечения :
z
3
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y

7.

Сечение плоскостью XOY :
z
z
3
0
x2
y2
4
16
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y
1

8.

Все сечения :
z
3
2
-2
1
-1
-4
-3
-2
-1
О
1
-1
2
x
-2
-3
x2
y2
z2
4
16
9
1
1
2
3
4
y
English     Русский Правила